Sample records for si001 surface induced

  1. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    NASA Astrophysics Data System (ADS)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  2. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    PubMed

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-07

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.

  3. Synchrotron Radiation Damage Mechanism of X-Ray Mask Membranes Irradiated in Helium Environment

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomiyuki; Okuyama, Hiroshi; Okada, Koichi; Nagasawa, Hiroyuki; Syoki, Tsutomu; Yamaguchi, Yoh-ichi

    1992-12-01

    The mechanism of X-ray mask membrane displacement induced by synchrotron radiation (SR) has been discussed. Silicon nitride (SiN) and silicon carbide (SiC) membranes were irradiated by SR in a 1 atm helium ambient. SR-induced displacement for both membranes was 25-97 nm (σ). Oxygen concentration in both SiN and SiC was below 0.01 in O/Si atomic ratio. Although an increase in dangling bond density of SiN was observed, no remarkable increase in spin density was detected in SiC. Moreover, the most important finding was that thin oxides were grown on the membrane surface after SR irradiation. From these results, it is considered that the oxide growth on SiC membrane surfaces, and both the oxide growth and the increase of dangling bond density in SiN play an important role in the SR-induced displacement for the X-ray mask membranes.

  4. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    PubMed

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  5. Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.

    PubMed

    Cui, Y; Chung, J; Nogami, J

    2012-02-01

    We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.

  6. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment

    PubMed Central

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J.

    2015-01-01

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm2, respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer’s surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm2 and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si–(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals. PMID:26575362

  7. Combined wet and dry cleaning of SiGe(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less

  8. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that themore » hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.« less

  9. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  10. Gold-catalyzed oxide nanopatterns for the directed assembly of Ge island arrays on Si.

    PubMed

    Robinson, Jeremy T; Ratto, Fulvio; Moutanabbir, Oussama; Heun, Stefan; Locatelli, Andrea; Mentes, T Onur; Aballe, Lucia; Dubon, Oscar D

    2007-09-01

    The heteroepitaxial growth of Ge on Au-patterned Si(001) is investigated using in situ spectromicroscopy. Patterning of a hydrogen-terminated Si surface with a square array of Au dots followed by brief exposure to air leads to the spontaneous, local oxidation of Si. The resulting oxide nanopattern limits the surface migration of Au during annealing up to 600 degrees C, resulting in complete preservation of the Au pattern. Subsequent deposition of Ge induces a redistribution of Au across the surface even as the oxide nanopattern persists. As a result, the oxide pattern drives the growth of Ge islands into an ordered assembly, while Au decorates the surfaces of the Ge islands and modifies their shape.

  11. Adsorption of ethylene on Sn and In terminated Si(001) surface studied by photoelectron spectroscopy and scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Petr, E-mail: petr.zimmermann@mff.cuni.cz; Sobotík, Pavel; Kocán, Pavel

    2016-09-07

    Interaction of ethylene (C{sub 2}H{sub 4}) with Si(001)-Sn-2 × 2 and Si(001)-In-2 × 2 at room temperature has been studied using core level (C 1s) X-ray photoelectron spectroscopy with synchrotron radiation and scanning tunneling microscopy. Sn and In form similar dimer chains on Si(001)2 × 1, but exhibit different interaction with ethylene. While ethylene adsorbs on top of Sn dimers of the Si(001)-Sn-2 × 2 surface, the Si(001)-In-2 × 2 surface turned out to be inert. Furthermore, the reactivity of the Sn terminated surface is found to be considerably decreased in comparison with Si(001)2 × 1. According to the proposedmore » adsorption model ethylene bonds to Sn dimers via [2 + 2] cycloaddition by interacting with their π dimer bonds. In contrast, indium dimers do not contain π bonds, which renders the In terminated Si(001) surface inert for ethylene adsorption.« less

  12. Self-ordering of a Ge island single layer induced by Si overgrowth.

    PubMed

    Capellini, G; De Seta, M; Evangelisti, F; Zinovyev, V A; Vastola, G; Montalenti, F; Miglio, Leo

    2006-03-17

    We provide a direct experimental proof and the related modeling of the role played by Si overgrowth in promoting the lateral ordering of Ge islands grown by chemical vapor deposition on Si(001). The deposition of silicon induces a shape transformation, from domes to truncated pyramids with a larger base, generating an array of closely spaced interacting islands. By modeling, we show that the resulting gradient in the chemical potential across the island should be the driving force for a selective flow of both Ge and Si atoms at the surface and, in turn, to a real motion of the dots, favoring the lateral order.

  13. Real-time photoelectron spectroscopy study of the oxidation reaction kinetics on p-type and n-type Si (001) surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Zhou

    Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that further work is necessary to update and modify the traditional Si (001) oxidation models that had been accepted for several decades. To update and complement the Si (001) oxidation kinetics, an understanding of the temperature and dopant factor during initial oxidation kinetics on Si (001) is our first step. In this study, real-time photoelectron spectroscopy is applied to characterize the oxidized (001) surface and surface information was collected by ultraviolet photoelectron spectroscopy technique. By analyzing parameters such as O 2p spectra uptake, change of work function and the surface state in respect of p- and n- type Si (001) substrate under different temperature, the oxygen adsorption structure and the dopant factor can be determined. In this study, experiments with temperature gradients on p-type Si (001) were conducted and this aims to clarify the temperature dependent characteristic of Si (001) surface oxidation. A comparison of the O 2p uptake, change of work function and surface state between p-and n-type Si (001) is made under a normal temperature and these provides with the data to explain how the dopant factor impacts the oxygen adsorption structure on the surface. In the future, the study of the oxygen adsorption structure will lead to an explanation of the surface strain that discovered; therefore, fundamental of the initial oxidation on Si (001) would be updated and complemented, which would contribute to the future gate technology in MOSFET and CMOS.

  14. Adsorption of acrylonitrile on diamond and silicon (001)-(2 x 1) surfaces: effects of dimer structure on reaction pathways and product distributions.

    PubMed

    Schwartz, Michael P; Barlow, Daniel E; Russell, John N; Butler, James E; D'Evelyn, Mark P; Hamers, Robert J

    2005-06-15

    Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) are used to compare the reaction of acrylonitrile with Si(001) and C(001) (diamond) surfaces. Our results show that reaction with Si(001) and C(001) yield very different product distributions that result from fundamental differences in the ionic character of these surfaces. While acrylonitrile reacts with the C(001) surface via a [2 + 2] cycloaddition reaction in a manner similar to nonpolar molecules such as alkenes and disilenes, reaction with the Si(001) surface occurs largely through the nitrile group. This work represents the first experimental example of how differences in dimer structure lead to very different chemistry for C(001) compared to that for Si(001). The fact that Si(001) reacts with the strongly polar nitrile group of acrylonitrile indicates that the zwitterionic character of this surface controls its reactivity. C(001) dimers, on the other hand, behave more like a true molecular double bond, albeit a highly strained one. Consequently, while alternative strategies will be necessary for chemical modification of Si(001), traditional schemes from organic chemistry for functionalization of alkenes and disilenes may be available for building molecular layers on C(001).

  15. Metal-Free CVD Graphene Synthesis on 200 mm Ge/Si(001) Substrates.

    PubMed

    Lukosius, M; Dabrowski, J; Kitzmann, J; Fursenko, O; Akhtar, F; Lisker, M; Lippert, G; Schulze, S; Yamamoto, Y; Schubert, M A; Krause, H M; Wolff, A; Mai, A; Schroeder, T; Lupina, G

    2016-12-14

    Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH 4 as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ∼3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half-maximum value of 39 cm -1 was extracted for the 2D mode, further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2 × 2 cm 2 pieces were transferred onto SiO 2 /Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ∼1500 ± 100 Ω/sq and μ ≈ 400 ± 20 cm 2 /V s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.

  16. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE PAGES

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...

    2017-09-22

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  17. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  18. Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1- x(001) and SixGe1- x(110)

    NASA Astrophysics Data System (ADS)

    Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C.; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.

    2017-02-01

    Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.

  19. Large-area ordered Ge-Si compound quantum dot molecules on dot-patterned Si (001) substrates

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Zhou, Tong; Wang, Shuguang; Fan, Yongliang; Zhong, Zhenyang

    2014-08-01

    We report on the formation of large-area ordered Ge-Si compound quantum dot molecules (CQDMs) in a combination of nanosphere lithography and self-assembly. Truncated-pyramid-like Si dots with {11n} facets are readily formed, which are spatially ordered in a large area with controlled period and size. Each Si dot induces four self-assembled Ge-rich dots at its base edges that can be fourfold symmetric along <110> directions. A model based on surface chemical potential accounts well for these phenomena. Our results disclose the critical effect of surface curvature on the diffusion and the aggregation of Ge adatoms and shed new light on the unique features and the inherent mechanism of self-assembled QDs on patterned substrates. Such a configuration of one Si QD surrounded by fourfold symmetric Ge-rich QDs can be seen as a CQDM with unique features, which will have potential applications in novel devices.

  20. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  1. Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zhong, Zhenyang

    2014-02-01

    A dramatically enhanced self-assembly of GeSi quantum dots (QDs) is disclosed on slightly miscut Si (001) substrates, leading to extremely dense QDs and even a growth mode transition. The inherent mechanism is addressed in combination of the thermodynamics and the growth kinetics both affected by steps on the vicinal surface. Moreover, temperature-dependent photoluminescence spectra from dense GeSi QDs on the miscut substrate demonstrate a rather strong peak persistent up to 300 K, which is attributed to the well confinement of excitons in the dense GeSi QDs due to the absence of the wetting layer on the miscut substrate.

  2. Nanoscale Etching and Indentation of Silicon(001) Surface with Carbon Nanotube Tips

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fendor N.; Srivastava, Deepak; Saini, Subhash

    1998-01-01

    The possibility of nanoscale etching and indentation of Si(001)(2x1) surface by (8,0) and (10,10) carbon nanotube tips is demonstrated, for the first time, by classical molecular dynamics simulations employing Tersoff's many-body potential for a mixed C/Si/Ge system. In the nanotube tip barely touching the surface scenario atomistic etching is observed, where as in the nanoindentation scenario nanotube tip penetrates the surface without much hindrance. The results are explained in terms of the relative strength of C-C, C-Si, and Si-Si bonds.

  3. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  4. Electronic structure of uracil-like nucleobases adsorbed on Si(001): uracil, thymine and 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Molteni, Elena; Onida, Giovanni; Cappellini, Giancarlo

    2016-04-01

    We study the electronic properties of the Si(001):Uracil, Si(001):Thymine, and Si(001):5-Fluorouracil systems, focusing on the Si dimer-bridging configuration with adsorption governed by carbonyl groups. While the overall structural and electronic properties are similar, with small differences due to chemical substitutions, much larger effects on the surface band dispersion and bandgap show up as a function of the molecular orientation with respect to the surface. An off-normal orientation of the molecular planes is favored, showing larger bandgap and lower total energy than the upright position. We also analyze the localization of gap-edge occupied and unoccupied surface states. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70011-1

  5. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  6. Auger electron diffraction study of the initial stage of Ge heteroepitaxy on Si(001)

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Abukawa, T.; Yeom, H. W.; Yamada, M.; Suzuki, S.; Sato, S.; Kono, S.

    1994-12-01

    The initial stage of pure and surfactant (Sb)-assisted Ge growth on a Si(001) surface has been studied by Auger electron diffraction (AED) and X-ray photoelectron diffraction (XPD). A single-domain Si(001)2 × 1 substrate was used to avoid the ambiguity arising from the usual double-domain substrate. For the pure Ge growth, 1 monolayer of Ge was deposited onto the room temperature substrate followed by annealing at 350°C-600°C, which appeared to have (1 × 2) periodicity by LEED. Ge LMM AED patterns were measured to find that a substantial amount of Ge atoms diffuse to the bulk Si positions up to the fourth layer at least. For the Sb-assisted Ge growth, a Sb(1 × 2)/Si(001) surface was first prepared and Sb 3d XPD patterns were measured to find that Sb forms dimers on the substrate. 1 ML of Ge was deposited onto the Sb(1 × 2)/Si(001) surface and then the surface was annealed at 600°C. Ge LMM AED and Sb 3d XPD patterns measured for this surface showed that surfactant Sb atoms are indeed present on the first layer forming dimers and that Ge atoms are present mainly on the second layer with a substantial amount of Ge diffused into the third and fourth layers.

  7. Nanopatterning of Si(001) for bottom-up fabrication of nanostructures.

    PubMed

    Hu, Yanfang; Kalachahi, Hedieh Hosseinzadeh; Das, Amal K; Koch, Reinhold

    2012-04-27

    The epitaxial growth of Si on Si(001) under conditions at which the (2 × n) superstructure is forming has been investigated by scanning tunneling microscopy and Monte Carlo simulations. Our experiments reveal a periodic change of the surface morphology with the surface coverage of Si. A regular (2 × n) stripe pattern is observed at coverages of 0.7-0.9 monolayers that periodically alternates with less dense surface structures at lower Si surface coverages. The MC simulations show that the growth of Si is affected by step-edge barriers, which favors the formation of a rather uniform two-dimensional framework-like configuration. Subsequent deposition of Ge onto the (2 × n) stripe pattern yields a dense array of small Ge nanostructures.

  8. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries.

    PubMed

    Zhou, Pengfei; Zhang, Zhen; Meng, Huanju; Lu, Yanying; Cao, Jun; Cheng, Fangyi; Tao, Zhanliang; Chen, Jun

    2016-11-24

    We reported a one-step dry coating of amorphous SiO 2 on spherical Ni-rich layered LiNi 0.915 Co 0.075 Al 0.01 O 2 (NCA) cathode materials. Combined characterization of XRD, EDS mapping, and TEM indicates that a SiO 2 layer with an average thickness of ∼50 nm was uniformly coated on the surface of NCA microspheres, without inducing any change of the phase structure and morphology. Electrochemical tests show that the 0.2 wt% SiO 2 -coated NCA material exhibits enhanced cyclability and rate properties, combining with better thermal stability compared with those of pristine NCA. For example, 0.2 wt% SiO 2 -coated NCA delivers a high specific capacity of 181.3 mA h g -1 with a capacity retention of 90.7% after 50 cycles at 1 C rate and 25 °C. Moreover, the capacity retention of this composite at 60 °C is 12.5% higher than that of pristine NCA at 1 C rate after 50 cycles. The effects of SiO 2 coating on the electrochemical performance of NCA are investigated by EIS, CV, and DSC tests, the improved performance is attributed to the surface coating layer of amorphous SiO 2 , which effectively suppresses side reactions between NCA and electrolytes, decreases the SEI layer resistance, and retards the growth of charge-transfer resistance, thus enhancing structural and cycling stability of NCA.

  9. Surface charge transport in Silicon (111) nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Savage, Donald; Lagally, Max; The Lagally Group Team

    Using thin sheets (``nanomembranes'') of atomically flat crystalline semiconductors, we are able to investigate surface electronic properties, using back-gated van der Pauw measurement in UHV. The thinness of the sheet diminishes the bulk contribution, and the back gate tunes the conductivity until the surface dominates, enabling experimental determination of surface conductance. We have previously shown that Si(001) surface states interact with the body of the membrane altering the conductivity of the system. Here, we extended our prior measurements to Si(111) in order to probe the electronic transport properties of the Si(111) 7 ×7 reconstruction. Sharp (7 ×7) LEED images attest to the cleanliness of the Si(111) surface. Preliminary results reveal a highly conductive Si(111) 7 ×7 surface with a sheet conductance Rs of order of μS/ □, for 110nm thick membrane, and Rs is a very slowly varying function of the back gate voltage. This is in strong contrast to Si(001) nanomembranes which have a minimum conductance several orders of magnitude lower, and hints to the metallic nature of the Si(111) surface. Research supported by DOE.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drozdov, Yu. N., E-mail: drozdyu@ipmras.ru; Drozdov, M. N.; Yunin, P. A.

    It is demonstrated using X-ray diffraction and atomic force microscopy that elastic stresses in GeSi layers on Si (115) substrates relax more effectively than in the same layers on Si (001) substrates. This fact is attributed to the predominant contribution of one of the (111) slip planes on the (115) cut. The atomicforce-microscopy image of the GeSi/Si(115) surface reveals unidirectional slip planes, while the GeSi/Si(001) image contains a grid of orthogonal lines and defects at the points of their intersection. As a result, thick GeSi layers on Si (115) have a reduced surface roughness. A technique for calculating the parametersmore » of relaxation of the layer on the Si (115) substrate using X-ray diffraction data is discussed.« less

  11. Existence of a stable intermixing phase for monolayer Ge on Si(001)

    NASA Astrophysics Data System (ADS)

    Yeom, H. W.; Sasaki, M.; Suzuki, S.; Sato, S.; Hosoi, S.; Iwabuchi, M.; Higashiyama, K.; Fukutani, H.; Nakamura, M.; Abukawa, T.; Kono, S.

    1997-06-01

    A monolayer adsorption of Ge on a single-domain Si(001)2 × 1 surface has been investigated by X-ray excited Auger electron diffraction (AED) and scanning tunneling microscopy. Contrary to the common belief, a significant intermixing of Ge down to at least the fourth layer is identified. This intermixing is found to progress to a stable interface alloy phase that develops fully for annealing at 500-600°C. A possible reason for the alloy phase is discussed to be an elastic interaction from the Si(001) surface.

  12. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  13. Growth and stability of Langmuir-Blodgett films on OH-, H-, or Br-terminated Si(001)

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, S.; Hazra, S.

    2010-01-01

    Growth of Langmuir-Blodgett (LB) films of nickel arachidate (NiA) on differently terminated (OH-, H-, or Br-terminated) Si(001) substrates and their structural evolution with time have been investigated by x-ray reflectivity technique and complemented by atomic force microscopy. Stable and strongly attached asymmetric monolayer (AML) of NiA is found to grow on freshly prepared oxide-covered Si substrate while unstable and weakly attached symmetric monolayer (SML) of NiA grows on H-terminated Si substrate, corresponding to stable hydrophilic and unstable hydrophobic natures of the substrates, respectively. The structure of LB film on Br-terminated Si substrate, however, shows intermediate behavior, namely, both AML and SML are present on the substrate, indicative of coexisting (hydrophilic and hydrophobic) nature of this terminated surface. Such coexisting nature of the substrate shows unusual growth behavior of LB films: (i) hydrophilic and hydrophobic attachments of NiA molecules in single up stroke of deposition and (ii) growth of few ring-shaped large-heights islands in subsequent deposition. These probably occur due to the presence of substrate-induced perturbation in the Langmuir monolayer and release of initially accumulated strain in the film structures near hydrophilic/hydrophobic interface, respectively, and provide the possibility to grow desired structures (AML or SML) of LB films by passivation-selective surface engineering.

  14. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  15. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Lützenkirchen-Hecht, D.

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-raymore » photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.« less

  16. Strain effects and intermixing at the Si surface: Importance of long-range elastic corrections in first-principles calculations

    DOE PAGES

    Béland, Laurent Karim; Machado-Charry, Eduardo; Pochet, Pascal; ...

    2014-10-06

    Here we investigate Ge mixing at the Si(001) surface and characterize the 2 N Si(001) reconstruction by means of hybrid quantum and molecular mechanics calculations (QM/MM). Avoiding fake elastic dampening, this scheme allows to correctly take into account long range deformation induced by reconstructed and defective surfaces. We focus in particular on the dimer vacancy line (DVL) and its interaction with Ge adatoms. We first show that calculated formation energies for these defects are highly dependent on the choice of chemical potential and that the latter must be chosen carefully. Characterizing the effect of the DVL on the deformation field,more » we also find that the DVL favors Ge segregation in the fourth layer close to the DVL. Using the activation-relaxation technique (ART nouveau) and QM/MM, we show that a complex diffusion path permits the substitution of the Ge atom in the fourth layer, with barriers compatible with mixing observed at intermediate temperature. We also show that the use of QM/MM results in much more signi cant corrections at the saddle points (up to 0.5 eV) that at minima, demonstrating its importance for describing kinetics correctly.« less

  17. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangwei; Luo, Hao; Liu, Yang

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can bemore » induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.« less

  18. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    NASA Astrophysics Data System (ADS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  19. Domain ordering of strained 5 ML SrTiO3 films on Si(001)

    NASA Astrophysics Data System (ADS)

    Ryan, P.; Wermeille, D.; Kim, J. W.; Woicik, J. C.; Hellberg, C. S.; Li, H.

    2007-05-01

    High resolution x-ray diffraction data indicate ordered square shaped coherent domains, ˜1200Å in length, coexisting with longer, ˜9500Å correlated regions in highly strained 5 ML SrTiO3 films grown on Si(001). These long range film structures are due to the Si substrate terraces defined by the surface step morphology. The silicon surface "step pattern" is comprised of an "intrinsic" terrace length from strain relaxation and a longer "extrinsic" interstep distance due to the surface miscut.

  20. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.

  1. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    PubMed Central

    2011-01-01

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature. PMID:21892938

  2. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-08

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.

  3. (113) Facets of Si-Ge/Si Islands; Atomic Scale Simulation

    NASA Astrophysics Data System (ADS)

    Kassem, Hassan

    We have studied, by computer simulation, some static and vibrationnal proprieties of SiGe/Si islands. We have used a Valence Force Field combined to Monte Carlo technique to study the growth of Ge and SiGe on (001)Si substrates. We have focalised on the case of large pyramidal islands presenting (113) facets on the free (001)Si surface with various non uniform composition inside the islands. The deformation inside the islands and Raman spectroscopy are discussed.

  4. Improved hybrid algorithm with Gaussian basis sets and plane waves: First-principles calculations of ethylene adsorption on β-SiC(001)-(3×2)

    NASA Astrophysics Data System (ADS)

    Wieferink, Jürgen; Krüger, Peter; Pollmann, Johannes

    2006-11-01

    We present an algorithm for DFT calculations employing Gaussian basis sets for the wave function and a Fourier basis for the potential representation. In particular, a numerically very efficient calculation of the local potential matrix elements and the charge density is described. Special emphasis is placed on the consequences of periodicity and explicit k -vector dependence. The algorithm is tested by comparison with more straightforward ones for the case of adsorption of ethylene on the silicon-rich SiC(001)-(3×2) surface clearly revealing its substantial advantages. A complete self-consistency cycle is speeded up by roughly one order of magnitude since the calculation of matrix elements and of the charge density are accelerated by factors of 10 and 80, respectively, as compared to their straightforward calculation. Our results for C2H4:SiC(001)-(3×2) show that ethylene molecules preferentially adsorb in on-top positions above Si dimers on the substrate surface saturating both dimer dangling bonds per unit cell. In addition, a twist of the molecules around a surface-perpendicular axis is slightly favored energetically similar to the case of a complete monolayer of ethylene adsorbed on the Si(001)-(2×1) surface.

  5. Interface formation of epitaxial MgO/Co2MnSi(001) structures: Elemental segregation and oxygen migration

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.

    2017-12-01

    The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.

  6. On the interplay between Si(110) epilayer atomic roughness and subsequent 3C-SiC growth direction

    NASA Astrophysics Data System (ADS)

    Khazaka, Rami; Michaud, Jean-François; Vennéguès, Philippe; Nguyen, Luan; Alquier, Daniel; Portail, Marc

    2016-11-01

    In this contribution, we performed the growth of a 3C-SiC/Si/3C-SiC layer stack on a Si(001) substrate by means of chemical vapor deposition. We show that, by tuning the growth conditions, the 3C-SiC epilayer can be grown along either the [111] direction or the [110] direction. The key parameter for the growth of the desired 3C-SiC orientation on the Si(110)/3C-SiC(001)/Si(001) heterostructure is highlighted and is linked to the Si epilayer surface morphology. The epitaxial relation between the layers has been identified using X-ray diffraction and transmission electron microscopy (TEM). We showed that, regardless of the top 3C-SiC epilayer orientation, domains rotated by 90° around the growth direction are present in the epilayer. Furthermore, the difference between the two 3C-SiC orientations was investigated by means of high magnification TEM. The results indicate that the faceted Si(110) epilayer surface morphology results in a (110)-oriented 3C-SiC epilayer, whereas a flat hetero-interface has been observed between 3C-SiC(111) and Si(110). The control of the top 3C-SiC growth direction can be advantageous for the development of new micro-electro-mechanical systems.

  7. Mechanism of Phosphine Dissociation on the Si(001) Surface

    NASA Astrophysics Data System (ADS)

    Warschkow, Oliver; Schofield, Steven R.; Smith, Phil V.

    2005-03-01

    The continued down-scaling of electronic devices to the atomic scale increasingly requires an atomic-level understanding of the elementary processes of semiconductor doping. We present a combined experimental and theoretical investigation into the dissociation mechanism of phosphine (PH3) on the Si(001) surface. As reported by us elsewhere in this conference, a number of prominent intermediate species of PH3 dissociation observed in STM experiments have been structurally characterized as PH2+H, PH+2H and P+3H species respectively. In this poster we present detailed quantum chemical calculations of these and other short-lived intermediates as well as the transition (kinetic) barriers between them. This leads us to formulate a step-by-step mechanism for the complete dissociation of PH3 on the Si(001) surface.

  8. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  9. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Vastola, Guglielmo; Zhang, Yong-Wei; Ren, Qijun; Fan, Yongliang; Zhong, Zhenyang

    2015-03-01

    We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs.We demonstrate laterally aligned and catalyst-free GeSi nanowires (NWs) via self-assembly of Ge on miscut Si (001) substrates toward the [100] direction by an angle θ (θ < 11°). The NWs are bordered by (001) and (105) facets, which are thermodynamically stable. By tuning the miscut angle θ, the NW height can be easily modulated with a nearly constant width. The thickness of the wetting layer beneath the NWs also shows a peculiar behavior with a minimum at around 6°. An analytical model, considering the variation of both the surface energy and the strain energy of the epilayer on vicinal surfaces with the miscut angle and layer thickness, shows good overall agreement with the experimental results. It discloses that both the surface energy and stain energy of the epilayer on vicinal surfaces can be considerably affected in the same trend by the surface steps. Our results not only shed new light on the growth mechanism during heteroepitaxial growth, but also pave a prominent way to fabricate and meanwhile modulate laterally aligned and dislocation-free NWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07433e

  10. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  11. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  12. Controllable dissociations of PH3 molecules on Si(001)

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lei, Yanhua; Shao, Xiji; Ming, Fangfei; Xu, Hu; Wang, Kedong; Xiao, Xudong

    2016-04-01

    We demonstrate for the first time to our knowledge that controllable dissociation of PH3 adsorption products PH x (x = 2, 1) can be realized by STM (scanning tunneling microscope) manipulation techniques at room temperature. Five dissociative products and their geometric structures are identified via combining STM experiments and first-principle calculations and simulations. In total we realize nine kinds of controllable dissociations by applying a voltage pulse among the PH3-related structures on Si(001). The dissociation rates of the five most common reactions are measured by the I-t spectrum method as a function of voltage. The suddenly increased dissociation rate at 3.3 V indicates a transition from multivibrational excitation to single-step excitation induced by inelastic tunneling electrons. Our studies prove that selectively breaking the chemical bonds of a single molecule on semiconductor surface by STM manipulation technique is feasible.

  13. Lateral Charge Transport in Silicon Nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei

    Silicon nanomembranes, also called SiNMs, Si thin sheets or films, are a great platform to study surface sciences, since the bulk is diminished and the surface-to-volume ratio is large. In a single crystalline material, atoms on the surface experience different forces, electric fields, thermodynamic surroundings, etc., than those within the bulk. Therefore, unique structural, mechanical, electronic, optical, and many other properties associated with surfaces overweigh bulk effects; novel phenomena emerge. In particular, electronic features of Si are of significance due to the extensive use of Si in integrated circuit devices and biochemical sensor technologies. As a result, especially with the size of transistors quickly decreasing nowadays, the exploration of electronic characteristics of Si surfaces become much more significant. This is also interesting as a topic within the area of fundamental surface science. Silicon-on-insulator (SOI) provides a new structure for studying charge transport in the SiNM, which is monocrystalline and sits on top of the SOI wafer. I use SOI based SiNMs with two surface orientations: Si (001) and Si (111). The former is pervasive in industrial applications while the latter has interesting metallic surface states when 7x7 reconstruction occurs on a clean surface. My goal is to measure/infer the sheet conductance in the true surface layer with different surface situations, and to further investigate the surface band structure and how carriers distribute and move accordingly. The biggest challenge is to eliminate interferences, e.g., bulk effects. The following are two solutions. 1) The thickness of the used SiNMs spans 40 nm to 500 nm, with a nominal doping level of 1015 cm -3 in our experiment. A straightforward calculation of areal dopant density indicates that charge carriers from the extrinsic doping are 1˜2 orders of magnitude fewer than the trap states at the interface between the buried oxide in SOI and the top SiNM, meaning that moderate doping is irrelevant and the SiNM acts like an intrinsic one. 2) The back gate that is applied to the measured sample is an innovative design among myriad analogous studies. It enables the tuning of the Fermi level (EF) throughout the SiNMs and makes it possible for a membrane to reach its most depleted status, thus efficiently removing the bulk conduction path. The four-probe van der Pauw measurements of film conductance are taken inside an ultrahigh vacuum chamber, where the surface condition remains stable and controllable. On Si (111) 7x7 surfaces, we find from the independence of conductance on membrane thickness that we are measuring the surface transport only. The sheet conductance is high, as it is on the microS/□scale, which supports the 7x7 surface having metallicity in lateral charge transport, a point which has been debated extensively. Nevertheless, weak semiconductor behavior is still present. For hydrogenated Si (001), which is obtained after hydrogen fluoric acid (HF) treatment, surface Fermi level is found around mid-bandgap based on temperature dependent measurements. No surface Fermi level pinning to closely below the conduction band minimum exists in my HF treated Si (001) NMs.

  14. A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.

    PubMed

    Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming

    2017-06-14

    Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

  15. Formation of Si{sup 1+} in the early stages of the oxidation of the Si[001] 2 × 1 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Gomez, Alberto, E-mail: aherrerag@cinvestav.mx; Aguirre-Tostado, Francisco-Servando; Pianetta, Piero

    2016-03-15

    The early stages of the oxidation of the Si[001] 2 × 1 surface were studied with synchrotron radiation photoelectron spectroscopy. The analysis was based on the block approach, which is a refinement of spectra-subtraction that accounts for changes on the background signal and for band-bending shifts. By this method, it was possible to robustly show that the formation of Si{sup 1+} is due to oxygen bonding to the upper dimer atoms. Our results contrast with ab initio calculation, which indicates that the most favorable bonding site is the back-bond of the down-dimer.

  16. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  17. FIB Plan View Preparation and Electron Tomography of Ga-Containing Droplets Induced by Melt-Back Etching in Si.

    PubMed

    Gries, Katharina I; Werner, Katharina; Beyer, Andreas; Stolz, Wolfgang; Volz, Kerstin

    2016-02-01

    Melt-back etching is an effect that can occur for gallium (Ga) containing III/V semiconductors grown on Si. Since this effect influences interfaces between the two compounds and therefore the physical characteristics of the material composition, it is desirable to understand its driving forces. Therefore, we investigated Ga grown on Si (001) via metal organic chemical vapor deposition using trimethyl Ga as a precursor. As a result of the melt-back etching, Ga-containing droplets formed on the Si surface which reach into the Si wafer. The shape of these structures was analyzed by plan view investigation and cross sectional tomography in a (scanning) transmission electron microscope. For plan view preparation a focused ion beam was used to avoid damage to the Ga-containing structures, which are sensitive to the chemicals normally used during conventional plan view preparation. Combining the results of both investigation methods confirms that the Ga-containing structure within the Si exhibits a pyramid shape with facets along the Si {111} lattice planes.

  18. Ab initio density functional theory study on the atomic and electronic structure of GaP/Si(001) heterointerfaces

    NASA Astrophysics Data System (ADS)

    Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.

    2016-10-01

    The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.

  19. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  20. Ag Nanotwin-Assisted Grain Growth-Induced by Stress in SiO₂/Ag/SiO₂ Nanocap Arrays.

    PubMed

    Zhang, Fan; Wang, Yaxin; Zhang, Yongjun; Chen, Lei; Liu, Yang; Yang, Jinghai

    2018-06-14

    A trilayer SiO₂/Ag/SiO₂ nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO₂/Ag/SiO₂ nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO₂ layer induced the formation of Ag nanotwins. Ag nanotwins assisted the growth of nanoparticles when the neighboring nanotwins changed the local misorientations. Nanocap shrinkage reduced the surface plasmon resonance (SPR) coupling between neighboring nanocaps; concurrently, grain growth decreased the SPR coupling between the particles in each nanocap, which led to a red shift of the localized surface plasmon resonance (LSPR) bands and decreased the surface-enhanced Raman scattering (SERS) signals.

  1. Optical second harmonic spectroscopy of silicon-adsorbate surfaces and silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Downer, Michael

    2002-03-01

    Second harmonic generation (SHG) provides a surface-specific, noninvasive probe of adsorbates. However, microscopic first-principles theory of adsorbate-specific spectroscopic SHG responses has proven elusive. Here we present experimental SHG spectra for six well-characterized, technologically important Si(001) surfaces in ultrahigh vacuum (UHV): clean Si(001)-2x1 and Si(001) terminated with hydrogen (H), [1] germanium (Ge), Ge and H, [2] boron (B) and B and H. [3] Each adsorbate (combination) alters SHG uniquely. Our microscopic theories based on ab initio pseudopotential or semi-empirical tight-binding (SETB) methods then explain observed trends, and predict new features in unexplored spectral regions. [3,4] Charge transfer among surface bonds is found to govern SHG spectroscopy of surface-adsorbate systems strongly. New results on SHG from Si nanocrystals embedded in SiO2 will also be presented. [5] SHG is sensitive to Si/SiO2 interface states, electrostatic charge on the nanocrystals, and macroscopic particle density gradients. Finally, a new frequency-domain interferometric second-harmonic (FDISH) spectroscopic technique to measure simultaneously the intensity and phase of SH radiation over a broad spectral range without laser tuning will be described. [6] 1. J. Dadap et al., Phys. Rev. B 56, 13367 (1997). 2. P. Parkinson et al., Appl. Phys. B 68, 641 (1999). 3. D. Lim et al., Phys. Rev. Lett. 84, 3406 (2000); Appl. Phys. Lett. 77, 181 (2000). 4. V. Gavrilenko et al., Phys. Rev. B 63, 1653 (2001); M. C. Downer et al., Surf. Interface Anal. 31, 966 (2001); M. C. Downer et al., phys. stat. sol. (a), in press (2001). 5. Y. Jiang et al., Appl. Phys. Lett. 78, 766 (2001). 6. P. T. Wilson et al., Opt. Lett. 24, 496 (1999).

  2. Controlled formation of GeSi nanostructures on pillar-patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zeng, Ceng; Fan, Yongliang; Jiang, Zuimin; Xia, Jinsong; Zhong, Zhenyang; Fudan University Team; Huazhong University of Science; Technology Collaboration

    2015-03-01

    GeSi quantum nanostructures (QNs) have potential applications in optoelectronic devices due to their unique properties and compatibility with the sophisticated Si technology. However, the disadvantages of poor quantum efficiency of the GeSi QNs on flat Si (001) substrates hinder their optoelectronic applications. Today, numerous growth strategies have been proposed to control the formation of GeSi QNs in hope of improving the optoelectronic performances. One of the ways is to fabricate GeSi QNs on patterned substrates, where the GeSi QNs can be greatly manipulated in aspects of size, shape, composition, orientation and arrangement. Here, self-assembled GeSi QNs on periodic Si (001) sub-micro pillars (SPMs) are systematically studied. By controlling the growth conditions and the diameters of the SPMs, different GeSi QNs, including circularly arranged quantum dots (QDs), quantum rings (QRs), and quantum dot molecules (QDMs), are realized at the top edge of SMPs. Meanwhile, fourfold symmetric GeSi QDMs can be also obtained at the base edges of the SPMs. The promising features of self-assembled GeSi QNs are explained in terms of the surface chemical potential, which disclose the critical effect of surface morphology on the diffusion and the aggregation of Ge adatoms.

  3. Investigation of the {Fe}/{Si} interface and its phase transformations

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  4. A structural study of the K adsorption site on a Si(001)2 × 1 surface: Dimer, caves or both

    NASA Astrophysics Data System (ADS)

    Asensio, M. C.; Michel, E. G.; Alvarez, J.; Ocal, C.; Miranda, R.; Ferrer, S.

    1989-04-01

    The atomic structure of the clean Si(100) and K covered surfaces has been investigated by Auger electron diffraction (AED) monitoring the intensities along polar scans. This technique is sensitive to the asymmetric-dimer nature of the 2 × 1 reconstruction of the Si(001) surface. Data taken at room temperature for submonolayer coverages are consistent with adsorption of K on the troughs (cave position) existing between two consecutive dimer chains along the [110] direction. At 110 K both dimer and cave sites are occupied. A mild annealing to 300 K produces an overlayer redistribution in favor of the "cave" site further indicating that this site is energetically favoured as found in some recent calculations.

  5. Successful Cleaning and Study of Contamination of Si(001) in Ultrahigh Vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghe, N. G.; Lungu, G. A.; Husanu, M. A.

    2011-10-03

    This paper presents the very first surface physics experiment performed in ultrahigh vacuum (UHV) in Romania, using a new molecular beam epitaxy (MBE) installation. Cleaning of a Si(001) wafer was achieved by using a very simple technique: sequences of annealing at 900-1000 deg. C in ultrahigh vacuum: low 10{sup -8} mbar, with a base pressure of 1.5x10{sup -10} mbar. The preparation procedure is quite reproducible and allows repeated cleaning of the Si(001) after contamination in ultrahigh vacuum. The Si(001) single crystal surface is characterized by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopymore » (AES). The latter technique is utilized in order to investigate the sample contamination by the residual gas in the UHV chamber, as determined by a residual gas analyzer (RGA). Unambiguous assignment of oxidized and unoxidized silicon is provided; also, an important feature is that the LVV Auger peak at 90-92 eV cannot be solely attributed to clean Si (i.e. Si surrounded only by Si), but also to silicon atoms bounded with carbon. Even with a sum of partial pressures of oxygen and carbon containing molecules in the range of 5x10{sup -10} mbar, the sample is contaminated very quickly, having a (1/e) lifetime of about 76 minutes.« less

  6. The (001) 3C SiC surface termination and band structure after common wet chemical etching procedures, stated by XPS, LEED, and HREELS

    NASA Astrophysics Data System (ADS)

    Tengeler, Sven; Kaiser, Bernhard; Ferro, Gabriel; Chaussende, Didier; Jaegermann, Wolfram

    2018-01-01

    The (001) surface of cubic silicon carbide (3C SiC) after cleaning, Ar sputtering and three different wet chemical etching procedures was thoroughly investigated via (angle resolved) XPS, HREELS, and LEED. While Ar sputtering was found to be unsuitable for surface preparation, all three employed wet chemical etching procedures (piranha/NH4F, piranha/HF, and RCA) provide a clean surface. HF as oxide removal agent tends to result in fluorine traces on the sample surface, despite thorough rinsing. All procedures yield a 1 × 1 Si-OH/C-H terminated surface. However, the XPS spectra reveal some differences in the resulting surface states. NH4F for oxide removal produces a flat band situation, whereas the other two procedures result in a slight downward (HF) or upward (RCA) band bending. Because the band bending is small, it can be concluded that the number of unsaturated surface defects is low.

  7. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    PubMed

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  8. Scanning tunneling microscopy study of low temperature silicon epitaxy on hydrogen/silicon(001) and phosphine adsorption on silicon(111)-7x7

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young

    A three-chamber ultra-high-vacuum (UHV) system with preparation, scanning tunneling microscopy (STM), and chemical vapor deposition (CVD) chambers was designed and built. Here, one can perform surface preparation, STM e-beam lithography, precursor gas dosing, ion sputtering, silicon epitaxy, and various measurements such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Processes performed in the ultra-clean preparation and gas-filled CVD chambers can be monitored by transferring the samples back to the STM chamber to take topographical images. Si deposition on H-terminated Si(001)-2x1 surfaces at temperatures 300--530 K was studied by scanning tunneling microscopy. Hydrogen apparently hinders Si adatom diffusion and enhances surface roughening. Post-growth annealing transfers the top layer atoms downward to fill in vacancies in the lower layer, restoring the crystallinity of the thin film. Hydrogen is shown to remain on the growth front up to at least 10 ML. Si deposition onto the H/Si(001)-3x1 surface at 530 K suggests that dihydride units further suppress Si adatom diffusion and increase surface roughness. PH3 adsorption on Si(111)-7x7 was studied for various exposures between 0.3--60 L at room temperature by means of the scanning-tunneling-microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing STM images at different sample biases. Most of PH3 adsorbs dissociatively on the surface at initial exposure, generating H and PH2 adsorption sites, followed by molecular adsorption of PH3. Rest atoms are more reactive than the adatoms and PH 2-reacted rest atom sites are also observed in STM images. Statistical analysis shows that center adatoms are more reactive than corner adatoms and the saturation P coverage is ˜0.22 ML. Finally, 900 K annealing of a PH 3 dosed surface results in a disordered, partially P-covered surface and PH3 dosing at 900 K forms the same surface reconstruction as a P2-adsorbed surface at similar temperature.

  9. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  10. A genetic algorithm approach in interface and surface structure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less

  11. Final thickness reduction and development of Goss texture in C- and Al-free Fe-3%Si-0.1%Mn-0.012%S electrical steel

    NASA Astrophysics Data System (ADS)

    Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo

    2017-11-01

    The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.

  12. Evidence for Kinetic Limitations as a Controlling Factor of Ge Pyramid Formation: a Study of Structural Features of Ge/Si(001) Wetting Layer Formed by Ge Deposition at Room Temperature Followed by Annealing at 600 °C.

    PubMed

    Storozhevykh, Mikhail S; Arapkina, Larisa V; Yuryev, Vladimir A

    2015-12-01

    The article presents an experimental study of an issue of whether the formation of arrays of Ge quantum dots on the Si(001) surface is an equilibrium process or it is kinetically controlled. We deposited Ge on Si(001) at the room temperature and explored crystallization of the disordered Ge film as a result of annealing at 600 °C. The experiment has demonstrated that the Ge/Si(001) film formed in the conditions of an isolated system consists of the standard patched wetting layer and large droplike clusters of Ge rather than of huts or domes which appear when a film is grown in a flux of Ge atoms arriving on its surface. We conclude that the growth of the pyramids appearing at temperatures greater than 600 °C is controlled by kinetics rather than thermodynamic equilibrium whereas the wetting layer is an equilibrium structure. Primary 68.37.Ef; 68.55.Ac; 68.65.Hb; 81.07.Ta; 81.16.Dn.

  13. Low-temperature amorphous boron nitride on Si0.7Ge0.3(001), Cu, and HOPG from sequential exposures of N2H4 and BCl3

    NASA Astrophysics Data System (ADS)

    Wolf, Steven; Edmonds, Mary; Sardashti, Kasra; Clemons, Max; Park, Jun Hong; Yoshida, Naomi; Dong, Lin; Nemani, Srinivas; Yieh, Ellie; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.

    2018-05-01

    Low-temperature sequential exposures of N2H4 and BCl3 have been performed on Si0.3Ge0.7(001), Cu, and HOPG surfaces at 350 °C. A novel BN ALD process has been achieved on Si0.3Ge0.7(001) with 60 cycles of BN ALD producing a uniform, pinhole-free thin film with low contamination, as characterized with XPS and AFM. On Cu and Si0.3Ge0.7(001), XPS spectra indicated a near stoichiometric BN film. While AFM imaging indicated the deposition on Cu yielded nanometer-scale etching, conformal deposition was observed on Si0.3Ge0.7(001). The BN ALD also nucleated on inert HOPG via step edges. In situ STM imaging showed that cyclic exposures at 350 °C were able to decorate step edges with features ∼2 nm tall and ∼200 nm wide, indicating the propensity for BN to grow in the planar direction. The N2H4 and BCl3 ALD allows for the deposition of low oxygen, low carbon films, but to avoid etching, the growth should be nucleated by N2H4, since exposure to BCl3 can result in the formation of volatile Cl-containing surface species on many substrates. Therefore, the formation of a stable surface nitride prior to BCl3 exposure is necessary to prevent formation and desorption of volatile species from the substrate.

  14. Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, B.; Bareno, J.; Petrov, I.

    The predeposition of P, with coverages {theta}{sub P} ranging from 0 to 1 ML, on Si(001) significantly increases both the areal density and spatial self-organization of Ge islands grown by gas-source molecular beam epitaxy from hydride precursors. The Ge island density {rho}{sub Ge} initially increases with {theta}{sub P}, reaching a maximum of 1.4 x 10{sup 10} cm{sup -2} at {theta}{sub P} = 0.7 ML, a factor of four times higher than on bare Si(001) under the same deposition conditions, before decreasing at higher P coverages. The increase in {rho}{sub Ge}({theta}{sub P}) is due to a corresponding decrease in Ge adatommore » mean free paths resulting from passivation of surface dangling bonds by adsorbed pentavalent P atoms which, in addition, leads to surface roughening and, therefore, higher Ge coverages at constant Ge{sub 2}H{sub 6} dose. As {theta}{sub P} (and hence, {rho}{sub Ge}) increases, so does the degree of Ge island ordering along <100> directions due to the anisotropic strain field surrounding individual islands. Similar results are obtained for Ge island growth on P-doped Si(001) layers where strong P surface segregation provides partial monolayer coverage prior to Ge deposition.« less

  15. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro.

    PubMed

    Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin

    2016-11-14

    To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro . A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro . The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.

  16. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  17. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  18. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenow, Phil; Tonner, Ralf, E-mail: tonner@chemie.uni-marburg.de

    2016-05-28

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. Themore » on-set of H{sub 2} desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).« less

  19. A photochemical approach for a fast and self-limited covalent modification of surface supported graphene with photoactive dyes

    NASA Astrophysics Data System (ADS)

    Sergeeva, Natalia N.; Chaika, Alexander N.; Walls, Brian; Murphy, Barry E.; Walshe, Killian; Martin, David P.; Richards, Billy D. O.; Jose, Gin; Fleischer, Karsten; Aristov, Victor Yu; Molodtsova, Olga V.; Shvets, Igor V.; Krasnikov, Sergey A.

    2018-07-01

    Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.

  20. Droplet heteroepitaxy of zinc-blende vs. wurtzite GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Reese, C.; Jeon, S.; Hill, T.; Jones, C.; Shusterman, S.; Yacoby, Y.; Clarke, R.; Deng, H.; Goldman, Rs

    We have developed a GaN droplet heteroepitaxy process based upon plasma-assisted molecular-beam epitaxy. Using various surface treatments and Ga deposition parameters, we have demonstrated polycrystalline, zinc-blende (ZB), and wurtzite (WZ) GaN quantum dots (QDs) on Si(001), r-Al2O3, Si(111), and c-GaN substrates. For the polar substrates (i.e. Si(111) and c-GaN), high-resolution transmission electron microscopy and coherent Bragg rod analysis reveals the formation of coherent WZ GaN QDs with nitridation-temperature-dependent sizes and densities. For the non-polar substrates (i.e. Si(001) and r-Al2O3) , QDs with strong near-band photoluminescence emission are observed and ZB GaN QD growth on Si(001) is demonstrated for the first time.

  1. Persistent monolayer-scale chemical ordering in Si{sub 1−x}Ge{sub x} heteroepitaxial films during surface roughening and strain relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, J. M.; Floro, J. A.

    2015-12-28

    Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed inmore » the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.« less

  2. Antiphase boundaries on low-energy-ion bombarded Ge(001)

    NASA Astrophysics Data System (ADS)

    Zandvliet, H. J. W.; de Groot, E.

    1997-01-01

    Surface vacancy and adatom clusters have been created on Ge(001) by bombarding the surface with 800 eV argon ions at various substrate temperatures ranging from room temperature to 600 K. The vacancies preferentially annihilate at the ends rather than at the sides of the dimer rows, resulting in monolayer deep vacancy islands which are elongated in a direction of the dimer rows of the upper terrace. As vacancy islands nucleate and expand, the dimer rows in neighbouring vacancy islands need not, in general, align with each other. An antiphase boundary will develop if two growing vacancy islands meet, but their internal dimer rows are not in the same registry. In contrast to Si(001), where only one type of antiphase boundary is found, we have found three different types of antiphase boundaries on Ge(001). Higher dose (> several monolayers) room temperature ion bombardment followed by annealing at temperatures in the range 400-500 K results in a surface which contains a high density of valleys. In addition to the preference for the annihilation of dimer vacancies at descending versus ascending steps we also suggest that the development of antiphase boundaries drives the roughening of this surface. Finally, several atomic rearrangement events, which might be induced by the tunneling process, are observed after low-dose ion bombardment at room temperature.

  3. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  4. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  5. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2013-09-30

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  6. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  7. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatima,; Hossain, Sehtab; Mohottige, Rasika

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  8. Local electrical properties of n-AlInAs/i-GaInAs electron channel structures characterized by the probe-electron-beam-induced current technique.

    PubMed

    Watanabe, Kentaro; Nokuo, Takeshi; Chen, Jun; Sekiguchi, Takashi

    2014-04-01

    We developed a probe-electron-beam-induced current (probe-EBIC) technique to investigate the electrical properties of n-Al(0.48)In(0.52)As/i-Ga(0.30)In(0.70)As electron channel structures for a high-electron-mobility transistor, grown on a lattice-matched InP substrate and lattice-mismatched GaAs (001) and Si (001) substrates. EBIC imaging of planar surfaces at low magnifications revealed misfit dislocations originating from the AlInAs-graded buffer layer. The cross-sections of GaInAs channel structures on an InP substrate were studied by high-magnification EBIC imaging as well as cathodoluminescence (CL) spectroscopy. EBIC imaging showed that the structure is nearly defect-free and the carrier depletion zone extends from the channel toward the i-AlInAs buffer layer.

  9. Evidence for Kinetic Limitations as a Controlling Factor of Ge Pyramid Formation: a Study of Structural Features of Ge/Si(001) Wetting Layer Formed by Ge Deposition at Room Temperature Followed by Annealing at 600 °C

    NASA Astrophysics Data System (ADS)

    Storozhevykh, Mikhail S.; Arapkina, Larisa V.; Yuryev, Vladimir A.

    2015-07-01

    The article presents an experimental study of an issue of whether the formation of arrays of Ge quantum dots on the Si(001) surface is an equilibrium process or it is kinetically controlled. We deposited Ge on Si(001) at the room temperature and explored crystallization of the disordered Ge film as a result of annealing at 600 °C. The experiment has demonstrated that the Ge/Si(001) film formed in the conditions of an isolated system consists of the standard patched wetting layer and large droplike clusters of Ge rather than of huts or domes which appear when a film is grown in a flux of Ge atoms arriving on its surface. We conclude that the growth of the pyramids appearing at temperatures greater than 600 °C is controlled by kinetics rather than thermodynamic equilibrium whereas the wetting layer is an equilibrium structure. PACS: Primary 68.37.Ef; 68.55.Ac; 68.65.Hb; 81.07.Ta; 81.16.Dn

  10. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    PubMed

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  11. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway.

    PubMed

    Li, Xiao C; Hopfer, Ulrich; Zhuo, Jia L

    2009-11-01

    Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.

  12. Diffusive and inelastic scattering in ballistic-electron-emission spectroscopy and ballistic-electron-emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.Y.; Turner, B.R.; Schowalter, L.J.

    1993-07-01

    Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less

  13. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro

    PubMed Central

    Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin

    2016-01-01

    AIM To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro. METHODS A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. RESULTS SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro. The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. CONCLUSION Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI. PMID:27895424

  14. Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy

    PubMed Central

    Ahmed, Muneeb; Kumar, Gaurav; Navarro, Gemma; Wang, Yuanguo; Gourevitch, Svetlana; Moussa, Marwan H.; Rozenblum, Nir; Levchenko, Tatyana; Galun, Eithan; Torchilin, Vladimir P.; Goldberg, S. Nahum

    2015-01-01

    Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor. PMID:26154425

  15. Influence of air-particle deposition protocols on the surface topography and adhesion of resin cement to zirconia.

    PubMed

    Sarmento, Hugo R; Campos, Fernanda; Sousa, Rafael S; Machado, Joao P B; Souza, Rodrigo O A; Bottino, Marco A; Ozcan, Mutlu

    2014-07-01

    This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 µm Al2O3; Si: 110 µm SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; ControlTC; Al2.5TC; Si2.5TC; Al3.5TC; Si3.5TC. After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55°C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 ± 0.02; Si2.5: 0.39 ± 0.01; Al3.5: 0.80 ± 0.01; Si3.5: 0.64 ± 0.01 µm) compared to the control group (0.16 ± 0.01 µm). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 ± 1.86; Si2.5: 7.17 ± 2.62; Al3.5: 4.97 ± 3.74; Si3.5: 9.14 ± 4.09 MPa) and the control group (3.67 ± 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Air-abrasion with 110 µm Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2 promoted better adhesion.

  16. Theory and Application of Auger and Photoelectron Diffraction and Holography

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111)(sqrt{3} times sqrt{3})B surface suggest that this new method may overcome the twin image problem in the traditional holographic methods, reduce the artifacts in real space, and even separately identify the chemical species of the scatterers.

  17. Atomic-scale analysis of deposition and characterization of a-Si:H thin films grown from SiH radical precursor

    NASA Astrophysics Data System (ADS)

    Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios

    2002-07-01

    Growth of hydrogenated amorphous silicon films (a-Si:H) on an initial H-terminated Si(001)(2 x1) substrate at T=500 K was studied through molecular-dynamics (MD) simulations of repeated impingement of SiH radicals to elucidate the effects of reactive minority species on the structural quality of the deposited films. The important reactions contributing to film growth were identified through detailed visualization of radical-surface interaction trajectories. These reactions include (i) insertion of SiH into Si-Si bonds, (ii) adsorption onto surface dangling bonds, (iii) surface H abstraction by impinging SiH radicals through an Eley-Rideal mechanism, (iv) surface adsorption by penetration into subsurface layers or dissociation leading to interstitial atomic hydrogen, (v) desorption of interstitial hydrogen into the gas phase, (vi) formation of higher surface hydrides through the exchange of hydrogen, and (vii) dangling-bond-mediated dissociation of surface hydrides into monohydrides. The MD simulations of a-Si:H film growth predict an overall surface reaction probability of 95% for the SiH radical that is in good agreement with experimental measurements. Structural and chemical characterization of the deposited films was based on the detailed analysis of evolution of the films' structure, surface morphology and roughness, surface reactivity, and surface composition. The analysis revealed that the deposited films exhibit high dangling bond densities and rough surface morphologies. In addition, the films are abundant in voids and columnar structures that are detrimental to producing device-quality a-Si:H thin films.

  18. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  19. Mechanisms and energetics of hydride dissociation reactions on surfaces of plasma-deposited silicon thin films

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios

    2007-11-01

    We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.

  20. Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.

    PubMed

    Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V

    2017-09-01

    We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.

  1. Preparation, IR spectroscopy, and time-of-flight mass spectrometry of halogenated and methylated Si(111)

    NASA Astrophysics Data System (ADS)

    Salingue, Nils; Hess, Peter

    2011-09-01

    The preparation of chlorine-, bromine-, and iodine-terminated silicon surfaces (Si(111):Cl, Br, and I) using atomically flat Si(111)-(1×1):H is described. The halogenated surfaces were obtained by photochemically induced radical substitution reactions with the corresponding dihalogen in a Schlenk tube by conventional inert gas chemistry. The nucleophilic substitution of the Si-Cl functionality with the Grignard reagent (CH3MgCl) resulted in the unreconstructed methylated Si(111)-(1×1):CH3 surface. The halogenated and methylated silicon surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and laser-induced desorption of monolayers (LIDOM). Calibration of the desorption temperature via analysis of time-of-flight (TOF) distributions as a function of laser fluence allowed the determination of the originally emitted neutral fragments by TOF mass spectrometry using electron-impact ionization. The halogens were desorbed atomically and as SiX n (X = Cl, Br) clusters. The methyl groups mainly desorbed as methyl and ethyl fragments and a small amount of +SiCH3.

  2. Beneficial defects: exploiting the intrinsic polishing-induced wafer roughness for the catalyst-free growth of Ge in-plane nanowires.

    PubMed

    Persichetti, Luca; Sgarlata, Anna; Mori, Stefano; Notarianni, Marco; Cherubini, Valeria; Fanfoni, Massimo; Motta, Nunzio; Balzarotti, Adalberto

    2014-01-01

    We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain. 81.07.Gf; 68.35.bg; 68.35.bj; 62.23.Eg.

  3. Reaction of Si(100) with NH3: Rate-limiting steps and reactivity enhancement via electronic excitation

    NASA Astrophysics Data System (ADS)

    Bozso, F.; Avouris, Ph.

    1986-09-01

    We report on the low-temperature reaction of ammonia with Si(100)-(2×1). The dangling bonds in the clean Si surface promote NH3 dissociation even at temperatures as low as 90 K. The N atoms thus produced occupy subsurface sites, while the H atoms bind to surface Si atoms, tie up the dangling bonds, and inactivate the surface. Thermal or electronic-excitation-induced hydrogen desorption restores the dangling bonds and the reactivity of the surface. Silicon nitride film growth is achieved at 90 K by simultaneous exposure of the Si surface to NH3 and an electron beam.

  4. Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.

    2009-08-01

    The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content ({{{{{P}}_{{{{H}}_{ 2} {{O}}}} } {{{P}}_{{{{H}}_{ 2} }} }}} = 0.01{{ to }}0.13}) on the oxidation and decarburization behavior of transformation-induced plasticity (TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)2SiO4) and ((MnO) x (FeO)1- x . The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates.

  5. Manganese silicide nanowires on Si(001).

    PubMed

    Liu, H J; Owen, J H G; Miki, K; Renner, Ch

    2011-05-04

    A method for promoting the growth of manganese silicide nanowires on Si(001) at 450 °C is described. The anisotropic surface stress generated by bismuth nanolines blocks the formation of embedded structures and stabilizes the nucleation of manganese silicide islands which grow in a preferred direction, forming nanowires with a band gap of approximately 0.6 eV, matching the reported band gap of MnSi(1.7). This method may also provide a means to form silicide nanowires of other metals where they do not otherwise form. © 2011 IOP Publishing Ltd

  6. Thermal and ion-induced surface reactions of 1,1-difluoroethylene on Si(111)7 x 7 and vitreous SiO2.

    PubMed

    He, Zhenhua; Leung, K T

    2005-08-11

    Thermal and ion-induced reactions of 1,1-difluoroethylene (1,1-C2H2F2 or iso-DFE) on Si(111)7 x 7 and vitreous SiO2 surfaces have been investigated by vibrational electron energy loss spectroscopy and thermal desorption spectrometry. Like ethylene, iso-DFE predominantly chemisorbs via a [2 + 2] cycloaddition mechanism onto the 7 x 7 surface as a di-sigma-bonded difluoroethane-1,2-diyl adstructure, which undergoes H abstraction and defluorination, producing hydrocarbon fragments and SiF(x) (x = 1-3) upon annealing to >700 K. Ion irradiation of Si(111)7 x 7 in iso-DFE at 50 eV impact energy appears to substantially enhance the production of hydrocarbon fragments and SiF(x)(), leading to stronger SiF4 desorption products over an extended temperature range (400-900 K). The observed SiC and SiF(x) produced on the 7 x 7 surface by ion irradiation in iso-DFE are found to be similar to those obtained by ion irradiation in the fluoromethane homologues, CF4 and CH2F2. The production of higher relative concentrations for the larger SiF(x) and C2-containing fragments is evidently favored on the 7 x 7 surface. On a vitreous SiO2 surface, ion irradiation in iso-DFE, unlike that in CF4 and CH2F2, appears to produce less SiF(x) than that on the 7 x 7 surface, which indicates that surface O does not interact strongly with the C2-containing fragments. The presence or absence of a C=C bond and the relative F-to-C ratio of the sputtering gas could therefore produce important effects on the resulting surface products obtained by low-energy ion irradiation.

  7. Immobilization of functional oxide nanoparticles on silicon surfaces via Si-C bonded polymer brushes.

    PubMed

    Xu, F J; Wuang, S C; Zong, B Y; Kang, E T; Neoh, K G

    2006-05-01

    A method for immobilizing and mediating the spatial distribution of functional oxide (such as SiO2 and Fe3O4) nanoparticles (NPs) on (100)-oriented single crystal silicon surface, via Si-C bonded poly(3-(trimethoxysilyl)propyl methacrylate) (P(TMSPM)) brushes from surface-initiated atom transfer radical polymerization (ATRP) of (3-(trimethoxysilyl)propyl methacrylate) (TMSPM), was described. The ATRP initiator was covalently immobilized via UV-induced hydrosilylation of 4-vinylbenzyl chloride (VBC) with the hydrogen-terminated Si(100) surface (Si-H surface). The surface-immobilized Fe3O4 NPs retained their superparamagnetic characteristics and their magnetization intensity could be mediated by adjusting the thickness of the P(TMSPM) brushes.

  8. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Anisotropic relaxation behavior of InGaAs/GaAs selectively grown in narrow trenches on (001) Si substrates

    NASA Astrophysics Data System (ADS)

    Guo, W.; Mols, Y.; Belz, J.; Beyer, A.; Volz, K.; Schulze, A.; Langer, R.; Kunert, B.

    2017-07-01

    Selective area growth of InGaAs inside highly confined trenches on a pre-patterned (001) Si substrate has the potential of achieving a high III-V crystal quality due to high aspect ratio trapping for improved device functionalities in Si microelectronics. If the trench width is in the range of the hetero-layer thickness, the relaxation mechanism of the mismatched III-V layer is no longer isotropic, which has a strong impact on the device fabrication and performance if not controlled well. The hetero-epitaxial nucleation of InxGa1-xAs on Si can be simplified by using a binary nucleation buffer such as GaAs. A pronounced anisotropy in strain release was observed for the growth of InxGa1-xAs on a fully relaxed GaAs buffer with a (001) surface inside 20 and 100 nm wide trenches, exploring the full composition range from GaAs to InAs. Perpendicular to the trench orientation (direction of high confinement), the strain release in InxGa1-xAs is very efficiently caused by elastic relaxation without defect formation, although a small compressive force is still induced by the trench side walls. In contrast, the strain release along the trenches is governed by plastic relaxation once the vertical film thickness has clearly exceeded the critical layer thickness. On the other hand, the monolithic deposition of mismatched InxGa1-xAs directly into a V-shaped trench bottom with {111} Si planes leads instantly to a pronounced nucleation of misfit dislocations along the {111} Si/III-V interfaces. In this case, elastic relaxation no longer plays a role as the strain release is ensured by plastic relaxation in both directions. Hence, using a ternary seed layer facilitates the integration of InxGa1-xAs covering the full composition range.

  10. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind, E-mail: govind@nplindia.org

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2)more » surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.« less

  11. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells

    PubMed Central

    2010-01-01

    Background Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. Results Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. Conclusion Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity. PMID:20831820

  12. In induced reconstructions of Si(1 1 1) as superlattice matched epitaxial templates for InN growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in

    Graphical abstract: Display Omitted Highlights: ► A novel growth method to form InN at low growth temperatures. ► Use of Si reconstruction as a growth template for group III nitrides. ► Band gap variation of InN – Moss–Burstein shift – non-parabolic conduction band for InN. ► Super lattice matching epitaxy of metal induced reconstructions with III–V unit cell. -- Abstract: Indium induced surface reconstructions of Si(1 1 1)-7 × 7 are used as templates to grow high quality InN. We grow InN on Si(1 1 1)-7 × 7, Si(1 1 1)-4 × 1-In and Si(1 1 1)-1 × 1-In reconstructedmore » surfaces and study the quality of the films formed using complementary characterization tools. InN grown on Si(1 1 1)-1 × 1-In reconstruction shows superior film quality with lowest band-edge emission having a narrow full width at half maximum, intense and narrow 0 0 0 2 X-ray diffraction, low surface roughness and carrier concentration an order lower than other samples. We attribute the high quality of the film formed at 300 °C to the integral matching of InN and super lattice dimensions, we also study the reasons for the band gap variation of InN in the literature. Present study demonstrates the proposed Superlattice Matched Epitaxy can be a general approach to grow good quality InN at much lower growth temperature on compatible In induced reconstructions of the Si surface.« less

  13. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  14. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.

    2016-08-01

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  15. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces

    PubMed Central

    Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.

    2016-01-01

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process. PMID:27531322

  16. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    PubMed

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  17. Ethers on Si(001): A Prime Example for the Common Ground between Surface Science and Molecular Organic Chemistry.

    PubMed

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf

    2017-11-20

    By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanoparticle induced piezoelectric, super toughened, radiation resistant, multi-functional nanohybrids.

    PubMed

    Tiwari, Vimal K; Shripathi, T; Lalla, N P; Maiti, Pralay

    2012-01-07

    We have developed multifunctional nanohybrids of poly(vinylidene fluoride-co-chlorotrifluoroethylene) (CTFE) with a small percentage of surface modified inorganic layered silicate showing dramatic improvement in toughness, radiation resistant and piezoelectric properties vis-à-vis pristine polymer. Massive intercalation (d(001) 1.8 → 3.9 nm) of polymer inside the nanoclay galleries and unique crystallization behavior of the fluoropolymer on the surface of individual silicate layer has been reported. Toughness in the nanohybrid increases more than three orders of magnitude as compared to pure CTFE. High energy radiation (80 MeV Si(+7)) causes chain session, amorphization and creates olefinic bonds in the pure polymer while the nanohybrids are radiation resistant at a similar dose. Nanoclay induces the metastable piezoelectric β-phase in CTFE, suitable for sensor and actuator application. Molecular level changes after irradiation and controlled morphology for smart membrane have been confirmed by using spectroscopy, sol-gel technique, surface morphology studies and in situ residual gas analysis.

  19. Stress-induced magnetization for epitaxial spinel ferrite films through interface engineering

    NASA Astrophysics Data System (ADS)

    Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2004-08-01

    This study found "stress-induced magnetization" for epitaxial ferrite films with spinel structure. We grew (111)- and (001)-epitaxial Ni0.17Zn0.23Fe2.60O4(NZF) films on CeO2/Y0.15Zr0.85O1.93(YSZ )/Si(001) and oxide single-crystal substrates, respectively. There is a window of lattice mismatch (between 0 and 6.5%) to achieve bulk saturation magnetization (Ms). An NZF film grown on CeO2/YSZ //Si(001) showed tensile stress, but that stress was relaxed by introducing a ZnCo2O4(ZC ) buffer layer. NZF films grown on SrTiO3(ST )(001) and (La,Sr)(Al,Ta)O3(LSAT)(001) had compressive stress, which was enhanced by introducing a ZC buffer layer. In both cases, bulk Ms was achieved by introducing the ZC buffer layer. This similarity suggests that magnetization can be controlled by the stress.

  20. [Effect of surface organic modified nano-silicon-oxide on mechanical properties of A-2186 silicone elastomers].

    PubMed

    Guo, Nan; Jiao, Ting

    2011-08-01

    To study the effect of surface organic modified nano-silicon-oxide (SiO(x)) on mechanical properties of A-2186 silicone elastomers. Surface organic modified nano-silicon-oxide (SiO(x)) was added into A-2186 silicone elastomers by weight percentage of 2%, 4% and 6%. The one without addition served as a control. Standard specimens were made according to American Society for Testing Materials (ASTM). Their tensile strength, elongation at break, tear strength, and Shore A hardness were measured. The results were analyzed statistically by SPSS 10.0 software package. The tensile strength in the experimental groups was significantly lower than the control group (P<0.001).The elongation in the experimental groups was lower than the control group, but there was no significant difference between the 2wt% group and the control group (P=0.068). The tear strength in both the 2wt= group and 4wt= group were higher than the control group, and the difference was statistically significant; in addition, the tear strength in 2wt= group was higher than 4wt= group, which also showed statistical significance (P<0.001). With the increase of the added amount of surface modified nano-SiO(x), Shore A hardness increased and there was significant difference among them (P<0.001). Adding surface modified nano-SiO(x) has an effect on mechanical properties of A-2186 silicone elastomer, when 2wt= and 4wt= are added, tear strength of A-2186 improves significantly, with an increase of Shore A hardness and an decrease of tensile strength.

  1. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  2. Beneficial defects: exploiting the intrinsic polishing-induced wafer roughness for the catalyst-free growth of Ge in-plane nanowires

    PubMed Central

    2014-01-01

    We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain. PACS 81.07.Gf; 68.35.bg; 68.35.bj; 62.23.Eg PMID:25114649

  3. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.

  4. Nonclassical Smoothening of Nanoscale Surface Corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah; Aziz, Michael J.; Chason, Eric

    2000-06-19

    We report the first experimental observation of nonclassical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(001) by sputter rippling and then annealed at 650-750 degree sign C . In contrast to the classical exponential decay with time, the ripple amplitude A{sub {lambda}}(t) followed an inverse linear decay, A{sub {lambda}}(t)=A{sub {lambda}}( 0)/(1+k{sub {lambda}}t) , agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6{+-}0.2 eV , consistent with the fundamental energies of creation and migration on Si(001). (c) 2000 The Americanmore » Physical Society.« less

  5. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  6. Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Levchenko, A. O.; Nguyen, L. V.; Saraeva, I. N.; Rudenko, A. A.; Ageev, E. I.; Potorochin, D. V.; Veiko, V. P.; Borisov, E. V.; Pankin, D. V.; Kirilenko, D. A.; Brunkov, P. N.

    2017-09-01

    High-pressure Si-XII and Si-III nanocrystalline polymorphs, as well as amorphous Si phase, appear consequently during multi-shot femtosecond-laser exposure of crystalline Si wafer surface above its spallation threshold along with permanently developing quasi-regular surface texture (ripples, microcones), residual hydrostatic stresses and subsurface damage, which are characterized by scanning and transmission electron microscopy, as well as by Raman micro-spectroscopy. The consequent yields of these structural Si phases indicate not only their spatially different appearance, but also potentially enable to track nanoscale, transient laser-induced high-pressure, high-temperature physical processes - local variation of ablation mechanism and rate, pressurization/pressure release, melting/resolidification, amorphization, annealing - versus cumulative laser exposure and the related development of the surface topography.

  7. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  8. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  9. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.

    PubMed

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-10-25

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  10. G protein-coupled estrogen receptor 1 (GPER 1) mediates estrogen-induced, proliferation of leiomyoma cells.

    PubMed

    Jiang, Xiuxiu; Ye, Xiaolei; Ma, Junyan; Li, Wen; Wu, Ruijin; Jun, Lin

    2015-01-01

    G protein-coupled estrogen receptor 1 (GPER-1, formerly known as GPR30) has been proposed as the receptor for estrogen-induced, growth of leiomyomas though its precise mechanisms of action are not clear. We obtained leiomyoma cells (LC) and normal smooth muscle cells from 28 women (n = 28, median age 38 years, median parity 1.0). We incubated them with 17-β estradiol (E(2)), after blocking, or upregulating, expression of GPER-1 with ICI182,780 (a GPER-1 agonist) and siGPR30, respectively. We evaluated the role of GPER-1 in the mitogen-activated protein kinase (MAPK) signaling pathway using Western blot analysis. We studied cell proliferation with 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and, mitotic activity with phosphohistone H3 (PPH3) expression in leiomyoma, and, matched, normal, smooth muscle tissues using standard immunohistochemistry. Downregulation of GPER-1 expression with siGPR30 partially attenuated the E(2)-activated MAPK signaling pathway (p < 0.01). Upregulation of GPER-1 with ICI182,780 enhanced the E(2)-activated MAPK signaling pathway (p < 0.01). ICI182,780 enhanced E(2)-induced proliferation of LC (p < 0.01), while knock down of the GPER-1 gene with GPER-1 small interfering RNA partially inhibited E(2)-induced cell proliferation (p < 0.01). There were no significant differences in PPH3 expression between LCs and normal smooth muscle tissues (p > 0.05). Neither ICI182,780 nor siGPR30 increased mitosis in LCs (p > 0.05). Our results indicate that GPER-1 mediates proliferation of estrogen-induced, LC by activating the MAPK pathway, and, not by promoting mitosis.

  11. Preannealing, Annealing Atmosphere, and Surface-Energy-Induced Selective Growth in 0.1 Pct Mn-Added 3 Pct Si-Fe Alloy Containing 95 ppm Sulfur

    NASA Astrophysics Data System (ADS)

    Jung, Y. C.; Lee, J. K.; Kim, K. T.; Heo, N. H.

    2009-05-01

    The total number of {110} grains after final annealing increased with preannealing and was greater in a hydrogen atmosphere than under a high vacuum. Magnetic induction decreased with increasing total number of the {110} grains. This is attributed to the increase in {110} grain size, the decrease in a range for the selective growth of {100} or {111} grains, and thus the increase in number of {110} grains that show a deviation angle between the < 001rangle crystal and the rolling directions.

  12. Orthogonally superimposed laser-induced periodic surface structures (LIPSS) upon nanosecond laser pulse irradiation of SiO2/Si layered systems

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.

    2017-12-01

    In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.

  13. PKC and Rab13 mediate Ca2+ signal-regulated GLUT4 traffic.

    PubMed

    Deng, Bangli; Zhu, Xiaocui; Zhao, Yihe; Zhang, Da; Pannu, Alisha; Chen, Liming; Niu, Wenyan

    2018-01-08

    Exercise/muscle contraction increases cell surface glucose transporter 4 (GLUT4), leading to glucose uptake to regulate blood glucose level. Elevating cytosolic Ca 2+ mediates this effect, but the detailed mechanism is not clear yet. We used calcium ionophore ionomycin to raise intracellular cytosolic Ca 2+ level to explore the underlying mechanism. We showed that in L6 myoblast muscle cells stably expressing GLUT4myc, ionomycin increased cell surface GLUT4myc levels and the phosphorylation of AS160, TBC1D1. siPKCα and siPKCθ but not siPKCδ and siPKCε inhibited the ionomycin-increased cell surface GLUT4myc level. siPKCα, siPKCθ inhibited the phosphorylation of AS160 and TBC1D1 induced by ionomycin. siPKCα and siPKCθ prevented ionomycin-inhibited endocytosis of GLUT4myc. siPKCθ, but not siPKCα inhibited ionomycin-stimulated exocytosis of GLUT4myc. siRab13 but not siRab8a, siRab10 and siRab14 inhibited the exocytosis of GLUT4myc promoted by ionomycin. In summary, ionomycin-promoted exocytosis of GLUT4 is partly reversed by siPKCθ, whereas ionomycin-inhibited endocytosis of GLUT4 requires both siPKCα and siPKCθ. PKCα and PKCθ contribute to ionomycin-induced phosphorylation of AS160 and TBC1D1. Rab13 is required for ionomycin-regulated GLUT4 exocytosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Subsurface Growth of CoSi2 by Deposition of Co on Si-Capped CoSi2 Seed Regions

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1991-01-01

    At a growth temperature of 800 C, Co deposited on Si(111) diffuses through a Si cap and exhibits oriented growth on buried CoSi2 grains, a process referred to as endotaxy. This occurs preferentially to surface nucleation of CoSi2 provided the thickness of the Si cap is less than a critical value between 100 and 200 nm for a deposition rate of 0.01 nm/s. Steady-state endotaxy is modeled under the assumption that the process is controlled by Co diffusion.

  15. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-01

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  16. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction.

    PubMed

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-29

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  17. Characterization of Atomic-Layer-Deposited (ALD) Al2O3-Passivated Sub-50-μm-thick Kerf-less Si Wafers by Controlled Spalling

    NASA Astrophysics Data System (ADS)

    Lee, Yong Hwan; Cha, Hamchorom; Choi, Sunho; Chang, Hyo Sik; Jang, Boyun; Oh, Jihun

    2018-05-01

    A systematic characterization of sub-50-μm-thick, kerf-less monocrystalline Si wafers fabricated by a controlled fracture method is presented. The spalling process introduces various defects on the Si surface, which result in high surface roughness levels, residual stress, and low effective minority carrier lifetimes. In addition, metals used to induce fracturing in Si diffuse in the Si at room temperature and degrade the effective minority carrier lifetime. Selective removal of these defected Si regions improves the residual stress and effective lifetimes of spalled Si wafers.

  18. Strain-induced structure transformations on Si(111) and Ge(111) surfaces: a combined density-functional and scanning tunneling microscopy study.

    PubMed

    Zhachuk, R; Teys, S; Coutinho, J

    2013-06-14

    Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.

  19. Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice.

    PubMed

    Albadawi, Hassan; Tzika, A Aria; Rask-Madsen, Christian; Crowley, Lindsey M; Koulopoulos, Michael W; Yoo, Hyung-Jin; Watkins, Michael T

    2016-09-01

    Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei

    2009-08-01

    Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.

  1. Dose rate effects on array CCDs exposed by Co-60 γ rays induce saturation output degradation and annealing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Chen, Wei; He, Baoping

    The experimental tests of dose rate and annealing effects on array charge-coupled devices (CCDs) are presented. The saturation output voltage (V{sub S}) versus the total dose at the dose rates of 0.01, 0.1, 1.0, 10.0 and 50 rad(Si)/s are compared. Annealing tests are performed to eliminate the time-dependent effects. The V{sub S} degradation levels depend on the dose rates. The V{sub S} degradation mechanism induced by dose rate and annealing effects is analyzed. The V{sub S} at 20 krad(Si) with the dose rate of 0.03 rad(Si)/s are supplemented to assure the degradation curves between the dose rates of 0.1 andmore » 0.01 rad(Si)/s. The CCDs are divided into two groups, with one group biased and the other unbiased during {sup 60}Co γ radiation. The V{sub S} degradation levels of the biased CCDs during radiation are more severe than that of the unbiased CCDs.« less

  2. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    NASA Astrophysics Data System (ADS)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  3. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-01-01

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408

  4. Effect of interphase mixing on the structure of calcium silicate intergranular film/silicon nitride crystal interfaces

    NASA Astrophysics Data System (ADS)

    Su, Xiaotao; Garofalini, Stephen H.

    2005-06-01

    Molecular-dynamics simulations of intergranular films (IGF) containing Si, O, N, and Ca in contact with Si3N4 surfaces containing different levels of interface mixing of the species from the IGF with the crystal surfaces were performed using a multibody interatomic potential. This mixing is equivalent to the formation of a roughened silicon oxynitride crystal surface. With significant interphase mixing at the crystal surfaces, less ordering into the IGF caused by the compositionally modified oxynitride interfaces is observed. Such results are in contrast to our earlier data that showed significant ordering into the IGF induced by the ideally terminated crystal surfaces with no interphase mixing. In all cases, the central position of the first peak in the Si-O pair distribution function (PDF) at the interface ranges from 1.62 to 1.64 Å, consistent with recent experimental findings. The central position of the first peak in the Si-N PDF ranges from 1.72 to 1.73 Å, consistent with experimental results. With increased interphase mixing, the intensity as well as the area of the first peak of the Si-O and Si-N PDFs for Si attached to the crystal decreases, indicating the decrease of coordination number of O or N with these silicon. Such combined decrease in coordination indicates a significant remnant of vacancies in the crystal surfaces due to the exchange process used here. The results imply a significant effect of interface roughness on the extent of ordering in the amorphous IGF induced by the crystal surface.

  5. PDPR Gene Expression Correlates with Exercise-Training Insulin Sensitivity Changes

    PubMed Central

    Barberio, Matthew D.; Huffman, Kim M.; Giri, Mamta; Hoffman, Eric P.; Kraus, William E.; Hubal, Monica J.

    2016-01-01

    Purpose Whole body insulin sensitivity (Si) typically improves following aerobic exercise training; however, individual responses can be highly variable. The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. Methods Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) were utilized as Discovery (Affymetrix) and Confirmation (Illumina) of vastus lateralis gene expression profiles. Discovery (n=39; 21 men) and Confirmation (n=42; 19 men) cohorts were matched for age (52 ± 8 vs. 51 ± 10 yr), BMI (30.4 ± 2.8 vs. 29.7 ± 2.8 kg*m-2), and VO2max (30.4 ± 2.8 vs. 29.7 ± 2.8 mL/kg/min). Si was determined via intravenous glucose tolerance test pre- and post-training. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and %ΔSi after training. Results Expression of 2454 (Discovery) and 1778 genes (Confirmation) at baseline were significantly (P<0.05) correlated to %ΔSi; 112 genes overlapped. Pathway analyses identified Ca2+-signaling-related transcripts in this 112-gene list. Expression changes of 1384 (Discovery) and 1288 genes (Confirmation) following training were significantly (P<0.05) correlated to % ΔSi; 33 genes overlapped, representing contractile apparatus of skeletal and smooth muscle genes. Pyruvate dehydrogenase phosphatase regulatory subunit (PDPR) expression at baseline (p=0.01, r=0.41) and post-training (p=0.01, r=0.43) were both correlated with %ΔSi. Conclusion Exercise-induced adaptations in skeletal muscle Si are related to baseline levels of Ca+2-regulating transcripts, which may prime the muscle for adaptation. Relationships between %ΔSi and PDPR, a regulatory subunit of the pyruvate dehydrogenase complex, indicate that the Si response is strongly related to key steps in metabolic regulation. PMID:27846149

  6. Surface investigation of Si(1 0 0), Cu, Cu on Si(1 0 0), and Au on Cu with positron annihilation induced Auger-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.

    2007-06-01

    The surfaces of polycrystalline Cu, Au-coated Cu, Si(1 0 0) and of Si(1 0 0) coated with 1.5 monolayer Cu were investigated with positron annihilation induced Auger-electron spectroscopy (PAES). Since the electron background has been reduced considerably we observed the Cu M 2,3VV-Auger transition on a copper surface within only three hours which is the shortest acquisition time reported so far for PAES. In order to demonstrate PAES' high potential the Auger-yield, the signal-to-background ratio as well as the surface selectivity were compared with accompanying EAES-measurements quantitatively. A more efficient electron energy analyzer for the present PAES setup would lead to an additional efficiency gain of more than two orders of magnitude. The presented measurements were performed at the low-energy positron beam of high intensity NEPOMUC at the research reactor FRM II.

  7. Sb lattice diffusion in Si1-xGex/Si(001) heterostructures: Chemical and stress effects

    NASA Astrophysics Data System (ADS)

    Portavoce, A.; Gas, P.; Berbezier, I.; Ronda, A.; Christensen, J. S.; Kuznetsov, A. Yu.; Svensson, B. G.

    2004-04-01

    The Sb diffusion coefficient in Si1-xGex/Si1-yGey(001) heterostructures grown by molecular beam epitaxy (MBE) was measured for temperatures ranging from 700 to 850 °C, Ge composition from 0 to 20 % and biaxial pressure from -0.8 (tension) to 1.4 GPa (compression). A quantitative separation of composition and biaxial stress effects is made. We show that the Sb lattice diffusion coefficient: (i) increases with Ge concentration in relaxed layers or at constant biaxial pressure and (ii) increases with compressive biaxial stress and decreases with tensile biaxial stress at constant Ge composition. The enhancement of Sb lattice diffusion in Si1-xGex layers in epitaxy on Si(001) is thus due to the cooperative effect of Ge composition and induced compressive biaxial stress. However, the first effect (composition) is predominant. The activation volume of Sb diffusion in Si1-xGex layers is deduced from the variation of the Sb diffusion coefficients with biaxial pressure. This volume is negative. The sign of the activation volume, its absolute value and its variation with temperature confirm the prediction of the thermodynamic model proposed by Aziz, namely, that under a biaxial stress the activation volume is reduced to the relaxation volume.

  8. Experimental determination of positron-related surface characteristics of 6H-SiC

    NASA Astrophysics Data System (ADS)

    Nangia, A.; Kim, J. H.; Weiss, A. H.; Brauer, G.

    2002-03-01

    The positron work function of 6H-SiC was determined to be -2.1±0.1 eV from an analysis of the energy spectrum of positrons reemitted from the surface. The positron reemission yield, highest in the sample inserted into vacuum after atmospheric exposure and cleaning with ethanol, was significantly reduced after sputtering with 3 keV, 125 μA min Ne+ ions. The yield was not recovered even after annealing at 900 °C, presumably due to the stability of sputter induced defects. Sputtering at lower energies caused a smaller decrease in the reemission yield that was largely recovered after annealing at 850 °C. Analysis using electron induced Auger electron spectroscopy and positron-annihilation-induced Auger electron spectroscopy indicated that the surface was Si enriched after sputtering and C enriched after subsequent annealing. Values of positron diffusion length and mobility in the unsputtered material were extracted from the dependence of the reemission yield on the beam energy. The application of SiC as a field-assisted positron moderator is discussed.

  9. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Hui; Yu, Zhong-Yuan; Lu, Peng-Fei; Liu, Yu-Min

    2009-10-01

    Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.

  10. Estimation of critical thickness of Stranski-Krastanow transition in GeSi/Sn/Si system

    NASA Astrophysics Data System (ADS)

    Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.

    2017-11-01

    In this paper Stranski-Krastanow growth of Ge x Si1-x epitaxial layers on the Si(001) surface with pre-deposited tin layer with the thickness less than 1 ML is considered. For the calculations of critical thickness of transition from 2D to 3D growth in this paper a theoretical model based on general nucleation theory is used. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch and surface energy of side facet on the composition x, as well as change in the adatoms diffusion coefficient and surface energy of the substrate in the presence of tin. As a result, dependencies of critical thickness of Stranski-Krastanow transition on compositon x and temperature are obtained. The simulated results are in a good agreement with experimentally observed results.

  11. Bright and multicolor luminescent colloidal Si nanocrystals prepared by pulsed laser irradiation in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Toshihiro, E-mail: nakamura@el.gunma-u.ac.jp; Watanabe, Kanta; Adachi, Sadao

    2016-01-11

    We reported the preparation of bright and multicolor luminescent colloidal Si nanocrystal (Si-nc) by pulsed UV laser irradiation to porous Si (PSi) in an organic solvent. The different-luminescence-color (different-sized) colloidal Si-nc was produced by the pulsed laser-induced fragmentation of different-sized porous nanostructures. The colloidal Si-nc samples were found to have higher photoluminescence quantum efficiencies (20%–23%) than the PSi samples (1%–3%). The brighter emission of the colloidal Si-nc was attributed to an enhanced radiative band-to-band transition rate due to the presence of a surface organic layer formed by UV laser-induced hydrosilylation.

  12. Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2√3 ×2√3 ) surface

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Ma, X. C.; Ning, Y. X.; Ji, S. H.; Fu, Y. S.; Jia, J. F.; Kelly, K. F.; Xue, Q. K.

    2009-04-01

    Surface structure of the Sn islands 5 ML high, prepared on Si(111)-(2√3 ×2√3 )-Sn substrate, is investigated by low temperature scanning tunneling microscopy/spectroscopy. Due to the elastic strain relaxation in the islands, the in-plane unit cell structure distorts and the apparent height of the surface atoms varies regularly to form an overall modulated strip structure. The quantum well states are observed to depend on the relative position within this structure, which implies the change of the surface chemical potential induced by the elastic strain relaxation as well.

  13. Effect of CoSi2 buffer layer on structure and magnetic properties of Co films grown on Si (001) substrate

    NASA Astrophysics Data System (ADS)

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Syed Sheraz, Ahmad; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-01-01

    Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films. In this paper, Co films with different thickness of CoSi2 buffer layers were grown on Si (001) substrates. In order to investigate morphology, structure, and magnetic properties of films, scanning tunneling microscope (STM), low energy electron diffraction (LEED), high resolution transmission electron microscopy (HRTEM), and surface magneto-optical Kerr effect (SMOKE) were used. The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of CoSi2 buffer layers. Few CoSi2 monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality. Furthermore, the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process, which is the typical phenomenon in cubic (001) films. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801 and 2012CB933102), the National Natural Science Foundation of China (Grant Nos. 11374350, 11034004, 11274361, and 11274033), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005).

  14. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    PubMed Central

    Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.

    2017-01-01

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079

  15. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    PubMed

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  16. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  17. Anisotropic selective etching between SiGe and Si

    NASA Astrophysics Data System (ADS)

    Ishii, Yohei; Scott-McCabe, Ritchie; Yu, Alex; Okuma, Kazumasa; Maeda, Kenji; Sebastian, Joseph; Manos, Jim

    2018-06-01

    In Si/SiGe dual-channel FinFETs, it is necessary to simultaneously control the etched amounts of SiGe and Si. However, the SiGe etch rate is higher than the Si etch rate in not only halogen plasmas but also physical sputtering. In this study, we found that hydrogen plasma selectively etches Si over SiGe. The result shows that the selectivity of Si over SiGe can be up to 38 with increasing Ge concentration in SiGe. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results indicate that hydrogen selectively bonds with Si rather than with Ge in SiGe. During the etching, hydrogen-induced Si surface segregation is also observed. It is also observed that the difference in etched amount between SiGe and Si can be controlled from positive to negative values even in Si/SiGe dual-channel fin patterning while maintaining the vertical profiles. Furthermore, no plasma-induced lattice damage was observed by transmission electron microscopy for both Si and SiGe fin sidewalls.

  18. Microcrystalline silicon thin films deposited by matrix-distributed electron cyclotron resonance plasma enhanced chemical vapor deposition using an SiF4 /H2 chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Junkang; Bulkin, Pavel; Florea, Ileana; Maurice, Jean-Luc; Johnson, Erik

    2016-07-01

    For the growth of hydrogenated microcrystalline silicon (μc-Si:H) thin films by low temperature plasma-enhanced chemical vapor deposition (PECVD), silicon tetrafluoride (SiF4) has recently attracted interest as a precursor due to the resilient optoelectronic performance of the resulting material and devices. In this work, μc-Si:H films are deposited at high rates (7 Å s-1) from a SiF4 and hydrogen (H2) gas mixture by matrix-distributed electron cyclotron resonance PECVD (MDECR-PECVD). Increased substrate temperature and moderate ion bombardment energy (IBE) are demonstrated to be of vital importance to achieve high quality μc-Si:H films under such low process pressure and high plasma density conditions, presumably due to thermally-induced and ion-induced enhancement of surface species migration. Two well-defined IBE thresholds at 12 eV and 43 eV, corresponding respectively to SiF+ ion-induced surface and bulk atomic displacement, are found to be determinant to the final film properties, namely the surface roughness, feature size and crystalline content. Moreover, a study of the growth dynamics shows that the primary challenge to producing highly crystallized μc-Si:H films by MDECR-PECVD appears to be the nucleation step. By employing a two-step method to first prepare a highly crystallized seed layer, μc-Si:H films lacking any amorphous incubation layer have been obtained. A crystalline volume fraction of 68% is achieved with a substrate temperature as low as 120 °C, which is of great interest to broaden the process window for solar cell applications.

  19. Strength improvement and purification of Yb 2Si 2O 7-SiC nanocomposites by surface oxidation treatment

    DOE PAGES

    Nguyen, Son T.; Nakayama, Tadachika; Suematsu, Hisayuki; ...

    2017-04-03

    A two-step processing was developed to prepare Yb 2Si 2O 7-SiC nanocomposites. Yb 2Si 2O 7-Yb 2SiO 5-SiC composites were first fabricated by a solid state reaction/hot-pressing method. The composites were then annealed at 1250°C in air for 2 h to activate the oxidation of SiC, which effectively transformed the Yb 2SiO 5 into Yb 2Si 2O 7. The surface cracks purposely induced can be fully healed during the oxidation treatment. The treated composites have improved flexural strength compared to their pristine composites. As a result, the mechanism for crack-healing and silicate transformation have been proposed and discussed in detail.

  20. Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination

    NASA Astrophysics Data System (ADS)

    Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.

    2016-07-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.

  1. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo

    PubMed Central

    Desai, Pinaki R.; Marepally, Srujan; Patel, Apurva R.; Voshavar, Chandrashekhar; Chaudhuri, Arabinda; Singh, Mandip

    2013-01-01

    The barrier properties of the skin pose a significant but not insurmountable obstacle for development of new effective anti-inflammatory therapies. The objective of this study was to design and evaluate therapeutic efficacy of anti-nociception agent Capsaicin (Cap) and anti-TNFα siRNA (siTNFα) encapsulated cyclic cationic head Lipid-Polymer hybrid Nanocarriers (CyLiPns) against chronic skin inflammatory diseases. Physico-chemical characterizations including hydrodynamic size, surface potential and entrapment efficacies of CyLiPns were found to be 163 ± 9 nm, 35.14 ± 8.23 mV and 92% for Cap, respectively. In vitro skin distribution studies revealed that CyLiPns could effectively deliver FITC-siRNA upto 360 µm skin depth. Further, enhanced (p<0.001) Cap permeation from CyLiPns was observed compared to Capsaicin-Solution and Capzasin-HP. Therapeutic efficacies of CyLiPns were assessed using imiquamod induced psoriatic plaque like model. CyLiPns carrying both Cap and siTNFα showed significant reduced expression of TNFα, NF-κB, IL-17, IL-23 and Ki-67 genes compare to either drugs alone (p<0.05) and was in close comparison with Topgraf®;. Collectively these findings support our notion that novel cationic lipid-polymer hybrid nanoparticles can efficiently carry siTNFα and Cap into deeper dermal milieu and Cap with combination of siTNFα show synergism in treating skin inflammation. PMID:23643662

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Carter, Richard J.

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C).more » The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.« less

  3. Single Sustained Inflation followed by Ventilation Leads to Rapid Cardiorespiratory Recovery but Causes Cerebral Vascular Leakage in Asphyxiated Near-Term Lambs

    PubMed Central

    Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.

    2016-01-01

    Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258

  4. Study on Brewster angle thin film polarizer using hafnia-silica mixture as high-refractive-index material

    NASA Astrophysics Data System (ADS)

    Xu, Nuo; Zhu, Meiping; Sun, Jian; Chai, Yingjie; Kui, Yi; Zhao, Yuanan; Shao, Jianda

    2018-02-01

    Two kinds of polarizer coatings were prepared by electron beam evaporation, using HfO2-SiO2 mixture and HfO2 as the high-refractive-index materials, respectively. The HfO2-SiO2 mixture layer was implemented by coevaporating SiO2 and metal Hf, the materials were deposited at an oxygen atmosphere to achieve stoichiometric coatings. The certain HfO2 and SiO2 content ratio is controlled by adjusting the deposition rate of HfO2 and SiO2 using individual quartz crystal monitor. The spectral performance, surface and interfacial properties, as well as the laser-induced damage performance were studied and compared. Comparing with polarizer coating using HfO2 as high-refractive-index material, the polarizer coating using HfO2-SiO2 mixture as high-refractive-index material shows better performance with broader polarizing bandwidth, lower surface roughness, better interfacial property while maintaining high laser-induced damage threshold.

  5. Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED

    PubMed Central

    2011-01-01

    The Si(001) surface deoxidized by short annealing at T ~ 925°C in the ultrahigh vacuum molecuar beam epitaxy chamber has been in situ investigated using high-resolution scanning tunneling microscopy (STM)and redegreesected high-energy electron diffraction (RHEED. RHEED patterns corresponding to (2 × 1) and (4 × 4) structures were observed during sample treatment. The (4 × 4) reconstruction arose at T ≲ 600°C after annealing. The reconstruction was observed to be reversible: the (4 × 4) structure turned into the (2 × 1) one at T ≳ 600°C, the (4 × 4) structure appeared again at recurring cooling. The c(8 × 8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8 × 8) structure decreased, as the sample cooling rate was reduced. The (2 × 1) structure was observed on the surface free of the c(8 × 8) one. The c(8 × 8) structure has been evidenced to manifest itself as the (4 × 4) one in the RHEED patterns. A model of the c(8 × 8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed. PACS 68.35.B-·68.37.Ef·68.49.Jk·68.47.Fg PMID:21711733

  6. Substrate effects on the epitaxial growth of ZnGeP2 thin films by open tube organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, K. J.; Posthill, J. B.; Timmons, M. L.

    1991-01-01

    Epitaxial ZnGeP2-Ge films have been grown on (111)GaP substrates using MOCVD. The films grown with dimethylzinc to germane flow rate ratio R greater than 10 show mirror-smooth surface morphology. Films grown with R less than 10 show a high density of twinning, including both double position and growth twins. Compared to films grown on (001) GaP substrates, the layers on (111) GaP generally show a higher density of microstructural defects. TEM electron diffraction patterns show that the films grown on (111) GaP substrates are more disordered than films grown on (001) GaP under comparable conditions. The growth rate on (111) GaP substrates is about 2.5 times slower than that on (001) GaP, and films grown on Si substrates show extensive twinning formation. Both TEM and SEM examinations indicate that smooth epitaxial overgrowth may be easier on (111) Si substrates than on (001) Si.

  7. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    NASA Astrophysics Data System (ADS)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.

  8. Photochemical tuning of ultrathin TiO2/ p-Si p-n junction properties via UV-induced H doping

    NASA Astrophysics Data System (ADS)

    Lee, Sang Yeon; Kim, Jinseo; Ahn, Byungmin; Cho, In Sun; Yu, Hak Ki; Seo, Hyungtak

    2017-03-01

    We report a modified TiO2/ p-Si electronic structure that uses ultraviolet exposure for the incorporation of H. This structure was characterized using various photoelectron spectroscopic techniques. The ultraviolet (UV) exposure of the TiO2 surface allowed the Fermi energy level to be tuned by the insertion of H radicals, which induced changes in the heterojunction TiO2/ p-Si diode properties. The UV exposure of the TiO2 surface was performed in air. On UVexposure, a photochemical reaction involving the incorporation of UV-induced H radicals led to the creation of a surface Ti-O-OH group and caused interstitial H doping (Ti-H-O) in the bulk, which modified the electronic structures in different ways, depending on the location of the H. On the basis of the band alignment determined using a combined spectroscopic analysis, it is suggested that the UV-induced H incorporation into the TiO2 could be utilized for the systematic tuning of the heterojunction property for solar cells, photocatalytic applications, and capacitors.

  9. A Novel Cu-10Zn-1.5Ni-0.34Si Alloy with Excellent Mechanical Property Through Precipitation Hardening

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Mingpu; Li, Zhou; Dong, Qiyi; Jia, Yanlin; Xiao, Zhu; Zhang, Rui; Yu, Hongchun

    2016-11-01

    A novel Cu-10Zn-1.5Ni-0.34Si alloy was designed to replace the expensive tin-phosphor bronze in this paper. The alloy had better comprehensive mechanical properties than traditional C5191 alloy. The aged Cu-10Zn-1.5Ni-0.34Si alloy had a hardness of 220 HV, electrical conductivity of 28.5% IACS, tensile strength of 650 MPa, yield strength of 575 MPa and elongation of 13%. Ni2Si precipitates formed during aging, and the crystal orientation relationship between matrix and precipitates was: (001)α//(001)δ, and [110]α//[100]δ. Ductile fracture surface with deep cavities was found in the alloy. Solid solution strengthening, deformation strengthening and precipitation strengthening were found to be core strengthening mechanisms in the alloy.

  10. Is light-induced degradation of a-Si:H/c-Si interfaces reversible?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Mhamdi, El Mahdi; Holovsky, Jakub; Demaurex, Bénédicte

    2014-06-23

    Thin hydrogenated amorphous silicon (a-Si:H) films deposited on crystalline silicon (c-Si) surfaces are sensitive probes for the bulk electronic properties of a-Si:H. Here, we use such samples during repeated low-temperature annealing and visible-light soaking to investigate the long-term stability of a-Si:H films. We observe that during annealing the electronic improvement of the interfaces follows stretched exponentials as long as hydrogen evolution in the films can be detected. Once such evolution is no longer observed, the electronic improvement occurs much faster. Based on these findings, we discuss how the reversibility of light-induced defects depends on (the lack of observable) hydrogen evolution.

  11. Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars.

    PubMed

    Kozlowski, G; Zaumseil, P; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-03-23

    We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

  12. Surface cleaning for enhanced adhesion to packaging surfaces: Effect of oxygen and ammonia plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaddam, Sneha; Dong, Bin; Driver, Marcus

    2015-03-15

    The effects of direct plasma chemistries on carbon removal from silicon nitride (SiN{sub x}) and oxynitride (SiO{sub x}N{sub y}) surfaces have been studied by in-situ x-ray photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O{sub 2} and NH{sub 3} capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiN{sub x}) and Si oxynitride (SiO{sub x}N{sub y}) surfaces. O{sub 2} plasma treatment results in the formation of a silica overlayer. In contrast, the exposure to NH{sub 3} plasma results in negligible additional oxidation of the SiN{sub x} or SiO{sub x}N{sub y} surface. Ex-situ contactmore » angle measurements show that SiN{sub x} and SiO{sub x}N{sub y} surfaces exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH{sub 3} plasma, indicating that the O{sub 2} plasma-induced SiO{sub 2} overlayer is highly reactive toward ambient. At longer ambient exposures (≳10 h), however, surfaces treated by either O{sub 2} or NH{sub 3} plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in contact angle upon exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.« less

  13. Surface reconstruction switching induced by tensile stress of DB steps: From Ba/Si(0 0 1)- 2 × 3 to Ba/Si(0 0 1)-4° off- 3 × 2

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Lkhagvasuren, Altaibaatar; Zhang, Rui; Seo, Jae M.

    2018-05-01

    The alkaline-earth metal adsorption on Si(0 0 1) has attracted much interest for finding a proper template in the growth of high- κ and crystalline films. Up to now on the flat Si(0 0 1) surface with double domains and single-layer steps, the adsorbed Ba atoms are known to induce the 2 × 3 structure through removing two Si dimers and adding a Ba atom per unit cell in each domain. In the present investigation, the Si(0 0 1)-4° off surface with DB steps and single domains has been employed as a substrate and the reconstruction at the initial stage of Ba adsorption has been investigated by scanning tunneling microscopy and synchrotron photoemission spectroscopy. On this vicinal and single domain terrace, a novel 3 × 2 structure rotated by 90° from the 2 × 3 structure has been found. Such a 3 × 2 structure turns out to be formed by adding a Ba atom and a Si dimer per unit cell. This results from the fact that the adsorbed Ba2+ ions with a larger ionic radius relieve tensile stress on the original Si dimers exerted by the rebonded atoms at the DB step.

  14. Evolution of Ge nanoislands on Si(110)-'16 × 2' surface under thermal annealing studied using STM

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhashis; Yoshimura, Masamichi; Ueda, Kazuyuki

    2009-11-01

    The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 × 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 × 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 × 2' reconstruction) starts at approximately 300 °C, whereas the terrace structures of Si(110) are thermally stable up to 500 °C. At approximately 650 °C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.

  15. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vectormore » influencing LIPSS formation on bulk surfaces.« less

  16. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  17. High ferroelectric polarization in c-oriented BaTiO 3 epitaxial thin films on SrTiO 3/Si(001)

    DOE PAGES

    Scigaj, M.; Chao, C. H.; Gázquez, J.; ...

    2016-09-21

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  18. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  19. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    NASA Astrophysics Data System (ADS)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K Iori, K Sakamoto, H Narita, A Kimura, M Taniguchi, S Qiao, K Hasegawa, K Shimada, H Namatame and S Blügel Activated associative desorption of C + O → CO from Ru(001) induced by femtosecond laser pulses S Wagner, H Öström, A Kaebe, M Krenz, M Wolf, A C Luntz and C Frischkorn Surface structure of Sn-doped In2O3 (111) thin films by STM Erie H Morales, Yunbin He, Mykola Vinnichenko, Bernard Delley and Ulrike Diebold Coulomb oscillations in three-layer graphene nanostructures J Güttinger, C Stampfer, F Molitor, D Graf, T Ihn and K Ensslin Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces Xiangyang Peng, Peter Krüger and Johannes Pollmann Fermi surface nesting in several transition metal dichalcogenides D S Inosov, V B Zabolotnyy, D V Evtushinsky, A A Kordyuk, B Büchner, R Follath, H Berger and S V Borisenko Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111) A P Jardine, H Hedgeland, D Ward, Y Xiaoqing, W Allison, J Ellis and G Alexandrowicz A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy R Temirov, S Soubatch, O Neucheva, A C Lassise and F S Tautz

  20. Prevention of thermal- and moisture-induced degradation of the photoluminescence properties of the Sr2Si5N8:Eu(2+) red phosphor by thermal post-treatment in N2-H2.

    PubMed

    Zhang, Chenning; Uchikoshi, Tetsuo; Xie, Rong-Jun; Liu, Lihong; Cho, Yujin; Sakka, Yoshio; Hirosaki, Naoto; Sekiguchi, Takashi

    2016-05-14

    A red phosphor of Sr2Si5N8:Eu(2+) powder was synthesized by a solid state reaction. The synthesized phosphor was thermally post-treated in an inert and reductive N2-H2 mixed-gas atmosphere at 300-1200 °C. The main phase of the resultant phosphor was identified as Sr2Si5N8. A passivation layer of ∼0.2 μm thickness was formed around the phosphor surface via thermal treatment. Moreover, two different luminescence centers of Eu(SrI) and Eu(SrII) in the synthesized Sr2Si5N8:Eu(2+) phosphor were proposed to be responsible for 620 nm and 670 nm emissions, respectively. More interestingly, thermal- and moisture-induced degradation of PL intensity was effectively reduced by the formation of a passivation layer around the phosphor surface, that is, the relative PL intensity recovered 99.8% of the initial intensity even after encountering thermal degradation; both moisture-induced degraded external and internal QEs were merely 1% of the initial QEs. The formed surface layer was concluded to primarily prevent the Eu(2+) activator from being oxidized, based on the systemic analysis of the mechanisms of thermal- and moisture-induced degradation.

  1. Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone

    NASA Astrophysics Data System (ADS)

    Milenov, T. I.; Avramova, I.; Valcheva, E.; Avdeev, G. V.; Rusev, S.; Kolev, S.; Balchev, I.; Petrov, I.; Pishinkov, D.; Popov, V. N.

    2017-11-01

    We present results on the deposition and characterization of defected graphene by the chemical vapor deposition (CVD) method. The source of carbon/carbon-containing radicals is thermally decomposed acetone (C2H6CO) in Ar main gas flow. The deposition takes place on (001) Si substrates at about 1150-1160 °C. We established by Raman spectroscopy the presence of single- to few- layered defected graphene deposited on two types of interlayers that possess different surface morphology and consisted of mixed sp2 and sp3 hybridized carbon. The study of interlayers by XPS, XRD, GIXRD and SEM identifies different phase composition: i) a diamond-like carbon dominated film consisting some residual SiC, SiO2 etc.; ii) a sp2- dominated film consisting small quantities of C60/C70 fullerenes and residual Si-O-, Cdbnd O etc. species. The polarized Raman studies confirm the presence of many single-layered defected graphene areas that are larger than few microns in size on the predominantly amorphous carbon interlayers.

  2. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    NASA Astrophysics Data System (ADS)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  3. Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3

    PubMed Central

    Kleinman, Mark E; Kaneko, Hiroki; Cho, Won Gil; Dridi, Sami; Fowler, Benjamin J; Blandford, Alexander D; Albuquerque, Romulo JC; Hirano, Yoshio; Terasaki, Hiroko; Kondo, Mineo; Fujita, Takashi; Ambati, Balamurali K; Tarallo, Valeria; Gelfand, Bradley D; Bogdanovich, Sasha; Baffi, Judit Z; Ambati, Jayakrishna

    2012-01-01

    The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these “naked” siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide. PMID:21988875

  4. Effects of (NH4)2S x treatment on the surface properties of SiO2 as a gate dielectric for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of (NH4)2S x treatment on the surface properties of SiO2 is studied. (NH4)2S x treatment leads to the formation of S-Si bonds on the SiO2 surface that serves to reduce the number of donor-like trap states, inducing the shift of the Fermi level toward the conduction band minimum. A finding in this case is the noticeably reduced value of the SiO2 capacitance as the sulfurated layer is formed at the SiO2 surface. The effect of SiO2 layers with (NH4)2S x treatment on the carrier transport behaviors for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. The pentacene/as-cleaned SiO2-based OTFT shows depletion-mode behavior, whereas the pentacene/(NH4)2S x -treated SiO2-based OTFT exhibits enhancement-mode behavior. Experimental identification confirms that the depletion-/enhancement-mode conversion is due to the dominance competition between donor-like trap states in SiO2 near the pentacene/SiO2 interface and acceptor-like trap states in the pentacene channel. A sulfurated layer between pentacene and SiO2 is expected to give significant contributions to carrier transport for pentacene/SiO2-based OTFTs.

  5. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  6. Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance

    NASA Astrophysics Data System (ADS)

    Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2018-05-01

    Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.

  7. Small Interfering RNA-Mediated Suppression of Fas Modulate Apoptosis and Proliferation in Rat Intervertebral Disc Cells.

    PubMed

    Park, Jong-Beom; Park, Chanjoo

    2017-10-01

    In vitro cell culture model. To investigate the effect of small interfering RNA (siRNA) on Fas expression, apoptosis, and proliferation in serum-deprived rat disc cells. Synthetic siRNA can trigger an RNA interference (RNAi) response in mammalian cells and precipitate the inhibition of specific gene expression. However, the potential utility of siRNA technology in downregulation of specific genes associated with disc cell apoptosis remains unclear. Rat disc cells were isolated and cultured in the presence of either 10% fetal bovine serum (FBS) (normal control) or 0% FBS (serum deprivation to induce apoptosis) for 48 hours. Fas expression, apoptosis, and proliferation were determined. Additionally, siRNA oligonucleotides against Fas (Fas siRNA) were transfected into rat disc cells to suppress Fas expression. Changes in Fas expression were assessed by reverse transcription-polymerase chain reaction and semiquantitatively analyzed using densitometry. The effect of Fas siRNA on apoptosis and proliferation of rat disc cells were also determined. Negative siRNA and transfection agent alone (Mock) were used as controls. Serum deprivation increased apoptosis by 40.3% ( p <0.001), decreased proliferation by 45.3% ( p <0.001), and upregulated Fas expression. Additionally, Fas siRNA suppressed Fas expression in serum-deprived cultures, with 68.5% reduction at the mRNA level compared to the control cultures ( p <0.001). Finally, Fas siRNA-mediated suppression of Fas expression significantly inhibited apoptosis by 9.3% and increased proliferation by 21% in serum-deprived cultures ( p <0.05 for both). The observed dual positive effect of Fas siRNA might be a powerful therapeutic approach for disc degeneration by suppression of harmful gene expression.

  8. Self-organization during growth of ZrN/SiN{sub x} multilayers by epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallqvist, A.; Fager, H.; Hultman, L.

    ZrN/SiN{sub x} nanoscale multilayers were deposited on ZrN seed layers grown on top of MgO(001) substrates by dc magnetron sputtering with a constant ZrN thickness of 40 Å and with an intended SiN{sub x} thickness of 2, 4, 6, 8, and 15 Å at a substrate temperature of 800 °C and 6 Å at 500 °C. The films were investigated by X-ray diffraction, high-resolution scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. The investigations show that the SiN{sub x} is amorphous and that the ZrN layers are crystalline. Growth of epitaxial cubic SiN{sub x}—known to take place on TiN(001)—onmore » ZrN(001) is excluded to the monolayer resolution of this study. During the course of SiN{sub x} deposition, the material segregates to form surface precipitates in discontinuous layers for SiN{sub x} thicknesses ≤6 Å that coalesce into continuous layers for 8 and 15 Å thickness at 800 °C, and for 6 Å at 500 °C. The SiN{sub x} precipitates are aligned vertically. The ZrN layers in turn grow by epitaxial lateral overgrowth on the discontinuous SiN{sub x} in samples deposited at 800 °C with up to 6 Å thick SiN{sub x} layers. Effectively a self-organized nanostructure can be grown consisting of strings of 1–3 nm large SiN{sub x} precipitates along apparent column boundaries in the epitaxial ZrN.« less

  9. The effect of Si nano-columns in 2-D and 3-D on cellular behaviour: nanotopography-induced CaP deposition from differentiating mesenchymal stem cells.

    PubMed

    Guvendik, S; Trabzon, L; Ramazanoglu, M

    2011-10-01

    Si nano-columns were deposited in 2-D and 3-D in the form of well-defined geometries by physical vapor deposition. The films were grown by e-beam evaporation with an angle between source and substrate. The Si nano-columns were deposited in the shape of spiral with two different incoming atomic flux angle so that the manipulation of nano-columns in 3-D (out-of-plane) was obtained. The Si nano-columns were also grown as vertical stick with square, triangle and linear cross sections in 2D (in-plane). Rat bone marrow mesenchymal stem cells (MSCs) were cultured on these different Si nanosurfaces. MTS assay was carried out to determine the cell proliferation and viability based on different nanotopographies. For the evaluation of cell distribution and morphology, a SEM (Scanning Electron Microscopy) analysis was performed. Any CaP deposition on Si nanosurfaces was observed using energy dispersive X-Ray spectroscopy in SEM (SEM-EDX). After 4 days of culture, there was a higher value of cell proliferation on square columns and spiral Si nano-columns grown with 85 degrees of incoming atomic flux. The cell attachment and spreading was also affected by the geometry of Si nano-columns. While there were still cells showing round/spherical morphology with minimal spreading on conventional Si surfaces, most of the cells cultured on different Si nanotopographies attached on the surface and displayed flattened morphology, especially on the square columns surface. Moreover, CaP deposition was discovered on square columns and spiral films with 85 degrees substrate angle. So, it can be concluded that there is a clear correlation between cell responses and nano-sized geometry on Si surface and it is possible to induce cellular differentiation and CaP formation in certain geometrical constraints.

  10. Shattering of SiMe3+ during surface-induced dissociation

    NASA Astrophysics Data System (ADS)

    Schultz, David G.; Hanley, Luke

    1998-12-01

    We provide experimental evidence that upon hyperthermal impact of Si(CD3)3+ ions with an organic surface, a portion of the ions undergo dissociation while still in contact with the surface. We use a tandem configuration of quadrupole mass spectrometers along with an energy analyzer to measure the kinetic energy distributions of the fragments that form as a result of the surface scattering of 25 eV Si(CD3)3+. These distributions are different for scattering from a clean Au(111) surface versus scattering from an organic surface composed of a self-assembled monolayer of hexanethiolate on Au(111). Parent and fragment ions recoil from the clean Au(111) surface with the same velocity, as is expected for fragmentation away from the surface. However, the same scattering products recoil from the organic surface with different velocities but similar energies, suggesting that the fragmentation dynamics are modified by surface interactions. We perform molecular dynamics simulations which predict residence times of ˜210 fs at the organic surface and ˜20 fs at the Au surface. The simulations also predict that 13% and 31% of the ions fragment within 1.1 ps of surface impact at the organic and Au surfaces, respectively. Thus, the experimental observation of dissociation at only the organic surface results from its longer ion-surface interaction time. The fragmentation time scale predicted by Rice-Ramsperger-Kassel-Marcus calculations is yet longer, suggesting that at least a portion of the surface-induced dissociation of Si(CD3)3+ may occur via a nonstatistical mechanism. Our interpretation draws heavily from an analogous "shattering" mechanism previously proposed for cluster-surface scattering [E. Hendell, U. Even, T. Raz, and R. D. Levine, Phys. Rev. Lett. 75, 2670 (1995)].

  11. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Wang, Y., E-mail: yanping.wang@insa-rennes.fr; Kuyyalil, J.; Nguyen Thanh, T.

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer.more » Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.« less

  12. Surface porosity and roughness of micrographite film for nucleation of hydroxyapatite.

    PubMed

    Asanithi, Piyapong

    2014-08-01

    Heterogeneous nucleation of hydroxyapatite (HAp) can be facilitated by physical and chemical properties of material surface. In this article, we reported how effective surface porosity and roughness are for inducing nucleation of HAp crystal in simulated body fluid. Two types of micrographite film (MGF) prepared from assembly of micrographite flakes were used as seeds to induce HAp crystal: uncompressed (high surface porosity) and compressed (low surface porosity) MGFs. Compressed MGF was prepared by applying mechanical compression to the uncompressed MGF. Uncompressed and compressed MGFs have similar surface wettability with the water contact angles (θ) of 113° and 107°, respectively. The number density of HAp crystals on the uncompressed MGF was higher than that of the compressed MGF by a factor of 6. This result implied that surface porosity and roughness were more effective parameters for inducing HAp crystal than surface wettability. Uncompressed MGF also induced HAp nucleation better than a cover glass although the glass had high wettability (θ = 64°). The effectiveness of uncompressed MGF on inducing HAp crystals was as high as that of the SiO2 -coated Si substrate. Our finding suggests that we do not require to functionalize material surface to be an effective seed; a surface with pores or roughness of the right scale is enough. © 2013 Wiley Periodicals, Inc.

  13. Attachment chemistry of aromatic compounds on a Silicon(100) surface

    NASA Astrophysics Data System (ADS)

    Henriksson, Anders; Nishiori, Daiki; Maeda, Hiroaki; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi

    2018-03-01

    A mild method was developed for the chemical attachment of aromatic compounds directly onto a hydrogen-terminated Si(100) (H-Si(100)) surface. In the presence of palladium catalyst and base, 4-iodophenylferrocene and a π-conjugated iron complex were attached to H-Si(100) electrodes and hydrogen-terminated silicon nanowires (H-SiNWs), both of which have predominant dihydride species on their surfaces. The reactions were conducted in 1,4-dioxane at 100 °C and the immobilization of both 4-ferrocenylphenyl group and π-conjugated molecular wires were confirmed and quantified by XPS and electrochemical measurements. We reported densely packed monolayer whose surface coverage (Γ), estimated from the electrochemical measurements are in analogue to similar monolayers prepared via thermal or light induced hydrosilylation reactions with alkenes or alkynes. The increase in electrochemical response observed on nanostructured silicon surfaces corresponds well to the increase in surface area, those strongly indicating that this method may be applied for the functionalization of electrodes with a variety of surface topographies.

  14. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC

    PubMed Central

    2012-01-01

    A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486

  15. Solvothermal synthesis of Mg-doped Li2FeSiO4/C nanocomposite cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.

    Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.

  16. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  17. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    PubMed

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  18. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    NASA Astrophysics Data System (ADS)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  19. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  20. Investigation of atomic oxygen-surface interactions related to measurements with dual air density explorer satellites

    NASA Technical Reports Server (NTRS)

    Wood, B. J.; Ablow, C. M.; Wise, H.

    1973-01-01

    For a number of candidate materials of construction for the dual air density explorer satellites the rate of oxygen atom loss by adsorption, surface reaction, and recombination was determined as a function of surface and temperature. Plain aluminum and anodized aluminum surfaces exhibit a collisional atom loss probability alpha .01 in the temperature range 140 - 360 K, and an initial sticking probability. For SiO coated aluminum in the same temperature range, alpha .001 and So .001. Atom-loss on gold is relatively rapid alpha .01. The So for gold varies between 0.25 and unity in the temperature range 360 - 140 K.

  1. FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.

    PubMed

    Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa

    2009-12-01

    FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.

  2. Effectiveness of silica-lasing method on the bond strength of composite resin repair to Ni-Cr alloy.

    PubMed

    Madani, Azam S; Astaneh, Pedram Ansari; Nakhaei, Mohammadreza; Bagheri, Hossein G; Moosavi, Horieh; Alavi, Samin; Najjaran, Niloufar Tayarani

    2015-04-01

    The aim of this study was to evaluate the effectiveness of silica-lasing method for improving the composite resin repair of metal ceramic restorations. Sixty Ni-Cr cylindrical specimens were fabricated. The bonding surface of all specimens was airborne-particle abraded using 50 μm aluminum oxide particles. Specimens were divided into six groups that received the following surface treatments: group 1-airborne-particle abrasion alone (AA); group 2-Nd:YAG laser irradiation (LA); group 3-silica coating (Si-CO); group 4-silica-lasing (metal surface was coated with slurry of opaque porcelain and irradiated by Nd:YAG laser) (Si-LA); group 5-silica-lasing plus etching with HF acid (Si-LA-HF); group 6-CoJet sand lased (CJ-LA). Composite resin was applied on metal surfaces. Specimens were thermocycled and tested in shear mode in a universal testing machine. The shear bond strength values were analyzed using ANOVA and Tukey's tests (α = 0.05). The mode of failure was determined, and two specimens in each group were examined by scanning electron microscopy and wavelength dispersive X-ray spectroscopy. Si-CO showed significantly higher shear bond strength in comparison to other groups (p < 0.001). The shear bond strength values of the LA group were significantly higher than those of the AA group (p < 0.05). No significant difference was found among lased groups (LA, Si-LA, Si-LA-HF, CJ-LA; p > 0.05). The failure mode was 100% adhesive for AA, Si-LA, Si-LA-HF, and CJ-LA. LA and Si-CO groups showed 37.5% and 87.5% cohesive failure, respectively. Silica coating of Ni-Cr alloy resulted in higher shear bond strength than those of other surface treatments. © 2014 by the American College of Prosthodontists.

  3. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr

    2016-03-28

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathwaymore » for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.« less

  4. High-aspect-ratio and high-flatness Cu3(SiGe) nanoplatelets prepared by chemical vapor deposition.

    PubMed

    Klementová, Mariana; Palatinus, Lukás; Novotný, Filip; Fajgar, Radek; Subrt, Jan; Drínek, Vladislav

    2013-06-01

    Cu3(SiGe) nanoplatelets were synthesized by low-pressure chemical vapor deposition of a SiH3C2H5/Ge2(CH3)6 mixture on a Cu-substrate at 500 degrees C, total pressure of 110-115 Pa, and Ge/Si molar ratio of 22. The nanoplatelets with composition Cu76Si15Ge12 are formed by the 4'-phase, and they are flattened perpendicular to the [001] direction. Their lateral dimensions reach several tens of micrometers in size, but they are only about 50 nm thick. Their surface is extremely flat, with measured root mean square roughness R(q) below 0.2 nm. The nanoplatelets grow via the non-catalytic vapor-solid mechanism and surface growth. In addition, nanowires and nanorods of various Cu-Si-Ge alloys were also obtained depending on the experimental conditions. Morphology of the resulting Cu-Si-Ge nanoobjects is very sensitive to the experimental parameters. The formation of nanoplatelets is associated with increased amount of Ge in the alloy.

  5. Gradient induced liquid motion on laser structured black Si surfaces

    NASA Astrophysics Data System (ADS)

    Paradisanos, I.; Fotakis, C.; Anastasiadis, S. H.; Stratakis, E.

    2015-09-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano-patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/s, which is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells, and drug delivery is envisaged.

  6. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangsoo; Son, Yong-Hoon; Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung 445-701

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers weremore » shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.« less

  7. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  8. Growth and evolution of nickel germanide nanostructures on Ge(001).

    PubMed

    Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T

    2015-09-25

    Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).

  9. Supersonic molecular beam experiments on surface chemical reactions.

    PubMed

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation

    NASA Astrophysics Data System (ADS)

    Ghica, Corneliu; Nistor, Leona Cristina; Teodorescu, Valentin Serban; Maraloiu, Adrian; Vizireanu, Sorin; Scarisoreanu, Nae Doinel; Dinescu, Maria

    2011-03-01

    We have studied by transmission electron microscopy the microstructural effects induced by pulsed laser annealing in comparison with thermal treatments of RF plasma hydrogenated Si wafers aiming for further application in the smart-cut procedure. While thermal annealing mainly produces a slight decrease of the density of plasma-induced planar defects and an increase of the size and number of plasma-induced nanocavities in the Si matrix, pulsed laser annealing of RF plasma hydrogenated Si wafers with a 355 nm wavelength radiation results in both the healing of defects adjacent to the wafer surface and the formation of a well defined layer of nanometric cavities at a depth of 25-50 nm. In this way, a controlled fracture of single crystal layers of Si thinner than 50 nm is favored.

  11. Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, G. A.; Costescu, R. M.; Husanu, M. A.

    2011-10-03

    Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less

  12. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  13. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 is studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  14. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  15. Magnetomechanical effect in silicon (Cz-Si) surface layers

    NASA Astrophysics Data System (ADS)

    Koplak, O. V.; Dmitriev, A. I.; Morgunov, R. B.

    2012-07-01

    The mechanical properties of near-surface layers of Czochralski-grown silicon crystals Cz- n-Si(111) have been found to undergo changes in response to an external constant magnetic field ( B ˜ 0.1 T). A magnetically induced variation in the microhardness, Young's modulus, and coefficient of plasticity of silicon crystals correlates with the change in the lattice parameter and internal stresses of the sample. The growth of an oxide film under exposure to a magnetic field plays the principal role in the magnetomechanical effect due to a decrease in the concentration of oxygen complexes in the near-surface layers of the sample. In microstructured silicon, where the surface is considerably more developed, the magnetic field induces more profound changes in the internal stresses as compared to single crystals.

  16. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  17. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    NASA Astrophysics Data System (ADS)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  18. Sub-nanometer glass surface dynamics induced by illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Duc; Nienhaus, Lea; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    2015-06-21

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10{sup 4} s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass formingmore » units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.« less

  19. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  20. The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Franquet, Alexis; Richard, Olivier; Bender, Hugo; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2018-04-01

    Vertical InAs nanowires (NWs) grown on a Si substrate are promising building-blocks for next generation vertical gate-all-around transistor fabrication. We investigate the initial stage of InAs NW selective area epitaxy (SAE) on a patterned Si (111) substrate with a focus on the interfacial structures. The direct epitaxy of InAs NWs on a clean Si (111) surface is found to be challenging. The yield of vertical InAs NWs is low, as the SAE is accompanied by high proportions of empty holes, inclined NWs, and irregular blocks. In contrast, it is improved when the NW contains gallium, and the yield of vertical InxGa1-xAs NWs increased with higher Ga content. Meanwhile, unintentional Ga surface contamination on a patterned Si substrate induces high yield vertical InAs NW SAE, which is attributed to a GaAs-like seeding layer formed at the InAs/Si interface. The role of Ga played in the III-V NW nucleation on Si is further discussed. It stabilizes the B-polarity on a non-polar Si (111) surface and enhances the nucleation. Therefore, gallium incorporation on a Si surface is identified as an important enabler for vertical InAs NW growth. A new method for high yield (>99%) vertical InAs NW SAE on Si using an InGaAs nucleation layer is proposed based on this study.

  1. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng

    2018-01-01

    We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.

  2. He + and Ar + bombardment induced chemical changes in CrOSi layers

    NASA Astrophysics Data System (ADS)

    Bertóti, I.; Tóth, A.; Mohai, M.; Kelly, R.; Marletta, G.

    1996-08-01

    The effects of 2 keV He + and Ar + bombardment on the surface composition and on the short range chemical structure of sputter deposited amorphous CrOSi layers (with approx. 1 : 1 : 1 atomic ratio) have been studied by XPS. It was found that Ar + bombardment causes an essentially complete reduction of chromium to metallic state (Cr 0) whereas it was partly oxidized in the as-received sample. At the same time about 30% of the oxidized silicon is converted to Si 0 which is stabilized by forming SiCr bonds. He + bombardment, on the contrary, leads to the disruption of SiCr bonds formed by the preceding Ar + bombardment, converting Cr 0 and Si 0 essentially to Cr 3+O, Cr 4+O and Si 4+O, and, at the same time raises the surface oxygen concentration up to three times of the nominal bulk value. The observed transformations are discussed, in connection with the great differences in energy deposition, in terms of direct energy transfer and of ion induced diffusion, together with a significant contribution from thermodynamic driving forces.

  3. Positronium formation at Si surfaces

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Maekawa, M.; Miyashita, A.; Wada, K.; Kaiwa, T.; Nagashima, Y.

    2018-06-01

    Positronium formation at Si(111) and Si(001) surfaces has been investigated by changing the doping level systematically over the range 300-1000 K. The temperature dependence of the positronium fraction varied with the doping condition, and there were practically no differences between the two surface orientations. In heavily doped n -type Si (n ≳1018cm-3) , the positronium fraction (IPs) increased above 700 K and reached more than 95% at 1000 K. In undoped and lightly doped Si (n , p ≲1015cm-3 ), IPs decreased from 300 to 500 K and increased above 700 K. In heavily doped p -type Si (p ≳1018cm-3 ), IPs increased in two steps: one at 500-600 K and one above 700 K. Overall, the positronium fraction increased with the amount of n -type doping. These phenomena were found to be dominated by two kinds of positronium with energies of 0.6-1.5 eV and 0.1-0.2 eV, which were attributed to the work-function mechanism and the surface-positron-mediated process, respectively, with contributions from conduction electrons. The positron work function was estimated to be positive. This agrees with first-principles calculation. The positive positron work function implies that the formation of excitonic electron-positron bound states begins in the bulk subsurface region and transits to the final positronium state in the vacuum.

  4. Structural and electrical characterization of epitaxial Ge thin films on Si(001) formed by sputtering

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Mori, Takahiro; Morita, Yukinori; Uchida, Noriyuki; Liu, Yongxun; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku; Matsukawa, Takashi

    2017-04-01

    We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance-voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.

  5. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.

    PubMed

    Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-07-07

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.

  6. A New Route to Nondestructive Top-Contacts for Molecular Electronics on Si: Pb Evaporated on Organic Monolayers.

    PubMed

    Lovrinčić, Robert; Kraynis, Olga; Har-Lavan, Rotem; Haj-Yahya, Abd-Elrazek; Li, Wenjie; Vilan, Ayelet; Cahen, David

    2013-02-07

    Thermally evaporated Pb preserves the electronic properties of an organic monolayer (ML) on Si and surface passivation of the Si surface itself. The obtained current-voltage characteristics of Pb/ML/Si junctions agree with results obtained with the well-established Hg contact and preserve both the molecule-induced dipole effect on, and length-attenuation of, the current. We rationalize our findings by the lack of interaction between the Pb and the Si substrate. This method is fast, scalable, and compatible with standard semiconductor processing, results in close to 100% yield, and can help the development of large-scale utilization of silicon-organic hybrid electronics. Our experimental data show a dependence of the transport across the molecules on the substrate orientation, expressed in the smaller distance decay parameter with Si(100) than that with Si(111).

  7. Silicon anode materials with ultra-low resistivity from the inside out for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Guojun; Jin, Chenxin; Liu, Liekai; Lan, Yu; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Zhou, Lang

    2017-12-01

    Broken silicon (Si) wafers with electrical resistivity of 1 and 0.001 Ω cm were respectively ball-milled to Si particles with median diameters of less than 1 μm. Both these two types of Si particles were deposited with silver (Ag) nanoparticles by self-selective electroless deposition method. 1-Ω cm-Si particles, 0.001-Ω cm-Si particles, Ag-deposited 1-Ω cm-Si particles and Ag-deposited 0.001-Ω cm-Si particles were, respectively, mixed with graphite particles in weight ratio of 1:9 to form four types of Si-C anode materials and then they were assembled into coin cells. The experimental results indicate that the Ag-deposited 0.001-Ω cm-Si sample shows the higher capacity, better rate and cycle performance than other three samples, due to the high conductivity of Ag-deposited 0.001-Ω cm-Si sample from the inside out. At the current density of 750 mA g-1, the discharge capacity gap of Ag-deposited 0.001-Ω cm-Si sample and 0.001-Ω cm-Si sample is as high as 141.7 mA h g-1, which is almost equal to the discharge capacity of the latter. Besides, the discharge capacity retention ratio of Ag-deposited 0.001-Ω cm-Si sample after 50 cycles is 70%, which is 23.5% higher than that of 0.001-Ω cm-Si sample.

  8. Fabrication mechanism of friction-induced selective etching on Si(100) surface

    PubMed Central

    2012-01-01

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699

  9. Fabrication mechanism of friction-induced selective etching on Si(100) surface.

    PubMed

    Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong

    2012-02-23

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.

  10. Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffino, F.; Canino, A.; Grimaldi, M. G.

    Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less

  11. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  12. Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    PubMed Central

    2010-01-01

    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively. PMID:21076699

  13. Fabrication of Coaxial Si1- x Ge x Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    NASA Astrophysics Data System (ADS)

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-10-01

    We report on bifurcate reactions on the surface of well-aligned Si1- x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1- x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1- x Ge x or SiO2/Si1- x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  14. Fabrication of Coaxial Si(1-x)Ge(x) Heterostructure Nanowires by O(2) Flow-Induced Bifurcate Reactions.

    PubMed

    Kim, Ilsoo; Lee, Ki-Young; Kim, Ungkil; Park, Yong-Hee; Park, Tae-Eon; Choi, Heon-Jin

    2010-06-17

    We report on bifurcate reactions on the surface of well-aligned Si(1-x)Ge(x) nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si(1-x)Ge(x) nanowires were grown in a chemical vapor transport process using SiCl(4) gas and Ge powder as a source. After the growth of nanowires, SiCl(4) flow was terminated while O(2) gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO(2) by the O(2) gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O(2) pressure without any intermediate region and enables selectively fabricated Ge/Si(1-x)Ge(x) or SiO(2)/Si(1-x)Ge(x) coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.

  15. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  16. Stabilizing Ir(001) Epitaxy on Yttria-Stabilized Zirconia Using a Thin Ir Seed Layer Grown by Pulsed Laser Deposition

    DOE PAGES

    Fan, Lisha; Jacobs, Christopher B.; Rouleau, Christopher M.; ...

    2016-11-18

    In this paper, we demonstrate the reproducible epitaxial growth of 100 nm thick Ir(001) films on a heteroepitaxial stack consisting of 5 nm Ir and 100 nm yttria-stabilized zirconia (YSZ) grown on Si(001) substrates. It is shown that a 5 nm thick Ir layer grown by pulsed laser deposition in the same chamber as the YSZ film without breaking the vacuum is the key to stabilizing Ir(001) epitaxial growth. Growth of the Ir seed layer with pure (001) orientation occurs only in a narrow growth temperature window from 550 to 750 °C, and the fraction of Ir(111) increases at substratemore » temperatures outside of this window. The Ir seed layer prevents exposure of the YSZ film to air during sample transfer and enables highly reproducible Ir(001) heteroepitaxy on YSZ buffered Si(001). In contrast, if Ir is grown directly on a bare YSZ layer that was exposed to ambient conditions, the films are prone to change orientation to (111). These results reveal that preserving the chemical and structural purity of the YSZ surface is imperative for achieving Ir(001) epitaxy. The narrow range of the mosaic spread values from eight experiments demonstrates the high yield and high reproducibility of Ir(001) heteroepitaxy by this approach. Lastly, the improved Ir(001) epitaxial growth method is of great significance for integrating a variety of technologically important materials such as diamond, graphene, and functional oxides on a Si platform.« less

  17. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    PubMed Central

    2012-01-01

    Background Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm) and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle uptake, phagosomal leakage and activation of the NALP3 inflammasome. Notably, rat primary lung macrophages were more sensitive with respect to silica-induced IL-1β release. The differential response patterns obtained suggest that silica-induced IL-1β responses not only depend on the particle surface area, but on factors and/or mechanisms such as particle reactivity or particle uptake. These findings may suggest that bacterial infection via LPS may augment acute inflammatory effects of non-crystalline as well as crystalline silica particles. PMID:22882971

  18. Chemistry of MOS-LSI radiation hardening

    NASA Technical Reports Server (NTRS)

    Grunthaner, P.

    1985-01-01

    The objective of this task was to obtain chemical information on MOS test samples. Toward this end, high resolution X-ray photoemission spectroscopy (XPS) has been the primary techniques used to characterize the chemistry and structure of the SiO2/Si interface for a variety of MOS structures with differing degrees of susceptibility to damage by ionizing radiation. The major accomplishments of this program are: (1) the identification of a structurally distinct region of SiO2 in the near-interfacial region of thermal SiO2 on Si; (2) the identification in the near-interfacial region of SiO2 structural differences between radiation hard and soft gate oxides; (3) the direct observation of radiation-induced damage sites in thermal SiO2 with XPS using in situ electron stress; (4) the correlation of suboxide state distributions at the SiO2/Si interface with processing parameters and radiation susceptibility; (5) the development of a chemical mechanism for radiation-induced interface state generation in SiO2/Si structures; and (6) the development benign chemical profiling techniques which permit the investigation of oxide/semiconductor structures using surface sensitive electron spectroscopic techniques.

  19. Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nejad, Marjan A.; Mücksch, Christian; Urbassek, Herbert M.

    2017-02-01

    Adsorption of insulin on polar and nonpolar surfaces of crystalline SiO2 (cristobalite and α -quartz) is studied using molecular dynamics simulation. Acceleration techniques are used in order to sample adsorption phase space efficiently and to identify realistic adsorption conformations. We find major differences between the polar and nonpolar surfaces. Electrostatic interactions govern the adsorption on polar surfaces and can be described by the alignment of the protein dipole with the surface dipole; hence spreading of the protein on the surface is irrelevant. On nonpolar surfaces, on the other hand, van-der-Waals interaction dominates, inducing surface spreading of the protein.

  20. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    PubMed

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Scanning electron microscopy of the surfaces of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  2. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  3. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  4. Topics in the mechanics of self-organizing systems

    NASA Astrophysics Data System (ADS)

    Tambe, Dhananjay

    Self-organization, in one of its accepted definitions, is the appearance of non-random structures in a system without explicit constraints from forces outside the system. In this thesis two self-organizing systems are studied from the viewpoint of mechanics. In the first system---semiconductor crystal surfaces---the internal constraints that lead to self-assembly of nanoscale structures on silicon-germanium (SiGe) films are studied. In the second system---actin cytoskeleton---a consequence of dynamic self-organization of actin filaments in the form of motion of micron-sized beads through a cytoplasmic medium is studied. When Ge film is deposited on Si(001) substrate, nanoscale features form on the surface and self-organize by minimizing energy contributions from the surface and the strain resulting from difference in lattice constants of the film and the substrate. Clean Si(001) and Ge(001) surfaces are very similar, but experiments to date have shown that atomic scale defects such as dimer-vacancies self-organize into vacancy lines only on Si(001). Through atomic simulations, we show that the observed difference originate from the magnitude of compressive surface strain which reduces formation energy of the dimer-vacancies. During initial stages of the film deposition, the surface is composed of steps and vacancy lines organized in periodic patterns. Using theory of elasticity and atomic simulations we show that these line defects self-organize due to monopolar nature of steps and dipolar nature of the vacancy lines. This self-organized pattern further develops to form pyramidal islands bounded with (105) facets and high Ge content. Mismatch strain of the island is then reduced by incorporation of Si from the substrate surrounding the island leaving behind trenches whose depth is proportional to the basewidth of the island. Using finite element simulations we show that such a relationship is an outcome of competition between elastic energy and surface energy. Some experimental studies also report observation of steeper (103) and (104) facets on pyramidal islands. Using numerical simulations we derive a phase diagram which shows that the steeper facets are stabilized because they provide better relaxation of mismatch strain with only slight increase in surface energy. In the second system, the actin cytoskeleton is a key structural and propulsion element of eukaryotic cells. Micron-sized "cargoes", which under pathological conditions include bacteria, are propelled by dynamic self-organization of the actin filaments. Recently it is shown that the trajectories of a bacterium, Listeria monocytogenes, propelled by actin filaments are periodic; implying that the organization of actin filaments impart an effective force that spins about the axis of the bacterium. We show that the motion of spherical beads is also non-random; the effective force has an additional degree of freedom due to the spherical symmetry of the bead. Agreement of the theoretical trajectories with experimental observations suggest that the actin-based motility can be generally described using deterministic equations. We also propose microscopic basis for the effective force model which can guide development of microscopic theory to predict the long term trajectories of actin propelled objects.

  5. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  6. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  7. Strain relaxation of thin Si{sub 0.6}Ge{sub 0.4} grown with low-temperature buffers by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Hansson, G. V.; Ni, W.-X.

    A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less

  8. Comparison of cross-sectional transmission electron microscope studies of thin germanium epilayers grown on differently oriented silicon wafers.

    PubMed

    Norris, D J; Myronov, M; Leadley, D R; Walther, T

    2017-12-01

    We compare transmission electron microscopical analyses of the onset of islanding in the germanium-on-silicon (Ge/Si) system for three different Si substrate orientations: (001), (11¯0) and (11¯1)Si. The Ge was deposited by reduced pressure chemical vapour deposition and forms islands on the surface of all Si wafers; however, the morphology (aspect ratio) of the deposited islands is different for each type of wafer. Moreover, the mechanism for strain relaxation is different for each type of wafer owing to the different orientation of the (111) slip planes with the growth surface. Ge grown on (001)Si is initially pseudomorphically strained, yielding small, almost symmetrical islands of high aspect ratio (clusters or domes) on top interdiffused SiGe pedestals, without any evidence of plastic relaxation by dislocations, which would nucleate later-on when the islands might have coalesced and then the Matthews-Blakeslee limit is reached. For (11¯0)Si, islands are flatter and more asymmetric, and this is correlated with plastic relaxation of some islands by dislocations. In the case of growth on (11¯1)Si wafers, there is evidence of immediate strain relaxation taking place by numerous dislocations and also twinning. In the case of untwined film/substrate interfaces, Burgers circuits drawn around certain (amorphous-like) regions show a nonclosure with an edge-type a/4[1¯12] Burgers vector component visible in projection along [110]. Microtwins of multiples of half unit cells in thickness have been observed which occur at the growth interface between the Si(11¯1) buffer layer and the overlying Ge material. Models of the growth mechanisms to explain the interfacial configurations of each type of wafer are suggested. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Dewetting process of Au films on SiO2 nanowires: Activation energy evaluation

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2015-05-01

    SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects. In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.

  10. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    NASA Astrophysics Data System (ADS)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene micro-ribbon (< 1 μm) was measured via overlaying two micro-electrodes using e-beam lithography and e-beam evaporation. The crystalline quality (stacking order, defect or disorder, strain, crystallite size, etc.) of laser-induced graphene was analyzed using Raman spectroscopy through the comparison with pristine natural graphite and CVD-grown monolayer graphene on SiO2/Si and other substrates. The experimental results reveal the feasibility of laser modification techniques as an efficient, inexpensive, and versatile (any shape and location) means in local synthesis of graphene, especially in patterning graphene nanostructures. Different from other laser induced graphene research works, which were concentrated on bulk SiC wafers, this PhD research work focuses on thin film SiC grown on Si (111) for the first time.

  11. Synergistic damage effects of vacuum ultraviolet photons and O2 in SiCOH ultra-low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2010-10-01

    Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.

  12. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  13. Molecule desorption induced by gate-voltage application in MOS structure

    NASA Astrophysics Data System (ADS)

    Hirota, Nozomu; Hattori, Ken; Daimon, Hiroshi; Hattori, Azusa N.; Tanaka, Hidekazu

    2016-04-01

    For the first time, we demonstrate desorption from a MOS surface by applying gate voltages (V G). We observed CH4, CO, and CO2 desorption from a MOS (Fe nanofilm/a-SiO2/Si) surface in vacuum only when applying negative V G, suggesting the occurrence of electronic excitation by hot-hole injection. This demonstration is the first step in the application of MOSs to electrically controlled catalysts.

  14. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, Takuya; PRESTO, Japan Science and Technology Agency; Yoshikawa, Hideki

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  16. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  17. Trapping time of excitons in Si nanocrystals embedded in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    de Jong, E. M. L. D.; de Boer, W. D. A. M.; Yassievich, I. N.; Gregorkiewicz, T.

    2017-05-01

    Silicon (Si) nanocrystals (NCs) are of great interest for many applications, ranging from photovoltaics to optoelectonics. The photoluminescence quantum yield of Si NCs dispersed in SiO2 is limited, suggesting the existence of very efficient processes of nonradiative recombination, among which the formation of a self-trapped exciton state on the surface of the NC. In order to improve the external quantum efficiency of these systems, the carrier relaxation and recombination need to be understood more thoroughly. For that purpose, we perform transient-induced absorption spectroscopy on Si NCs embedded in a SiO2 matrix over a broad probe range for NCs of average sizes from 2.5 to 5.5 nm. The self-trapping of free excitons on surface-related states is experimentally and theoretically discussed and found to be dependent on the NC size. These results offer more insight into the self-trapped exciton state and are important to increase the optical performance of Si NCs.

  18. Out-of-plane electron transport in finite layer MoS2

    NASA Astrophysics Data System (ADS)

    Holzapfel, R.; Weber, J.; Lukashev, P. V.; Stollenwerk, A. J.

    2018-05-01

    Ballistic electron emission microscopy (BEEM) has been used to study the processes affecting electron transport along the [0001] direction of finite layer MoS2 flakes deposited onto the surface of Au/Si(001) Schottky diodes. Prominent features present in the differential spectra from the MoS2 flakes are consistent with the density of states of finite layer MoS2 calculated using density functional theory. The ability to observe the electronic structure of the MoS2 appears to be due to the relatively smooth density of states of Si in this energy range and a substantial amount of elastic or quasi-elastic scattering along the MoS2/Au/Si(001) path. Demonstration of these measurements using BEEM suggests that this technique could potentially be used to study electron transport through van der Waals heterostructures, with applications in a number of electronic devices.

  19. Growth energetics of germanium quantum dots by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Richard Joseph

    Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.

  20. Initial stage oxidation on nano-trenched Si(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yi-Lun; Izumi, Satoshi; Chen, Xue-Feng; Zhai, Zhi; Tian, Shao-Hua

    2018-01-01

    As the size of an electronic element shrinks to nanoscale, trench design of Si strongly influences the performance of related semiconductor devices. By reactive force field molecular dynamics (ReaxFF MD) simulation, the initial stage oxidation on nano-trenched Si(1 0 0) angled 60°, 90°, 120°, 150° under temperatures from 300 K to 1200 K has been studied. Inhomogeneous oxidation at the convex-concave corners of the Si surface was observed. In general, the initial oxidation process on the Si surface was that, firstly, the O atoms ballistically transported into surface, then a high O concentration induced compressive stress at the surface layers, which prevented further oxidation. Compared to the concave corner, the convex one contacted a larger volume of oxygen at the very beginning stage, leading an anisotropic absorption of O atoms. Afterwards, a critical compression was produced at both the convex and concave corners to limit the oxidation. As a result, an inhomogeneous oxide film grew on nano-trenched Si. Meanwhile, due to enhanced O transport and compression relaxation by increasing temperature, the inhomogeneous oxidation was more obvious under 1200 K. These present results explained the observed experimental phenomena on the oxidation of non-planar Si and provided an aspect on the design of nano-trenched electronic components in the semiconductor field.

  1. X-ray photoelectron-diffraction study of intermixing and morphology at the Ge/Si(001) and Ge/Sb/Si(001) interface

    NASA Astrophysics Data System (ADS)

    Gunnella, R.; Castrucci, P.; Pinto, N.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.

    1996-09-01

    We used the XPD (x-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge core levels to probe the crystalline structure of 3 and 6 ML of Ge epitaxially grown by molecular-beam epitaxy on the Si(001) surface. In order to check the film tetragonal distortion and the pseudomorphic growth morphology, we used two different temperatures of the substrate during the deposition: room temperature and 400 °C. Evidence for an interfacial intermixing has been found by means of the observation of the angular behavior of the intensity of the emitted electrons. We also investigated the effects of Sb as a surfactant on such an interface. In this case indications of a laminar growth of strained Ge overlayer with reduced intermixing is obtained when 1 ML of Sb is predeposited on the substrate. Furthermore making use of a multiple-scattering approach to reproduce the experimental XPD patterns, a higher amount of accessible information on the morphology of the interface, beyond the determination of the strain content, is obtained.

  2. Kinetics of radiation-induced precipitation at the alloy surface

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  3. Effect of core ceramic grinding on fracture behaviour of bilayered lithium disilicate glass-ceramic under two loading schemes.

    PubMed

    Wang, Xiao-Dong; Jian, Yu-Tao; Guess, Petra C; Swain, Michael V; Zhang, Xin-Ping; Zhao, Ke

    2014-11-01

    The purpose of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered lithium disilicate glass-ceramic (LDG) under two loading schemes. Interfacial surfaces of sandblasted LDG disks (A) were ground with 220 (B), 500 (C) and 1200 (D) grit silicon carbide (SiC) sandpapers, respectively. Surface roughness and topographic analysis were performed using a profilometer and a scanning electron microscopy (SEM), and then underwent retesting after veneer firing. Biaxial fracture strength (σf) and Weibull modulus (m) were calculated either with core in tension (subgroup t) or in compression (subgroup c). Failure modes were observed by SEM, and loading induced stress distribution was simulated and analyzed by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis, one-way ANOVA, and paired test at a significance level of 0.05. As the grits size of SiC increased, LDG surface roughness decreased from group A to D (p<0.001), which remained unchanged after veneer firing. No difference in σf (p=0.41 for subgroups At-Dt; p=0.11 for subgroups Ac-Dc), m values as well as failure modes was found among four subgroups for both loading schemes. Specimens in subgroup t showed higher σf (p<0.001) and m values than subgroup c. Stress distribution between loading schemes did not differ from each other. Cracks, as the dominant failure mode initiated from bottom tensile surface. No sign of interfacial cracking or delamination was observed for all groups. Technician grinding changed surface topography of LDG ceramic material, but was not detrimental to the bilayered system strength after veneer application. LDG bilayered system was more sensitive to fracture when loaded with veneer porcelain in tension. Within the limitations of the simulated grinding applied, it is concluded that veneer porcelain can be applied directly after technician grinding of LDG ceramic as it has no detrimental effect on the strength of bilayered structures. The connector areas of LDG fixed dental prosthesis are more sensitive to fracture compared with single crowns, and should be fabricated with more caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies.

    PubMed

    Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques

    2015-01-26

    The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).

  5. Influence of silencing soluble epoxide hydrolase with RNA interference on cardiomyocytes apoptosis induced by doxorubicin.

    PubMed

    Du, Guangsheng; Lv, Jiagao; He, Li; Ma, Yexin

    2011-06-01

    In order to investigate the influence of silencing soluble epoxide hydrolase (sEH) with double-stranded small interfering RNA (siRNA) on cardiomyocytes apoptosis induced by doxorubicin (DOX), two plasmids containing siRNA sequences specific to sEH were constructed and transfected into the primary cultured cardiomyocytes by using FuGENE HD transfection agents. The mRNA and protein expression levels of sEH were detected by semiquantitative RT-PCR and Western blotting respectively, and the plasmids that silenced sEH most significantly were selected, and renamed EH-R. The plasmids carrying a nonspecific siRNA coding sequence (PCN) served as the negative control. Cardiomyocytes were divided into four groups: control group, DOX group, PCN+DOX group, and EH-R+DOX group. Apoptosis of cardiomyocytes was induced by DOX at a concentration of 1 μmol/L. Apoptosis rate of cardiomyocytes was determined by flow cytometery. The protein expression levels of Bcl-2 and Bax were detected by Western blotting. The results showed that the expression of sEH was down-regulated by EH-R plasmid. The expression levels of sEH mRNA and protein in the EH-R+DOX group were significantly decreased as compared with other groups (P<0.01). As compared with the control group, the apoptosis rate of cardiomyocytes in three DOX-treated groups was obviously increased, the expression levels of Bax increased, and those of Bcl-2 decreased (P<0.01). However, the expression levels of Bax were decreased, those of Bcl-2 increased and the apoptosis rate of cardiomyocytes obviously decreased in EH-R+DOX group when compared with those in the DOX group and the PCN+DOX group (P<0.01 for each). It was concluded that the recombinant plasmids could be successfully constructed, and transfected into the primary cultured cardiomyocytes. They could ameliorate the DOX-induced cardiomyocytes apoptosis by selectively inhibiting the expression of sEH with RNAi and increasing the expression of Bcl-2.

  6. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    NASA Astrophysics Data System (ADS)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( < 10-5 SI). An increase of both phase peak and relaxation time was found with increasing grain size of the sorted Fe-sand. Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  7. Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg

    DOE PAGES

    Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...

    2018-06-06

    AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less

  8. Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.

    AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less

  9. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw; Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan

    2016-05-15

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size ofmore » the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.« less

  10. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.

    PubMed

    Gago, R; Jaafar, M; Palomares, F J

    2018-07-04

    The surface morphology of molybdenum silicide (Mo x Si 1-x ) films has been studied after low-energy Ar + ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si 1-x films with compositions below, equal and above the MoSi 2 stoichiometry (x  =  0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si 1-x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si 1-x . Contrary to silicon, Mo x Si 1-x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si 1-x films with 1 keV Ar + at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si 1-x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si 1-x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.

  11. Effect of lubricant environment on saw damage in silicon wafers

    NASA Technical Reports Server (NTRS)

    Kuan, T. S.; Shih, K. K.; Vanvechten, J. A.; Westdorp, W. A.

    1982-01-01

    The chemomechanical effect of lubricant environments on the inner diameter (ID) sawing induced surface damage in Si wafers was tested for four different lubricants: water, dielectric oil, and two commercial cutting solutions. The effects of applying different potential on Si crystals during the sawing were also tested. It is indicated that the number and depth of surface damage are sensitive to the chemical nature of the saw lubricant. It is determined that the lubricants that are good catalysts for breaking Si bonds can dampen the out of plane blade vibration more effectively and produce less surface damage. Correlations between the applied potential and the depth of damage in the dielectric oil and one of the commercial cutting solutions and possible mechanisms involved are discussed.

  12. Laser-induced modification of graphene in the presence of ethanol on a graphene - substrate interface

    NASA Astrophysics Data System (ADS)

    Pivovarov, P. A.; Frolov, V. D.; Zavedeev, E. V.; Konov, V. I.

    2017-12-01

    We have studied the effect that the substitution of an organic substance (ethanol) for water adsorbate on a CVD graphene-SiO2/Si interface has on the laser-induced modification of graphene and graphene structures on the SiO2 film. Scanning probe microscopy has been used to analyse changes in the electronic properties of graphene structures on a hydrophilic substrate in the presence of ethanol and as a result of a laser-induced spatial redistribution of a water-alcohol adsorbate on the interface. It has been demonstrated experimentally that ethanol substitution for water adsorbate leads to an increase in the surface potential of the graphene, which is equivalent to a reduction in its work function with respect to the original level under normal conditions at a relative humidity of air from 30% to 60%. In the laser irradiation zone, we observe an additional increase in surface potential by 30-50 mV. Thus, ethanol makes it possible to tune the laser-induced electronic properties of graphene on a substrate. In addition, it has been shown that the intercalation of ethanol molecules leads to severe temporal instability of the physical properties of graphene structures produced by local laser irradiation. We have demonstrated the possibility of information ‘rewriting’ by low-intensity laser pulses in microregions with a changed surface potential in the presence of ethanol.

  13. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  14. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    NASA Astrophysics Data System (ADS)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  15. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  16. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang

    2018-02-01

    Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.

  17. In situ TEM observation of preferential amorphization in single crystal Si nanowire

    NASA Astrophysics Data System (ADS)

    Su, Jiangbin; Zhu, Xianfang

    2018-06-01

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  18. In situ TEM observation of preferential amorphization in single crystal Si nanowire.

    PubMed

    Su, Jiangbin; Zhu, Xianfang

    2018-06-08

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  19. Monte-Carlo investigation of in-plane electron transport in tensile strained Si and Si{_{1-y}}C{_y} (y {leq 0.03})

    NASA Astrophysics Data System (ADS)

    Dollfus, Ph.; Galdin, S.; Hesto, P.

    1999-07-01

    Electron transport properties in tensile strained Si-based materials are theoretically analyzed using Monte-Carlo calculation. We focus our interest on in-plane transport in Si and Si{1-y}Cy (yleq 0.03), grown respectively on <~ngle 001rangle Si{1-x}Gex pseudo-substrate and Si substrate, with a view to Field-Effect-Transistor application. In comparison with unstrained Si, the tensile strain effect is shown to be very attractive in Si: drift mobilities greater than 3000 cm^2/Vs are obtained at 300 K for a Ge fraction mole of 0.2 in the pseudo-substrate. In the Si{1-y}Cy/Si system, that does not need any pseudo-substrate, the beneficial strain effect on transport is counterbalanced by the alloy scattering whose influence on mobility is studied. If the alloy potential is greater than about 1 eV, the advantage of strain-induced reduction of effective mass is lost in terms of stationary transport performance at 300 K.

  20. Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing

    2018-01-30

    In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.

  1. Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Kryder, Mark H.

    2009-09-01

    Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.

  2. Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells.

    PubMed

    Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius

    2014-01-13

    Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.

  3. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.

    PubMed

    Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin

    2015-12-09

    In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting and environment processing.

  4. The effects of surface finish and grain size on the strength of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  5. The atomic structure and polarization of strained SrTiO3/Si

    NASA Astrophysics Data System (ADS)

    Kumah, D. P.; Reiner, J. W.; Segal, Y.; Kolpak, A. M.; Zhang, Z.; Su, D.; Zhu, Y.; Sawicki, M. S.; Broadbridge, C. C.; Ahn, C. H.; Walker, F. J.

    2010-12-01

    For thin film devices based on coupling ferroelectric polarization to charge carriers in semiconductors, the role of the interface is critical. To elucidate this role, we use synchrotron x-ray diffraction to determine the interface structure of epitaxial SrTiO3 grown on the (001) surface of Si. The average displacement of the O octahedral sublattice relative to the Sr sublattice determines the film polarization and is measured to be about 0.05 nm toward the Si, with Ti off-center displacements 0.009 nm away from the substrate. Measurements of films with different boundary conditions on the top of the SrTiO3 show that the polarization at the SrTiO3/Si interface is dominated by oxide-Si chemical interactions.

  6. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge{sub 33}S{sub 67}/Ag/Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Y., E-mail: y-sakaguchi@cross.or.jp; Asaoka, H.; Uozumi, Y.

    2016-08-07

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge{sub 33}S{sub 67}/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge{sub 33}S{sub 67} layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  7. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  8. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask

    PubMed Central

    2014-01-01

    A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication. PMID:24940174

  9. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    PubMed Central

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  10. Metastable Defect Formation at Microvoids Identified as a Source of Light-Induced Degradation in a-Si :H

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.

    2014-02-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.

  11. Laser-induced reaction alumina coating on ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb{34}. After exposure to 1200sp°C for 200 hours, the bonding between the laser-induced reaction alumina coating and the composite appeared to be unattacked. For both the coated and uncoated samples, porosity within the composite increased after exposure due to the reaction: 3SiOsb2(s) + 4Al(l) -> 2Alsb2Osb3(s) + Si(s).

  12. Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding

    NASA Astrophysics Data System (ADS)

    Jung, A.; Zhang, Y.; Arroyo Rojas Dasilva, Y.; Isa, F.; von Känel, H.

    2018-02-01

    We study covalent bonds between p-doped Si wafers (resistivity ˜10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

  13. Dynamics of surface-migration: Electron-induced reaction of 1,2-dihaloethanes on Si(100)

    NASA Astrophysics Data System (ADS)

    Huang, Kai; MacLean, Oliver; Guo, Si Yue; McNab, Iain R.; Ning, Zhanyu; Wang, Chen-Guang; Ji, Wei; Polanyi, John C.

    2016-10-01

    Scanning Tunneling Microscopy was used to investigate the electron-induced reaction of 1,2-dibromoethane (DBE) and 1,2-dichloroethane (DCE) on Si(100).We observed a long-lived physisorbed molecular state of DBE at 75 K and of DCE at 110 K. As a result we were able to characterize by experiment and also by ab initio theory the dynamics of ethylene production in the electron-induced surface-reaction of these physisorbed species. For both DBE and DCE the ethylene product was observed to migrate across the surface. In the case of DBE the recoil of the ethylene favored the silicon rows, migrating by an average distance of 22 Å, and up to 100 Å. Trajectory calculations were performed for this electron-induced reaction, using an 'Impulsive Two-State' model involving an anionic excited state and a neutral ground-potential. The model agreed with experiment in reproducing both migration and desorption of the ethylene product. The computed migration exhibited a 'ballistic' launch and subsequent 'bounces', thereby accounting for the observed long-range migratory dynamics.

  14. Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.

    2016-04-01

    The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

  15. [Locally administered lentivirus-mediated siRNA inhibits wear debris-induced inflammation].

    PubMed

    Peng, Xiao-chun; Zhang, Xian-long; Tao, Kun; Cheng, Tao; Zhu, Jun-feng; Zeng, Bing-fang

    2009-03-01

    To determine the safety and efficacy of local administration of lentivirus-mediated small interfering RNA (siRNA) targeting tumor necrosis factor-alpha (TNF-alpha) in murine air pouch model. From May 2007 to April 2008 a siRNA targeting TNF-alpha and a missense siRNA were designed, and recombine lentivirus which coexpressed the green fluorescent protein (GFP) as a marker gene was constructed. Air pouches were established and stimulated by Ti-6Al-4V particles. Pouches were divided into 3 groups randomly. Lentivirus-mediated siRNA targeting TNF-alpha (TNF-alpha group) or lentivirus-mediated missense siRNA (MS group), or virus-free saline (control group) were injected into pouches respectively. Pouch membrane, peripheral blood, heart, liver, spleen, kidney, lung and brain were harvested at 28 d after transfection, and assayed for markers of inflammation using histological, molecular, immunological techniques and Xenogen in vivo imaging system (IVIS) 50 vivo bioluminescent assay system. Xenogen IVIS 50 vivo image revealed strong expression of GFP localized in pouch areas and no expression in other parts of mice both in TNF-alpha group and MS group at 4 weeks after transfection, while no expression of GFP was found in control group. By RT-PCR and ELISA, the mRNA and protein levels of TNF-alpha in TNF-alpha group decreased by 81.6% and 82.6% respectively compared to control group (P < 0.01), and decreased by 78.9% and 84.0% respectively compared to MS group (P < 0.01), whereas TNF-alpha level in peripheral blood, heart, liver, spleen, kidney, lung and brain remained invariant (P > 0.05). Less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) were observed in TNF-alpha group. Efficient local delivery of lentivirus-mediated siRNA targeting TNF-alpha into modified murine air pouch can inhibit debris-induced inflammation effectively, with no systemic adverse effects.

  16. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie

    2018-04-01

    The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (<0.50 J/cm2) are presented. The appearance of high spatial frequency laser induced periodic surface structures is observed at a fluence near 0.25 J/cm2 and above, with variability in environments like in air, nitrogen, and a vacuum. In addition to the formation of periodic surface structures, ultrafast laser irradiation results in possible surface oxidation and amorphization of the material. Lateral conductance exhibits orders of magnitude increase, which is attributed to either surface conduction or modification of electrical contact properties, depending on the initial material conductivity. Schottky barrier formation on ultrafast laser irradiated 4H-SiC shows an increase in the barrier height, an increase in the ideality factor, and sub-bandgap photovoltaic responses, suggesting the formation of photo-active point defects. The results suggest that the ultrafast laser irradiation technique provides a means of engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.

  17. Photonic metasurface made of array of lens-like SiGe Mie resonators formed on (100) Si substrate via dewetting

    NASA Astrophysics Data System (ADS)

    Poborchii, Vladimir; Shklyaev, Alexander; Bolotov, Leonid; Uchida, Noriyuki; Tada, Tetsuya; Utegulov, Zhandos N.

    2017-12-01

    Metasurfaces consisting of arrays of high-index Mie resonators concentrating/redirecting light are important for integrated optics, photodetectors, and solar cells. Herein, we report the optical properties of low-Ge-content SiGe lens-like Mie resonator island arrays fabricated via dewetting during Ge deposition on a Si(100) surface at approximately 900 °C. We observe enhancement of the Si interaction with light owing to the efficient island-induced light concentration in the submicron-depth Si layer, which is mediated by both near-field Mie resonance leaking into the substrate and far-field light focusing. Such metasurfaces can improve the Si photodetector and solar-cell performance.

  18. Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohl, Christopher; Lenz, Andrea, E-mail: alenz@physik.tu-berlin.de; Döscher, Henning

    2016-05-15

    In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surfacemore » sensitivity of this method.« less

  19. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers.

    PubMed

    Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe

    2018-03-23

    Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.

  20. Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots.

    PubMed

    Shafrir, Shai N; Lambropoulos, John C; Jacobs, Stephen D

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al(23)O(27)N(5)/ALON), polycrystalline alumina (Al(2)O(3)/PCA), and chemical vapor deposited (CVD) silicon carbide (Si(4)C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.

  1. Subsurface Damage and Microstructure Development in Precision Microground Hard Ceramics Using Magnetorheological Finishing Spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (AL2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface roughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in themore » first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these har ceramics with the use of power spectral density to characterize surface features.« less

  2. Photoluminescent Au-Ge composite nanodots formation on SiO2 surface by ion induced dewetting

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Kanjilal, D.; Sahoo, P. K.

    2017-09-01

    Medium energy ion irradiation on a bilayer of Au and Ge on SiO2 is observed to result in gradual morphological evolution from an interconnected network to a nanodot array on the insulator surface. Structural and compositional analyses reveal composite nature of the nanodots, comprising of both Au and Ge. The growing nanostructures are found to be photoluminescent at room temperature where the emission intensity and wavelengths vary with morphology. The growth of such nanostructures can be understood in terms of dewetting of the metal layer under ion irradiation due to ion-induced melting along the ion tracks. The visible PL emission is found to be related with evolution of the Au-Ge nanodots. The study indicates a route towards single step synthesis of metal-semiconductor nanodots on insulator surface.

  3. Real-Time Reciprocal Space Mapping of Nano-Islands Induced by Quantum Confinement

    NASA Astrophysics Data System (ADS)

    Hong, Hawoong; Gray, Aaron; Chiang, T.-C.

    2011-01-01

    The effects of quantum confinement have been observed pronouncedly in the island morphology of Pb thin films. The evolution of these nano-islands on Si (111)-(7 × 7) and sapphire (001) surfaces has been studied with a new X-ray diffraction method. A charge-coupled device (CCD) camera was used to collect two- and three-dimensional (2-D and 3-D, respectively) maps of the surface X-ray diffraction in real time. Large ranges of the reflectivity curves, with rocking curves at every point on the reflectivity curves, could be measured continuously in a relatively short amount of time. The abundance of information from 2-D k-space maps reveals clear changes in the growth modes of these thin Pb films. With the 3-D extension of this method, it was possible to observe the ordering of the islands. The islands maintain a nearly uniform interisland distance but lack any angular correlation. The interisland ordering is correlated well with the development of "magic" island heights caused by quantum confinement.

  4. Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation

    PubMed Central

    2013-01-01

    SiOxNy films with a low nitrogen concentration (< 4%) have been prepared on Si substrates at 400°C by atmospheric-pressure plasma oxidation-nitridation process using O2 and N2 as gaseous precursors diluted in He. Interface properties of SiOxNy films have been investigated by analyzing high-frequency and quasistatic capacitance-voltage characteristics of metal-oxide-semiconductor capacitors. It is found that addition of N into the oxide increases both interface state density (Dit) and positive fixed charge density (Qf). After forming gas anneal, Dit decreases largely with decreasing N2/O2 flow ratio from 1 to 0.01 while the change of Qf is insignificant. These results suggest that low N2/O2 flow ratio is a key parameter to achieve a low Dit and relatively high Qf, which is effective for field effect passivation of n-type Si surfaces. PMID:23634872

  5. Depletion region surface effects in electron beam induced current measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less

  6. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  7. Spectroscopic imaging scanning tunneling microscopy of a Dirac line node material ZrSiS

    NASA Astrophysics Data System (ADS)

    Zhou, Lihui; He, Qingyu; Queiroz, Raquel; Grüneis, Andreas; Schnyder, Andreas; Ast, Christian; Schoop, Leslie; Takagi, Hide; Rost, Andreas

    3D Dirac materials are an intensive area of current condensed matter research. The related Dirac line node materials have come into focus due to many shared properties such as unconventional magneto-transport and the potential to host topologically nontrivial phases. ZrSiS is one of the first discovered materials of this new family, hosting a nodal line and an unconventional surface state. Spectroscopic imaging scanning tunneling microscopy (SI-STM) detects quasiparticle interference and has been extensively used to study the scattering mechanism and the band structures of exotic materials with high energy resolution at the atomic scale. Here in this presentation, we report the investigation of ZrSiS by SI-STM at the atomic scale, in combination with DFT calculations. We succeeded in visualizing the Dirac nodal line both in real and momentum space, adding key pieces of evidences confirming the existence of a nodal line in this material and highlighting its exceptional properties. The breaking of a non-symmorphic symmetry at the surface induces an unusual surface state whose dispersion was mapped. In particular, we observed spectroscopic signatures of a type-II Dirac fermion hosted by the surface state. Our data as seen by SI-STM has impact beyond ZrSiS providing crucial insights into the properties of Dirac line node materials in particular and non-symmorphic crystals in general.

  8. Surface damage studies of ETFE polymer bombarded with low energy Si ions (⩽100 keV)

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush

    2007-08-01

    Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer.

  9. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

    PubMed

    Chegeni, Mohammad; Amiri, Mahdi; Nichols, Buford L; Naim, Hassan Y; Hamaker, Bruce R

    2018-02-20

    Dietary starch is finally converted to glucose for absorption by the small intestine mucosal α-glucosidases (sucrase-isomaltase [SI] and maltase-glucoamylase), and control of this process has health implications. Here, the molecular mechanisms were analyzed associated with starch-triggered maturation and transport of SI. Biosynthetic pulse-chase in Caco-2 cells revealed that the high MW SI species (265 kDa) induced by maltose (an α-amylase starch digestion product) had a higher rate of early trafficking and maturation compared with a glucose-induced SI (245 kDa). The maltose-induced SI was found to have higher affinity to lipid rafts, which are associated with enhanced targeting to the apical membrane and higher activity. Accordingly, in situ maltose-hydrolyzing action was enhanced in the maltose-treated cells. Thus, starch digestion products at the luminal surface of small intestinal enterocytes are sensed and accelerate the intracellular processing of SI to enhance starch digestion capacity in the intestinal lumen.-Chegeni, M., Amiri, M., Nichols, B. L., Naim, H. Y., Hamaker, B. R. Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

  10. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  11. Role of PTEN in TNF Induced Insulin Resistance

    PubMed Central

    Bulger, David A; Conley, Jermaine; Conner, Spencer H; Majumdar, Gipsy; Solomon, Solomon S

    2015-01-01

    Aims/hypothesis PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. PMID:25918024

  12. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  13. Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: Effect of boric acid

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Moon, Jong-Woo; Lee, Jung-Goo; Baek, Youn-Kyung; Hong, Seong-Hyun

    2014-12-01

    We report carbon-coated porous silica macroparticles (SiO2@C) prepared using polymeric templates and subsequent carbonization with sucrose for improved electrochemical energy storage in lithium-ion batteries (LIBs). In addition, boron is introduced to improve the stability of electrochemical cells by pyrolyzing mixtures of sucrose and boric acid (SiO2@C + B) under inert atmosphere. The initially large surface area of porous SiO2 (SBET ∼ 658 m2 g-1) is reduced to 102 m2 g-1 after carbonization and introduction of boric acid. Surface of both SiO2@C and SiO2@C + B are covered with amorphous carbon. In particular, SiO2@C + B particles containing borosilicate (Si-O-B) phase and B-O bondings and Si-C-O bondings are also detected from the X-ray photoelectron spectra. The SiO2@C + B macroparticles shows high reversible charge capacity up to 503 mAh g-1 after 103 cycles of Li intercalation/de-intercalation although initial capacity was 200 mAh g-1. The improved charge capacity of SiO2@C + B is attributed to formation of advantageous microstructures induced from boric acid.

  14. Oxygen chemisorption and oxide formation on Ni silicide surfaces at room temperature

    NASA Astrophysics Data System (ADS)

    Valeri, S.; Del Pennino, U.; Lomellini, P.; Sassaroli, P.

    1984-10-01

    Auger spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) have been used in a comparative study of the room temperature oxidation of Ni silicides of increasing silicon content, from Ni3Si to NiSi2. The results were compared with those for the oxidation of pure Si and Ni. All suicide surfaces in the exposure range between 0.2 and 104 L follow two-step oxidation kinetics: the first step is characterized by an oxygen uptake rate higher than in the second one. Attention was focused on the oxygen induced modifications of metal and silicon AES and XPS spectra in silicides, which are indicative of changes in the local electronic structure and in the chemical bonding. In general oxygen bonds with silicon leaving the metal unaffected; however, at high exposures, characteristic feature of the Ni-oxygen bonds appear in the Ni(MVV) Auger line of the Ni-rich silicides. The presence of Ni atoms enhances considerably the Si oxidation process in silicides with respect to pure Si, in terms both of a higher Si oxidation state and a higher oxygen uptake; this enhancement is stronger in Ni-rich silicides than in Si-rich silicides. The oxygen induced contributions in the Si(LVV) Auger line show structures at 76 and 83 eV, and those in the Si 2p photoemission spectra show binding energy shifts between -1 and -3.8 eV; we conclude that the oxidation products are mainly silicon suboxides, like Si2O3 and SiO; only on Ni3 Si at 104 L, a significant contribution of SiO2 was found. The Ni catalytic effect on Si oxidation has been discussed in terms of the suicide heat of formation, of the breaking of the silicon sp3 configuration in silicides and of the metal atom dissociative effect on the O2 molecule.

  15. Activation volume for phosphorus diffusion in silicon and Si0.93Ge0.07

    NASA Astrophysics Data System (ADS)

    Zhao, Yuechao; Aziz, Michael J.; Zangenberg, Nikolaj R.; Larsen, Arne Nylandsted

    2005-04-01

    The hydrostatic pressure dependence of the diffusivity of P in compressively strained Si0.93Ge0.07 and unalloyed Si has been measured. In both cases the diffusivity is almost independent of pressure, characterized by an activation volume V* of (+0.09±0.11) times the atomic volume Ω for the unalloyed Si, and (+0.01±0.06) Ω for Si0.93Ge0.07. The results are used in conjunction with the reported effect of biaxial strain on diffusion normal to the surface to test the prediction for an interstitialcy-based mechanism of Aziz's phenomenological thermodynamic treatment of diffusion under uniform nonhydrostatic stress states. The prediction agrees well with measured behavior, lending additional credence to the interstitial-based mechanism and supporting the nonhydrostatic thermodynamic treatment.

  16. Molecular dynamics simulations of Si etching in Cl- and Br-based plasmas: Cl{sup +} and Br{sup +} ion incidence in the presence of Cl and Br neutrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakazaki, Nobuya, E-mail: nakazaki.nobuya.58x@st.kyoto-u.ac.jp; Takao, Yoshinori; Eriguchi, Koji

    Classical molecular dynamics (MD) simulations have been performed for Cl{sup +} and Br{sup +} ions incident on Si(100) surfaces with Cl and Br neutrals, respectively, to gain a better understanding of the ion-enhanced surface reaction kinetics during Si etching in Cl- and Br-based plasmas. The ions were incident normally on surfaces with translational energies in the range E{sub i} = 20–500 eV, and low-energy neutrals of E{sub n} = 0.01 eV were also incident normally thereon with the neutral-to-ion flux ratio in the range Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 0–100, where an improved Stillinger--Weber potential form was employed for the interatomic potential concerned. The etch yieldsmore » and thresholds presently simulated were in agreement with the experimental results previously reported for Si etching in Cl{sub 2} and Br{sub 2} plasmas as well as in Cl{sup +}, Cl{sub 2}{sup +}, and Br{sup +} beams, and the product stoichiometry simulated was consistent with that observed during Ar{sup +} beam incidence on Si in Cl{sub 2}. Moreover, the surface coverage of halogen atoms, halogenated layer thickness, surface stoichiometry, and depth profile of surface products simulated for Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 100 were in excellent agreement with the observations depending on E{sub i} reported for Si etching in Cl{sub 2} plasmas. The MD also indicated that the yield, coverage, and surface layer thickness are smaller in Si/Br than in Si/Cl system, while the percentage of higher halogenated species in product and surface stoichiometries is larger in Si/Br. The MD further indicated that in both systems, the translational energy distributions of products and halogen adsorbates desorbed from surfaces are approximated by two Maxwellians of temperature T{sub 1} ≈ 2500 K and T{sub 2} ≈ 7000–40 000 K. These energy distributions are discussed in terms of the desorption or evaporation from hot spots formed through chemically enhanced physical sputtering and physically enhanced chemical sputtering, which have so far been speculated to both occur in the ion-enhanced surface reaction kinetics of plasma etching.« less

  17. Potential variation around grain boundaries in BaSi{sub 2} films grown on multicrystalline silicon evaluated using Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Masakazu; Tsukahara, Daichi; Toko, Kaoru

    2014-12-21

    Potential variations across the grain boundaries (GBs) in a 100 nm thick undoped n-BaSi{sub 2} film on a cast-grown multicrystalline Si (mc-Si) substrate are evaluated using Kelvin probe force microscopy (KFM). The θ-2θ X-ray diffraction pattern reveals diffraction peaks, such as (201), (301), (410), and (411) of BaSi{sub 2}. Local-area electron backscatter diffraction reveals that the a-axis of BaSi{sub 2} is tilted slightly from the surface normal, depending on the local crystal plane of the mc-Si. KFM measurements show that the potentials are not significantly disordered in the grown BaSi{sub 2}, even around the GBs of mc-Si. The potentials are highermore » at GBs of BaSi{sub 2} around Si GBs that are formed by grains with a Si(111) face and those with faces that deviate slightly from Si(111). Thus, downward band bending occurs at these BaSi{sub 2} GBs. Minority carriers (holes) undergo a repelling force near the GBs, which may suppress recombination as in the case of undoped n-BaSi{sub 2} epitaxial films on a single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies in the range from 10 to 55 meV. The potentials are also higher at the BaSi{sub 2} GBs grown around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for hole transport ranges from 5 to 55 meV. These results indicate that BaSi{sub 2} GBs formed on (111)-dominant Si surfaces do not have a negative influence on the minority-carrier properties, and thus BaSi{sub 2} formed on underlayers, such as (111)-oriented Si or Ge and on (111)-oriented mc-Si, can be utilized as a solar cell active layer.« less

  18. Optical properties of Si+ implanted PMMA

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.

    2010-04-01

    In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.

  19. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  20. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    2017-11-17

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  1. Etude de L'interface Or/silicium Par Analyse de Surface et Microscopie Electronique

    NASA Astrophysics Data System (ADS)

    Lamontagne, Boris

    In order to start with the cleanest c-Si surface achievable, two cleaning procedures have been used and compared: aqueous chemical cleaning with HF, and sputter cleaning followed by high temperature annealing; the former is found to be the most efficient of the two. We have observed the formation of Si-C bonds induced by energetic particles associated to sputtering and sputter deposition. One of the main objectives of this work was to compare the Au/Si interfaces obtained by e-beam evaporation and by sputter deposition; Ag/Si, Cu/Si and Al/Si interfaces have also been examined. X-ray photoelectron diffraction has allowed us to judge the quality of the substrate crystallinity under the metallic overlayer, a method which readily showed the amorphisation of the c-Si substrate induced by sputter deposition. Moreover, XPD has indicated the Au overlayer to be amorphous, while the Ag and Cu appear to grow heteroepitaxially on c-Si(100). A new XPS parameter has been developed to characterize the metal/Si interface state, in particular, broadening of the interface induced by the sputter deposition. For the case of evaporated layers, it indicates that Au/Si and Cu/Si interfaces are diffuse, while Ag/Si and Al/Si interfaces are abrupt. Atomic force microscopy has revealed that sputter deposition reduces the tendency to form metal islands, characteristic of some overlayer/substrate systems such as Ag/Si. Our experiments have illustrated the role of two "new" parameters which lead to better knowledge and control of the sputter deposition process, namely the ion masses and the sample position relative to that of the target position. In the scientific literature, the value of the critical thickness, d_{rm c} , for reaction between Au and Si is still a controversial issue, probably on account of calibration problems. By using newly observed XPS discontinuities, corresponding to the completion of the first and second Au monolayers, we have been able to resolve this problem, and thereby precisely evaluate the critical thickness, d_ {rm c} = 2 ML. We obtained various new information about the Au/Si interface using complementary methods (XPD, XPS, TEM, AFM, etc.) information from which we developed a new model of the Au/Si interface; this so called "cluster model" correlates the observed overlayer structural transition with the beginning of the reaction between Au and Si. It suggests that reconstruction of the overlayer at 2 ML thickness activates the reaction between Si and Au (Si-Si bonds disruption, followed by Si outdiffusion). This model seems to be the only one capable of explaining the difference in reactivity between Au/Si and Ag/Si interfaces. (Abstract shortened by UMI.).

  2. Quantum confinement effect in 6H-SiC quantum dots observed via plasmon-exciton coupling-induced defect-luminescence quenching

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang

    2017-03-01

    The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.

  3. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  4. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  5. Nanoindentation of silicon implanted with hydrogen: effect of implantation dose on silicon’s mechanical properties and nanoindentation-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Goncharova, Lyudmila V.; Wong, Sing Fai

    2017-07-01

    Implantation of hydrogen in single-crystal silicon (c-Si) is known to affect its machining. However, very little is reported on the material and mechanical properties of hydrogen-implanted silicon (Si). In this article, near-surface regions (~0-500 nm) of lightly doped (1 0 0) Si were modified by varying the hydrogen concentration using ion implantation. The maximum hydrogen concentration was varied from ~4  ×  1020 to ~3.2  ×  1021 cm-3. The implanted Si was investigated by nanoindentation. From the dynamic nanoindentation test, it was found that in hydrogen-implanted Si hardness is increased significantly, while the elastic modulus is reduced. The nanoindentation-induced Si phase transformation was studied under different load/unload rates and loads. Raman spectroscopy revealed that the hydrogen implantation tends to suppress Si-XII and Si-III phases and facilitates amorphous Si formation during the unloading stage of nanoindentation. Both the mechanical properties and phase transformations were qualitatively related not only to the hydrogen concentration, but also to the implantation-generated defects and strain.

  6. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gago, R.; Jaafar, M.; Palomares, F. J.

    2018-07-01

    The surface morphology of molybdenum silicide (Mo x Si1‑x ) films has been studied after low-energy Ar+ ion beam sputtering (IBS) to explore eventual pattern formation on compound targets and, simultaneously, gather information about the mechanisms behind silicide-assisted nanopatterning of silicon surfaces by IBS. For this purpose, Mo x Si1‑x films with compositions below, equal and above the MoSi2 stoichiometry (x  =  0.33) have been produced by magnetron sputtering, as assessed by Rutherford backscattering spectrometry (RBS). The surface morphology of silicon and silicide films before and after IBS has been imaged by atomic force microscopy (AFM), comprising conditions where typical nanodot or ripple patterns emerge on the former. In the case of irradiated Mo x Si1‑x surfaces, AFM shows a marked surface smoothing at normal incidence with and without additional Mo incorporation (the former results in nanodot patterns on Si). The morphological analysis also provides no evidence of ion-induced phase separation in irradiated Mo x Si1‑x . Contrary to silicon, Mo x Si1‑x surfaces also do not display ripple formation for (impurity free) oblique irradiations, except at grazing incidence conditions where parallel ripples emerge in a more evident fashion than in the Si counterpart. By means of RBS, irradiated Mo x Si1‑x films with 1 keV Ar+ at normal incidence have also been used to measure experimentally the (absolute) sputtering yield and rate of Si and Mo x Si1‑x materials. The analysis reveals that, under the present working conditions, the erosion rate of silicides is larger than for silicon, supporting simulations from the TRIDYN code. This finding questions the shielding effect from silicide regions as roughening mechanism in metal-assisted nanopatterning of silicon. On the contrary, the results highlight the relevance of in situ silicide formation. Ripple formation on Mo x Si1‑x under grazing incidence is also attributed to the dominance of sputtering effects under this geometry. In conclusion, our work provides some insights into the complex morphological evolution of compound surfaces and solid experimental evidences regarding the mechanisms behind silicide-assisted nanopatterning.

  7. Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.

    PubMed

    Patterson, C H

    2015-12-02

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the [Formula: see text]-Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the [Formula: see text]-Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the [Formula: see text]-Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the [Formula: see text]-Au phase. Extra Au atoms bound in interstitial sites of the [Formula: see text]-Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a [Formula: see text]-Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the [Formula: see text]-Au structure. The [Formula: see text]-Au phase is 2D chiral and this is evident in computed and actual STM images. [Formula: see text]-Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the [Formula: see text]-Au and [Formula: see text]-Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  8. Negligible Electronic Interaction between Photoexcited Electron–Hole Pairs and Free Electrons in Phosphorus–Boron Co-Doped Silicon Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limpens, Rens; Fujii, Minoru; Neale, Nathan R.

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  9. Negligible Electronic Interaction between Photoexcited Electron-Hole Pairs and Free Electrons in Phosphorus-Boron Co-Doped Silicon Nanocrystals

    DOE PAGES

    Limpens, Rens; Neale, Nathan R; Fujii, Minoru; ...

    2018-03-05

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  10. Negligible Electronic Interaction between Photoexcited Electron–Hole Pairs and Free Electrons in Phosphorus–Boron Co-Doped Silicon Nanocrystals

    DOE PAGES

    Limpens, Rens; Fujii, Minoru; Neale, Nathan R.; ...

    2018-02-28

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  11. Study of diamond film growth and properties

    NASA Technical Reports Server (NTRS)

    Albin, Sacharial

    1990-01-01

    The objective was to study diamond film growth and its properties in order to enhance the laser damage threshold of substrate materials. Calculations were performed to evaluate laser induced thermal stress parameter, R(sub T) of diamond. It is found that diamond has several orders of magnitude higher in value for R(sub T) compared to other materials. Thus, the laser induced damage threshold (LIDT) of diamond is much higher. Diamond films were grown using a microwave plasma enhanced chemical vapor deposition (MPECVD) system at various conditions of gas composition, pressure, temperature, and substrate materials. A 0.5 percent CH4 in H2 at 20 torr were ideal conditions for growing of high quality diamond films on substrates maintained at 900 C. The diamond films were polycrystalline which were characterized by scanning electron microscopy (SEM) and Raman scattering spectroscopy. The top surface of the growing film is always rough due to the facets of polycrystalline film while the back surface of the film replicates the substrate surface. An analytical model based on two dimensional periodic heat flow was developed to calculate the effective in-plane (face parallel) diffusivity of a two layer system. The effective diffusivity of diamond/silicon samples was measured using a laser pulse technique. The thermal conductivity of the films was measured to be 13.5 W/cm K, which is better than that of a type Ia natural diamond. Laser induced damage experiments were performed on bare Si substrates, diamond film coated Si, and diamond film windows. Significant improvements in the LIDT were obtained for diamond film coated Si compared to the bare Si.

  12. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    PubMed

    Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong

    2018-08-03

    Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.

  13. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  14. Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization

    NASA Astrophysics Data System (ADS)

    Hong, Won-Eui; Ro, Jae-Sang

    2015-01-01

    Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.

  15. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  16. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P., E-mail: vlabella@albany.edu

    2013-11-15

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to bemore » below the region of best fit for the power law form of the BK model, demonstrating its region of validity.« less

  17. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations.

    PubMed

    He, Wanlin; Yang, Jianjun; Guo, Chunlei

    2017-03-06

    The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.

  18. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Yitamben, E. N.; Butera, R. E.; Swartzentruber, B. S.; Simonson, R. J.; Misra, S.; Carroll, M. S.; Bussmann, E.

    2017-11-01

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

  19. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    DOE PAGES

    Yitamben, Esmeralda; Butera, Robert E.; Swartzentruber, Brian S.; ...

    2017-10-16

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and healmore » by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.« less

  20. p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111)

    NASA Astrophysics Data System (ADS)

    Deng, Tianguo; Sato, Takuma; Xu, Zhihao; Takabe, Ryota; Yachi, Suguru; Yamashita, Yudai; Toko, Kaoru; Suemasu, Takashi

    2018-06-01

    B-doped p-BaSi2 epitaxial layers with a hole concentration of 1.1 × 1018 cm‑3 were grown on n-Si(001) using molecular beam epitaxy to fabricate p-BaSi2/n-Si solar cells. The thickness (d) of the p-BaSi2 layer was varied from 20 to 60 nm to investigate its effect on the solar cell performance. The conversion efficiency under an AM1.5 illumination increased with d reaching a maximum of 9.8% at d = 40 nm, which is nearly equal to the highest efficiency (9.9%) for p-BaSi2/n-Si solar cells on Si(111). This study indicated that Si(001) substrates are promising for use in BaSi2 solar cells.

  1. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    PubMed

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  2. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  3. Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.

    1991-01-01

    Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.

  4. Micromirror arrays to assess luminescent nano-objects.

    PubMed

    Kawakami, Yoichi; Kanai, Akinobu; Kaneta, Akio; Funato, Mitsuru; Kikuchi, Akihiko; Kishino, Katsumi

    2011-05-01

    We propose an array of submicrometer mirrors to assess luminescent nano-objects. Micromirror arrays (MMAs) are fabricated on Si (001) wafers via selectively doping Ga using the focused ion beam technique to form p-type etch stop regions, subsequent anisotropic chemical etching, and Al deposition. MMAs provide two benefits: reflection of luminescence from nano-objects within MMAs toward the Si (001) surface normal and nano-object labeling. The former increases the probability of optics collecting luminescence and is demonstrated by simulations based on the ray-tracing and finite-difference time-domain methods as well as by experiments. The latter enables different measurements to be repeatedly performed on a single nano-object located at a certain micromirror. For example, a single InGaN∕GaN nanocolumn is assessed by scanning electron microscopy and microphotoluminescence spectroscopy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warschkow, O.; McKenzie, D. R.; Curson, N. J.

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describemore » the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.« less

  6. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    NASA Astrophysics Data System (ADS)

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr < 600°C) forms on the wetting layer. Long-term annealing of granular films at the same conditions results in formation of c(4x2)-reconstructed wetting layer typical to high-temperature MBE (Tgr < 600°C) and huge clusters of Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  7. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

    PubMed Central

    2012-01-01

    Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their ‘condensation’ fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p–i–n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases. PMID:22824144

  8. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases.

  9. Can Silicon-Smelting Contribute to the Low O/Si Ratio on the Surface of Mercury?

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Vander Kaaden, K. E.; Hogancamp, J.; Archer, P. D., Jr.; Boyce, J. W.

    2018-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. Among the many discoveries about Mercury made by MESSENGER, several surprising compositional characteristics of the surface were observed. These discoveries include elevated sulfur abundances (up to 4 wt.%), elevated abundances of graphitic carbon (0-4.1 wt.% across the surface with an additional 1-3 wt.% graphite above the global average in low reflectance materials), low iron abundances (less than 2 wt.%), and low oxygen abundances (O/Si weight ratio of 1.20+/-0.1). These exotic characteristics likely have important implications for the thermochemical evolution of Mercury and point to a planet that formed under highly reducing conditions. In the present study, we focus specifically on the low O/Si ratio of Mercury, which is anomalous compared to all other planetary materials. A recent study that considered the geochemical implications of the low O/Si ratio reported that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. They further postulated that the origin of the metal is best explained by a combination of space weathering and graphite-induced smelting that was facilitated by interaction of graphite with boninitic and komatiitic parental liquids. The goal of the present study is to assess the plausibility of smelting on Mercury through experiments run at the conditions that McCubbin et al. indicated would be favorable for Si-smelting.

  10. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    PubMed

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  11. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    PubMed Central

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  12. A Low O/Si Ratio on the Surface of Mercury: Evidence for Silicon Smelting?

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Vander Kaaden, Kathleen E.; Peplowski, Patrick N.; Bell, Aaron S.; Nittler, Larry R.; Boyce, Jeremy W.; Evans, Larry G.; Keller, Lindsay P.; Elardo, Stephen M.; McCoy, Timothy J.

    2017-10-01

    Data from the Gamma-Ray Spectrometer (GRS) that flew on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft indicate that the O/Si weight ratio of Mercury's surface is 1.2 ± 0.1. This value is lower than any other celestial surface that has been measured by GRS and suggests that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. The origin of the metal is best explained by a combination of space weathering and graphite-induced smelting. The smelting process would have been facilitated by interaction of graphite with boninitic and komatiitic parental liquids. Graphite entrained at depth would have reacted with FeO components dissolved in silicate melt, resulting in the production of up to 0.4-0.9 wt % CO from the reduction of FeO to Fe0—CO production that could have facilitated explosive volcanic processes on Mercury. Once the graphite-entrained magmas erupted, the tenuous atmosphere on Mercury prevented the buildup of CO over the lavas. The partial pressure of CO would have been sufficiently low to facilitate reaction between graphite and SiO2 components in silicate melts to produce CO and metallic Si. Although exotic, Si-rich metal as a primary smelting product is hypothesized on Mercury for three primary reasons: (1) low FeO abundances of parental magmas, (2) elevated abundances of graphite in the crust and regolith, and (3) the presence of only a tenuous atmosphere at the surface of the planet within the 3.5-4.1 Ga timespan over which the planet was resurfaced through volcanic processes.

  13. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains

    NASA Astrophysics Data System (ADS)

    Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong

    2016-04-01

    In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.

  14. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe-PbS with SiC nanoparticle additions

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I.; Hogan, Timothy P.; Trejo, Rosa M.; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-12-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055% PbI2-SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1-3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  15. Dewetting induced Au-Ge composite nanodot evolution in SiO2

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Chettah, A.; Siva, V.; Kanjilal, D.; Sahoo, P. K.

    2018-01-01

    A composite nanostructure comprising of Au and Ge gradually evolves on SiO2 surface when a bilayer of Au and Ge is irradiated by medium keV Xe-ion beam. The morphology progresses through different stages from nucleating patches to extended islands and finally a Au-Ge composite nanodot array develops on the insulator surface. While ion energy and fluence are found to determine dimensions of the nanostructures, existence of a characteristic lateral length scale is also detected at every stage of evolution. Through morphological and compositional analysis, the observed evolution is understood as an effect of ion beam induced dewetting of Au top layer. Numerical estimation based on the unified thermal spike model using the present experimental condition demonstrates formation of molten zones around the ion track due to nuclear and electronic energy deposition in the target. Dewetting results from mass flow onto the surface driven by local melting along the ion track and combines with sputter erosion of the bilayer film to lead to composite nanodot evolution. The generality of the ion induced processes provides possible route towards metal-semiconductor hybrid nanostructure synthesis on insulator surface.

  16. Core level line shapes and surface band structures of Sn/Ge(111) and Sn/Si(111)

    NASA Astrophysics Data System (ADS)

    Uhrberg, Roger

    2001-03-01

    We have performed a comparative study of Sn/Ge(111) and the closely related Sn/Si(111) system, using photoelectron spectroscopy (PES) and low energy electron diffraction (LEED). In similarity with the results from the Sn/Ge(111) surface, the Sn 4d spectra from Sn/Si(111) exhibit two major components and the valence band spectra show two surface state bands at both room temperature (RT) and 70 K. These features, which have been associated with the low temperature 3x3 phase in the case of Sn/Ge(111), are not expected for the rt3xrt3 RT surfaces. In contrast to Sn/Ge(111), we do not observe any transition to a 3x3 phase in LEED for Sn/Si(111) at temperatures down to 70 K (the lowest temperature in this study). Despite the absence of a 3x3 phase for Sn/Si(111) the core-level and the valence band data are very similar to those of Sn/Ge(111). The Sn 4d spectra show, however, one interesting difference. The intensity ratio of the two Sn 4d components is reversed for the Sn/Si(111) surface compared the Ge counterpart. This and the other PES results will be discussed in terms of the two different types of 3x3 periodicities that have been reported to be induced by substitutional defects on the Sn/Ge(111) surface [1]. [1] A.V. Melechko et al., Phys. Rev. B61, 2235 (2000)

  17. Improved depth profiling with slow positrons of ion implantation-induced damage in silicon

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.

    2003-10-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.

  18. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    NASA Astrophysics Data System (ADS)

    Schulze, C. S.; Huang, X.; Prohl, C.; Füllert, V.; Rybank, S.; Maddox, S. J.; March, S. D.; Bank, S. R.; Lee, M. L.; Lenz, A.

    2016-04-01

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration of III-V optoelectronic components into silicon-based technology.

  19. Phase Relations and Stability Studies in the Si3N4-SiO2-Y2O3 Pseudo- Ternary System. (6) Development of Microstructure, Strength and Fracture Toughness of Hot-Pressed Si3N4. (7) Sintering of SiC with Boron Compounds. (8).

    DTIC Science & Technology

    1976-04-01

    Analyses of Westinghouse Sij^ Starting Powder ( wt %) Al 0.08 Ag < Ü.001 B 0.001 Ca 0.016 Cr 0.01 Fe > O.i Mg 0.001 Mn 0.05 Mo < 0.003 Ni < 0.01...and atter milling, showed that the WC and plastic contamination in the milled powders were in the range of 1.5-3 wt "» and 0.7-1.5 wt0», respectively...Oxidation of I As, John Witley, New York (1966). 14 FIGURE CAPTIONS Figure 1 - Experimental phase relations in the Si NI -Si0o-Y 0 system determined

  20. Tunneling Spectroscopy of Chemically Treated Surfaces of GaAs(001)

    NASA Astrophysics Data System (ADS)

    Fan, Jia-Fa; Tokumoto, Hiroshi

    1996-03-01

    Effect of surface chemical treatment on the surface electronic properties of GaAs(001) was studied by tunneling spectroscopy. Samples of highly-Si-doped GaAs were first cleaned and etched using conventional processes, then soaked in aqueous solutions of (NH_4)_2Sx and/or NH_4F for few hours, and finally rinsed in ethanol. The constant separation spectroscopy was done under pure N2 ambient at room temperature (295K) with our scanning tunneling microscope (STM). As a result, the sulfide treament lead to electron tunnelings starting typically at the sample voltages of -0.50 V and 0.90 V at initial settings of 1.50 V and 0.20 nA. For etched-only surface, however, the starting voltages were -0.70 V and 0.70 V. Effects of heating, laser-irradiation, and the fluoride treatment will be presented. Also, the mechanism of the shift of the surface Fermi level will be discussed.

  1. Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.A.E.; Beijerinck, H.C.W.

    2005-01-01

    Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less

  2. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1.

    PubMed

    Zhang, Wei; Xiong, Huiwen; Chen, Miaomiao; Zhang, Xiuhua; Wang, Shengfu

    2017-10-15

    A novel molecularly imprinted electrochemiluminescence (MIP-ECL) sensor based on Ru(bpy) 3 2+ -doped silica nanoparticles (Ru@SiO 2 NPs) is developed for highly sensitive detection of fumonisin B 1 (FB 1 ). Gold-nanoparticles (AuNPs), Ru@SiO 2 NPs with chitosan (CS) composites and a molecularly imprinted polymer (MIP) are assembled on a glassy carbon electrode (GCE) to fabricate an ECL platform step by step. AuNPs could greatly promote the ECL intensity and improve the analytical sensitivity according to the localized surface plasmon resonance (LSPR) and the electrochemical effect. In this surface-enhanced electrochemiluminescence (SEECL) system, AuNPs work as the LSPR source to improve the ECL intensity and Ru@SiO 2 NPs are used as ECL luminophores. In the phosphate buffer solution (PBS), the evident anodic ECL of Ru@SiO 2 on the above working electrode is observed in the presence of the template molecule fumonisin B 1 (FB 1 ), which could act as the coreactant of Ru@SiO 2 NPs due to the amino group of FB 1 . When the template molecules were eluted from the MIP, little coreactant was left, resulting in an apparent decrease of ECL signal. After the MIP-ECL sensor was incubated in FB 1 solution, the template molecules rebound to the MIP surface, leading to the enhancement of ECL signal again. On the basis of these results, a facile MIP-ECL sensor has been successfully fabricated, which exhibited a linear range from 0.001 to 100ngmL -1 with a detection limit of 0.35pgmL -1 for FB 1 . Moreover, the proposed MIP-ECL sensor displayed an excellent application in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  4. Thermal treatment induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 metallic glass

    NASA Astrophysics Data System (ADS)

    Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.

    2018-05-01

    Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.

  5. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi; Chen, Liang; Wang, Tieshan

    2018-07-01

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 × 1016 Xe/cm2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ∼5.7 nm over the entire film thickness (∼1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ∼6 dpa at the film surface to ∼20 dpa at the SiC/Si interface. A transformation of homonuclear C-C bonds from sp3 to sp2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. The results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.

  6. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals

    PubMed Central

    2013-01-01

    In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms’ redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones. PMID:23735193

  7. Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.

    2006-11-28

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  8. First principles calculations of ceramics surfaces and interfaces: Examples from beta-silicon nitride and alpha-alumina

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer Synowczynski

    The goal of this thesis was to use first principles calculations to provide a fundamental understanding at the atomistic level of the mechanisms (e.g. structural relaxations of ceramic surfaces/interfaces, charge transfer reactions, adsorption and dissociation phenomena, localized debonding) behind macroscopic behavior in ceramics (e.g. fracture toughness, corrosion, catalysis). This thesis includes the results from three independent Density Functional Theory (DFT) studies of beta-Si3N4 and alpha-Al2O 3. Due to the computational complexity of first principles calculations, the models in this thesis do not consider temperature or pressure effects and are limited to describing the behavior of systems containing less than 200 atoms. In future studies, these calculations can be used to train a reactive molecular dynamics force field (REAXFF) so that larger scale phenomena including temperature effects can be explicitly simulated. In the first study, the effect of over 30 dopants on the stability of the interface between beta-Si3N4 grains and the intergranular glassy SiON film (IGF) was investigated. The dopants chosen not only represented commonly known glass modifiers and sintering aides but also enabled us to search for dependencies based on atomic size and electronic orbital configuration. To ensure that the approximations used in our model captured the key physical phenomena occurring on the beta-Si3N4 (100) surface and at the Si3N4/ IGF interface, we compared to experimental data (i.e. High Angle Annual Dark Field-Scanning Transmission Electron Microscopy atomic positions and fracture toughness values (Mikijelj B., 2009)). We identified a computational metric (the interfacial stability factor S) which correlates with experimentally measured fracture toughness values. The interfacial stability factor S is defined as the binding energy of the doped system minus the binding energy of the undoped system, where the binding energy is the total energy of the system minus the sum of the energies of the constituent atoms. In the second study, we performed constrained geometry barrier calculations of the interaction of CO with the (001) beta-Si3N4 surface to answer the following questions: (1) Does the CO combustion product interact with the Si3N4 surface and if so, what is the mechanism? (2) Once adsorbed, can CO further dissociate into isolated surface active C and O species? (3) Is it more energetically favorable for C to diffuse into the bulk beta-Si3N4 or along its surface? and (4) What is the barrier to C diffusing into an amorphous SiO2 intergranular film? Our calculations indicated that CO spontaneously adsorbs to the (001) beta-Si 3N4 surface. However, at ambient temperatures, further dissociation into isolated surface adsorbed C and O species was not thermodynamically or kinetically feasible. The barrier to C diffusing interstitially 1A and 5A into the bulk crystalline lattice is 2.12 and 4.42 eV respectively for a defect free, clean surface. However, the barrier for C surface diffusion is much smaller, ˜ 0.87 eV. Therefore, we concluded that surface is rich in C which can diffuse to the Si3N4/SiO2 interface and contribute to chemical erosion near the grain boundary interface. In the final study, we created a DFT model to investigate the 'inverse spillover effect' that occurs during hydrogen combustion on catalytically active Pt clusters supported by alpha-Al2O3. Our results indicated that the dissociation of O2 was not thermodynamically favored on the alpha-Al2O3 surface. However, both H2 and H2O dissociated, forming hydroxyls with oxygen atoms in the second atomic layer. Once dissociated, the oxygen species could diffuse locally but encountered a large barrier to long-range surface diffusion in the absence of defects or other species. In contrast, the barrier to the long-range surface diffusion of hydrogen was modest under ideal conditions. We also identified several adsorption and dissociation products for Pt, Pt-O [ads] Pt3, O, H, O2, H2, and H 2O on the alpha-Al2O3 (0001) surface and described how these structures changed the surface reconstruction. Specifically, we concluded that the adsorption of molecular H2O, atomic Pt, and Pt trimers changed the termination for the alpha-Al2O3 (0001) surface from aluminum to oxygen terminated in the vicinity of the adsorption products. This should have a dramatic affect on catalytic activity and surface diffusion. We confirmed this for O surface diffusion near surface Al where the presence of atomic Pt decreased the diffusion barrier from 1.17 to 0.22 eV.

  9. Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires

    PubMed Central

    Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur

    2014-01-01

    Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533

  10. Role of PTEN in TNFα induced insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulger, David A.; Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104; Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibitedmore » the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.« less

  11. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  12. Understanding Reflectance Anisotropy: Surface-structure signatures and bulk-related features

    NASA Astrophysics Data System (ADS)

    Gero Schmidt, W.

    2000-03-01

    Reflectance anisotropy spectroscopy (RAS) is becoming an increasingly important tool for in situ control of semiconductor processing with real-time feedback. The understanding and interpretation of the measured spectra, however, has been hampered by relatively slow theoretical progress. Using a massively parallel real-space multigrid technique [1] and ab initio pseudopotentials we calculated the optical spectra of a variety of III-V(001) growth structures and stepped Si(111):H surfaces. Our results agree well with experiment, notably with respect to the stoichiometric changes induced by different surface preparations. We identify two distinct sources for the optical anisotropy: (i) highly structure-dependent features are caused by transitions involving electronic surface states, and (ii) derivative-like oscillations or peaks at the bulk critical point energies arise from transitions between surface-modified bulk wave functions. The latter are nearly independent from the actual surface structure. The agreement between the calculated and measured spectra is further improved by applying quasi-particle corrections obtained from numerically efficient, simplified GW calculations [2]. The combination of converged first-principles calculations with an approximate treatment of many-particle effects allows the reliable identification of ``surface-structure fingerprints'' in the optical spectra, paving the way for the exploitation of their rich technological potential. [1ex] [1] EL Briggs, DJ Sullivan, J Bernholc, Phys. Rev. B 54, 14362 (1996). [2] F Bechstedt, R Del Sole, G Cappellini, L Reining, Solid State Commun. 84, 765 (1992).

  13. Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, D. H.; Das Arulsamy, A.; Rider, A. E.

    A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si{sup 3+} and Si{sup 1+} ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nmmore » size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si{sup 1+} ions in a low substrate temperature range (227-327 deg. C). As low substrate temperatures ({<=}500 deg. C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.« less

  14. Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach

    NASA Astrophysics Data System (ADS)

    Seo, D. H.; Rider, A. E.; Das Arulsamy, A.; Levchenko, I.; Ostrikov, K.

    2010-01-01

    A simple, effective, and innovative approach based on ion-assisted self-organization is proposed to synthesize size-selected Si quantum dots (QDs) on SiC substrates at low substrate temperatures. Using hybrid numerical simulations, the formation of Si QDs through a self-organization approach is investigated by taking into account two distinct cases of Si QD formation using the ionization energy approximation theory, which considers ionized in-fluxes containing Si3+ and Si1+ ions in the presence of a microscopic nonuniform electric field induced by a variable surface bias. The results show that the highest percentage of the surface coverage by 1 and 2 nm size-selected QDs was achieved using a bias of -20 V and ions in the lowest charge state, namely, Si1+ ions in a low substrate temperature range (227-327 °C). As low substrate temperatures (≤500 °C) are desirable from a technological point of view, because (i) low-temperature deposition techniques are compatible with current thin-film Si-based solar cell fabrication and (ii) high processing temperatures can frequently cause damage to other components in electronic devices and destroy the tandem structure of Si QD-based third-generation solar cells, our results are highly relevant to the development of the third-generation all-Si tandem photovoltaic solar cells.

  15. Surface modification of porous titanium with rice husk as space holder

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  16. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  17. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).

    PubMed

    Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2018-04-30

    Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

  18. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Tabacchi, G.; Fois, E.; Lee, Y.

    2016-03-01

    The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch-Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

  19. Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures (International ed.)

    DTIC Science & Technology

    2016-07-29

    grafted. When performed on a mesopo- rous Si wafer, the perfluoro reagent yields a superhydrophobic surface (contact angle 1518). The bromo-derivative... superhydrophobic behavior, with a water contact angle of 1508 (Figure S13 and S14). As with the octadecylsilane derivative, these surface chemistries were not

  20. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  1. Ion beam induced amorphization and bond breaking in Zn2SiO4:Eu3+ nanocrystalline phosphor.

    PubMed

    Sunitha, D V; Nagabhushana, H; Singh, Fouran; Sharma, S C; Dhananjaya, N; Nagabhushana, B M; Chakradhar, R P S

    2012-05-01

    This paper reports on the ionoluminescence (IL) of Zn(2)SiO(4):Eu(3+) nanophosphors bombarded with 100 MeV Si(7+) ions with fluences in the range (3.91-21.48)×10(12) ions cm(-2). The prominent IL emission peaks recorded at 580, 590, 612, 650 and 705 nm are attributed to the luminescence centers activated by Eu(3+) ions. It is observed that IL intensity decreases and saturates with increase of Si(7+) ion fluence. Fourier transform infrared (FT-IR) studies confirm surface/bulk amorphization for a fluence of (3.91-21.48)×10(13) ions cm(-2). These results show degradation of SiO (2ν(3)) bonds present on the surface of the sample and/or due to lattice disorder produced by dense electronic excitation under heavy ion irradiation. These results are discussed in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire.

    PubMed

    Lee, Seung-Yong; Lee, Won-Yong; Thong, John T L; Kim, Gil-Sung; Lee, Sang-Kwon

    2016-03-18

    Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

  3. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    PubMed

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  4. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1977-01-01

    Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.

  5. Si(111) strained layers on Ge(111): Evidence for c (2 ×4 ) domains

    NASA Astrophysics Data System (ADS)

    Zhachuk, R.; Coutinho, J.; Dolbak, A.; Cherepanov, V.; Voigtländer, B.

    2017-08-01

    The tensile-strained Si (111 ) layers grown on top of Ge (111 ) substrates are studied by combining scanning tunneling microscopy, low-energy electron diffraction, and first-principles calculations. It is shown that the layers exhibit c (2 ×4 ) domains, which are separated by domain walls along <1 ¯10 > directions. A model structure for the c (2 ×4 ) domains is proposed, which shows low formation energy and good agreement with the experimental data. The results of our calculations suggest that Ge atoms are likely to replace Si atoms with dangling bonds on the surface (rest-atoms and adatoms), thus significantly lowering the surface energy and inducing the formation of domain walls. The experiments and calculations demonstrate that when surface strain changes from compressive to tensile, the (111) reconstruction converts from dimer-adatom-stacking fault-based to adatom-based structures.

  6. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover.

    PubMed

    Esposito, Daniel V; Levin, Igor; Moffat, Thomas P; Talin, A Alec

    2013-06-01

    Photoelectrochemical (PEC) water splitting represents a promising route for renewable production of hydrogen, but trade-offs between photoelectrode stability and efficiency have greatly limited the performance of PEC devices. In this work, we employ a metal-insulator-semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors. Substantial improvement in the performance of Si-based MIS photocathodes is demonstrated through a combination of a high-quality thermal SiO2 layer and the use of bilayer metal catalysts. Scanning probe techniques were used to simultaneously map the photovoltaic and catalytic properties of the MIS surface and reveal the spillover-assisted evolution of hydrogen off the SiO2 surface and lateral photovoltage driven minority carrier transport over distances that can exceed 2 cm. The latter finding is explained by the photo- and electrolyte-induced formation of an inversion channel immediately beneath the SiO2/Si interface. These findings have important implications for further development of MIS photoelectrodes and offer the possibility of highly efficient PEC water splitting.

  7. Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiO{sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke-Begemann, T., E-mail: fricke-begemann@llg-ev.de; Ihlemann, J.; Wang, N.

    2015-09-28

    Silicon nanocrystals have been generated by laser induced phase separation in SiO{sub x} films. A continuous wave laser emitting at 405 nm is focused to a 6 μm diameter spot on 530 nm thick SiO{sub x} films deposited on fused silica substrates. Irradiation of lines is accomplished by focus scanning. The samples are investigated by atomic force microscopy, TEM, Raman spectroscopy, and photoluminescence measurements. At a laser power of 35 mW corresponding to an irradiance of about 1.2 × 10{sup 5 }W/cm{sup 2}, the formation of Si-nanocrystals in the film without any deterioration of the surface is observed. At higher laser power, the centralmore » irradiated region is oxidized to SiO{sub 2} and exhibits some porous character, while the surface remains optically smooth, and nanocrystals are observed beside and beneath this oxidized region. Amorphous Si-nanoclusters are formed at lower laser power and around the lines written at high power.« less

  8. Tantalum induced butterfly-like clusters on Si (111)-7 × 7 surface: STM/STS study at low coverage

    NASA Astrophysics Data System (ADS)

    Shukrynau, Pavel; Mutombo, Pingo; Švec, Martin; Hietschold, Michael; Cháb, Vladimír

    2012-02-01

    The adsorption of the small amounts of tantalum on Si (111)-7 × 7 reconstructed surface is investigated systematically using scanning tunneling microscopy and tunneling spectroscopy combined with first-principles density functional theory calculations. We find out that the moderate annealing of the Ta covered surface results in the formation of clusters of the butterfly-like shape. The clusters are sporadically distributed over the surface and their density is metal coverage dependent. Filled and empty state STM images of the clusters differ strongly suggesting the existence of covalent bonds within the cluster. Tunneling spectroscopy measurements reveal small energy gap, showing semiconductor-like behavior of the constituent atoms. The cluster model based on experimental images and theoretical calculations has been proposed and discussed. Presented results show that Ta joins the family of adsorbates, that are known to form magic clusters on Si (111)-7 × 7, but its magic cluster has the structural and electronic properties that are different from those reported before.

  9. Atomic and electronic structures of Si(1 1 1)-\\left(\\sqrt{\\mathbf{3}}\\times\\sqrt{\\mathbf{3}}\\right)\\text{R}\\mathbf{3}{{\\mathbf{0}}^{\\circ}} -Au and (6 × 6)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2015-12-01

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the \\sqrt{3} -Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the \\sqrt{3} -Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the \\sqrt{3} -Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the ≤ft(6× 6\\right) -Au phase. Extra Au atoms bound in interstitial sites of the \\sqrt{3} -Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a ≤ft(6× 6\\right) -Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the ≤ft(6× 6\\right) -Au structure. The ≤ft(6× 6\\right) -Au phase is 2D chiral and this is evident in computed and actual STM images. ≤ft(6× 6\\right) -Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the \\sqrt{3} -Au and ≤ft(6× 6\\right) -Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  10. [Aortic elastic properties and its clinical significance in intracranial aneurysms].

    PubMed

    Pu, Zhao-xia; You, Xiang-dong; Weng, Wen-chao; Wang, Jian-an; Shi, Jian

    2011-09-01

    To investigate the aortic elastic properties and its clinical significance in intracranial aneurysms (IAs). One hundred and seven IAs patients (57 with hypertension) and 108 healthy subjects were recruited. The internal aortic diameters in systole and diastole were measured by the M-mode echocardiography, the aortic elasticity indexes were calculated and compared. The aortic distensibility (DIS) was lower and the aortic stiffness index (SI) was higher in IAs patients than those in controls (both P <0.001). DIS was lower and SI was higher in IAs patients with hypertension (IAs-HP) than those in IAs with no hypertension (P <0.001). Similar results were obtained when the aortic elasticity index were adjusted for body surface area and body mass index. Abnormal aortic elasticity is a common finding in IAs patients and hypertension is closely related to the severity of aortic elasticity.

  11. Inspecting the microstructure of electrically active defects at the Ge/GeOx interface

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Baldovino, Silvia; Molle, Alessandro

    2012-02-01

    High mobility substrates are important key elements in the development of advanced devices targeting a vast range of functionalities. Among them, Ge showed promising properties promoting it as valid candidate to replace Si in CMOS technology. However, the electrical quality of the Ge/oxide interface is still a problematic issue, in particular for the observed inversion of the n-type Ge surface, attributed to the presence of dangling bonds inducing a severe band bending [1]. In this scenario, the identification of electrically active defects present at the Ge/oxide interface and the capability to passivate or anneal them becomes a mandatory issue aiming at an electrically optimized interface. We report on the application of highly sensitive electrically detected magnetic resonance (EDMR) techniques in the investigation of defects at the interface between Ge and GeO2 (or GeOx), including Ge dangling bonds and defects in the oxide [2]. In particular we will investigate how different surface orientations, e.g. the (001) against the (111) Ge surface, impacts the microstructure of the interface defects. [1] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009) [2] S. Baldovino, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 96, 222110 (2010)

  12. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  13. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, C. S.; Prohl, C.; Füllert, V.

    2016-04-04

    The atomic structure and stoichiometry of InAs/InGaAs quantum-dot-in-a-well structures grown on exactly oriented GaP/Si(001) are revealed by cross-sectional scanning tunneling microscopy. An averaged lateral size of 20 nm, heights up to 8 nm, and an In concentration of up to 100% are determined, being quite similar compared with the well-known quantum dots grown on GaAs substrates. Photoluminescence spectra taken from nanostructures of side-by-side grown samples on GaP/Si(001) and GaAs(001) show slightly blue shifted ground-state emission wavelength for growth on GaP/Si(001) with an even higher peak intensity compared with those on GaAs(001). This demonstrates the high potential of GaP/Si(001) templates for integration ofmore » III-V optoelectronic components into silicon-based technology.« less

  14. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.

  15. Early stages of plasma induced nitridation of Si (111) surface and study of interfacial band alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in

    2016-02-07

    We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less

  16. Glennan Microsystems Initiative

    NASA Technical Reports Server (NTRS)

    Brillson, Leonard J.

    2002-01-01

    During the 2001-2002 award period, we performed research on Pt/Ti/bare 6H-SiC and bare 4H-SiC interfaces in order to identify their electronic properties as a function of surface preparation. The overall aim of this work is to optimize the electronic properties of metal contacts to SiC as well as the active SiC material itself as a function of surface preparation and subsequent processing. Initially, this work has involved identifying bare surface, subsurface, and metal induced gap states at the metal-SiC contact and correlating energies and densities of deep levels with Schottky barrier heights. We used low energy electron-excited nanoluminescence (LEEN) spectroscopy, X-ray photoemission spectroscopy (XPS), and Secondary Ion Mass Spectrometry (SIMS) in order to correlate electronic states and energy bands with chemical composition, bonding, and crystal structure. A major development has been the discovery of polytype transformations that occur in 4H-SiC under standard microelectronic process conditions used to fabricate SiC devices. Our results are consistent with the stacking fault generation, defect formation, and consequent degradation of SiC recently reported for state-of-the-art ABB commercial diodes under localized electrical stress. Our results highlight the importance of -optimizing process conditions and material properties - anneal times, temperatures and doping to control such structural changes within epitaxial SiC layers. Thus far, we have established threshold times and temperatures beyond which 4H-SiC exhibits 3C-SiC transformation bands for a subset of dopant concentrations and process conditions. On the basis of this temperature time behavior, we have been able to establish an activation energy of approximately 2.5 eV for polytype transformation and dislocation motion. Work continues to establish the fundamental mechanisms underlying the polytype changes and its dependence on material parameters.

  17. The role of carbon in ion beam nano-patterning of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, S.; UGC-DAE Consortium for Scientific Research, III/LB-8, Saltlake, Kolkata 700098; Karmakar, P.

    2013-10-28

    We report a comparative study of nano-pattern formations on a carbon film and a smooth Si(100) surface following inert and chemically active ion bombardment. For the case of carbon film, patterns could be formed both by inert (Ar{sup +}) and self (C{sup +}) ion bombardment with the former producing ripples at relatively lower fluence. In contrast, bombardment by inert Ar{sup +} failed to form the nano patterns on Si surface, while bombardment by the same energy C{sup +} generated the ripples. Thus, impurity induced chemical effect seems to be crucial rather than the Bradley-Harper or Carter-Vishnyakov effects for destabilizing themore » surface for ripple formation.« less

  18. Secondary-electron emission by 0.5-MeV/u H, He, and Li ions specularly reflected from a SnTe(001) surface: Possibility of the surface track potential reducing the secondary-electron yield at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Usui, Satoshi; Nakajima, Kaoru

    2000-12-01

    We have measured secondary-electron (SE) yield γ induced by 0.5 MeV/u H, He, and Li ions specularly reflected from a SnTe(001) surface. The position-dependent SE production rate is derived from the observed γ. The SE production rate normalized by the observed mean square charge of the reflected ions is almost independent of the atomic number of the projectile ion. This indicates that the surface track potential induced by the projectile ion is negligibly small to affect the SE emission at semiconductor surfaces probably due to rapid relaxation processes.

  19. Experimental investigations of quantum confined silicon nanoparticle light emitting devices

    NASA Astrophysics Data System (ADS)

    Ligman, Rebekah Kristine

    2007-12-01

    As the demands on our world's energy resources continue to grow, alternative high efficiency materials such as quantum confined silicon nanoparticles (Si nps) are desirable for their potential low cost application in white light illumination, in optical displays, and in on-chip optical interconnects. Many fabrication and passivation techniques exist that produce Si nps with high photogenerated quantum yield. However, high electrically generated Si np quantum efficiency has eluded our society. Predominantly due to the lack of a stable surface passivation and a device fabrication technique that preserves the Si np optical properties. To amend these deficiencies, the passivation of nonthermal plasma fabricated Si nps with a surface oxide grown under UV exposure was first investigated. Control over the surface oxidized Si np (Si/SiO2) passivation growth was demonstrated and the optical stability of Si/SiO2 nps was suitable for demonstrating Si np electroluminescence (EL). Two approaches for constructing hybrid organic light emitting diode (OLED) devices around nonthermal plasma fabricated Si nps were then investigated. Multilayer devices, composed of a nonthermal plasma fabricated Si np layer embedded within an OLED, were first studied. However, no EL from Si nps was obtained using the multilayer device architecture due to poor control over the Si np film thickness. Single layer polymer(Si/SiO2) hybrid devices, composed of nps randomly dispersed within an extrinsic conductive polymer, were then studied and EL from Si/SiO2 nps was obtained. The hybrid device optical and electrical response was enhanced over the control devices, possibly due to morphology changes induced by the Si/SiO2 nps. The energy transfer (ET) processes in single layer polymer(Si/SiO 2) hybrid devices were then investigated by imposing known spatial separations between the intrinsic conductive polymers and Si/SiO2 nps. No measurable Si/SiO2 np emission was observed from the intrinsic hybrid devices independent of the spatial separation, implying no ET occurs between the intrinsic polymers and Si/SiO2 nps. These results suggest the observed Si/SiO 2 np emission from extrinsic polymer(Si/SiO2) hybrid devices may be produced by direct carrier injection, Forster or Dexter ET mechanisms.

  20. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly higher leakage current and a current kink in the reverse bias regime, which is likely due to additional trap states created by plasma-induced damage during the Cl2/Ar/H2 mesa isolation step. These states extend more than 60 nm from the mesa surface and can only be partially passivated after a thermal anneal at 350°C for 20 minutes. The evolution of the electrical properties with post-dry etch treatments indicates that the shallow and deep-level trap states resulting from ion-induced point defects, arsenic vacancies and hydrogen-dopant complexes are the primary cause of degradation in the electrical properties of the dry-etched junctions.

  1. The molecular dynamics simulation of ion-induced ripple growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suele, P.; Heinig, K.-H.

    The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength ({lambda}) regime BH theory fails to reproduce the resultsmore » obtained by molecular dynamics. We find that at short wavelengths ({lambda}<35 nm) the adatom yield drops hence no surface diffusion takes place which is sufficient for ripple growth. The MD simulations predict that the growth of ripples with {lambda}>35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in {lambda} long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for {lambda}>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.« less

  2. Low-Temperature Silicon Epitaxy by Remote, Plasma - Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Habermehl, Scott Dwight

    The dynamics of low temperature Si homoepitaxial and heteroepitaxial growth, by remote plasma enhanced chemical vapor deposition, RPECVD, have been investigated. For the critical step of pre-deposition surface preparation of Si(100) surfaces, the attributes of remote plasma generated atomic H are compared to results obtained with a rapid thermal desorption, RTD, technique and a hybrid H-plasma/RTD technique. Auger electron spectroscopy, AES, and electron diffraction analysis indicate the hybrid technique to be very effective at surface passivation, while the RTD process promotes the formation of SiC precipitates, which induce defective epitaxial growth. For GaP and GaAs substrates, the use of atomic H exposure is investigated as a surface passivation technique. AES shows this technique to be effective at producing atomically clean surfaces. For processing at 400^circrm C, the GaAs(100) surface is observed to reconstruct to a c(8 x 2)Ga symmetry while, at 530^ circrm C the vicinal GaP(100) surface, miscut 10^circ , is observed to reconstruct to a (1 x n) type symmetry; an unreconstructed (1 x 1) symmetry is observed for GaP(111). Differences in the efficiency with which native oxides are removed from the surface are attributed to variations in the local atomic bonding order of group V oxides. The microstructure of homoepitaxial Si films, deposited at temperatures of 25-450^circ rm C and pressures of 50-500 mTorr, is catalogued. Optimized conditions for the deposition of low defect, single crystal films are identified. The existence of two pressure dependent regimes for process activation are observed. In-situ mass spectral analysis indicates that the plasma afterglow is dominated by monosilane ions below 200 mTorr, while above 200 mTorr, low mass rm H_{x} ^+ (x = 1,2,3) and rm HHe^+ ions dominate. Consideration of the growth rate data indicates that downstream dissociative silane ionization, in the lower pressure regime, is responsible for an enhanced surface H abstraction rate. The observed increase in growth rate is concluded to be a manifestation of increased deposition site activation, resulting from the enhanced H abstraction mechanism. Secondary ion mass spectrometry measurements, of H incorporation in the Si films, yield an "effective" activation energy for the abstraction of surface H. A shift in the activation energy between 50 mTorr (0.7 eV) and 500 mTorr (0.3 eV) supports the conclusions for an ion-induced H abstraction mechanism. From this, a chemical sputtering reaction is proposed, whereby impinging ions react with chemisorbed H to form volatile species. Heteroepitaxial Si thin films are deposited upon GaP and GaAs surfaces. AES is used to evaluate the growth mode of Si on GaP(111) and vicinal GaP(100). In both instances, the data indicates a modified layer-plus-island growth mechanism, with possible interfacial alloy mixing. High quality epitaxial growth is observed to proceed on vicinal GaP(100) surfaces beyond the predicted critical thickness for strain relief of 140 A. For GaP(111), defective structures are observed well below the predicted critical thickness. This discrepancy is attributed to low precursor surface diffusion kinetics that are accommodated by the presence of steps on the vicinal surface. For deposition of Si on GaAs(100), disordered structure is observed within the first few monolayers of growth, which is in agreement with the predicted critical thickness for this system of approximately 10 A.

  3. Time-resolved energy transduction in a quantum capacitor

    PubMed Central

    Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan

    2011-01-01

    The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices. PMID:21817067

  4. Engineered Defects for Investigation of Laser-Induced Damage of Fused Silica at 355nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamza, A V; Siekhaus, W J; Rubenchik, A M

    2001-12-18

    Embedded gold and mechanical deformation in silica were used to investigate initiation of laser-induced damage at 3.55-nm (7.6 ns). The nanoparticle-covered surfaces were coated with between 0 and 500 nm of SiO{sub 2} by e-beam deposition. The threshold for observable damage and initiation site morphology for these ''engineered'' surfaces was determined. The gold nanoparticle coated surfaces with 500nm SiO{sub 2} coating exhibited pinpoint damage threshold of <0.7 J/cm{sup 2} determined by light scattering and Nomarski microscopy. The gold nanoparticle coated surfaces with the 100nm SiO{sub 2} coatings exhibited what nominally appeared to be film exfoliation damage threshold of 19 J/cm{supmore » 2} via light scattering and Nomarski microscopy. With atomic force microscopy pinholes could be detected at fluences greater than 7 J/cm{sup 2} and blisters at fluences greater than 3 J/cm{sup 2} on the 100 nm-coated surfaces. A series of mechanical indents and scratches were made in the fused silica substrates using a nano-indentor. Plastic deformation without cracking led to damage thresholds of -25 J/cm{sup 2}, whereas indents and scratches with cracking led to damage thresholds of only {approx}5 J/cm{sup 2}. Particularly illuminating was the deterministic damage of scratches at the deepest end of the scratch, as if the scratch acted as a waveguide.« less

  5. Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Petit, J. B.; Edgar, J. H.; Jenkins, I. G.; Matus, L. G.

    1991-01-01

    It has been found that, with proper pregrowth surface treatment, 6H-SiC single-crystal films can be grown by chemical vapor deposition (CVD) at 1450 C on vicinal (0001) 6H-SiC with tilt angles as small as 0.1 deg. Previously, tilt angles of greater than 1.5 deg were required to achieve 6H on 6H at this growth temperature. In addition, 3C-SiC could be induced to grow within selected regions on the 6H substrate. the 3C regions contained few (or zero) double-positioning boundaries and a low density of stacking faults. A new growth model is proposed to explain the control of SiC polytype in this epitaxial film growth process.

  6. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.; Gurevich, Evgeny L.; Mocek, Tomáš

    2016-06-01

    Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  7. Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih

    2010-09-01

    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.

  8. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting.

    PubMed

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-12-01

    Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

  9. Effect of Systematic Control of Pd Thickness and Annealing Temperature on the Fabrication and Evolution of Palladium Nanostructures on Si (111) via the Solid State Dewetting

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-05-01

    Si-based optoelectronic devices embedded with metallic nanoparticles (NPs) have demonstrated the NP shape, size, spacing, and crystallinity dependent on light absorption and emission induced by the localized surface plasmon resonance. In this work, we demonstrate various sizes and configurations of palladium (Pd) nanostructures on Si (111) by the systematic thermal annealing with the variation of Pd thickness and annealing temperature. The evolution of Pd nanostructures are systematically controlled by the dewetting of thin film by means of the surface diffusion in conjunction with the surface and interface energy minimization and Volmer-Weber growth model. Depending on the control of deposition amount ranging between 0.5 and 100 nm at various annealing temperatures, four distinctive regimes of Pd nanostructures are demonstrated: (i) small pits and grain formation, (ii) nucleation and growth of NPs, (iii) lateral evolution of NPs, and (iv) merged nanostructures. In addition, by the control of annealing between 300 and 800 °C, the Pd nanostructures show the evolution of small pits and grains, isolated NPs, and finally, Pd NP-assisted nanohole formation along with the Si decomposition and Pd-Si inter-diffusion. The Raman analysis showed the discrepancies on phonon modes of Si (111) such that the decreased peak intensity with left shift after the fabrication of Pd nanostructures. Furthermore, the UV-VIS-NIR reflectance spectra revealed the existence of surface morphology dependent on absorption, scattering, and reflectance properties.

  10. Structural and environmental dependence of superlow friction in ion vapour-deposited a-C : H : Si films for solid lubrication application

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa; Kawaguchi, Masahiro; Nosaka, Masataka; Choi, Junho

    2013-06-01

    Understanding the tribochemical interaction of water molecules in humid environment with carbonaceous film surfaces, especially hydrophilic surface, is fundamental for applications in tribology and solid lubrication. This paper highlights some experimental evidence to elucidate the structural and environmental dependence of ultralow or even superlow friction in ion vapour-deposited a-C : H : Si films. The results indicate that both surface density of silicon hydroxyl group (Si-OH) and humidity level (RH) determine the frictional performance of a-C : H : Si films. Ultralow friction coefficient μ (˜0.01-0.055) is feasible in a wide range of RH. The dissociative formation of hydrophilic Si-OH surface and the following nanostructure of interfacial water molecules under contact pressure are the origin of ultralow friction for a-C : H : Si films in humid environment. The correlation between contact pressure and friction coefficient derived from Hertzian contact model is not valid in the present case. Under this nanoscale boundary lubrication, the friction coefficient tends to increase as the contact pressure increases. There even exists a contact pressure threshold for the transition from ultralow to superlow friction (μ ˜ 0.007). In comparison, when tribotested in dry N2, the observed superlow friction (μ ˜ 0.004) in the absence of water is correlated with the formation of a low shear strength tribolayer by wear-induced phase transformation.

  11. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  12. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE PAGES

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...

    2017-01-11

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  13. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  14. Thin films of topological Kondo insulator candidate SmB6: Strong spin-orbit torque without exclusive surface conduction

    PubMed Central

    Li, Yufan; Ma, Qinli; Huang, S. X.; Chien, C. L.

    2018-01-01

    The advent of topological insulators (TIs), a novel class of materials that harbor a metallic spin-chiral surface state coexisting with band-insulating bulk, opens up new possibilities for spintronics. One promising route is current-induced switching of an adjacent magnetic layer via spin-orbit torque (SOT), arising from the large spin-orbit coupling intrinsically possessed by TIs. The Kondo insulator SmB6 has been recently proposed to be a strongly correlated TI, supported by the observation of a metallic surface state in bulk SmB6, as evidenced by the thickness independence of the low-temperature resistance plateau. We report the synthesis of epitaxial (001) SmB6/Si thin films and a systematic thickness-dependent electrical transport study. Although the low-temperature resistance plateau is observed for all films from 50 to 500 nm in thickness, the resistance is distinctively thickness-dependent and does not support the notion of surface conduction and interior insulation. On the other hand, we demonstrate that SmB6 can generate a large SOT to switch an adjacent ferromagnetic layer, even at room temperature. The effective SOT generated from SmB6 is comparable to that from β-W, one of the strongest SOT materials. PMID:29376125

  15. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  16. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanaga, S.; Rahman, F.; Khanom, F.

    2005-09-15

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and {beta}{sub 2}-channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and {beta}{sub 1}-TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it canmore » well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T{sub s} exhibits a clear anti-correlation with the bulk dangling bond density versus T{sub s} curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed.« less

  17. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  18. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  19. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    NASA Astrophysics Data System (ADS)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  20. Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Sweetman, A. M.; Lekkas, I.; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2015-02-01

    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images.

  1. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  2. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)

    NASA Astrophysics Data System (ADS)

    Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.

    2018-06-01

    Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.

  3. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  4. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  5. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.

    PubMed

    Biskupek, Johannes; Kaiser, Ute; Falk, Fritz

    2008-06-01

    In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.

  6. Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes.

    PubMed

    Wei, Xiaoran; Qu, Xiaolei; Ding, Lei; Hu, Jingtian; Jiang, Wei

    2016-12-01

    Silica nanoparticles (SiO 2 NPs) can cause health hazard after their release into the environment. Adsorption of natural organic matter and biomolecules on SiO 2 NPs alters their surface properties and cytotoxicity. In this study, SiO 2 NPs were treated by bovine serum albumin (BSA) and humic acid (HA) to study their effects on the integrity and fluidity of model cell membranes. Giant and small unilamellar vesicles (GUVs and SUVs) were prepared as model cell membranes in order to avoid the interference of cellular activities. The microscopic observation revealed that the BSA/HA treated (BSA-/HA-) SiO 2 NPs took more time to disrupt membrane than untreated-SiO 2 NPs, because BSA/HA adsorption covered the surface SiOH/SiO - groups and weakened the interaction between NPs and phospholipids. The deposition of SiO 2 NPs on membrane was monitored by a quartz crystal microbalance with dissipation (QCM-D). Untreated- and HA-SiO 2 NPs quickly disrupted the SUV layer on QCM-D sensor; BSA-SiO 2 NPs attached on the membranes but only caused slow vesicle disruption. Untreated-, BSA- and HA-SiO 2 NPs all caused the gelation of the positively-charged membrane, which was evaluated by the generalized polarity values. HA-SiO 2 NPs caused most serious gelation, and BSA-SiO 2 NPs caused the least. Our results demonstrate that the protein adsorption on SiO 2 NPs decreases the NP-induced membrane damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Early stages of epitaxial CoSi 2 formation on Si(111) surface as investigated by ARUPS, XPS, LEED and work function variation

    NASA Astrophysics Data System (ADS)

    Pirri, C.; Peruchetti, J. C.; Gewinner, G.; Derrien, J.

    1985-04-01

    We performed the CoSi 2 formation on a clean (7 × 7) Si(111) surface under UHV conditions. The used techniques were angle resolved UV photoemission, X-ray photoemission, work function change and low energy electron diffraction in order to study the electronic and structural properties of the interface during its formation. At room temperature, a small amount of Co reacts strongly with Si to form an interfacial and very thin cobalt suicide. The ultraviolet photoelectron spectrum displays already two features corresponding respectively to the Co 3d and Si 3p electron bonding states and the Co 3d non-bonding states. With increasing coverage ( θ ≳ 4 ML) it seems that the interfacial suicide prevents further Co-Si interdiffusion to achieve the suicide reaction and a metal rich film is found. At high temperature (˜ 600°C) and in the first monolayer range, several superstructures are found (√7 × √7, and 2 × 2). They are induced by a Co-Si bidimensional compound where the Co atoms are not yet completely surrounded by Si atoms as in their bulk CoSi 2 structure. With increasing coverage, a CoSi 2-like photoemission spectrum is observed reflecting the formation of the disilicide. The LEED pattern testifies an epitaxial growth displaying a (1 × 1) CoSi 2 diagram. The work function change technique also reflects faithfully this growth.

  8. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.

    PubMed

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute; Wiedwald, Ulf

    2016-01-01

    Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: "small" NPs with diameters in the range of 2-3 nm and "large" ones in the range of 5-8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600-650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min.

  9. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

    PubMed Central

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute

    2016-01-01

    Summary Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: “small” NPs with diameters in the range of 2–3 nm and “large” ones in the range of 5–8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600–650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min. PMID:27335749

  10. A Initio Theoretical Studies of Surfaces of Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We shall use the predictive power of the ab initio approach to help guide experimental interpreation of otherwise enigmatic STM measurements. In particular, we will demonstrate by example that the predictive power of ab initio calculation allows one to harness the native chemical selectivity of the scanning tunneling electron microscope (STM) and produce an unambiguous and fully interpretable non-destructive chemical probe at the atomic level. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.) (Abstract shortened by UMI.).

  11. Arginine Promotes Slow Myosin Heavy Chain Expression via Akirin2 and the AMP-Activated Protein Kinase Signaling Pathway in Porcine Skeletal Muscle Satellite Cells.

    PubMed

    Chen, Xiaoling; Guo, Yafei; Jia, Gang; Zhao, Hua; Liu, Guangmang; Huang, Zhiqing

    2018-05-09

    This study aimed to investigate the effect of arginine on the expression of slow myosin heavy chain (MyHC) I and its underlying mechanism in porcine skeletal muscle satellite cells. Our results showed that arginine upregulated the mRNA (1.54 ± 0.08; p < 0.01) and protein (2.01 ± 0.01; p < 0.001) levels of MyHC I. We also showed that arginine upregulated the expression of Akirin2 (1.35 ± 0.1; p < 0.05) and increased the NO content (1.56 ± 0.04; p < 0.001). Akirin2 siRNA abolished arginine-induced upregulation of MyHC I and the increase of the NO content. In addition, arginine significantly increased the phospho-AMP-activated protein kinase (AMPK)/AMPK level (1.33 ± 0.06; p < 0.05), the AMPK content (79.55 ± 0.13; p < 0.001), and the AMPKα2 mRNA level (2.03 ± 0.20; p < 0.01). AMPKα2 silencing or AMPK inhibitor Compound C abolished arginine-induced upregulation of MyHC I. Our results provide, for the first time, evidence for the involvement of Akirin2 and the AMPK signaling pathway in arginine-induced MyHC I expression in porcine skeletal muscle satellite cells.

  12. Ion irradiation induced surface modification studies of polymers using SPM

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Kumar, Amit; Singh, F.; Kabiraj, D.; Avasthi, D. K.; Pivin, J. C.

    2005-07-01

    Various types of scanning probe microscopy (SPM) techniques: atomic force microscopy (AFM) (contact and tapping in height and amplitude mode), scanning tunnelling microscopy (STM) and conducting atomic force microscopy (C-AFM) are used for studying ion beam induced surface modifications, nanostructure/cluster formation and disintegration in polymers and similar soft carbon based materials. In the present study, the results of studies on four materials, namely, (A) methyltriethoxysilane/phenyltriethoxysilane (MTES/PTES) based gel, (B) triethoxisilane (TH) based gel, (C) highly oriented pyrolytic graphite (HOPG) bulk and (D) fullerene (C60) thin films are discussed. In the case of Si based gels prepared from pre-cursors containing organic groups (MTES/PTES), hillocks are observed at the surface and their size decreases from 70 to 25 nm with increasing fluence, whereas, in the case of a gel with a stoichiometry SiO1.25H1, prepared from TH, an increases in the size of hillocks is observed. Hillocks are also formed at the surface of HOPG irradiated with 120 MeV Au beam at a low fluence, whereas, formation of craters and a re-organisation of surface features is observed at a higher fluence. In the case of C60 films, 120 MeV Au ion irradiation induces the formation of conducting ion tracks, which is attributed to the transformation from insulating C60 to conducting graphite like carbon.

  13. Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments

    PubMed Central

    2013-01-01

    The structure and light-emitting properties of Si nanowires (SiNWs) fabricated by a single-step metal-assisted chemical etching (MACE) process on highly boron-doped Si were investigated after different chemical treatments. The Si nanowires that result from the etching of a highly doped p-type Si wafer by MACE are fully porous, and as a result, they show intense photoluminescence (PL) at room temperature, the characteristics of which depend on the surface passivation of the Si nanocrystals composing the nanowires. SiNWs with a hydrogen-terminated nanostructured surface resulting from a chemical treatment with a hydrofluoric acid (HF) solution show red PL, the maximum of which is blueshifted when the samples are further chemically oxidized in a piranha solution. This blueshift of PL is attributed to localized states at the Si/SiO2 interface at the shell of Si nanocrystals composing the porous SiNWs, which induce an important pinning of the electronic bandgap of the Si material and are involved in the recombination mechanism. After a sequence of HF/piranha/HF treatment, the SiNWs are almost fully dissolved in the chemical solution, which is indicative of their fully porous structure, verified also by transmission electron microscopy investigations. It was also found that a continuous porous Si layer is formed underneath the SiNWs during the MACE process, the thickness of which increases with the increase of etching time. This supports the idea that porous Si formation precedes nanowire formation. The origin of this effect is the increased etching rate at sites with high dopant concentration in the highly doped Si material. PMID:24025542

  14. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  15. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.

    PubMed

    Petterson, Maureen K; Lemaitre, Maxime G; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V; Kravchenko, Ivan I; Rinzler, Andrew G

    2015-09-30

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm(2) AM1.5G illumination, results in a short-circuit current density of 35 mA/cm(2) and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.

  16. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  17. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE PAGES

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; ...

    2015-09-09

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  18. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The maximum resistivity decrease that can be achieved by increasing the grain size of polycrystalline Cu layers with an average grain size approximately ˜2.5x the layer thickness is 20-26%.

  19. Recent advances in characterization of CaCu3Ti4O12 thin films by spectroscopic ellipsometric metrology.

    PubMed

    Lo Nigro, Raffaella; Malandrino, Graziella; Toro, Roberta G; Losurdo, Maria; Bruno, Giovanni; Fragalà, Ignazio L

    2005-10-12

    CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.

  20. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.

  1. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  2. Atomic-scale characterization of hydrogenated amorphous-silicon films and devices. Annual subcontract report, 14 February 1994--14 April 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, A.; Tanenbaum, D.; Laracuente, A.

    1995-08-01

    Properties of the hydrogenated amorphous silicon (a-Si:H) films used in photovoltaic (PV) panels are reported. The atomic-scale topology of the surface of intrinsic a-Si:H films, measured by scanning tunneling microscopy (STM) as a function of film thickness, are reported and diagnosed. For 1-500-nm-thick films deposited under normal device-quality conditions from silane discharges, most portions of these surfaces are uniformly hilly without indications of void regions. However, the STM images indicate that 2-6-nm silicon particulates are continuously deposited into the growing film from the discharge and fill approximately 0.01% of the film volume. Although the STM data are not sensitive tomore » the local electronic properties near these particulates, it is very likely that the void regions grow around them and have a deleterious effect on a-Si:H photovoltaics. Preliminary observations of particulates in the discharge, based on light scattering, confirm that particulates are present in the discharge and that many collect and agglomerate immediately downstream of the electrodes. Progress toward STM measurements of the electronic properties of cross-sectioned a-Si:H PV cells is also reported.« less

  3. Formation and characterization of perpendicular mode Si ripples by glancing angle O{sub 2}{sup +} sputtering at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollick, S. A.; Ghose, D.

    Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less

  4. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites

    PubMed Central

    Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon

    2015-01-01

    Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 1010, which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. PMID:24424205

  5. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE PAGES

    Zhang, Limin; Jiang, Weilin; Ai, Wensi; ...

    2018-04-04

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 ×10 16 Xe/cm 2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ~6 dpa at the film surface to ~20 dpa at the SiC/Si interface. A transformation of homonuclearmore » C-C bonds from sp 3 to sp 2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. Lastly, the results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.« less

  6. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites.

    PubMed

    Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon

    2014-03-01

    Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 10(10), which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 ×10 16 Xe/cm 2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ~6 dpa at the film surface to ~20 dpa at the SiC/Si interface. A transformation of homonuclearmore » C-C bonds from sp 3 to sp 2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. Lastly, the results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.« less

  8. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents.

    PubMed

    Kamitakahara, M; Kawashita, M; Miyata, N; Kokubo, T; Nakamura, T

    2002-11-01

    Polydimethylsiloxane (PDMS)-CaO-SiO(2) hybrids with starting compositions containing PDMS/(Si(OC(2)H(5))(4)+PDMS) weight ratio=0.30, H(2)O/Si(OC(2)H(5))(4) molar ratio=2, and Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratios=0-0.2, were prepared by the sol-gel method. The apatite-forming ability of the hybrids increased with increasing calcium content in the Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0-0.1. The hybrids with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0.1-0.2 formed apatite on their surfaces in a simulated body fluid (SBF) within 12 h. The hybrid with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio of 0.10 showed an excellent apatite-forming ability in SBF with a low release of silicon into SBF. It also showed mechanical properties analogous to those of human cancellous bones. This hybrid is expected to be useful as a new type of bioactive material.

  9. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    PubMed

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  10. Space Weathering of Silicates Simulated by Successive Laser Irradiation: in Situ Reflectance Measurements of Fo90, Fo99+, and SiO2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of "nanophase" metallic Fe (npFe0) grains, 20-50 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100-400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laser pulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  11. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    PubMed Central

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  12. Space Weathering of Silicates Simulated by Successive Laser Irradiation: In Situ Reflectance Measurements of Fo90, Fo99+, and Sio2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of nanophase metallic Fe (npFe0) grains, 2050 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laserpulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  13. Transgenerational, Dynamic Methylation of Stomata Genes in Response to Low Relative Humidity

    PubMed Central

    Tricker, Penny J.; Rodríguez López, Carlos M.; Gibbings, George; Hadley, Paul; Wilkinson, Mike J.

    2013-01-01

    Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner. PMID:23531533

  14. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong

    2015-07-01

    The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.

  15. Surface acid-base behaviors of Chinese loess.

    PubMed

    Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin

    2002-08-15

    Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOH<-->SO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4<-->SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).

  16. Engineered silica nanoparticles as additives in lubricant oils

    PubMed Central

    López, Teresa Díaz-Faes; González, Alfonso Fernández; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E; Badía-Laíño, Rosana

    2015-01-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol–gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives. PMID:27877840

  17. Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Neng, Jing; Wang, Xujun; Jia, Kan; Sun, Peilong

    2018-03-01

    Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce -NH2 and -SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of -NH2 and the Au-S bond to produce stable core-shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au-Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab-RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au-Ab···TTX···Ab-RhB] was generated due to the specific antibody-antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of 0.01-0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.

  18. Laser-induced ferroelectric domain engineering in LiNbO3 crystals using an amorphous silicon overlayer

    NASA Astrophysics Data System (ADS)

    Zisis, G.; Martinez-Jimenez, G.; Franz, Y.; Healy, N.; Masaud, T. M.; Chong, H. M. H.; Soergel, E.; Peacock, A. C.; Mailis, S.

    2017-08-01

    We report laser-induced poling inhibition and direct poling in lithium niobate crystals (LiNbO3), covered with an amorphous silicon (a-Si) light-absorbing layer, using a visible (488 nm) continuous wave laser source. Our results show that the use of the a-Si overlayer produces deeper poling inhibited domains with minimum surface damage, as compared to previously reported UV laser writing experiments on uncoated crystals, thus increasing the applicability of this method in the production of ferroelectric domain engineered structures for nonlinear optical applications. The characteristics of the poling inhibited domains were investigated using differential etching and piezoresponse force microscopy.

  19. On the role of mobile nanoclusters in 2D island nucleation on Si(111)-(7 × 7) surface

    NASA Astrophysics Data System (ADS)

    Rogilo, D. I.; Fedina, L. I.; Kosolobov, S. S.; Latyshev, A. V.

    2018-01-01

    Two-dimensional (2D) Si island nucleation has been studied by in situ reflection electron microscopy within a wide temperature range (650-1090 °C ) on large-scale (∼10-100 μm) terraces to exclude the impact of step permeability and adatom sink to steps. The dependence of 2D island concentration N2D on substrate temperature T and Si deposition rate R displays N2D∝Rχexp (E2D/kT) scaling which parameters change from χ≈0.81, E2D≈1.02 eV to χ≈0.5, E2D≈1.8 eV when Si(111) surface converts from (1 × 1) structure to (7 × 7) reconstruction. We propose that this strong E2D rise accompanied by χ reduction is caused by the change of dominating diffusing particles from adatoms to reconstruction induced nanoclusters. Using a rate-equation model developed to account the dynamics of both diffusing species on the Si(111)-(7 × 7) surface, we show that a stable nucleus of a 2D island appears when two mobile nanoclusters merge together while nucleation kinetics is limited by their attachment to island edges.

  20. Inhibition of apoptosis by knockdown of caspase-3 with siRNA in rat bone marrow mesenchymal stem cells.

    PubMed

    Hua, Ping; Liu, Li-Bao; Liu, Jia-Liang; Wang, Meng; Jiang, Hui-Qi; Zeng, Kuan; Yang, Yan-Qi; Yang, Song-Ran

    2013-09-01

    Transplantation of bone marrow mesenchymal stem cells is a promising new strategy for the repair of infarcted cardiac tissue. However, the majority of transplanted bone marrow mesenchymal stem cells (BMSCs) die soon after transplantation, due in part to oxidative stress in the ischemic region. Oxidative stress is known to induce apoptosis through the activation of caspase-3. The aim of this study is to determine whether small interfering RNA targeting caspase-3 can inhibit the apoptosis of rat BMSCs in vitro. Caspase-3 siRNA expression vectors were prepared and transfected into rat BMSCs in the presence of liposomes. Western blot assay and real-time polymerase chain reaction (RT-PCR) were performed to detect caspase-3 expression. A retrovirus packaging system was employed to package 293FT cells producing caspase-3 siRNA virus, which were transfected into rat BMSCs. Those stably expressing caspase-3 siRNA were screened by Western blot assay and RT-PCR to determine caspase-3 expression levels. Stable transfection of caspase-3 siRNA significantly decreased caspase-3 protein (0.26 ± 0.001 vs. 0.42 ± 0.004, P < 0.05) and mRNA expression (0.19 ± 0.002 vs. 1, P < 0.05) in BMSCs compared to non-transfected BMSCs. Cells were incubated in H2O2 to induce apoptosis, which was detected by TUNEL staining, and BMSC morphology was not altered by either transient or stable transfection of caspase-3 siRNA. H2O2-induced apoptosis of BMSCs stably transfected with caspase-3 siRNA was dramatically reduced compared to that of normal BMSCs (11.0 ± 3.2 vs. 25.8 ± 4.2, P < 0.05). Caspase-3 knockdown BMSCs are thus more resistant to apoptosis than normal BMSCs, potentially increasing their survival rates under conditions that cause oxidative stress.

  1. The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior

    NASA Astrophysics Data System (ADS)

    Uma, Kasimayan; Arjun, Nadarajan; Pan, Guan-Ting; Yang, Thomas C.-K.

    2017-12-01

    In this study, a simple sol-gel method was used for the synthesis of a core-shell structure of SiO2@α-Fe2O3 nanocomposites for employment as a visible light photocatalyst. It was observed that Ag nanoparticles about 20 nm in size were successfully deposited on the surface of the SiO2@α-Fe2O3 nanocomposites. The photocatalytic activity of the Ag-SiO2@α-Fe2O3 nanocomposites catalyst was investigated by observing the degradation of methylene blue (MB) dye in a photo-Fenton process. The results showed that the Ag nanoparticles acted as centers for photo induced electron transfer. The catalytic activity in the SiO2@α-Fe2O3 nanocomposites were enhanced due to the plasmoni c effect of Ag metal under visible light irradiation. The addition of H2O2 played an important role, generating more OH radicals which improved the photo-Fenton catalytic activity, resulting in quicker degradation of the MB dye using the Ag-SiO2@α-Fe2O3 nanocomposite catalyst.

  2. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction

    NASA Astrophysics Data System (ADS)

    Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  3. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  4. Epigenetic Basis for the Regulation of Estrogen Receptor Alpha Activity in Breast Cancer Cells

    DTIC Science & Technology

    2009-04-01

    B) GPER and TESK2 expression after CARM1 silencing in MCF7 was determined by reverse transcription-qPCR and revealed the requirement for CARM1 in...the E2-induced repression of GPER and TESK2. siLUC was used as a control. *, P 0.05; **, P 0.01; ***, P 0.001. (C) Enrichment of Ec3 cluster...sites (blue blocks) near GPER and TESK2 E2-downregulated target genes (red blocks). 3416 LUPIEN ET AL. MOL. CELL. BIOL. at A C Q S E R V IC E /S E R IA

  5. Si/Ge Junctions Formed by Nanomembrane Bonding

    DTIC Science & Technology

    2011-01-01

    hydrophobic bonding of a 200 nm thick 14. ABSTRACT monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high...temperature hydrophobic bonding of a 200 nm thick monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high quality...them. A RTIC LE KIEFER ET AL. VOL. 5 ’ NO. 2 ’ 1179–1189 ’ 2011 1182 www.acsnano.org monocrystalline . The interfacial region appears to be amorphous

  6. Controlled electron doping into metallic atomic wires: Si(111)4×1-In

    NASA Astrophysics Data System (ADS)

    Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong

    2010-02-01

    We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.

  7. In-situ micro bend testing of SiC and the effects of Ga+ ion damage

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Doak, SS; Zhou, Z.; Wu, H.

    2017-09-01

    The Young’s modulus of 6H single crystal silicon carbide (SiC) was tested with micro cantilevers that had a range of cross-sectional dimensions with surfaces cleaned under different accelerating voltages of Ga+ beam. A clear size effect is seen with Young’s modulus decreasing as the cross-sectional area reduces. One of the possible reasons for such size effect is the Ga+ induced damage on all surfaces of the cantilever. Transmission electron microscopy (TEM) was used to analyse the degree of damage, and the measurements of damage is compared to predictions by SRIM irradiation simulation.

  8. Synthesis of polystyrene coated SiC nanowires as fillers in a polyurethane matrix for electromechanical conversion.

    PubMed

    Rybak, Andrzej; Warde, Micheline; Beyou, Emmanuel; Chaumont, Philippe; Bechelany, Mikhael; Brioude, Arnaud; Toury, Bérangère; Cornu, David; Miele, Philippe; Guiffard, Benoit; Seveyrat, Laurence; Guyomar, Daniel

    2010-04-09

    Grafting of polystyrene (PS) from silica coating of silicon carbide nanowires (SiCNWs) has been performed by a two-step nitroxide mediated free radical polymerization (NMP) of styrene. First, an alkoxyamine based on N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (DEPN) was covalently attached onto NWs through free surface silanol groups. To immobilize the alkoxyamine initiator on the silica surface, alkoxylamine was formed in situ by the simultaneous reaction of polymerizable acryloxy propyl trimethoxysilane (APTMS), azobis isobutyronitrile (AIBN), and DEPN, which was used as a radical trap. Polystyrene chains with controlled molecular weights and narrow polydispersity were then grown from the alkoxyamine-functionalized NWs surface in the presence of a 'free' sacrificial styrylDEPN alkoxyamine. Both the initiator and polystyrene chains were characterized by FTIR and (13)C solid-state NMR and quantified by TGA. Ensuing nanocomposites were characterized by FEG-SEM, TEM and Raman spectroscopy. EDX analysis performed on functionalized nanowires during FEG-SEM analysis also gave evidence of grafting by a strong increase in the average C/Si atomic ratio. Incorporation of 2 wt% NWs into the polyurethane (PU) matrix has been carried out to prepare homogeneous nanocomposite films. The electric field induced thickness strain response has been investigated for the polystyrene-grafted silica coated SiC NWs (PU-SiC@SiO(2)@PS) nanocomposites and compared to pure polyurethane film and PU-SiC@SiO(2) nanocomposite without polystyrene grafting. At a moderate electric field of 10 V microm(-1), SiC@SiO(2)@PS loading increased the strain level of pure PU by a factor of 2.2. This improvement came partially due to polystyrene grafting since PU-SiC@SiO(2) films showed only a 1.7 times increase. The observed higher strain response of these nanocomposites makes them very attractive for micro-electromechanical applications.

  9. Seismic anisotropy of the D'' layer induced by (001) deformation of post-perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiang; Lin, Jung-Fu; Kaercher, Pamela

    Crystallographic preferred orientation (CPO) of post-perovskite (Mg,Fe)SiO 3 (pPv) has been believed to be one potential source of the seismic anisotropic layer at the bottom of the lower mantle (D'' layer). However, the natural CPO of pPv remains ambiguous in the D'' layer. Here we have carried out the deformation experiments of pPv-(Mg 0.75,Fe 0.25)SiO 3 using synchrotron radial X-ray diffraction in a membrane-driven laser-heated diamond anvil cell from 135 GPa and 2,500 K to 154 GPa and 3,000 K. Our results show that the intrinsic texture of pPv-(Mg 0.75,Fe 0.25)SiO 3 should be (001) at realistic P–T conditions ofmore » the D'' layer, which can produce a shear wave splitting anisotropy of ~3.7% with V SH>V SV. Considering the combined effect of both pPv and ferropericlase, we suggest that 50% or less of deformation is sufficient to explain the origin of the shear wave anisotropy observed seismically in the D'' layer beneath the circum-Pacific rim.« less

  10. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    PubMed

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  11. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ying; Li, Shu-Jun; Yang, Jian

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less

  12. Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Gaković, B.; Zamfirescu, M.; Radu, C.; Peruško, D.; Radak, B.; Ristoscu, C.; Zdravković, S.; Luculescu, C. L.; Mihailescu, I. N.

    2017-09-01

    Modification of single and complex nickel-palladium samples by laser processing in the femtosecond time domain was studied. The samples were processed by focused Ti:Sapphire laser beam (Clark CPA-2101) with 775 nm laser wavelength, 2 kHz repetition rate, 200 fs pulse duration. The laser-induced morphological modifications have shown dependence on the applied fluences and number of laser pulses. The formed surface nanostructures on the single NiPd/Si and multilayer 5x(Ni/Pd)/Si systems are compared with individual Ni and Pd thin films. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low number of pulses (less than 10 pulses) and low pulse energies range (not over 1.7 μJ), the two types of laser-induced periodic surface structure (LIPSS) can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). For all samples, the measured LSFL periods were 720 nm for the ripples created solely on thin film surfaces during the single pulse action. In the case of the multi-pulse irradiation, the periodicities of created LSFLs on the all investigated thin films have shown tendency to reduction with increasing of pulse energies.

  13. Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kwak, J. H.; Kim, J. S.; Liu, Y. H.; Gao, N.; Tang, N.-Y.

    2009-08-01

    In general, Si-bearing advanced high-strength steels (AHSS) possess excellent mechanical properties but poor galvanizability. The galvanizability of a transformation-induced plasticity (TRIP) steel 1180TRIP containing 2.2 pct Mn and 1.7 pct Si and a complex phase steel 1180CP containing 2.7 pct Mn and 0.2 pct Si was extensively studied using a galvanizing simulator. The steel coupons were annealed at fixed dew points in the simulator. The surface features of the as-annealed steel coupons, together with galvanized and galvannealed coatings, were carefully examined using a variety of advanced analysis techniques. It was found that various oxides formed on the surface of these steels, depending on the steel composition and on the dew point control. Coating quality was good at 0 °C dew point but deteriorated as the dew point decreased to -35 °C and -65 °C. Based on the findings, guidance was provided for improving galvanizability by adjusting the Mn:Si ratio in steel compositions according to the dew point.

  14. Nanoscale in-depth modification of CrOSi layers

    NASA Astrophysics Data System (ADS)

    Bertóti, I.; Tóth, A.; Mohai, M.; Kelly, R.; Marletta, G.; Farkas-Jahnke, M.

    1997-02-01

    In-depth modification of CrOSi layers on a nanoscale has been performed by low energy inert (Ar +, He +) and reactive (N 2+) ions. Chemical and short range structural investigations were done by XPS. Cr and Si were essentially oxidised in the as-prepared (i.e. virgin) samples. Ar + bombardment led to a nearly complete reduction of Cr to Cr 0. At the same time, about one third of the oxidised Si was converted to Si 0, which was shown to form SiCr bonds. Also, silicide type clusters, predicted earlier by XPS, have been identified by glancing angle electron diffraction. He + bombardment led to an increase of the surface O concentration. This was manifested also in the disruption of SiCr bonds formed by the preceding Ar + bombardment and conversion of Cr and Si predominantly to Cr 3+O, Cr 6+O and Si 4+O. With N 2+ bombardment formation of CrN and SiN bonds was observed. The thickness of the transformed surface layers were about 5 nm, 9 nm and 30 nm for Ar, N and He projectiles as estimated by TRIM calculations. The observed transformations were interpreted in terms of the relative importance of sputtering or ion induced mixing for Ar + and He +, and also by the role of thermodynamic driving forces.

  15. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites

    PubMed Central

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  16. Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H

    PubMed Central

    Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek

    2015-01-01

    We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520

  17. The Effect of Bi on the Selective Oxide Formation on CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Oh, Jonghan; Cho, Lawrence; Kim, Myungsoo; Kang, Kichul; De Cooman, Bruno C.

    2016-11-01

    The effect of Bi addition on the selective oxidation and the galvanizability of CMnSi transformation-induced plasticity (TRIP) steels was studied by hot dip galvanizing laboratory simulations. Bi-added TRIP steels were intercritically annealed at 1093 K (820 °C) and galvanized in a 0.22 wt pct Al-containing Zn bath. The oxide morphology was investigated by scanning electron microscopy, transmission electron microscopy, and 3D atom probe tomography. Bi formed a Bi-enriched surface layer during the intercritical annealing. A decrease of the oxygen permeability was observed with increasing Bi addition. The internal oxidation was suppressed in Bi-added CMnSi TRIP steel. The surface oxide morphology was changed from a continuous layer morphology to a more lens-shaped morphology. The galvanizability of the Bi-added TRIP steel was improved by the combination of the change of the oxide morphology and the dissolution of the Bi-enriched surface layer during immersion of the strip in the Zn bath.

  18. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE.

    PubMed

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-09-06

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

  19. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE

    PubMed Central

    Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika

    2017-01-01

    The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown. PMID:28878186

  20. Autocrine Extra-Pancreatic Trypsin 3 Secretion Promotes Cell Proliferation and Survival in Esophageal Adenocarcinoma

    PubMed Central

    Han, Song; Lee, Constance W.; Trevino, Jose G.; Hughes, Steven J.; Sarosi, George A.

    2013-01-01

    Trypsin or Tumor associated trypsin (TAT) activation of Protease-activated receptor 2 (PAR-2) promotes tumor cell proliferation in gastrointestinal cancers. The role of the trypsin/PAR-2 network in esophageal adenocarcinoma (EA) development has not yet been investigated. The aim of this study is to investigate the role of trypsin/PAR-2 activation in EA tumorogenesis and therapy. We found that esophageal adenocarcinoma cells (EACs) and Barrett’s Metaplasia (BART) expressed high levels of type 3 extra-pancreatic trypsinogen (PRSS3), a novel type of TAT. Activity of secreted trypsin was detected in cultured media from EA OE19 and OE33 cultures but not from BART culture. Surface PAR-2 expression in BART and EACs was confirmed by both flow cytometry and immunofluorescence. Trypsin induced cell proliferation (∼ 2 fold; P<0.01) in all tested cell lines at a concentration of 10 nM. Inhibition of PAR-2 activity in EACs via the PAR-2 antagonist ENMD (500 µM), anti-PAR2 antibody SAM-11 (2 µg/ml), or siRNA PAR-2 knockdown, reduced cell proliferation and increased apoptosis by up to 4 fold (P<0.01). Trypsin stimulation led to phosphorylation of ERK1/2, suggesting involvement of MAPK pathway in PAR-2 signal transduction. Inhibition of PAR-2 activation or siRNA PAR-2 knockdown in EACs prior to treatment with 5 FU reduced cell viability of EACs by an additional 30% (P<0.01) compared to chemotherapy alone. Our data suggest that extra-pancreatic trypsinogen 3 is produced by EACs and activates PAR-2 in an autocrine manner. PAR-2 activation increases cancer cell proliferation, and promotes cancer cell survival. Targeting the trypsin activated PAR-2 pathway in conjunction with current chemotherapeutic agents may be a viable therapeutic strategy in EA. PMID:24146905

  1. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    PubMed

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  2. Hastatic Order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Chandra, Premala; Coleman, Piers; Flint, Rebecca

    2012-02-01

    The hidden order that develops below 17.5K in URu2Si2 has eluded identification for twenty-five years. Here we show that the recent observation of Ising quasiparticles in URu2Si2 suggests a novel ``hastatic order'' (Latin:spear),with a two-component order parameter describing hybridization between electrons and the Ising 5f^2 states of the uranium atoms. Hastatic order breaks time-reversal symmetry by mixing states of different Kramers parity; this accounts for the magnetic anomalies observed in torque magnetometry and the pseudo-Goldstone mode observed in neutron scattering. Hastatic order is predicted to induce a basal-plane magnetic moment of order 0.01μB, a gap to longitudinal spin fluctuations that vanishes continuously at the first-order antiferromagnetic transition and a narrow resonant nematic feature in the scanning tunneling spectra.

  3. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  4. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Marri, Ivan; Degoli, Elena; Ossicini, Stefano

    2017-12-01

    Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.

  6. Bismuth-Indium-Sodium two-dimensional compounds on Si(111) surface

    NASA Astrophysics Data System (ADS)

    Denisov, N. V.; Alekseev, A. A.; Utas, O. A.; Azatyan, S. G.; Zotov, A. V.; Saranin, A. A.

    2017-12-01

    Using scanning tunneling microscopy (STM) observations, it has been found that room temperature (RT) deposition of Na onto the (Bi,In)/Si(111) surfaces, namely the 2 × 2 and √7 × √7, induces formation of a joint bismuth-indium-sodium structure without changing of the initial periodicity. For the 2 × 2-(Bi,In), Na atoms ;conceal; defects and domain boundaries, while the √7 × √7-(Bi,In) is reconstructed into the new Si(111)√7 × √7-(Bi,In,Na) structure. The first structure is temperature unstable, but the √7 × √7-(Bi,In,Na) is thermostable and can be formed by ordinary codeposition of the metals onto the Si(111)7 × 7 surface followed by annealing at 350-360 °C. Scanning tunneling spectroscopy (STS) has demonstrated that the √7 × √7-(Bi,In,Na) is semiconductor with a ∼0.5 eV energy gap. The structural model of the √7 × √7-(Bi,In,Na) has been proposed on the basis of DFT calculations and comparison of simulated and experimental STM images as well as density of states (DOS) and STS spectra.

  7. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions.

    PubMed

    Jahnke, Cosima; Gebker, Rolf; Manka, Robert; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-04-01

    This study determined the value of navigator-gated 3-dimensional blood oxygen level-dependent (BOLD) cardiac magnetic resonance (CMR) at 3.0-T for the detection of stress-induced myocardial ischemic reactions. Although BOLD CMR has been introduced for characterization of myocardial oxygenation status, previously reported CMR approaches suffered from a low signal-to-noise ratio and motion-related artifacts with impaired image quality and a limited diagnostic value in initial patient studies. Fifty patients with suspected or known coronary artery disease underwent CMR at 3.0-T followed by invasive X-ray angiography within 48 h. Three-dimensional BOLD images were acquired during free breathing with full coverage of the left ventricle in a short-axis orientation. The BOLD imaging was performed at rest and under adenosine stress, followed by stress and rest first-pass perfusion and delayed enhancement imaging. Quantitative coronary X-ray angiography (QCA) was used for coronary stenosis definition (diameter reduction > or =50%). The BOLD and first-pass perfusion images were semiquantitatively evaluated (for BOLD imaging, signal intensity differences between stress and rest [DeltaSI]; for perfusion imaging, myocardial perfusion reserve index [MPRI]). The image quality of BOLD CMR at rest and during adenosine stress was considered good to excellent in 90% and 84% of the patients, respectively. The DeltaSI measurements differed significantly between normal myocardium, myocardium supplied by a stenotic coronary artery, and infarcted myocardium (p < 0.001). The receiver-operator characteristic analysis identified a cutoff value of DeltaSI = 2.7% for the detection of coronary stenosis, resulting in a sensitivity and specificity of 85.0% and 80.5%, respectively. An MPRI cutoff value of 1.35 yielded a sensitivity and specificity of 89.5% and 85.8%, respectively. The DeltaSI significantly correlated with the degree of coronary stenosis (r = -0.65, p < 0.001). Additionally, DeltaSI and MPRI showed substantial agreement (kappa value 0.66). Navigator-gated 3-dimensional BOLD imaging at 3.0-T reliably detected stress-induced myocardial ischemic reactions and may be considered a valid alternative to first-pass exogenous contrast-enhancement studies. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of fracture toughness of ZrO 2 and Si 3N 4 engineering ceramics following CO 2 and fibre laser surface treatment

    NASA Astrophysics Data System (ADS)

    Shukla, P. P.; Lawrence, J.

    2011-02-01

    The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.

  9. Enhancing Raman signals through electromagnetic hot zones induced by magnetic dipole resonance of metal-free nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li

    2017-11-01

    In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.

  10. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance.

    PubMed

    Ferrando, Carlos; Suárez-Sipmann, Fernando; Gutierrez, Andrea; Tusman, Gerardo; Carbonell, Jose; García, Marisa; Piqueras, Laura; Compañ, Desamparados; Flores, Susanie; Soro, Marina; Llombart, Alicia; Belda, Francisco Javier

    2015-01-13

    The stress index (SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg(-1), P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat- and SI-groups respectively, without differences in overinflated lung areas at end- inspiration in both groups. Cytokines and histopathology showed no differences. Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance.

  11. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis.

    PubMed

    Wang, Zhenzhen; Wang, Chunming; Liu, Shang; He, Wei; Wang, Lintao; Gan, JingJing; Huang, Zhen; Wang, Zhenheng; Wei, Haoyang; Zhang, Junfeng; Dong, Lei

    2017-02-28

    A corona is a layer of macromolecules formed on a nanoparticle surface in vivo. It can substantially change the biological identity of nanomaterials and possibly trigger adverse responses from the body tissues. Dissecting the role of the corona in the development of a particular disease may provide profound insights for understanding toxicity of nanomaterials in general. In our present study, we explored the capability of different silica nanoparticles (SiNPs) to induce silicosis in the mouse lung and analyzed the composition of coronas formed on these particles. We found that SiNPs of certain size and surface chemistry could specifically recruit transforming growth factor β1 (TGF-β1) into their corona, which subsequently induces the development of lung fibrosis. Once embedded into the corona on SiNPs, TGF-β1 was remarkably more stable than in its free form, and its fibrosis-triggering activity was significantly prolonged. Our study meaningfully demonstrates that a specific corona component on a certain nanoparticle could initiate a particular pathogenic process in a clinically relevant disease model. Our findings may shed light on the understanding of molecular mechanisms of human health risks correlated with exposure to small-scale substances.

  12. Investigation on thermodynamics of ion-slicing of GaN and heterogeneously integrating high-quality GaN films on CMOS compatible Si(100) substrates.

    PubMed

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Runchun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2017-11-08

    Die-to-wafer heterogeneous integration of single-crystalline GaN film with CMOS compatible Si(100) substrate using the ion-cutting technique has been demonstrated. The thermodynamics of GaN surface blistering is in-situ investigated via a thermal-stage optical microscopy, which indicates that the large activation energy (2.5 eV) and low H ions utilization ratio (~6%) might result in the extremely high H fluence required for the ion-slicing of GaN. The crystalline quality, surface topography and the microstructure of the GaN films are characterized in detail. The full width at half maximum (FWHM) for GaN (002) X-ray rocking curves is as low as 163 arcsec, corresponding to a density of threading dislocation of 5 × 10 7  cm -2 . Different evolution of the implantation-induced damage was observed and a relationship between the damage evolution and implantation-induced damage is demonstrated. This work would be beneficial to understand the mechanism of ion-slicing of GaN and to provide a platform for the hybrid integration of GaN devices with standard Si CMOS process.

  13. Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals

    NASA Astrophysics Data System (ADS)

    Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B.

    2003-11-01

    A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the dc transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a prefabricated substrate which incorporates a gate dielectric (SiO2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm2/V s and is nearly temperature independent above ˜150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.

  14. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells

    PubMed Central

    Poreba, M. A.; Dong, C. X.; Li, S. K.; Stahl, A.; Miner, J. H.

    2012-01-01

    The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [3H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4−/− and cluster-of-differentiation 36 (CD36)−/− mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific 3H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [3H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05–0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05–0.01). FATP4−/− mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36−/− mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear. PMID:22871340

  15. Monitoring impacts of air pollution: PIXE analysis and histopathological modalities in evaluating relative risks of elemental contamination.

    PubMed

    Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad

    2014-04-01

    Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.

  16. Defect-induced room temperature ferromagnetism in silicon carbide nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Guijin; Wu, Yanyan; Ma, Shuyi; Fu, Yujun; Gao, Daqiang; Zhang, Zhengmei; Li, Jinyun

    2018-07-01

    Silicon carbide (SiC) nanosheets with different sizes and thickness were synthesized by a liquid exfoliation method by varying the exfoliating time in the N, N-dimethylformamide organic solvent. During the exfoliating time increasing from 4 to 16 h, the size of the SiC nanosheets decreases gradually from 500 to 200 nm, and the thickness decreases from 9 to 3.5 nm. Results showed that all prepared SiC nanosheets show intrinsic room temperature ferromagnetism, which is greatly different to the diamagnetism nature of virgin bulk SiC. Moreover, the saturation magnetization of the SiC nanosheets increases monotonously from 0.005 to 0.018 emu/g as the size and thickness decrease. Further studies via transmission electron microscopy, superconducting quantum interference device, and electron spin resonance revealed that the origin of the ferromagnetism in SiC nanosheets might be attributed to the defects with carbon dangling bond on the surface of nanosheets.

  17. Subatomic electronic feature from dynamic motion of Si dimer defects in Bi nanolines on Si(001)

    NASA Astrophysics Data System (ADS)

    Kirkham, C. J.; Longobardi, M.; Köster, S. A.; Renner, Ch.; Bowler, D. R.

    2017-08-01

    Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect-free Bi nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the Bi nanoline at positive biases and as atomic size beads at negative biases. Density functional theory (DFT) simulations show that these features can be attributed to buckled Si dimers substituting for Bi dimers in the nanoline, where the sharp feature is the counterintuitive signature of these dimers flipping during scanning. The perfect correspondence between the STM data and the DFT simulation demonstrated in this paper highlights the detailed understanding we have of the complex Bi-Si(001) Haiku system. This discovery has applications in the patterning of Si dangling bonds for nanoscale electronics.

  18. Impairment of chemical clearance and mucosal integrity distinguishes hypersensitive esophagus from functional heartburn.

    PubMed

    Frazzoni, Marzio; de Bortoli, Nicola; Frazzoni, Leonardo; Furnari, Manuele; Martinucci, Irene; Tolone, Salvatore; Farioli, Andrea; Marchi, Santino; Fuccio, Lorenzo; Savarino, Vincenzo; Savarino, Edoardo

    2017-04-01

    Hypersensitive esophagus (HE) is defined by endoscopy-negative heartburn with a normal acid exposure time but positive symptom association probability (SAP) and/or symptom index (SI) on impedance-pH monitoring, and proton pump inhibitor (PPI) responsiveness. Functional heartburn (FH) is distinguished by negative SAP/SI and PPI refractoriness. The clinical value of SAP and SI has been questioned. We aimed to investigate whether impairment of chemical clearance and of mucosal integrity, expressed by the postreflux swallow-induced peristaltic wave (PSPW) index and the mean nocturnal baseline impedance (MNBI), characterize HE independently of SAP and SI. Impedance-pH tracings from PPI-responsive endoscopy-negative patients, 125 with nonerosive reflux disease and 108 with HE, distinguished by an abnormal and a normal acid exposure time, and from 70 patients with FH were retrospectively selected and blindly reviewed. The mean PSPW index and MNBI were significantly lower in nonerosive reflux disease (30 %, 1378 Ω) than in HE (51 %; 2274 Ω) and in both of them as compared with FH (76 %; 3445 Ω) (P = 0.0001). Both the PSPW index (adjusted odds ratio 0.863, P = 0.001) and the MNBI (adjusted odds ratio 0.998, P = 0.001) were independent predictors of HE; with their combined assessment, the area under the curve on receiver operating characteristic analysis was 0.957. SAP and/or SI was positive in 67 of the 108 HE patients (62 %), whereas the PSPW index and/or MNBI was abnormal in 99 of the 108 HE patients (92 %; P < 0.0001). HE is characterized by impairment of chemical clearance and mucosal integrity, which explains the increased reflux perception. When SAP and SI afford uncertain results, the PSPW index and MNBI should be analyzed.

  19. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  20. Processing of In-Situ Al-AlN Metal Matrix Composites via Direct Nitridation Method

    DTIC Science & Technology

    1998-04-01

    to prepare the aluminum melts with desired chemical compositions. Table 1. Chemical compositions of the starting materials. Alloy Mg Fe Cr Si Ni Al...Al 0.001 0.11 0.001 0.04 0.005 bal. Alloy Al Fe Cr Si Ni Mg Mg 0.01 0.12 0.001 0.03 0.006 bal. The ingots were initially cut to chunks with...hours. Figure 26 shows the optical micrographs obtained from the ingots after nitridation reaction of the alloys initially containing Al- 5wt .% Si

Top