Sample records for sic fiber preforms

  1. Microstructure and Tensile Properties of BN/SiC Coated Hi-Nicalon, and Sylramic SiC Fiber Preforms. Revised

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.

    2002-01-01

    Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS), and 8-harness satin (8HS). Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0 deg" fibers giving rise to hysteretic behavior. For the Hi-Nicalon preform specimens, the onset of "0 deg" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0 deg" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. TEM analysis indicates that the CVI BN interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.

  2. Microstructure and Tensile Properties of BN/SiC Coated Hi-Nicalon, and Sylramic SiC Fiber Preforms

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.

    2001-01-01

    Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS) and 8-harness satin (8HS) Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0" fibers giving rise to hysteretic behavior, For the Hi-Nicalon preform specimens, the onset of "0" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. Transmission Electron Microscope (TEM) analysis indicates that the Chemical Vapor Infiltration (CVI) Boron Nitride (BN) interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.

  3. Interfacial Thickness Guidelines for SiC(Fiber)/SiC(Matrix) Composites

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1998-01-01

    Researchers at the NASA Lewis Research Center have developed a guideline for the interface thickness necessary for SiC(Fiber)/SiC(Matrix) composites to demonstrate good composite properties. These composite materials have potential commercial applications for high-temperature structural components such as engine hot sections. Several samples of each were composed from three different small-diameter (less than 20 mm), polymer-derived SiC fibers that were woven into two-dimensional cloths and laid up as preforms. The preforms were treated with a chemical-vapor-infiltrated boron nitride layer as an interfacial coating on the fiber surfaces to provide the necessary debonding characteristics for successful composite behavior. Then, the preforms were filled with additional SiC as a matrix phase.

  4. Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; DiCarlo, James A.

    2004-01-01

    Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix process typically has to be conducted at temperatures below 1100 C, which results in a SiC matrix that is fairly dense, but contains metastable atomic defects and is nonstoichiometric because of a small amount of excess silicon. Because these defects typically exist at the matrix grain boundaries, they can scatter thermal phonons and degrade matrix creep resistance by enhancing grain-boundary sliding. To eliminate these defects and improve the thermomechanical properties of ceramic composites with CVI SiC matrices, researchers at the NASA Glenn Research Center developed a high-temperature treatment process that can be used after the CVI SiC matrix is deposited into the fiber preform.

  5. Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Fox, D. S.

    2003-01-01

    SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.

  6. Design Curve Generation for 3D SiC Fiber Architecture

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; Dicarlo, James A.

    2014-01-01

    The design tool provides design curves that allow a simple and quick way to examine multiple factors that can influence the processing and key properties of the preforms and their final SiC-reinforced ceramic composites without over obligating financial capital for the fabricating of materials. Tool predictions for process and fiber fraction properties have been validated for a HNS 3D preform.The virtualization aspect of the tool will be used to provide a quick generation of solid models with actual fiber paths for finite element evaluation to predict mechanical and thermal properties of proposed composites as well as mechanical displacement behavior due to creep and stress relaxation to study load sharing characteristic between constitutes for better performance.Tool predictions for the fiber controlled properties of the SiCSiC CMC fabricated from the HNS preforms will be valuated and up-graded from the measurements on these CMC

  7. Method of preparing fiber reinforced ceramic material

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T. (Inventor)

    1987-01-01

    Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.

  8. Improving Thermomechanical Properties of SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.

    2006-01-01

    Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.

  9. Issues on Fabrication and Evaluation of SiC/SiC Tubes With Various Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Fox, D. S.

    2004-01-01

    SiC/SiC engine components, high-modulus Sylramic-iBN SiC fiber tows were used to form nine different tubular architectural preforms with 13 mm (0.5 in.) inner diameter and lengths of approx. 75 and 230 mm (approx. 3 and approx, 9 in.). The thin-walled preforms were then coated with a BN interphase and densified with a hybrid SiC matrix using nearly the same process steps previously established for slurry-cast melt-infiltrated Sylramic-iBN/BN/SiC flat panels. The as-fabricated CMC tubes were microstructurally evaluated and tested for tensile hoop and flexural behavior, and some of the tubes were also tested in a low-pressure burner rig test with a high thru-thickness thermal gradient. To date, four general tube scale-up issues have been identified: greater CVI deposits on outer wall than inner wall; increased ply thickness and reduced fiber fraction; poor test standards for accurately determining the hoop strength of a small-diameter tube; and poor hoop strength for architectures with seams or ply ends. The underlying mechanisms and possible methods for their minimization are discussed.

  10. New High-Performance SiC Fiber Developed for Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer creates a more environmentally durable fiber surface not only because a more oxidation-resistant BN is formed, but also because this layer provides a physical barrier between contacting fibers with oxidation-prone SiC surface layers (refs. 3 and 4). This year, Glenn demonstrated that the in situ BN treatment can be applied simply to Sylramic fibers located within continuous multifiber tows, within woven fabric pieces, or even assembled into complex product shapes (preforms). SiC/SiC ceramic composite panels have been fabricated from Sylramic-iBN fabric and then tested at Glenn within the Ultra-Efficient Engine Technology Program. The test conditions were selected to simulate those experienced by hot-section components in advanced gas turbine engines. The results from testing at Glenn demonstrate all the benefits expected for the Sylramic-iBN fibers. That is, the composites displayed the best thermostructural performance in comparison to composites reinforced by Sylramic fibers and by all other currently available high-performance SiC fiber types (refs. 3 and 5). For these reasons, the Ultra-Efficient Engine Technology Program has selected the Sylramic-iBN fiber for ongoing efforts aimed at SiC/SiC engine component development.

  11. SiC Composite Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Verilli, Michael J.

    2006-01-01

    Turbine inlet guide vanes have been fabricated from composites of silicon carbide fibers in silicon carbide matrices. A unique design for a cloth made from SiC fibers makes it possible to realize the geometric features necessary to form these vanes in the same airfoil shapes as those of prior metal vanes. The fiber component of each of these vanes was made from SiC-fiber cloth coated with boron nitride. The matrix was formed by chemical-vapor infiltration with SiC, then slurry-casting of SiC, followed by melt infiltration with silicon. These SiC/SiC vanes were found to be capable of withstanding temperatures 400 F (222 C) greater than those that can be withstood by nickel-base-superalloy turbine airfoils now in common use in gas turbine engines. The higher temperature capability of SiC/SiC parts is expected to make it possible to use them with significantly less cooling than is used for metallic parts, thereby enabling engines to operate more efficiently while emitting smaller amounts of NOx and CO. The SiC/SiC composite vanes were fabricated in two different configurations. Each vane of one of the configurations has two internal cavities formed by a web between the suction and the pressure sides of the vane. Each vane of the other configuration has no web (see Figure 1). It is difficult to fabricate components having small radii, like those of the trailing edges of these vanes, by use of stiff stoichiometric SiC fibers currently preferred for SiC/SiC composites. To satisfy the severe geometric and structural requirements for these vanes, the aforementioned unique cloth design, denoted by the term Y-cloth, was conceived (see Figure 2). In the regions away from the trailing edge, the Y-cloth features a fiber architecture that had been well characterized and successfully demonstrated in combustor liners. To form a sharp trailing edge (having a radius of 0.3 mm), the cloth was split into two planes during the weaving process. The fiber tows forming the trailing-edge section were interlocked, thereby enhancing through-thickness strength of the resulting composite material. For vanes of the webless configuration, each made from a layup of six plies of Ycloth, the length of each Y-cloth layer was cut so that the two strips corresponding to the aforementioned two planes would wrap around the perimeter of a graphite vane preform tool with a 10-mm overlap. The overlap was used to join the two strips in a fringe splice. To make the external sixth ply, a standard woven cloth was cut to the required final length and a fringe splice joined the two ends of the cloth at the trailing edge. The cloth was then prepregged. The entire assembly was then placed into an aluminum compaction tool designed to form the outer net shape of the vane. After the prepreg material was allowed to dry, the preform was removed from the aluminum tooling and placed into an external graphite tool before being shipped to a vendor for matrix infiltration. To make the SiC fiber preform for a vane having an internal web, a slightly different initial approach was followed. Each of two sections forming the internal cavities (and ultimately the web) was created by first slipping two concentric layers of a two-dimensional, 2-by-2, 45 - braided tube around a net-shape graphite mandrel. The tubes on both mandrels were prepregged and allowed to dry. The resulting two subassemblies were put together, then four additional plies were wrapped around them in the same fashion as that described above for the six plies of the vaneless configuration. The consolidation of the SiC fiber preforms into SiC/SiC composite parts was performed by commercial vendors using their standard processes. The capability of two of the webless SiC/SiC turbine vanes was demonstrated in tests in a turbine environment. The tests included 50 hours of steady-state operation and 102 two-minute thermal cycles. A surface temperature of 1,320 C was reached during the tests.

  12. Thermo-Mechanical Properties of SiC/SiC Composites with Hybrid CVI-PIP Matrices

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; DiCarlo, J. A.

    2004-01-01

    For long term structural service, the upper temperature capability for slurry-cast melt infiltrated (MI) SiC/SiC composites is limited to approx. 1315 C because of silicon reaction with the SiC fibers. For applications requiring material temperatures in excess of 1315 C, alternate methods of manufacturing the SiC matrices without silicon are being investigated, such as a hybrid combination of CVI and PIP. In this study, stacked fabric plies of Sylramic i-BN SiC fibers were coated with a CVI BN interface layer followed by a partial CVI SiC matrix. The remaining porosity in the SiC/SiC preforms was then infiltrated with silicon carbide matrix by PIP. Thermo-mechanical property measurements indicate that these composites are stable to 1700 C in inert environments under no load conditions for 100 h and under load conditions to 1450 C in air for 300 h. The advantages, disadvantages, and potential of this composite system for high temperature applications will be discussed.

  13. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  14. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  15. High-volume-fraction Cu/Al2O3-SiC hybrid interpenetrating phase composite

    NASA Astrophysics Data System (ADS)

    Saidi, Hesam; Roudini, Ghodratollah; Afarani, Mahdi Shafiee

    2015-10-01

    Metal matrix particulate interpenetrating phase composites are a class of composites materials with three-dimensional internal connections of matrix and reinforcements. This kind of microstructure affects the mechanical and physical properties of the composites. In this study, Al2O3-SiC hybrid preforms were produced by polyurethane foams removal (replica method) within mean pore size of 30 pores per inch (ppi), and sintering at 1200 °C. Subsequently, the molten copper was infiltrated into the preforms by squeeze casting method. The microstructure, density, porosity, bending strength and thermal shock resistance of the preforms were investigated. Then, the composites microstructure and compressive strength were studied. The results showed that with SiC concentration increasing, the density, flexural strength and thermal shock resistance of the preforms were improved. Also the composites compressive strengths were changed with variation of SiC concentration.

  16. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2 percent) were achieved, the latter being far lower than that achieved with SiC matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  17. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC fiber with 20 times more creep resistance than the Sylramic-iBN fiber,which in turn would allow SiCSiC CMC to operate up to 2700oF and above, thereby further enhancing the performancebenefits of SiCSiC components in aero-propulsion engines. It was also envisioned that the fiber processes developedduring Phase II efforts would not only reduce production costs for the UHT fiber by using low-cost precursor fibers andcombined processes, but also allow the UHT fibers to be directly produced in preforms of the precursor fibers, possibly atthe facilities of the CMC fabricator.

  18. Eliminating crystals in non-oxide optical fiber preforms and optical fibers

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)

    2010-01-01

    A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.

  19. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    PubMed

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.

  20. High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.

  1. Methods for producing silicon carbide architectural preforms

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Yun, Hee (Inventor)

    2010-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  2. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  3. Clad fiber capacitor and method of making same

    DOEpatents

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  4. Predicting fiber refractive index from a measured preform index profile

    NASA Astrophysics Data System (ADS)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  5. Methods for Producing High-Performance Silicon Carbide Fibers, Architectural Preforms, and High-Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    Yun, Hee-Mann (Inventor); DiCarlo, James A. (Inventor)

    2014-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  6. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    NASA Astrophysics Data System (ADS)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  7. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOEpatents

    Caputo, A.J.; Devore, C.E.; Lowden, R.A.; Moeller, H.H.

    1990-01-23

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited. 6 figs.

  8. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOEpatents

    Caputo, Anthony J.; Devore, Charles E.; Lowden, Richard A.; Moeller, Helen H.

    1990-01-01

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited.

  9. Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay

    2004-01-01

    Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.

  10. Angle-Ply Weaving

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  11. Method for rapid fabrication of fiber preforms and structural composite materials

    DOEpatents

    Klett, James W.; Burchell, Timothy D.; Bailey, Jeffrey L.

    1998-01-01

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphitized at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

  12. Method for rapid fabrication of fiber preforms and structural composite materials

    DOEpatents

    Klett, J.W.; Burchell, T.D.; Bailey, J.L.

    1998-04-28

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2,000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2,400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

  13. Method for rapid fabrication of fiber preforms and structural composite materials

    DOEpatents

    Klett, J.W.; Burchell, T.D.; Bailey, J.L.

    1999-02-16

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.

  14. Method for rapid fabrication of fiber preforms and structural composite materials

    DOEpatents

    Klett, James W.; Burchell, Timothy D.; Bailey, Jeffrey L.

    1999-01-01

    A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphite at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.

  15. Graphite Fiber Textile Preform/Copper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Bruce; Bass, Lowell

    1996-01-01

    Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.

  16. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    NASA Astrophysics Data System (ADS)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  17. Study of glass preforms for glass fiber optics applications (study of space processing of ceramic materials). [light transmission

    NASA Technical Reports Server (NTRS)

    Wang, F. F. Y.

    1974-01-01

    The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included.

  18. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Loos, Alfred C.

    2000-01-01

    Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.

  19. Low Density Resin Impregnated Ceramic Article Having an Average Density of 0.15 to 0.40 G/CC

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)

    1996-01-01

    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a fired preform of ceramic fibers. The fibers of the ceramic preform are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a fired preform of ceramic fibers; immersing the preform of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.

  20. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  1. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  2. Effect of high temperature annealing on the microstructure of SCS-6 SiC fibers

    NASA Technical Reports Server (NTRS)

    Ning, X. J.; Pirouz, P.; Bhatt, R. T.

    1992-01-01

    The effect of annealing the SCS-6 SiC fiber for one hour at 2000 C in an argon atmosphere is reported. The SiC grains in the fiber coarsen appreciably and the intergranular carbon films segregate to the grain junctions. It would appear that grain growth in the outer part of the fiber is primarily responsible for the loss in fiber strength and improvement in fiber creep resistance.

  3. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    PubMed

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-19

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  4. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Other Fibers... SIC 2823 cellulosic man-made fibers, except Rayon, and SIC 2824 synthetic organic fibers including...

  5. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Other Fibers... SIC 2823 cellulosic man-made fibers, except Rayon, and SIC 2824 synthetic organic fibers including...

  6. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Other Fibers... SIC 2823 cellulosic man-made fibers, except Rayon, and SIC 2824 synthetic organic fibers including...

  7. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Other Fibers... SIC 2823 cellulosic man-made fibers, except Rayon, and SIC 2824 synthetic organic fibers including...

  8. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  9. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, George C.

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  10. SBIR-Long fluoride fiber

    NASA Astrophysics Data System (ADS)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  11. Efficient Permeability Measurement and Numerical Simulation of the Resin Flow in Low Permeability Preform Fabricated by Automated Dry Fiber Placement

    NASA Astrophysics Data System (ADS)

    Agogue, Romain; Chebil, Naziha; Deleglise-Lagardere, Mylène; Beauchene, Pierre; Park, Chung Hae

    2017-10-01

    We propose a new experimental method using a Hassler cell and air injection to measure the permeability of fiber preform while avoiding a race tracking effect. This method was proven to be particularly efficient to measure very low through-thickness permeability of preform fabricated by automated dry fiber placement. To validate the reliability of the permeability measurement, the experiments of viscous liquid infusion into the preform with or without a distribution medium were performed. The experimental data of flow front advancement was compared with the numerical simulation result using the permeability values obtained by the Hassler cell permeability measurement set-up as well as by the liquid infusion experiments. To address the computational cost issue, the model for the equivalent permeability of distribution medium was employed in the numerical simulation of liquid flow. The new concept using air injection and Hassler cell for the fiber preform permeability measurement was shown to be reliable and efficient.

  12. Thermomechanical Performance of Si-Ti-C-O and Sintered SiC Fiber-Bonded Ceramics at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay

    2011-01-01

    The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stressmore » decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.« less

  13. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  14. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS... classified under SIC 2823 cellulosic man-made fibers, except Rayon, and SIC 2824 synthetic organic fibers...

  15. Carbothermal synthesis of coatings on silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Chen, Linlin

    Four kinds of protective coatings---carbide derived carbon (CDC), boron nitride (BN), Al-O-N and BN doped Al-O-N (BAN) have been successfully synthesized on the surface of SiC fibers on the target to enhance the mechanical properties and oxidation resistance of the coated SiC fibers for the application as the reinforcements in the Ceramic Matrix Composites (CMCs) in the high temperatures. First of all, CDC coatings have been uniformly produced on Tyranno ZMI SiC fibers with good thickness control within nanometer accuracy by the chlorination in the temperature range of 550--700°C at atmospheric pressure. Kinetics of the carbon coating growth on the fibers has been systematically studied and thus a good foundation was set up for the further coating synthesis. BN coatings have been synthesized on the surface of SiC powders, fibers and fabrics by a novel carbothermal nitridation method. Non-bridging has been achieved in the BN-coated fiber tows by the nitridation in ammonia at atmospheric pressure in a temperature below 1200°C, which is lower compared to the traditional BN synthesis method and does not cause the degradation of the coated-fibers. BN coatings on the carbon nanotubes have also been formed and unlike the common methods, no additional dopant (such as metal catalyst) is introduced into the system during the BN coatings syntheses, thus the contamination of the final product is avoided. A novel Al-O-N coating has been explored with the most impressive point is that a more than 65% improvement in the tensile strength (up to ˜5.1GPa) and a three-time increase in the Weibull modulus compared to the as-received fibers are resulted by the formation of 200nm Al-O-N coating on the SiC fibers. It exceeds the strength of all other small diameter SiC fibers reported in the literature. Furthermore, BAN coating has also been produced on the surface of SiC fibers and about 20% enhancement in mechanical strength is achieved compared to that of the original fibers. Oxidation experiments of the SiC fibers with four kinds of coatings under 1000°C and 1200°C in air have been carried out and better oxidation resistance of the coated fibers are presented compared to the as-received fibers. In summary, exploration of various coatings synthesis for the SiC fibers has been successfully conducted in this work. The coating material suitable for the SiC fibers should be chosen properly according to its specific application in the CFCCs and well thickness-control to meet the corresponding requirements.

  16. Microstructure, hardness and modulus of carbon-ion-irradiated new SiC fiber (601-4)

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Lei, Guanhong; Liu, Renduo; Li, Jianjian; Yan, Long; Li, Cheng; Liu, Weihua; Wang, Mouhua

    2018-05-01

    Two types of SiC fibers, one is low-oxygen and carbon-rich fiber denoted by 601-4 and the other is low-oxygen and near-stoichiometric Tyranno SA, were irradiated with 450 keV C+ ions at room temperature. The Raman spectra indicate that irradiation induced distortion and amorphization of SiC crystallites in fibers. TEM characterization of Tyranno SA suggests that SiC crystallites undergo a continued fragmentation into smaller crystalline islands and a continued increase of surrounding amorphous structure. The SiC nano-crystallites (<15 nm) in 601-4 fiber are more likely to be amorphized than larger crystallites (∼200 nm) in Tyranno SA. The hardness and modulus of 601-4 continuously decreases with increasing fluence, while that of Tyranno SA first increases and then decreases.

  17. Thermal degradation study of silicon carbide threads developed for advanced flexible thermal protection systems

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim; Sawko, Paul M.

    1992-01-01

    Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.

  18. Reactive Processing of Environment Conscious, Biomorphic Ceramics: A Novel and Eco-friendly Route to Advanced Ceramic

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2002-01-01

    Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.

  19. Improved C/SiC Ceramic Composites Made Using PIP

    NASA Technical Reports Server (NTRS)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.

  20. Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2016-01-01

    In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332

  1. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOEpatents

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  2. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.

    1993-01-01

    This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.

  3. Processing and Properties of SiC/MoSi2-SiC Composites Fabricated by Melt Infiltration

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hebsur, Mohan G.

    2000-01-01

    Hi-Nicalon SiC fiber reinforced MoSi2-SiC matrix composites (SiC/MoSi2-SiC) have been fabricated by the melt infiltration approach. The composite consists of approximately 60 vol%, 2-D woven BN/SiC coated Hi-Nicalon SiC fibers and approximately 40 vol% MoSi2-SiC matrix. The room temperature tensile properties and thermal conductivity of the SiC/MoSi2-SiC composites were measured and compared with those of the melt infiltrated SiC/SiC composites. The influence oi fiber architecture on tensile properties was also evaluated. Results indicate that the primary modulus, stress corresponding to deviation from linearity, and transverse thermal conductivity values for the SiC/MoSi2-SiC composites are significantly lower than those for the SiC/SiC composites. Microcracking of the matrix due to the large difference in thermal expansion between MoSi2 and SiC appears to be the reason for the lower matrix dominated properties of SiC/MoSi2-SiC composites.

  4. A test for interfacial effects and stress transfer in ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A test specimen was devised for measuring stress transfer between a high modulus fiber and a ceramic matrix. Single filaments of SiC were embedded in chemically vapor deposited SiC on a thin plate of molybdenum. The CVD overcoating which encapsulated the fiber was continuous with a coating of SiC on the molybdenum. When placed in a microtensile test device and loaded in the fiber direction, the fiber fracture characteristics provide information on the fiber/matrix adhesion and stress transfer. Problems were encountered due to the formation of a weak boundary between the SiC and the molybdenum which obviated any meaningful tensile tests. Also, the high CVD temperature used in fabricating these specimens restrict the fiber, matrix (and substrate) to materials having similar thermal coefficients of expansion in order to minimize thermal stresses.

  5. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Gilatovs, G. J.; Lee, Bruce; Bass, Lowell

    1995-01-01

    Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior mechanical properties. Final batches of preforms, including a finned, near net shape tube, are being fabricated and will be infiltrated before summer.

  6. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  7. Article and method for making complex shaped preform and silicon carbide composite by melt infiltration

    NASA Technical Reports Server (NTRS)

    Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor); Szweda, Andrew (Inventor)

    2001-01-01

    Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.

  8. Article and method for making complex shaped preform and silicon carbide composite by melt infiltration

    NASA Technical Reports Server (NTRS)

    Szweda, Andrew (Inventor); Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor)

    2000-01-01

    Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.

  9. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  10. 40 CFR 414.11 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS General § 414.11 Applicability. (a) The provisions of... establishments that manufacture the organic chemicals, plastics, and synthetic fibers (OCPSF) products or product...-Made Fibers, (3) SIC 2824—Synthetic Organic Fibers, Except Cellulosic, (4) SIC 2865—Cyclic Crudes and...

  11. Microstructural and strength stability of a developmental CVD SiC fiber

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Garg, Anita; Hull, David R.

    1995-01-01

    The effects of thermal exposure on the room temperature tensile strength and microstructure of a developmental 50 micron CVD SiC fiber have been studied. The fibers were heat treated between 600 and 2000 C in 0.1 MPa argon and air environments for up to 100 hr. In the as-fabricated condition, the fibers showed approximately 6 GPa tensile strength. After argon treatment, the fibers showed strength degradation after 1 hr exposure beyond 1000 C, but those exposed between 1600 and 2000 C retained approximately 2 GPa strength. TEM results showed microstructural changes both in the surface coating and SiC sheath. Flaws created by the rearrangement of carbon in the surface coating and growth of equiaxed SiC grain zone in the SiC sheath are the suggested mechanisms of strength degradation. After air treatment, fibers showed strength degradation after only 2 min exposure at 600 C. Strength retention after 2 min at 1500 C was approximately 2 GPa. Oxidation of the surface coating is the primary reason for strength degradation.

  12. Method for producing melt-infiltrated ceramic composites using formed supports

    DOEpatents

    Corman, Gregory Scot; Brun, Milivoj Konstantin; McGuigan, Henry Charles

    2003-01-01

    A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

  13. Method for production of carbon nanofiber mat or carbon paper

    DOEpatents

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  14. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less

  15. Creep behavior for advanced polycrystalline SiC fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalonmore » CG (1110{degrees}C).« less

  16. Characterization of interfacial failure in SiC reinforced Si3N4 matrix composite material by both fiber push-out testing and Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Honecy, F. S.

    1990-01-01

    AES depth profiling and a fiber push-out test for interfacial shear-strength determination have been used to ascertain the mechanical/chemical properties of the fiber/matrix interface in SiC-reinforced reaction-bonded Si3N4, with attention to the weak point where interfacial failure occurs. In the cases of both composite fracture and fiber push-outs, the interfacial failure occurred either between the two C-rich coatings that are present on the double-coated SiC fibers, or between the inner C-rich coating and the SiC fiber. Interface failure occurs at points of very abrupt concentration changes.

  17. Optimization Of Fluoride Glass Fiber Drawing With Respect To Mechanical Strength

    NASA Astrophysics Data System (ADS)

    Schneider, H. W.; Schoberth, A.; Staudt, A.; Gerndt, Ch.

    1987-08-01

    Heavy metal fluoride fibers have attracted considerable attention recently as lightguides for infrared optical devices. Besides the optical loss mechanical performance of the fiber is of major interest. At present fiber strength suffers from surface crystallization prior to or during fiber drawing. We developed an etching method for the preparation of preforms with clean surface. Drawing these preforms under optimized conditions in a dry atmosphere results in fibers with improved strength. So far, mean value of 400 N/mm2 tensile strength have been achieved. Maximum values of 800 N/mm2 measured on etched fibers indicate an even higher strength potential for the material itself.

  18. Thermoplastic-carbon fiber hybrid yarn

    NASA Technical Reports Server (NTRS)

    Ketterer, M. E.

    1984-01-01

    Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.

  19. Black synthetic quartz glass layer for optical fiber cross-talk reduction fabricated by VAD method

    NASA Astrophysics Data System (ADS)

    Kobayashi, Soichi; Fukuda, Kaoru; Onishi, Gen; Fujii, Yusuke

    2016-09-01

    In this report the new black-glass fiber-preform fabricated by the vapor-phase axial deposition (VAD) method to realize high-resolution optical bundle fibers is discussed with the Energy Dispersive X-ray (EDX) analysis and the transmittance spectrum measurement. The black glass consists of SiO2, GeO2, Bi2O3 and Al2O3. Firstly, the rod-shaped soot of SiO2 and GeO2 is prepared by blowing SiCl4 and GeCl4 into the oxyhydrogen burner. Then the soot is dipped into the solution of the Bi and Al compounds. After drying the soot with Bi and Al penetrated, the soot is consolidated into the glass preform by heating with the carbon heater at 1650 degrees Celsius. The diameter of the obtained preform is 10.5 mm and the black glass layer thickness is 2.6 mm located at the periphery. The Bi concentration distribution shows the content of several wt% in the black glass layer. The black glass preform is drawn into the black optical fiber being expected to make a clear image because of no light leaking from the neighboring optical fibers as compared to the conventional fiber endoscope.

  20. Electron microscopy and microanalysis of the fiber-matrix interface in monolithic silicone carbide-based ceramic composite material for use in a fusion reactor application.

    PubMed

    Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka

    2008-01-01

    A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.

  1. Flow and Compaction During the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiao-Lan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2001-01-01

    The flow of an epoxy resin and compaction behavior of carbon fiber preform during vacuum- assisted resin transfer molding (VARTM) infiltration was measured using an instrumented tool. Composite panels were fabricated by the VARTM process using SAERTEX(R)2 multi-axial non- crimp carbon fiber fabric and the A.T.A.R.D. SI-ZG-5A epoxy resin. Resin pressure and preform thickness variation was measured during infiltration. The effects of the resin on the compaction behavior of the preform were measured. The local preform compaction during the infiltration is a combination of wetting and spring-back deformations. Flow front position computed by the 3DINFIL model was compared with the experimental data.

  2. High temperature ceramic articles having corrosion resistant coating

    DOEpatents

    Stinton, David P.; Lee, Woo Y.

    1997-01-01

    A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

  3. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  4. The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, M.L.; Kinney, J.H.; Zywicz, E.

    The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiCmore » at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.« less

  5. Electrospinning β-SiC fibers from SiC nanoparticles dispersed in various polymer solutions as the electrospinning agents

    NASA Astrophysics Data System (ADS)

    Fuad, A.; Fatriani, N.; Yogihati, C. I.; Taufiq, A.; Latifah, E.

    2018-04-01

    Silicon carbide (SiC) fibers were synthesized by electrospinning method from SiC nanoparticles dispersed in polymer solutions, i.e., polyethylene glycol (PEG) and polyvinyl alcohol (PVA). The SiC nanoparticle used in this research was synthesized from sucrose and natural silica via a sonochemical method. The natural silica was extracted from local pyrophyllite by a sol-gel method. The characterization was performed via x-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM). The XRD characterization results showed that the sample possessed a β-SiC phase and formed a cubic-structured crystal with a lattice parameter of a = b = c = 4.3448 Å. The use of PEG and PVA in the electrospinning process resulted in fractal and fiber structured SiC, respectively.

  6. High temperature ceramic articles having corrosion resistant coating

    DOEpatents

    Stinton, D.P.; Lee, W.Y.

    1997-09-30

    A ceramic article is disclosed which includes a porous body of SiC fibers, Si{sub 3}N{sub 4} fibers, SiC coated fibers or Si{sub 3}N{sub 4} coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body. 1 fig.

  7. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  8. Process for making silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  9. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  10. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  11. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.

    2014-01-01

    The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.

  12. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.

    PubMed

    Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei

    2015-02-01

    In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.

  13. Development of a low-cost, modified resin transfer molding process using elastomeric tooling and automated preform fabrication

    NASA Technical Reports Server (NTRS)

    Doane, William J.; Hall, Ronald G.

    1992-01-01

    This paper describes the design and process development of low-cost structural parts made by a modified resin transfer molding process. Innovative application of elastomeric tooling to increase laminate fiber volume and automated forming of fiber preforms are discussed, as applied to fabrication of a representative section of a cruise missile fuselage.

  14. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    PubMed

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  15. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2005-01-01

    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  16. A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles

    NASA Astrophysics Data System (ADS)

    Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet

    2018-02-01

    Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.

  17. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  18. Processes and applications of silicon carbide nanocomposite fibers

    NASA Astrophysics Data System (ADS)

    Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.

    2011-10-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  19. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  20. Method of making a continuous ceramic fiber composite hot gas filter

    DOEpatents

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  1. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Soskind, Michael G.; Li, Yuan; Harrington, James A.; Johnson, Eric G.

    2018-01-01

    A method to grow single crystal (SC) yttrium aluminum garnet (YAG) fibers with varied rare-earth ion dopant concentration has been proposed. Crystalline holmium aluminum garnet (HoAG), prepared via sol-gel process, was dip-coated on to previously grown SC YAG fibers. The HoAG coated SC YAG fiber preforms were re-grown to a smaller diameter using the laser heated pedestal growth (LHPG) technique. The final dopant concentration of the re-grown SC fiber was varied by changing the number of HoAG coatings on the preform. 120 μm diameter SC Ho:YAG fibers with four different dopant concentrations were grown. Lasing was demonstrated at 2.09 μm for these fibers. A maximum of 58.5% optical-to-optical slope efficiency was obtained.

  2. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  3. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  4. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  5. Effects of Processing Parameters on the Forming Quality of C-Shaped Thermosetting Composite Laminates in Hot Diaphragm Forming Process

    NASA Astrophysics Data System (ADS)

    Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.

    2013-10-01

    In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.

  6. Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1985-01-01

    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.

  7. Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1998-01-01

    The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.

  8. Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1998-01-01

    The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vo1% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 micron layer of boron nitride (BN) followed by a 0.2 micron layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.

  9. Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Dicarlo, J. A.; Bhatt, R. T.; Hurst, J. B.

    2008-01-01

    The successful high-temperature application of complex-shaped SiC/SiC components will depend on achieving as high a fraction of the as-produced fiber strength as possible during component fabrication and service. Key issues center on a variety of component architecture, processing, and service-related factors that can reduce fiber strength, such as fiber-fiber abrasion during architecture shaping, surface chemical attack during interphase deposition and service, and intrinsic flaw growth during high-temperature matrix formation and composite creep. The objective of this paper is to show that the NASA-developed Sylramic-iBN SiC fiber minimizes many of these issues for state-of-the-art melt-infiltrated (MI) SiC/BN/SiC composites. To accomplish this, data from various mechanical tests are presented that compare how different high performance SiC fiber types retain strength during formation of complex architectures, during processing of BN interphases and MI matrices, and during simulated composite service at high temperatures.

  10. Fracture Mechanisms For SiC Fibers And SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)

    2002-01-01

    The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.

  11. A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor

    NASA Technical Reports Server (NTRS)

    Jamison, Tracee L.; Komriech, Phillip; Yu, Chung

    2004-01-01

    A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.

  12. Thermal stability characterization of SiC ceramic fibers. II. Fractography and structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, L.C.; Chen, R.T.; Haimbach, F.,IV

    1986-08-01

    SiC ceramic fibers (Nicalon) exhibit tensile strength reduction following thermal treatment in air, argon and nitrogen environments above 1200 C. Grain-size variations have been observed in the treated fibers by X-ray diffraction and electron microscopy. Fractography studies show that strength reduction occurs in all thermal treatments, although the mechanism of fiber failure varies depending upon the specific environment. Structure-property relations will be developed as mechanical testing and fractography of the thermally treated fibers are associated with tensile strength loss mechanisms. 16 references.

  13. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  14. Verification of a two-dimensional infiltration model for the resin transfer molding process

    NASA Technical Reports Server (NTRS)

    Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.

  15. Characterization of hot-pressed short ZrO{sub 2} fiber toughened ZrB{sub 2}-based ultra-high temperature ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jia, E-mail: 2013113205@xmut.edu.cn; Huang, Yu; Zhang, Houan

    2014-09-15

    Two different ZrB{sub 2}-based ultra-high temperature ceramics were produced by hot pressing: ZrB{sub 2} + 20 vol.% SiC particle + 15 vol.% ZrO{sub 2} fiber and ZrB{sub 2} + 20 vol.% SiC whisker + 15 vol.% ZrO{sub 2} fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB{sub 2}-based hybrid ceramics with SiC whiskers and ZrO{sub 2} fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted frommore » an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO{sub 2} fiber was found to be ambiguous in ZrB{sub 2}-based hybrid ceramics with SiC particles and ZrO{sub 2} fibers due to the slight reaction. The orientation relationship between t-ZrO{sub 2} and m-ZrO{sub 2} phases obeyed the classical correspondence: (100){sub m}//(100){sub t} and [001]{sub m}//〈001〉{sub t}, which further verified the feasibility of phase transformation toughening mechanism. - Highlights: • ZrB{sub 2}-based ceramics toughened by short ZrO{sub 2} fiber are characterized by TEM and HRTEM. • The orientation relationship of t- and m-ZrO{sub 2} are (100){sub m}//(100){sub t}, [001]{sub m}//〈001〉{sub t} • The clean interface without any impurities leads to improve the toughening mechanism.« less

  16. Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions

    NASA Astrophysics Data System (ADS)

    Çetinkaya, Onur; Wojcik, Grzegorz; Mergo, Pawel

    2018-05-01

    The diameter fluctuations of poly(methyl methacrylate) based polymer optical fibers, during drawing processes, have been comprehensively studied. In this study, several drawing parameters were selected for investigation; such as drawing tensions, preform diameters, preform feeding speeds, and argon flows. Varied drawing tensions were used to draw fibers, while other parameters were maintained at constant. At a later stage in the process, micro-structured polymer optical fibers were drawn under optimized drawing conditions. Fiber diameter deviations were reduced to 2.2%, when a 0.2 N drawing tension was employed during the drawing process. Higher drawing tensions led to higher diameter fluctuations. The Young’s modulus of fibers drawn with different tensions was also measured. Our results showed that fiber elasticity increased as drawing tensions decreased. The inhomogeneity of fibers was also determined by comparing the deviation of Young’s modulus.

  17. VARTM Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Technical Monitor); Dowling, Norman E.

    2004-01-01

    In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.

  18. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2011-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  19. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2010-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  20. Fiber Coating by Sputtering for High Temperature Composites

    DTIC Science & Technology

    1992-10-15

    reinforced titanium or aluminum alloys and SiC reinforced lithium aluminosilicate glass. The purpose of this research is to identify protective and...including boron [4] or SiC [5] reinforced titanium or aluminum alloys and SiC reinforced lithium aluminosilicate glass [2]. The purpose of this research is...crystal A120 3 fibers -300 Jim in diameter were hot pressed between comm( -ially pure a- titanium sheets -400 pLm thick at 8150 C for 2 hours and 110 MPa

  1. Synthesis of multifilament silicon carbide fibers by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    A process for development of clean silicon carbide fiber with a small diameter and high reliability is presented. An experimental evaluation of operating conditions for SiC fibers of good mechanical properties and devising an efficient technique which will prevent welding together of individual filaments are discussed. The thermodynamic analysis of a different precursor system was analyzed vigorously. Thermodynamically optimum conditions for stoichiometric SiC deposit were obtained.

  2. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  3. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  4. Development of generalized 3-D braiding machines for composite preforms

    NASA Technical Reports Server (NTRS)

    Huey, Cecil O., Jr.; Farley, Gary L.

    1993-01-01

    The operating principles of two prototype braiding machines for the production of generalized braid patterns are described. Both processes afford previously unachievable control of the interlacing of fibers within a textile structure that make them especially amenable to the fabrication of textile preforms for composite materials. They enable independent control of the motion of the individual fibers being woven, thereby enabling the greatest possible freedom in controlling fiber orientation within a structure. This freedom enables the designer to prescribe local fiber orientation to better optimize material performance. The processes have been implemented on a very small scale but at a level that demonstrates their practicality and the soundness of the principles governing their operation.

  5. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  6. Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Katoh, Yutai

    2017-10-01

    Silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230-340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  7. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  8. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  9. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  10. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2004-08-10

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  11. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2005-04-19

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  12. Role of interfacial thermal barrier in the transverse thermal conductivity of uniaxial SiC fiber-reinforced reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Bhatt, H.; Donaldson, K. Y.; Hasselman, D. P. H.; Bhatt, R. T.

    1992-01-01

    The transverse thermal conductivity of reaction-bonded Si3N4 is significantly affected by an interfacial barrier at the interface formed with SiC reinforcing fibers. A comparative study of composites with and without reinforcing-fiber carbon coatings found the coating to reduce effective thermal conductivity by a factor of about 2; this, however, is partially due to a thermal expansion-mismatch gap between fiber and matrix. HIPing of composites with coated fibers led to an enhancement of thermal conductivity via improved interfacial thermal contact and greater grain size and crystallinity of the fibers.

  13. Mechanical property degradation of high crystalline SiC fiber–reinforced SiC matrix composite neutron irradiated to ~100 displacements per atom

    DOE PAGES

    Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai; ...

    2017-12-20

    For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less

  14. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  15. Mechanical property degradation of high crystalline SiC fiber–reinforced SiC matrix composite neutron irradiated to ~100 displacements per atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai

    For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less

  16. NASA. Langley Research Center dry powder towpreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

  17. Findings of the U.S. Department of Defense Technology Assessment Team on Japanese High-Temperature Composites February 1989 Visit

    DTIC Science & Technology

    1993-06-01

    I-4 1. Polymer Matrix Composites ................................................... r -4 2. Continuous-Fiber-Reinforced MMCs...Manufacturing CASTEM Casting Analysis System (KOBELCO) C-C Carbon-Carbon ( Composite ) CERASEP SiC - SiC CMC Made by SEP CF Carbon Fiber CFRP Carbon-Fiber...curing operations are done in clean rooms). Most operations are highly automated, with minimal manpower required. Some preceramic polymers appear to have

  18. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  19. UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique

    NASA Astrophysics Data System (ADS)

    Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes

    2017-02-01

    In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.

  20. Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

    DOE PAGES

    Wallace, Joseph B.; Chen, Di; Shao, Lin

    2015-11-03

    Understanding radiation effects on the mechanical properties of SiC composites is important to their application in advanced reactor designs. By means of molecular dynamics simulations, we found that due to strong interface bonding between the graphene layers and SiC, the sliding friction of SiC fibers is largely determined by the frictional behavior between graphene layers. Upon sliding, carbon displacements between graphene layers can act as seed atoms to induce the formation of single carbon atomic chains (SCACs) by pulling carbon atoms from the neighboring graphene planes. The formation, growth, and breaking of SCACs determine the frictional response to irradiation.

  1. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  2. An Automated Optical Fiber Puller for Use in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    With the slowdown in space station construction, limiting astronaut time for scientific experiments, an effort is being made to automate certain experiments. One such experiment is production of heavy metal fluoride fibers in the microgravity environment. Previous work by this author and others have shown that microgravity inhibits crystallization of ZBLAN glass. Thus an automated experiment has been designed. This experiment will consist of several elements, one which includes the use of an autonomous robot to initiate fiber pulling. The first element will be to melt the preform to eliminate crystals. The preform tip will then be heated to the viscosity necessary for fiber drawing. The robot will initiate the draw and attach the fiber end to the take-up reel. Once fiber pulling has commenced, sensors will be used to detect a fiber break, whereupon the robot can re-initiate the pulling process. The fiber will be coated with a polymer and the polymer cured with ultraviolet light. A laser micrometer will be used to monitor fiber diameter. The experiment is designed so that up to 10 preforms can be pulled into fiber during one flight. The apparatus will be mounted on a free-flying carrier which will be placed into low-earth orbit from the cargo bay of the space shuttle by the shuttle robot arm. The experiment can be started by a signal from the shuttle or from the ground via telescience. The experiment will proceed automatically using specially designed algorithms and will be monitored from the ground. The carrier will be picked up by the shuttle before return to earth.

  3. High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2004-01-01

    As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices. Composite panels with system B were heat treated at Glenn, and the pores that remained open were filled by silicon melt infiltration (MI). Panels with system A and the other SiC/SiC systems were not heat treated, and remaining open pores in these systems were filled with SiC slurry and silicon MI.

  4. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    DOE PAGES

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; ...

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for themore » other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10 –7 [dpa –1 MPa –1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.« less

  5. Method of bundling rods so as to form an optical fiber preform

    DOEpatents

    Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC

    2004-03-30

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  6. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  7. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  8. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  9. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  10. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE PAGES

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.; ...

    2017-12-08

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  11. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  12. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterizemore » the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.« less

  13. Ultralightweight, low expansion, fiber reinforced SiC composite lithography stage. Final technical report, 17 December 1998--17 June 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, J.L.

    1999-06-17

    During the Phase 1 SBIR, SSG has integrated a number of advanced Silicon Carbide (SiC) materials to produce an innovative, lightweight, fracture tough, dimensionally stable, composite mask platen for use on an SVGL Microalign instrument. The fiber reinforced SiC material used has several critical advantages when compared to other competing materials: significantly improved lightweighting (SiC provides a specific stiffness which can be 8x better than aluminum, 8x better than Zerodur, and 2x better than carbon fiber/graphite epoxy based composite materials); excellent long term dimensional stability (through low CTE and no moisture absorption); superior damping (20x better than aluminum 2x bettermore » than carbon fiber/graphite epoxy). All of these advantages combine to yield an optimal material for high speed translation stage applications. During the Phase 1 SBIR SSG has designed, modeled, fabricated, and tested an ultralightweight composite SiC platen which is currently being integrated onto an SVGL Microalign instrument. The platen is ultralightweight (4 lbs with overall dimensions of approx. 18 inch x 10 inch x 1.5 inch) and stiff (first resonant mode at 770 Hz), and meets all of SVG`s operational and functional requirements. SVGL has supported the Phase 1 effort by providing co-funding during Phase 1, and this support is intended to continue through Phase 2.« less

  14. Thermo-Mechanical Properties of Super Sylramic SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Chen, Y. L.; Wheeler, D. R.

    2004-01-01

    Ceramic matrix composites (CMC) reinforced by Sic fibers, such as SiC/SiC, are targeted for application in hot-section components of advanced engines for aerospace propulsion and for electrical power generation. Two Super Sylramic Sic fiber types recently developed at NASA using the Sylramic fiber from COI Ceramics are candidates fof providing these components with improved thermal capability and improved performance. This paper reports on the state-of-the-art ability of these new fiber types to meet the key fiber requirements of these applications: high strength, high creep-rupture resistance, high environmental resistance, and high thermal conductivity. For example, creep-rupture tests performed at from 1350 to 1500 C under various environments to simulate CMC fabrication and service conditions show creep resistance in air improved -20 and -7 times in comparison to current Sylramic and Sylramic-iBN fiber types, respectively. This in turn resulted in an increase in fiber rupture life by up to two orders of magnitude. TEM and AES microscopic observations are presented to indicate that these improvements can be correlated with the replacement of weak grain boundary phases with stronger phases that hinder grain boundary sliding more effectively. SiC/SiC composite results are also provided to show the advantages of the Super Sylramic fiber types both for CMC fabrication and high temperature application.

  15. Interfacial Studies of Refractory Glass-Ceramic Matrix/Advanced SiC fiber Reinforced Composites

    DTIC Science & Technology

    1991-04-30

    Prepared by J. J. Brennan ANNUAL REPORT Contract N0001 4-87-C-0699 for Department of the Navy Office of Naval Research Arlington, VA 22217 April 30, 1991...1 30 April1991 I Annual 1 Feb 1990 -1 Feb 1991 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS INTERFACIAL STUDIES OF REFRACTORY GLASS-CERAMIC MATRIX...composites were very similar for either Lox M Tyranno or NICALON fiber reinforcement. 14. SUBJECT TERMS IS. NUMBER OF PA~t; Crystalline SiC fibers

  16. Nanocellulose in spun continuous fibers: A review and future outlook

    Treesearch

    Craig Clemons

    2016-01-01

    Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...

  17. Graphite Fiber Textile Preform/Cooper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, George J.

    1998-01-01

    The purpose of this research was to produce a finned tube constructed of a highly conductive braided graphite fiber preform infiltrated with a copper matrix. In addition, the tube was to be fabricated with an integral geometry. The preform was integral in the sense that the tube and the fin could be braided to yield one continuous part. This composite component is a candidate for situations with high heat transmitting and radiation requirements. A proof-of-concept finned tube was braided and infiltrated with a copper matrix proving that a viable process was developed to fabricate the desired component. Braiding of high conductivity carbon fibers required much trial-and-error and development of special procedures. There are many tradeoffs between braidability and fiber conductivity. To understand the properties and structure of the braided finned tube, an geometric model of the braid structure was derived. This derivation set the basis for the research because knowing the tow orientations helped decipher the thermal as well as the mechanical and conduction tendencies. Infiltration of the fibers into a copper matrix was a complex procedure, and was performed by TRA, of Salt Lake City, Utah, using a proprietary process. Several batches were fabricated with a final, high quality batch serving as a confirming proof-of-concept.

  18. Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions

    DOE PAGES

    Koyanagi, Takaaki; Katoh, Yutai

    2017-07-04

    Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less

  19. Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Katoh, Yutai

    Silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this paper examined SiC/SiC composites following neutron irradiation at 230–340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites wasmore » investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. Finally, this study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less

  20. High dose neutron irradiations of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy ismore » used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.« less

  1. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  2. Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers

    NASA Astrophysics Data System (ADS)

    Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.

    2001-12-01

    Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.

  3. Thermostructural Properties Of Sic/Sic Panels With 2.5d And 3d Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DeCarlo, J. A.; Bhatt, R. H.; Jaskowiak, M. H.

    2005-01-01

    CMC hot-section components in advanced engines for power and propulsion will typically require high cracking strength, high ultimate strength and strain, high creep- rupture resistance, and high thermal conductivity in all directions. In the past, NASA has demonstrated fabrication of a variety of SiC/SiC flat panels and round tubes with various 2D fiber architectures using the high-modulus high-performance Sylramic-iBN Sic fiber and Sic-based matrices derived by CVI, MI, and/or PIP processes. The thermo- mechanical properties of these CMC have shown state-of-the-art performance, but primarily in the in-plane directions. Currently NASA is extending the thermostructural capability of these SiC/SiC systems in the thru-thickness direction by using various 2.5D and 3D fiber architectures. NASA is also using specially designed fabrication steps to optimize the properties of the BN-based interphase and Sic-based matrices. In this study, Sylramic-iBN/SiC panels with 2D plain weave, 2.5D satin weave, 2.5D ply-to-ply interlock weave, and 3D angle interlock fiber architectures, all woven at AITI, were fabricated using matrix densification routes previously established between NASA and GEPSC for CVI-MI processes and between NASA and Starfire-Systems for PIP processes. Introduction of the 2.5 D fiber architecture along with an improved matrix process was found to increase inter-laminar tensile strength from 1.5 -2 to 3 - 4 ksi and thru-thickness thermal conductivity from 15-20 to 30-35 BTU/ft.hr.F with minimal reduction in in-plane strength and creep-rupture properties. Such improvements should reduce thermal stresses and increase the thermostructural operating envelope for SiC/SiC engine components. These results are analyzed to offer general guidelines for selecting fiber architectures and constituent processes for high-performance SiC/SiC engine components.

  4. Investigation of interfacial shear strength in a SiC fibre/Ti-24Al-11Nb composite by a fibre push-out technique

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Brindley, P. K.

    1989-01-01

    A fiber push-out technique applied at several sample thicknesses was used to determine both the debond shear stress and the frictional shear stress at the fiber-matrix interface at room temperautre for a unidirectional SiC fiber-reinforced T-24Al-11Nb (in at. pct) composite prepared by a powder cloth technique. The push-out technique measures the separate contributions of bond strength and friction to the mechanical shear strength at the fiber-matrix interface. It was found that the fiber-matrix bond shear strength of this material is significantly higher than the fiber-matrix frictional shear stress (119.2 and 47.8 MPa, respectively).

  5. Raman Study of Uncoated and p-BN/SiC-Coated Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites. Part 1; Distribution and Nanostructure of Different Phases

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Hi-Nicalon fiber reinforced celsian matrix composites were characterized by Raman spectroscopy and imaging, using several laser wavelengths. Composite #1 is reinforced by as-received fibers while coatings of p-BN and SiC protect the fibers in composite #2. The matrix contains traces of the hexagonal phase of celsian, which is concentrated in the neighborhood of fibers in composite #1. Some free silicon was evident in the coating of composite #2 which might involve a {BN + SiC yields BNC + Si} "reaction" at the p-BN/SiC interface. Careful analysis of C-C peaks revealed no abnormal degradation of the fiber core in the composites.

  6. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    Tensile strength, creep strength, and rupture strength properties were measured for the following types of polymer-derived stoichiometric SiC fibers: Hi-Nicalon Type S from Nippon Carbon, Tyranno SA from Ube, and Sylramic from Dow Corning. Also included in this study were an earlier version of the SA fiber plus two recent developmental versions of the Sylramic fiber. The tensile strength measurements were made at room temperature on as-received fibers and on fibers after high-temperature inert exposure. The creep-rupture property data were obtained at 1400 deg C in air as well as, argon. Some fiber types showed strong effects of environment on their strength properties. These results are compared and discussed in terms of underlying mechanisms and implications for ceramic composites.

  7. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  8. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  9. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    DTIC Science & Technology

    2013-07-01

    numerically modeled. The composite under investigation was a 10 layer T300 carbon/ SiC composite in which carbon fabric was impregnated using a polymer ...fraction. (3) Melt Infiltrated in situ BN SiC / SiC composite comprising a stochiometric SiC (Sylramic™) fiber, with an in situ boron nitride treatment...SiNC composite is listed in Table 4. Polymer derived SiC and SiNC matrix material do not ex- hibit a major change in their elastic properties at

  10. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  11. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  12. Brazing SiC/SiC Composites to Metals

    NASA Technical Reports Server (NTRS)

    Steffier, Wayne S.

    2004-01-01

    Experiments have shown that active brazing alloys (ABAs) can be used to join SiC/SiC composite materials to metals, with bond strengths sufficient for some structural applications. The SiC/SiC composite coupons used in the experiments were made from polymerbased SiC fiber preforms that were chemical-vapor-infiltrated with SiC to form SiC matrices. Some of the metal coupons used in the experiments were made from 304 stainless steel; others were made from oxygen-free, high-conductivity copper. Three ABAs were chosen for the experiments: two were chosen randomly from among a number of ABAs that were on hand at the time; the third ABA was chosen because its titanium content (1.25 percent) is less than those of the other two ABAs (1.75 and 4.5 percent, respectively) and it was desired to evaluate the effect of reducing the titanium content, as described below. The characteristics of ABAs that are considered to be beneficial for the purpose of joining SiC/SiC to metal include wettability, reactivity, and adhesion to SiC-based ceramics. Prior to further development, it was verified that the three chosen ABAs have these characteristics. For each ABA, suitable vacuum brazing process conditions were established empirically by producing a series of (SiC/SiC)/ABA wetting samples. These samples were then sectioned and subjected to scanning electron microscopy (SEM) and energy-dispersive x-ray spectrometry (EDS) for analysis of their microstructures and compositions. Specimens for destructive mechanical tests were fabricated by brazing of lap joints between SiC/SiC coupons 1/8-in. (.3.2- mm) thick and, variously, stainless steel or copper tabs. The results of destructive mechanical tests and the SEM/EDS analysis were used to guide the development of a viable method of brazing the affected materials.

  13. Ceramic-Ceramic Composites Meeting in Belgium.

    DTIC Science & Technology

    1987-08-04

    the liquid phase Vidrio , Madrid, Spain) described the use should disappear during the heat treat- of SIC grains as a dispersed phase to ment. The...SiC fiber-reinforced SiO2 glass ma- trix, mullite-zirconia-A120 3-SiC, C-fi- used elastic wave measurements at high ber-reinforced reaction-bonded SiC

  14. Calculation of Growth Stress in SiO2 Scales Formed by Oxidation of SiC Fibers (PREPRINT)

    DTIC Science & Technology

    2012-07-01

    Poisson effect. Tensile hoop stresses can be >2 GPa for thick scales formed at 򒮨°C. Effects of different fiber radii on growth stresses are examined...original fiber radius and Ω is the ratio of SiC/SiO2 molar volume ratio . The outer radius of the SiO2 scale (c) is (Fig. 1): c = b+w...and νSiO2 are Poison’s ratio for the SiC fiber and the SiO2 scale. Stresses in older increments (j = i-2 to j = 0) are updated with the stress values

  15. Microstructural and strength stability of CVD SiC fibers in argon environment

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1991-01-01

    The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.

  16. Microstructural and strength stability of CVD SiC fibers in argon environments

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1991-01-01

    The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.

  17. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  18. Improved BN Coatings on SiC Fibers in SiC Matrices

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.

    2004-01-01

    Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally verified as candidate means to promote outside debonding in state-of-the-art SiC/SiC composites.

  19. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  20. Method for Fabricating Composite Structures Using Continuous Press Forming

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.

  1. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  2. Fabrication and Anti-Oxidation Ability of SiC-SiO2 Coated Carbon Fibers Using Sol-Gel Method

    PubMed Central

    Yang, Guangyuan; Huang, Zhixiong; Wang, Xu; Wang, Bo

    2018-01-01

    The paper proposed a method to improve the anti-oxidation performance of carbon fibers (CF) at high temperature environment by coating silicon dioxide (SiO2) and silicon carbide (SiC). The modified sol-gel method had been used to ensure the proper interface between fibers and coating. We used polydimethylsiloxane and ethyl orthosilicate to make stable emulsion to uniformly disperse SiC nanoparticles. The modified SiO2/SiC coating had been coated on CF successfully. Compared with the untreated CF, the coated fibers started to be oxidized around 900 °C and the residual weight was 57% at 1400 °C. The oxidation mechanism had been discussed. The structure of SiC/SiO2 coated CF had been characterized by scanning electron microscope and X-ray diffraction analysis. Thermal gravimetric analysis was used to test the anti-oxidation ability of CF with different coatings. PMID:29495499

  3. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector

    NASA Astrophysics Data System (ADS)

    Guo, Fangxia; Dai, Shixun; Tang, Junzhou; Wang, Xunsi; Li, Xing; Xu, Yinsheng; Wu, Yuehao; Liu, Zijun

    2017-11-01

    We have investigated the optimization parameters for polishing end-surface of chalcogenide glass fiber connector in the paper. Six SiC abrasive particles of different sizes were used to polish the fiber in order of size from large to small. We analyzed the effects of polishing parameters such as particle sizes, grinding speeds and polishing durations on the quality of the fiber end surface and determined the optimized polishing parameters. We found that, high-quality fiber end surface can be achieved using only three different SiC abrasives. The surface roughness of the final ChG fiber end surface is about 48 nm without any scratches, spots and cracks. Such polishing processes could reduce the average insertion loss of the connector to about 3.4 dB.

  4. The friction and wear of TPS fibers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Wong, S.

    1987-01-01

    The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.

  5. Chromium doped nano-phase separated yttria-alumina-silica glass based optical fiber preform: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra

    2015-06-01

    Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.

  6. SiC/SiC Composites for 1200 C and Above

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.

  7. Spectral engineering of optical fiber through active nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Lindstrom-James, Tiffany

    The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the spectral behavior of these active fiber preforms. It has been shown that rare earth doping of alkaline earth fluoride nanoparticles provides a material which can be 'tuned' to specific applications through the use of different host materials, processing conditions and doping levels of the rare earth and when used as dopant materials for active optical fibers, provides a means to tailor the optical behavior.

  8. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  9. Progress in SiC/SiC Ceramic Composite Development for Gas Turbine Hot-Section Components under NASA EPM and UEET Programs

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2002-01-01

    The successful application of ceramic matrix composites as hot-section components in advanced gas turbine engines will require the development of constituent materials and processes that can provide the material systems with the key thermostructural properties required for long-term component service. Much initial progress in identifying these materials and processes was made under the former NASA Enabling Propulsion Materials Program using stoichiometric Sylramic (trademark) silicon-carbide (SiC) fibers, 2D (two dimensional)-woven fiber architectures, chemically vapor-infiltrated (CVI) BN fiber coatings (interphases), and SiC-based matrices containing CVI SiC interphase over-coatings, slurry-infiltrated SiC particulate, and melt-infiltrated (MI) silicon. The objective of this paper is to discuss the property benefits of this SiC/SiC composite system for high-temperature engine components and to elaborate on further progress in SiC/SiC development made under the new NASA Ultra Efficient Engine Technology Program. This progress stems from the recent development of advanced constituent materials and manufacturing processes, including specific treatments at NASA that improve the creep, rupture, and environmental resistance of the Sylramic fiber as well as the thermal conductivity and creep resistance of the CVI SiC over-coatings. Also discussed are recent observations concerning the detrimental effects of inadvertent carbon in the fiber-BN interfacial region and the beneficial effects of certain 2D-architectures for thin-walled SiC/SiC panels.

  10. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Zhang, Zixuan; Lu, Jie

    Carbon fiber composites have received growing attention because of their high performance. One economic method to manufacturing the composite parts is the sequence of forming followed by the compression molding process. In this sequence, the preforming procedure forms the prepreg, which is the composite with the uncured resin, to the product geometry while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step and this paper reports a method to characterize the properties of the interaction between different prepreg layers, which is critical to predictive modeling and design optimization. An experimental setup wasmore » established to evaluate the interactions at various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how the temperature, the relative sliding speed, and the fiber orientation affect the tangential interaction between two prepreg layers. The interaction factors measured from these experiments will be implemented in the computational preforming program.« less

  12. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less

  13. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  14. Identification of Nanocrystalline Inclusions in Bismuth-Doped Silica Fibers and Preforms.

    PubMed

    Iskhakova, Liudmila D; Milovich, Filipp O; Mashinsky, Valery M; Zlenko, Alexander S; Borisovsky, Sergey E; Dianov, Evgeny M

    2016-10-01

    The nature of nanocrystalline inclusions and dopant distribution in bismuth-doped silicate fibers and preforms are studied by scanning and transmission electron microscopy, and energy and wavelength-dispersive X-ray microanalysis. The core compositions are Bi:SiO2, Bi:Al2O3-SiO2, Bi:GeO2-SiO2, Bi:Al2O3-GeO2-SiO2, and Bi:P2O5-Al2O3-GeO2-SiO2. Nanocrystals of metallic Bi, Bi2O3, SiO2, GeO2, and Bi4(GeO4)3 are observed in these glasses. These inclusions can be the reason for the background optical loss in bismuth-doped optical fibers. The bismuth concentration of 0.0048±0.0006 at% is directly measured in aluminosilicate optical fibers with effective laser generation (slope efficiency of 27% at room temperature).

  15. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  16. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  17. RTM: Cost-effective processing of composite structures

    NASA Technical Reports Server (NTRS)

    Hasko, Greg; Dexter, H. Benson

    1991-01-01

    Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.

  18. Method for Fabricating Composite Structures Including Continuous Press Forming and Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  19. Constituent Effects on the Stress-Strain Behavior of Woven Melt-Infiltrated SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Eldridge, Jeff I.; Levine, Stanley (Technical Monitor)

    2001-01-01

    The stress-strain behavior of 2D woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with BN interphases were studied for composites fabricated with different fiber tow ends per unit length, different composite thickness, and different numbers of plies. In general, the stress-strain behavior, i.e., the 'knee' in the curve and the final slope of the stress-strain curve, was controlled by the volume fraction of fibers. Some of the composites exhibited debonding and sliding in between the interphase and the matrix rather than the more common debonding and sliding interface between the fiber and the interphase. Composites that exhibited this 'outside debonding' interface, in general, had lower elastic moduli and higher ultimate strains as well as longer pull-out lengths compared to the 'inside debonding' interface composites. Stress-strain curves were modeled where matrix crack formation as a function of stress was approximated from the acoustic emission activity and the measured crack density from the failed specimens. Interfacial shear strength measurements from individual fiber push-in tests were in good agreement with the interfacial shear strength values used to model the stress-strain curves.

  20. Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.

    1993-01-01

    Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.

  1. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  2. Electro-Optics Millimeter/Microwave Technology in Japan. Report of DoD Technology Team.

    DTIC Science & Technology

    1985-05-01

    Fiber Technology Hitachi is developing Ge-Se chalcogenide glass infrared optical fibers. Mate- rial development and evaluation has been carried out...chalcogenide glass fibers. The analysis indi- cates that the addition of Sb to Ge-Se chalcogenide glass should yield fibers with a very small absorption...representative of other commercial cables. Fiber is drawn using Vapor Axial Deposition (VAD) with pre-form glass ingots. Multiple fibers are combined

  3. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  4. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  5. Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.

  6. Damage Accumulation in SiC/SiC Composites with 3D Architectures

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.

    2003-01-01

    The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.

  7. A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.

    PubMed

    Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du

    2010-01-18

    A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.

  8. Short-term inhalation and in vitro tests as predictors of fiber pathogenicity.

    PubMed Central

    Cullen, R T; Miller, B G; Davis, J M; Brown, D M; Donaldson, K

    1997-01-01

    A wide range of fiber types was tested in two in vitro assays: toxicity to A549 epithelial cells, as detachment from substrate, and the production of the proinflammatory cytokine tumor necrosis factor (TNF) by rat alveolar macrophages. Three of the fibers were also studied in vivo, using short-term inhalation followed by a) bronchoalveolar lavage to assess the inflammatory response and b) measurement of cell proliferation in terminal bronchioles and alveolar ducts, using incorporation of bromodeoxyuridine (BrdU). The amount of TNF produced by macrophages in vitro depended on the fiber type, with the man-made vitreous fibers, and refractory ceramic fibers being least stimulatory and silicon carbide (SiC) whiskers providing the greatest stimulation. In the epithelial detachment assay there were dose-dependent differences in the toxicity of the various fibers, with long amosite being the most toxic. However, there was no clear relationship to known chronic pathogenicity. Fibers studied by short-term inhalation produced some inflammation, but there was no clear discrimination between the responses to code 100/475 glass fibers and the more pathogenic amosite and SiC. However, measurements of BrdU uptake into lung cells showed that amosite and SiC produced a greater reaction than code 100/475, which itself caused no more proliferation than that seen in untreated lungs. These results mirror the pathogenicity ranking of the fibers in long-term experiments. In conclusion, the only test to show potential as a predictive measure of pathogenicity was that of cell proliferation in lungs after brief inhalation exposure (BrdU assay). We believe that this assay should be validated with a wider range of fibers, doses, and time points. PMID:9400730

  9. Short-term inhalation and in vitro tests as predictors of fiber pathogenicity.

    PubMed

    Cullen, R T; Miller, B G; Davis, J M; Brown, D M; Donaldson, K

    1997-09-01

    A wide range of fiber types was tested in two in vitro assays: toxicity to A549 epithelial cells, as detachment from substrate, and the production of the proinflammatory cytokine tumor necrosis factor (TNF) by rat alveolar macrophages. Three of the fibers were also studied in vivo, using short-term inhalation followed by a) bronchoalveolar lavage to assess the inflammatory response and b) measurement of cell proliferation in terminal bronchioles and alveolar ducts, using incorporation of bromodeoxyuridine (BrdU). The amount of TNF produced by macrophages in vitro depended on the fiber type, with the man-made vitreous fibers, and refractory ceramic fibers being least stimulatory and silicon carbide (SiC) whiskers providing the greatest stimulation. In the epithelial detachment assay there were dose-dependent differences in the toxicity of the various fibers, with long amosite being the most toxic. However, there was no clear relationship to known chronic pathogenicity. Fibers studied by short-term inhalation produced some inflammation, but there was no clear discrimination between the responses to code 100/475 glass fibers and the more pathogenic amosite and SiC. However, measurements of BrdU uptake into lung cells showed that amosite and SiC produced a greater reaction than code 100/475, which itself caused no more proliferation than that seen in untreated lungs. These results mirror the pathogenicity ranking of the fibers in long-term experiments. In conclusion, the only test to show potential as a predictive measure of pathogenicity was that of cell proliferation in lungs after brief inhalation exposure (BrdU assay). We believe that this assay should be validated with a wider range of fibers, doses, and time points.

  10. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  11. Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects

    NASA Technical Reports Server (NTRS)

    Skinner, A.; Koczak, M. J.; Lawley, A.

    1982-01-01

    Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.

  12. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  13. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  14. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  15. A structural investigation of a synthesized precursor for optical fiber applications; the heterobimetallic ErNb 2(OPr i) 13

    NASA Astrophysics Data System (ADS)

    Engholm, M.; Norin, L.; Edvardsson, S.; Lashgari, K.; Westin, G.

    2006-12-01

    A structural investigation of a synthesized precursor in a silica glass matrix is performed. Silica soot samples are doped with the heterobimetallic precursor ErNb 2(OPr i) 13 by using a conventional solution doping technique and heat treatments to different temperatures. The precursor has also been introduced into a silica fiber preform by using the modified chemical vapor deposition technique. Analyses are made by using ultraviolet-visible-near infrared absorption spectroscopy, scanning electron microscopy, energy dispersive spectroscopy and powder X-ray diffraction. It is concluded that an immiscible system of ErNbO 4 crystallites and Nb 2O 5 is formed in the silica soot samples at high temperatures. Colloidal particles of ErNbO 4 are also formed in the silica glass fiber preform showing interesting features.

  16. Effects of Temperature and Steam Environment on Fatigue Behavior of Three SIC/SIC Ceramic Matrix Composites

    DTIC Science & Technology

    2008-09-01

    Infiltration (CVI), Chemical Vapor Deposition (CVD) and polymer impregnation/ pyrolysis (PIP) [5:20, 32]. The SiC fibers currently... composite was infiltrated with a mixture of polymer , filler particles and solvent. During pyrolysis under nitrogen at temperatures > 1000 °C, the...using polymer infiltration and pyrolysis (PIP) method. Polymer infiltration and pyrolysis processing method allows near-net-shape molding and

  17. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  18. Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1997-01-01

    Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation.

  19. Pressure effects on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dicarlo, James A.

    1986-01-01

    Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.

  20. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers

    DTIC Science & Technology

    1990-12-15

    THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES PE - 61102F FROM PRECERAMIC POLYMERS PR -9999 6. AUTHOR(S) TA - 99 J. R. Strife(l), J. P. Wesson(1 ), and H...stability at temperatures up to 15000 C. 14. SUBJECT TERMS 15. NUMBER OF PAGES 49 C- SiC composites vinylmethylsilane 16. PRICE CODE polymer precursor...vapor infiltration of fibrous preforms. More recently, the conversion of preceramic polymers as a matrix synthesis process is being considered. This

  1. Novel folding device for manufacturing aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Tewfic, Tarik; Sarhadi, M.

    2000-10-01

    A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.

  2. Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Boyd, Meredith K.

    2010-01-01

    SiC-fiber reinforced SiC matrix composites with a BN interphase were oxidized in reduced oxygen partial pressures of oxygen to simulate the environment for hypersonic vehicle leading edge applications. The constituent fibers as well as composite coupons were oxidized in oxygen partial pressures ranging from 1000 ppm O2 to 5% O2 balance argon. Exposure temperatures ranged from 816 C to 1353 C (1500 F to 2450 F). The oxidation kinetics of the coated fibers were monitored by thermogravimetric analysis (TGA). An initial rapid transient weight gain was observed followed by parabolic kinetics. Possible mechanisms for the transient oxidation are discussed. One edge of the composite coupon seal coat was ground off to simulate damage to the composite which allowed oxygen ingress to the interior of the composite. Oxidation kinetics of the coupons were characterized by scanning electron microscopy since the weight changes were minimal. It was found that sealing of the coupon edge by silica formation occurred. Differences in the amount and morphology of the sealing silica as a function of time, temperature and oxygen partial pressure are discussed. Implications for use of these materials for hypersonic vehicle leading edge materials are summarized.

  3. Modeling the Thermostructural Stability of Melt-infiltrated Sic/sic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bhatt, Ramakrishna T.; McCue, Terry R.

    2003-01-01

    SiC/SiC composites developed by NASA with Sylramic-iBN fibers and melt-infiltrated (MI) SiC-Si matrices have demonstrated 1000-hour rupture life in air at 100 MPa and 1315OC. Recently it has been determined that a major factor controlling the long-term rupture life of these composites is not environment or stress, but an intrinsic microstructural and strength instability caused by a thermally-induced silicon attack of the Sic fibers. The objective of this paper is to present a simple diffusion-based analytical model which predicts well the observed effects of stress-free thermal exposure on the residual tensile strength of Sylramic-iBN/SiC-Si composites. The practical implications of the model for SiC/SiC composites with MI matrices are discussed.

  4. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Treesearch

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  5. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  6. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  7. ZBLAN Fiber Phase B Study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1997-01-01

    A Phase B feasibility study will be performed for the study of the effects of microgravity on the preform processing and fiber pulling of ZBLAN optical glass. Continuing from the positive results achieved in the fiber annealing experiments in 20 second intervals at 0.001 g on the KC-135 and the 5 minute experiments on the SPAR rocket, experiments will continue to work towards design of a fiber sting to initiate fiber pulling operations in space. Anticipated results include less homogeneous nucleation than ground-based annealed fibers. Infrared Fiber Systems and Galileo are the participating industrial investigators.

  8. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  9. New trend of radiation application to polymer modification — irradiation in oxygen free atmosphere and at elevated temperature

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao

    2000-03-01

    Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.

  10. Composition-Property Correlation in B2O3-SiO2 Preform Rods Produced Using Modified Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Saleem, Muhammad Rizwan

    2012-02-01

    Due to unique optical properties of high birefringent (Hi-Bi) fibers for sensing and coherent optical communications, there is a strong interest in process optimization at preform fabrication and fiber drawing stages. Boron-doped silica cladding acts as stress-applying part resulting in polarization properties of Hi-Bi fibers that are strongly dependent on chemical composition. Using modified chemical vapor deposition (MCVD) technique, B2O3-doped silica preform rods were synthesized under different precursor gas flow conditions. Qualitative information about B2O3-SiO2 system composition was derived from etching behavior in nonbuffered HF solution and subsequent microstructural examination using scanning electron microscope. Significant degree of B2O3 incorporation was seen in case of high BCl3:SiCl4 ratio and mild oxygen-deficient processing conditions. Increasing the B2O3 content to ~26 mol% led to a corresponding increase in coefficient of thermal expansion (CTE) to a maximum value of 2.35 ppm/K. The value of refractive index (RI), on the other hand, was found to decrease with increased B2O3 incorporation. A qualitative correlation between B2O3 and SiO2 system composition and physical properties such as CTE and RI was established.

  11. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  12. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  13. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  14. Investigation of a SiC/Ti-24Al-11Nb composite

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Bartolotta, P. A.; Klima, S. J.

    1988-01-01

    A summary of ongoing research on the characterization of a continuous fiber reinforced SiC/Ti-24Al-11Nb (at percent) composite is presented. The powder metallurgy fabrication technique is described as are the nondestructive evaluation results of the as-fabricated composite plates. Tensile properties of the SiC fiber, the matrix material, and the 0-deg SiC/Ti-24Al-11Nb composite (fibers oriented unidirectionally, parallel to the loading axis) from room temperature to 1100 C are presented and discussed with regard to the resultant fractography. The as-fabricated fiber-matrix interface has been examined by scanning transmission electron microscopy and the compounds present in the reaction zone have been identified. Fiber-matrix interaction and stability of the matrix near the fiber is characterized at 815, 985, and 1200 C from 1 to 500 hr. Measurements of the fiber-matrix reaction, the loss of C-rich coating from the surface of the SiC fiber, and the growth of the Beta depleted zone in the matrix adjacent to the fiber are presented. These data and the difference in coefficient of thermal expansion between the fiber and the matrix are discussed in terms of their likely effects on mechanical properties.

  15. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  16. Processing and Properties of Silicon Carbide Reinforced Reaction Bonded Silicon Nitride Composites

    DTIC Science & Technology

    1992-11-30

    work as well as of polymer derived and composite parts will be discussed. 3. Mechanical Behavior of a Continuous SiC Fiber Reinforced RBSN, S.V...Silicon carbide paniculate composites exhibited improved fracture toughnesses and evidence of R-Curve behavior. Composites made with SiC (w...i£L LIST OF TABLES Page No. 1. Summary of mechanical properties measured for RBSN and RBSN/ SiC 7 composites 2. Summary of characteristics for

  17. Fatigue behavior of SiC reinforced titanium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Grimes, H. H.

    1979-01-01

    The low cycle axial fatigue properties of 25 and 44 fiber volume percent SiC/Ti(6Al-4V) composites were measured at room temperature and at 650 deg C. The S-N curves for the composites showed no anticipated improvement over bulk matrix behavior at room temperature. Although axial and transverse tensile strength results suggest a degradation in SiC fiber strength during composite fabrication, it appears that the poor fatigue life of the composites was caused by a reduced fatigue resistance of the reinforced Ti(6Al-4V) matrix. The reduced matrix behavior was due, to the presence of flawed and fractured fibers created near the specimen surfaces by preparation techniques and to the large residual tensile stresses that can exist in fiber reinforced matrices. The effects of fatigue testing at high temperature are discussed.

  18. Agile Photonic Crystals

    DTIC Science & Technology

    2011-01-03

    artificial skins, and large-area optoelectronic screens. Next, the preform-to-fiber approach is used to fabricate spectrally tunable photodetectors...fabricated and may be used for transporting atoms and molecules by radiation pressure. Finally, a solid microstructured fiber fabricated with a highly...Y. Fink, J.D. Joannopoulos, “Thermal sensing fiber devices”, US Patent No. 7,567,740, July 28, 2009. M. Bayindir, F. Sorin, A.F. Abouraddy, O

  19. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  20. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  1. Resistivity of Carbon-Carbon Composites Halved

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2004-01-01

    Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the fibers in the samples were still intercalated after composite fabrication, they were subjected to X-ray diffraction. The composites containing intercalated graphite fibers showed much higher background scatter than that of pristine fibers, indicating the presence of bromine in the samples. More importantly, faint features indicative of intercalation were visible in the diffraction pattern, showing that the fibers were still intercalated.

  2. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.

  3. Room Temperature Tensile Behavior and Damage Accumulation of Hi-Nicalon Reinforced SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, G. N.; Gyekenyesi, J. Z.

    1998-01-01

    Composites consisting of woven Hi-Nicalon fibers, BN interphases, and different SiC matrices were studied in tension at room temperature. Composites with SiC matrices processed by CVI and melt infiltration were compared. Monotonic and load/unload/reload tensile hysteresis experiments were performed. A modal acoustic emission (AE) analyzer was used to monitor damage accumulation during the tensile test. Post test polishing of the tensile gage sections was performed to determine the extent of cracking. The occurrence and location of cracking could easily be determined using modal AE. The loss of modulus could also effectively be determined from the change in the velocity of sound across the sample. Finally, the stresses where cracks appear to intersect the load-bearing fibers correspond with high temperature low cycle fatigue run out stresses for these materials.

  4. CVD of silicon carbide on structural fibers - Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  5. CVD of silicon carbide on structural fibers: Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  6. 82 FR 38764 - Wassenaar Arrangement 2016 Plenary Agreements Implementation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2017-08-15

    ... `ceramic-``matrix'',' so as to control carbon fiber reinforced SiC matrix composites (C-SiC). These... Machines and Tow/Fiber Placement machines were accurately delineated at 1 inch, which is used in industry... manufacturing process. The formerly used phrase ``incorporating particles, whiskers or fibers'' did not...

  7. Innovative Processing of Composites for Ultra-High Temperature Applications. Book 1

    DTIC Science & Technology

    1993-11-01

    pyrolysis step (in which the polymer is converted at higher temperatures to a SiC -rich ceramic). However, curing in air also leads to the high oxygen...The fac’ that the ceramic the vinylic SiC precursor, i.e., a compound or polymer resulting from pyrolysis of the vinylic precursor re- having vinylic...12 %herein said atmosphere 1. A method of preparing preceramic SiC fibers hay- 65 utilized for pyrolysis ik a reactime atmosphere contain- ing a very

  8. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  9. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  10. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  11. Fabrication and Anti-Oxidation Ability of SiC-SiO₂ Coated Carbon Fibers Using Sol-Gel Method.

    PubMed

    Yang, Guangyuan; Huang, Zhixiong; Wang, Xu; Wang, Bo

    2018-02-27

    The paper proposed a method to improve the anti-oxidation performance of carbon fibers (CF) at high temperature environment by coating silicon dioxide (SiO₂) and silicon carbide (SiC). The modified sol-gel method had been used to ensure the proper interface between fibers and coating. We used polydimethylsiloxane and ethyl orthosilicate to make stable emulsion to uniformly disperse SiC nanoparticles. The modified SiO₂/SiC coating had been coated on CF successfully. Compared with the untreated CF, the coated fibers started to be oxidized around 900 °C and the residual weight was 57% at 1400 °C. The oxidation mechanism had been discussed. The structure of SiC/SiO₂ coated CF had been characterized by scanning electron microscope and X-ray diffraction analysis. Thermal gravimetric analysis was used to test the anti-oxidation ability of CF with different coatings.

  12. INTEGRATED AND FIBER OPTICS: Calculation and measurement of waveguide characteristics of single-mode fiber waveguides with a depressed cladding

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1989-02-01

    A method was developed for calculating the effective cutoff length, the size of a mode spot, and the chromatic dispersion over the profile of the refractive index (measured in the preform stage) of single-mode fiber waveguides with a depressed cladding. The results of such calculations are shown to agree with the results of measurements of these quantities.

  13. SiC Fibers and SiCf/SiC Ceramic Matrix Minicomposites Damage Behavior

    NASA Technical Reports Server (NTRS)

    Almansour, Amjad S.

    2017-01-01

    Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace industry. Performance and durability of CMCs depend on the properties of its constituents such as fibers and matrix. Therefore, CMCs constituents limitations and damage mechanisms are discussed and characterized in representative simulated application conditions and dominant damage mechanisms are identified at elevated temperatures. In this work, the initiation and evolution of damage in Hi-Nicalon type S fiber-reinforced minicomposites with different interphases thicknesses from different manufacturers were investigated employing several nondestructive evaluation techniques such as acoustic emission, electrical resistance and microscopy. Moreover, the tensile creep behavior of single Hi-Nicalon Type S SiC fibers were tested and characterized and creep parameters were extracted. Fibers creep tests were performed in air or vacuum at 1200-1482 C under high stresses. Creep parameters was then used in understanding load sharing and lifing of ceramic matrix minicomposites. Future work plans will be reviewed.

  14. Making Ceramic Fibers By Chemical Vapor

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal V. S.; Hlavacek, Vladimir

    1994-01-01

    Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.

  15. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  16. Mechanics Methodology for Textile Preform Composite Materials

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  17. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Innovative design concepts and cost effective fabrication processes were developed for damage tolerant primary structures that can perform at a design ultimate strain level of 6000 micro inch/inch. Attention focused on the use of textile high performance fiber reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials and/or processes methods is described: fabricated using IM7 angle interlock 0 to 90 deg woven preforms with + or - 45 deg plies stitched with Toray high strength graphite thread and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms using RTM and Tactix 123/H41 epoxy; and fabricated preforms using AS4(6K)/PEEK 150 g commingled angle interlock 0 to 90 deg woven preforms with + or - 45 deg commingled plies stitched using high strength graphite thread and processed by consolidation. Structural efficiency, processability, and acquisition cost are compared.

  18. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus Peter

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  19. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  20. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  1. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory; Petko, Jeanne; Kiser, James D.

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, Sic matrix composites. C/SiC composites were reinforced with T-300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated Sic or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress-dependent damage accumulation in these materials can be of use in life-modeling for these types of composites.

  2. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Petko, Jeanne; Kiser, James D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, SiC matrix composites. C/SiC composites were reinforced with T300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated SiC or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress dependent damage accumulation in these materials can be of use in life modeling for these types of composites.

  3. PIE of nuclear grade SiC/SiC flexural coupons irradiated to 10 dpa at LWR temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Katoh, Yutai

    Silicon carbide fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230–340°C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials are chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC)-coated Hi-NicalonTM Type-S (HNS), TyrannoTM SA3 (SA3), and SCS-Ultra TM (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexuralmore » behavior, dynamic Young’s modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young’s moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.« less

  4. Characteristics of holey fibers fabricated at different drawing speeds

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Rashidi, Mahnaz; Karimi, Maryam

    2007-03-01

    The effects of high drawing speeds on parameters of holey fibers are presented. A holey fiber preform structure was made by using tube-in-tube method and was drawn at high speeds with an aim of mass production to meet the demand of next generation communication systems. Transmission parameters such as numerical aperture and normalized frequency of the fabricated holey fibers have been measured and compared with theoretical values based on effective index method. Although the fabricated holey fibers were not of high quality, the analyses of the parameters have shown promising outlook for fabrication of such fibers.

  5. Hoop Tensile Characterization Of SiC/SiC Cylinders Fabricated From 2D Fabric

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Yun, HeeMann; DiCarlo, James A.; Barnett, Terry R.

    2002-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC cylinders using ring specimens machined from the cylinder ends. The cylinders were fabricated from 2D balanced fabric with several material variants, including wall thickness (6, 8, and 12 plies), Sic fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI Sic, and partial CVI plus melt-infiltrated SiC-Si). Fiber ply splices existed in the all the hoops. Tensile hoop measurements were made at room temperature and 1200 C using hydrostatic ring test facilities. The hoop results are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  6. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  7. Effects of high pressure nitrogen on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    1991-01-01

    Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.

  8. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.

  9. Graphite fiber/copper composites prepared by spontaneous infiltration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  10. Progress Report on PICA Activities in Support of New Frontiers Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret; Venkatapathy, Ethiraj; Violette, Steve

    2017-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a TPS material that has been used in a number of previous flight missions (Stardust, MSL) and is planned for a number of future missions (OSIRIS-Rex and Mars 2020) so it has substantial flight heritage, is applicable to a wide range of missions, and is often baselined as the TPS in future NASA proposal activities. As is common with a number of TPS materials, PICA faces a supply chain issue with the rayon precursor from which the carbon fibers used in the PICA preform are derived. PICA uses a non-woven form of the rayon, which once carbonized, is used in the low-density carbon FiberForm (carbon tile) preform utilized in PICA. Current PICA uses a NASA-qualified non-domestic rayon supplier (Sniace), however the qualified supplier is no longer manufacturing the rayon materials. This activity will address PICA sustainability, by initially carbonizing the remaining stockpile of Sniace rayon precursor. A additional FiberForm manufacturing task from alternate rayon sources is also in progress.

  11. Unit cell geometry of multiaxial preforms for structural composites

    NASA Technical Reports Server (NTRS)

    Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia

    1993-01-01

    The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.

  12. Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.

    PubMed

    Law, Pi-Cheng; Dragic, Peter D

    2010-08-30

    Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

  13. 40 CFR 414.11 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS General § 414.11 Applicability. (a) The provisions of... establishments that manufacture the organic chemicals, plastics, and synthetic fibers (OCPSF) products or product... Intermediates, Dyes, and Organic Pigments, (5) SIC 2869—Industrial Organic Chemicals, Not Elsewhere Classified...

  14. 40 CFR 414.11 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS General § 414.11 Applicability. (a) The provisions of... establishments that manufacture the organic chemicals, plastics, and synthetic fibers (OCPSF) products or product... Intermediates, Dyes, and Organic Pigments, (5) SIC 2869—Industrial Organic Chemicals, Not Elsewhere Classified...

  15. 40 CFR 414.11 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS General § 414.11 Applicability. (a) The provisions of... establishments that manufacture the organic chemicals, plastics, and synthetic fibers (OCPSF) products or product... Intermediates, Dyes, and Organic Pigments, (5) SIC 2869—Industrial Organic Chemicals, Not Elsewhere Classified...

  16. 40 CFR 414.11 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS General § 414.11 Applicability. (a) The provisions of... establishments that manufacture the organic chemicals, plastics, and synthetic fibers (OCPSF) products or product... Intermediates, Dyes, and Organic Pigments, (5) SIC 2869—Industrial Organic Chemicals, Not Elsewhere Classified...

  17. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was performed on the larger 101.6 x 101.6 x 3 mm samples. The microstructures of samples sintered using the 25 ton laboratory FAST system showed a reduction in porosity and good adhesion between the fiber-fiber and fiber-matrix interface. The microstructures of samples sintered on the 250 ton industrial FAST system showed a reduction in porosity, but there was visible reaction of the fiber and fiber coatings with the surrounding matrix. Additionally, there was significant radial cracking of the fibers visible in the microstructures. There is gap in the understanding of sintering behavior between laboratory and industrial scale FAST systems. The vast majority of publications on FAST sintering have been primarily focused on small sample geometries (20 mm diameter, less than 3 mm thick). A study was coordinated to investigate the thermal properties during heating and cooling using a 250 ton industrial FAST system at 900°C using B4C and SiC materials inside the graphite die assembly. The thermal properties were then compared to the resulting material properties of the identically sintered B4C and SiC to approximately 94% relative density, at a temperature of 1950°C, pressure of 45 MPa, 10 minute hold, and heated at a rate of 100°C/min. The study determined that at 900°C there were significant thermal gradients within the system for the examined materials, and that these gradients correlated well with the material property difference of the samples sintered at higher temperatures where the gradients are presumably larger due to an increase in radiative heat loss. The observed temperatures throughout the graphite were significantly different between B4C and SiC. These temperatures also correlated well with the material properties of the sintered products which showed more substantial variation for B4C when compared to SiC which was overall less affected by thermal gradients. This was attributed to the intrinsic thermal conductivity difference between the two subject materials which was manifested as thermal gradients throughout the material and graphite die assembly. Additionally, both the observed temperature gradients throughout the graphite die assembly and the difference in temperature reading between the optical pyrometer and thermocouples were significantly larger for the 250 ton FAST system than previous publications have demonstrated experimentally or via modeling of smaller laboratory scale systems. The findings from this work showed that relative to conventional sintering methods, the FAST process demonstrated comparable or improved material and mechanical properties with a significantly shorter processing cycle. However, the results demonstrated on the 25 ton laboratory scale unit were significantly different compared to results for the same materials sintered using the 250 ton industrial scale unit. The temperature gradients observed on the 250 ton FAST unit were significantly larger than previous reports on smaller FAST units. This result showed future efforts to scale up the FAST sintering process while maintaining similar results will require careful attention to minimizing temperature gradients. This could potentially be achieved by reducing radiative heat loss during processing and/or optimizing the graphite die design and implementing heat spreaders in specific locations dependent on the host material.s thermal and electrical properties as well as the sample geometry.

  18. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  19. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at high temperatures of high environmental resistance and high creep resistance, which in turn will result in long component life. Data are presented from a variety of laboratory tests on simple two-dimensional panels that examine these properties and compare the performance of the optimized full PIP system with those of the full CVI and CVI + PIP hybrid systems. Underlying mechanisms for performance differences in the various systems are discussed. Remaining issues for further property enhancement and for application of the full PIP approach for engine components are also discussed, as well as on-going approaches at NASA to solve these issues.

  20. Modified Process For Formation Of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1996-01-01

    Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.

  1. 77 FR 11611 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... system which the Exchange operates or controls. Reasonable Fees The Exchange's proposal for 40Gb fiber... offers various bandwidth options for connectivity to the Exchange, including a 10Gb fiber [[Page 11612... connection to the Exchange. The Exchange proposes a 40G [sic] fiber connection with a one-time installation...

  2. Design of a family of ring-core fibers for OAM transmission studies.

    PubMed

    Brunet, Charles; Ung, Bora; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie; Rusch, Leslie A

    2015-04-20

    We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.

  3. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  4. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  5. Multi-material Preforming of Structural Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Robert E.; Eberle, Cliff C.; Pastore, Christopher M.

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  6. Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique

    DTIC Science & Technology

    2015-08-28

    single crystal YAG fibers grown by laser - heated pedestal growth technique Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host...inserted into a SC YAG tube. This rod-in-tube was used as a preform in our laser -heated pedestal growth (LHPG) apparatus to grow a fiber with a radial...fibers grown by laser -heated pedestal growth technique Report Title Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host material has

  7. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, J.J.; Baer, T.M.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.

  8. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, James J.; Baer, Thomas M.

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.

  9. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  10. 77 FR 15169 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Exchange, including a 10Gb fiber connection, a 1Gb copper connection, and a 100 MB connection.\\4\\ In... enable its clients a more efficient connection to the Exchange. The Exchange proposes a 40G [sic] fiber... orders of 10Gb and 40Gb fiber connectivity to the Exchange completed between the effectiveness of this...

  11. Crystal-free Formation of Non-Oxide Optical Fiber

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  12. Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.

    2016-11-01

    The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.

  13. Tensile deformation damage in SiC reinforced Ti-15V-3Cr-3Al-3Sn

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Saltsman, James F.

    1991-01-01

    The damage mechanisms of a laminated, continuous SiC fiber reinforced Ti-15V-3Cr-3Al-3Sn (Ti-15-3) composite were investigated. Specimens consisting of unidirectional as well as cross-ply laminates were pulled in tension to failure at room temperature and 427 C and subsequently examined metallographically. Selected specimens were interrupted at various strain increments and examined to document the development of damage. When possible, a micromechanical stress analysis was performed to aid in the explanation of the observed damage. The analyses provide average constituent microstresses and laminate stresses and strains. It was found that the damage states were dependent upon the fiber architecture.

  14. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  15. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  16. Heat Treatment Effects on the Tensile Properties and Microstructures of a SiC/RBSN Composite in Nitrogen

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1995-01-01

    The room-temperature tensile properties and constituent microstructures of a unidirectionally reinforced SiC/reaction bonded silicon nitride (RBSN) composite have been investigated after heat treatments at 1400, 1600, or 1800 C in nitrogen for up to 100 hr. The composite consisted of approximately 24 vol% of aligned 140 micron diameter, continuous length, chemically vapor deposited SiC fibers in an approximately 40% porous silicon nitride matrix. The composites heat treated at 1400 C for up to 100 hr showed elastic modulus, first matrix cracking strength, and ultimate tensile strength values similar to those of the as-fabricated composites, but those heat treated for 1 hr beyond this temperature displayed losses in all three properties. Recrystallization of the SiC fibers, reaction between the carbon-rich interface coating on the fibers and the RBSN matrix, and dissociation of the RBSN matrix are the reasons for the loss of mechanical properties.

  17. Preceramic Polymers for Use as Fiber Coatings

    NASA Technical Reports Server (NTRS)

    Heimann, P. J.; Hurwitz, F. I.; Wheeler, D.; Eldridge, J.; Baranwal, R.; Dickerson, R.

    1996-01-01

    Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance.

  18. Effect of Fused Filament Fabrication Process Parameters on the Mechanical Properties of Carbon Fiber Reinforced Polymers

    DTIC Science & Technology

    2017-09-14

    averaging the gage measurements many specimens were not meeting the ASTM D3039 standard tolerance limitations when compared to the designed 3mm and 15 mm...MarkOne) 3D printer. A design of experiment (DOE) we preformed to develop a mathematical model describing the functional relationship between the...6 Design of Experiment (DOE) .................................................................................................. 6 Carbon Fiber

  19. A simulated RTM process for fabricating polyimide (AMB-21) carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Thomas, Shanon

    1995-01-01

    An experimental polyimide matrix, AMB-21 - supplied by NASA/LeRC, was especially formulated to be non-carcinogenic. It was also expected to be amenable to a Resin Transfer Molding Process (RTM). AMB-21 is a solid at room temperature and must be heated to a very high temperature to obtain a fluid state. However, even after heating it to a realistic high temperature, it was found to be too viscous for use in a RTM process. As a result, a promising approach was experimented leading to the introduction of the resin into a solvent solution in order to obtain a viscosity suitable for RTM. A mixture of methanol and tetrahydroferone was found to be a suitable solvent mixture. The matrix solution was introduced into carbon-fiber preform using two techniques: (1) injection of matrix into a Resin Transfer Mold after positioning the preform into the 'mold cavity', and (2) infiltration of matrix into the preform using the 'autoclave through-the-thickness transfer process'. After completing the resin transfer (infiltration) process, the 'filled' preform was heated to 300 F for one hour to reduce the solvent content. The temperature was then increased to 400 F under a vacuum to complete the solvent evaporation and to remove volatile products of the polyimide imidization. The impregnated preform was removed from the mold and press-cured at 200 psi and 600 FF for two hours. The resulting panel was found to be of reasonably good quality. This observation was based on the results obtained from short beam shear strength (700-8000 psi) tests and microscopic examination of the cross-section indicating a very low level of porosity. Further, the flash around the molded panels from the compression molding was free of porosity indicating the removal of volatiles, solvents, and other imidization products. Based on these studies, a new RTM mold containing a diaphragm capable of applying 200 psi at 600 F has been designed and constructed with the expectation that it will allow the incorporation of all of the above processing steps, including the consolidation with the preform in the mold cavity. Moreover, the new diaphragm design will enable to process larger preform panels. Processing studies with the diaphragm mold are being initiated.

  20. Thermomechanical Characterization of SiC Fiber Tows and Implications for CMC

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    In order to better understand SiC fiber behavior within CMC microstructures, mechanical tests were performed on multifilament tows consisting of different types of as produced and pretreated fibers. Tensile strengths of tows and single fibers were measured at room temperature for nonstoichiometric Hi-Nicalon and ZMI fibers and for stoichiometric Hi-Nicalon-S, Tyranno SA. and Sylramic fibers. Based on simple bundle theory, measured strengths for as-produced and sized tows were in general agreement with the single fiber results. However, after sizing removal under inert conditions, tow strengths for the coarser grained stoichiometric fibers were typically lower than those predicted from individual fiber data. This effect is attributed to enhanced fiber-fiber mechanical interaction caused by sizing removal from the rough surfaces of these fibers. In support of this, tow strengths remained high for those fiber types with fine grains or excess surface carbon; and, when re-coated with a BN interphase coating, tow strengths for the coarser grained fibers returned to their as-produced values. When the tows were pretreated in air at intermediate temperatures, tow strengths decreased in a manner that could be correlated with the oxidation characteristics of each fiber type as measured by thermogravimetric analysis. The creep and rupture properties of Hi-Nicalon and Sylramic tows were also measured in air and argon from 1200 to 1400 C. Although displaying transient and environmental effects similar to single fibers, the tows crept faster at short times and slower at long times. This resulted in the tow rupture strengths at long time being much greater than the rupture strengths of single fibers. The CMC implications of the tow results are discussed, as well as the benefits and limitations of tow testing.

  1. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    NASA Astrophysics Data System (ADS)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  2. Low-NA single-mode LMA photonic crystal rod fiber amplifier

    NASA Astrophysics Data System (ADS)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes

    2011-02-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.

  3. Ceramic Fiber Coatings Development and Demonstration

    DTIC Science & Technology

    1993-05-28

    from polycar- bosilane polymer . The fiber is mostly amorphous with some microcrystalline beta- SiC . A typical elemental composition (wt %) is 57... preceramic polymers yielded improvements mainly for oxide coatings and proved particularly promising for low cost processing. A schematic for this...deposition. COMPOSITE FABRICATION AND EVALUATION Coated fiber tows were infiltrated with Si 3N4 matrix by chemical vapor deposition in order to study

  4. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  5. Microfluidic flow rate detection based on integrated optical fiber cantilever.

    PubMed

    Lien, Victor; Vollmer, Frank

    2007-10-01

    We demonstrate an integrated microfluidic flow sensor with ultra-wide dynamic range, suitable for high throughput applications such as flow cytometry and particle sorting/counting. A fiber-tip cantilever transduces flow rates to optical signal readout, and we demonstrate a dynamic range from 0 to 1500 microL min(-1) for operation in water. Fiber-optic sensor alignment is guided by preformed microfluidic channels, and the dynamic range can be adjusted in a one-step chemical etch. An overall non-linear response is attributed to the far-field angular distribution of single-mode fiber output.

  6. Development of Critical Technologies for the COSMO/SkyMed Hyperspectral Camera

    DTIC Science & Technology

    2000-10-01

    Carbide (SiC) material (SiC or lightweighted Zerodur mirrors , carbon fiber technology. structures). - development of electronics blocks at high - High...investigation was Kcarried out to get the highest lightening factors on the Zerodur mirror substrates. Several samples of the TMA Fig. 5 - Prototypes of...implementation of state-of-the-art - manufacturing of very light mirrors with special manufacturing techniques for light components emphasis on Silicon

  7. Organosilicon Polymers as Precursors for Silicon-Containing Ceramics.

    DTIC Science & Technology

    1987-02-23

    preceramic polymer , shrinkage on pyrolysis could be considerable. Ceramic fibers of diverse chemical compositions are sought for...In the design of preceramic polymers , achievement of the desired elemental composition in the ceramic obtained from them ( SiC and Si3N4 in the...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a composition (1 SiC + 0.22

  8. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers.

    DTIC Science & Technology

    1988-04-15

    physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S

  9. Experimental and numerical characterization of scalable cellulose nano-fiber composite

    NASA Astrophysics Data System (ADS)

    Barari, Bamdad

    Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of isotropic CNF, formation of the freeze-dried CNF preforms' porous network strongly affects the mechanical, microstructural and tribological properties of the composite, therefore experimental testing was performed to characterize the effects of pore structure on global properties of isotropic CNF composites. Level of curing was investigated by experimental methods such as DSC in order to analyze its effects on the mechanical properties. The causes of failure in the composites were discussed by analyzing the SEM micrographs of fractured surfaces. The investigations revealed that the silane treated samples show superior mechanical behavior and higher storage modulus compared to the untreated (no silane) samples. The DMA and DSC results indicated a reduction in the glass transition temperature for the CNF composites compared to the pure resin samples. The tensile results showed higher elastic moduli in composites made from silane treated CNF preforms compared to those made from non silane-treated preforms. The tribological behavior of the silylated CNFs composites showed lower coefficient of friction and wear volumes than the neat bio-epoxy due to the formation of a transfer film on the mating surfaces, which led to a decrease in the 'direct contact' of the composite with the asperities of the hard metallic counterface. Under the topic of anisotropic CNF nanocomposites, a recently-discovered new type of CNF preform with more-aligned pore structure was used in our improvised LCM process to make the CNF-based anisotropic nanocomposite. The effect of such aligned pore structure on the mechanical and microstructural properties of CNF-based nanocomposites was investigated. As before, we used the tensile test, DMA and SEM to characterize this new material. Our investigation revealed that anisotropic CNF preform improved the overall mechanical properties of CNF composites due to better interfacing between the CNF and resin inside aligned pore structure of anisotropic CNF. Also, DMA results showed an improvement in the glass transition temperature of the anisotropic samples compared to the isotropic ones. For flow modeling in the CNF-based porous medium, the closure formulation, developed as a part of the derivation of Darcy's law developed by Whitaker [1], was used to develop novel numerical and experimental methods for estimating the permeability and absorption characteristics of a porous medium with a given pore-level microstructure. The permeability of such a porous medium was estimated numerically while the absorption characteristics were analyzed through experiments. In order to use real micrograph in permeability simulations, 2D SEM pictures of the CNF-based porous media were considered. The falling head permeameter was used for measuring the experimental permeability in order to test the accuracy of the permeability tensor obtained by the proposed numerical simulation. The permeability values were also compared with the theoretical models of Kozeny-Carman. A good agreement between the numerical, experimental and analytical methods demonstrated the accuracy of the closure formulation and the resulting simulation. These results also present the closure formulation based method as a viable method to estimate the permeability of porous media using 2D SEM micrographs; such a method harnesses the micro-macro coupling and is marked with absence of any constitutive-relation based assumption for such upscaling. Such a method is also faster, less expensive and less problematic than the corresponding 3D micro-CT scan based method because of much smaller degrees-of-freedom, memory and storage requirements. Under the absorption characteristics study, absorption characteristics of paper-like CNF porous medium was modeled using theoretical derivation of governing equation for single-phase flow and swelling behavior and absorption coefficient were investigated through experiments. In derivation part, unique form of mass conservation was developed using volume averaging theorem in the swelling, liquid-absorbing CNF-based preform. The case of the absorption coefficient, b being unity, which corresponds to the liquid absorption rate into fibers being equal to the fiber expansion rate, results in the classical form of the continuity equation that is originally derived for a rigid, non-deforming porous medium. The value of b was determined using a novel dipping experiment conducted with the help of a microbalance and was found to be unity for flow models in swelling porous media made of the CNF.

  10. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  11. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  12. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  13. Structural Integrity Testing Method for PRSEUS Rod-Wrap Stringer Design

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Grenoble, Ray W.; Pickell, Robert D.

    2012-01-01

    NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.

  14. Experiments Related to the Fabrication of Carbon Fiber/AMB-21 Polyimide Composite Tubes Using the RTM Process

    NASA Technical Reports Server (NTRS)

    Exum, Daniel

    1996-01-01

    AMB-21 is a new polymer developed by Mr. Ray Vannucci, NASA, LeRC as a noncarcinogenic polyimide matrix which may be suitable for fabricating composite parts by the Resin Transfer Modeling (RTM) process. The polyimide for this project was prepared at the Center of Composite Materials Research at N.C. A&T State University because it is not currently an item of commerce. The RTM process is especially suitable for producing geometrically complex composite parts at a low cost. Because of the high melting point and very high viscosity at the time of processing, polyimides have not been extensively used in the RTM process. The process for preparing AMB-21 as well as the process for fabricating composite plates will be described. The basic fabrication process consists of injecting a solvent solution of AMP-21 into a carbon fiber preform, evaporating the solvent, imidizing the polyimide, and vacuum/compression modeling the impregnated preform. All the above molding steps are preformed in a specially designed RTM mold which will be described. The results of this process have been inconsistent. Where as some experiments have resulted in a reasonably sound panels, others have not. Further refinements of the process are required to establish a reliable process.

  15. Radiation Effects on Ytterbium-doped Optical Fibers

    DTIC Science & Technology

    2014-06-02

    Erbium (Er3+) has long been the most prevalent RE dopant because of erbium’s ability to amplify signals at common communications wavelengths (1330 and...composition of the core and cladding along with dopants (intentional or inadvertent) (Friebele, 1992), preform production and fiber drawing process...inclusion of other elemental dopants along with the RE-ions in order to stabilize the RE-ions and prevent them from clustering, which can degrade

  16. ZBLAN Microgravity Study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1995-01-01

    One of the greatest obstacles with the fluorozirconate ZBLAN (ZrF4-BaF2-LaF3-AIF3-NaF) is the problem of devitrification. Fluoride glasses have a narrow working range and the viscosity is a strong function of temperature. Rates of nucleation and growth of crystals in the glass depend on the viscosity, making these glasses unstable and prone to crystallization. The viscosity of ZBLAN at the drawing temperature is low, usually between two to five poise, so it is difficult to obtain fibers from their preform melts without crystallization. The preforms usually contain heterogeneous nuclei which grow into microcrystallites above the glass transition temperature, T(g). Since microcrystallites in an optical fiber cause extrinsic light scattering losses of the optical signal, fiber drawing must be completed in a short time to minimize the generation of light scattering centers. To keep these losses to a minimum and to fabricate low scattering loss fibers and other optical components, this research deals with the possibility of minimizing crystallite formation by removing the gravitational influence of solutal segregation of the ZBLAN elements. This report reviews the early work on the KC-135 aircraft, the development of the ZBLAN Rocket Experiment, preparations at the White Sands Missile Range, analysis of the flight and ground test results, lessons learned and future experimentation.

  17. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    PubMed Central

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-01-01

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature. PMID:27763494

  18. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    PubMed

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  19. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  20. Factors Controlling Elevated Temperature Strength Degradation of Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    For 5 years, the cooperative agreement NCC3-763 has focused on the development and understanding of Sic-based composites. Most of the work was performed in the area of SiC fiber-reinforced composites for UEET and NGLT and in collaboration with Goodrich Corporation under a partially reimbursable Space Act Agreement. A smaller amount of work was performed on C fiber-reinforced SiC matrix composites for NGLT. Major accomplishments during this agreement included: Improvements to the interphase used in melt-infiltrated (MI) SiC/SiC composites which increases the life under stressed-oxidation at intermediate temperatures referred to as "outside-debonding". This concept is currently in the patent process and received a Space Act Award. Mechanistic-based models of intermediate temperature degradation for MI SiC/SiC Quantification and relatively robust relationships for matrix crack evolution under stress in SiC/SiC composites which serve as the basis for stress-strain and elevated temperature life models The furthering of acoustic emission as a useful tool in composite damage evolution and the extension of the technique to other composite systems Development of hybrid C-SiC fiber-reinforced SiC matrix composites Numerous presentations at conferences, industry partners, and government centers and publications in recognized proceedings and journals. Other recognition of the author's accomplishments by NASA with a TGIR award (2004), NASA's Medal for Public Service (2004), and The American Ceramic Society s Richard M. Fulrath Award (2005). The following will briefly describe the work of the past five years in the three areas of interest: SiC/SiC composite development, mechanistic understanding and modeling of SiC/SiC composites, and environmental durability of C/SiC composites. More detail can be found in the publications cited at the end of this report.

  1. Damping mechanisms in chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Goldsby, Jon C.

    1993-01-01

    Evaluating the damping of reinforcement fibers is important for understanding their microstructures and the vibrational response of their structural composites. In this study the damping capacities of two types of chemically vapor deposited silicon carbide fibers were measured from -200 C to as high as 800 C. Measurements were made at frequencies in the range 50 to 15000 Hz on single cantilevered fibers. At least four sources were identified which contribute to fiber damping, the most significant being thermoelastic damping and grain boundary sliding. The mechanisms controlling all sources and their potential influence on fiber and composite performance are discussed.

  2. Hermetic fiber optic-to-metal connection technique

    DOEpatents

    Kramer, Daniel P.

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  3. Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.

  4. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  5. Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy.

    PubMed

    Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J

    2004-04-05

    We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.

  6. Material Properties of Silicon Carbide Fibers with Continuously Applied Sol-Gel Alumina Coatings

    DTIC Science & Technology

    1990-12-01

    71 Coating Characterization ...................... 73 iii Two-Dimensional Plane Strain Analysis .................. 78 VI ...Axial Load in the Coating of Fiber Serie T ...... .82 vi List of Figures (continued) Figure Page 39. Tangential Stress Due to Axial Load in the Coating...residual stress will be presented 17 Fiur Vi o a CaFber EfIVfef Sic=’/. Figure 1. Sectional View of a Coated Fiber first, since these stresses are of

  7. TiC growth in C fiber/Ti alloy composites during liquid infiltration

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    A cylindrical model is developed for predicting the reaction zone thickness of carbon fiber-reinforced Ti-matrix composites, and good agreement is obtained between its predicted values and experimental results. The reaction-rate constant for TiC formation is estimated to be 1.5 x 10 exp -9 sq cm/sec. The model is extended to evaluate the relationship between C-coating thicknesses on SiC fibers and processing times.

  8. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  9. Intermediate Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC Matric Composite in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet; Brewer, David

    1999-01-01

    Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.

  10. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    DTIC Science & Technology

    2015-03-26

    method has been successfully used with several materials such as silicon carbide fiber - silicon carbide matrix ( SiC / SiC ) CMCs with carbon and boron...elements [14]. These advanced ceramics include oxides, nitrides and carbides of silicon , aluminum, titanium, and zirconium [12]. One of the most...oxides over silicon carbide and other non-oxide materials. In fact, it is the inherent stability of oxides in oxidizing environments which originally

  11. Characterization of Ultra-high Temperature Ceramics via Transmission Electron Microscopy Relevant ZrB2-based Composites, TaC-based Composites and Oxides Containing SiC Chopped Fibers

    DTIC Science & Technology

    2015-03-06

    was formed by ZrO2 rounded grains containing W traces and covered by H3BO3 acicular crystals deriving from hydration of B2O3 after exposure to...TaSi2 grains tended to form large pockets as wide as 3-8 m. Other spurious phases formed upon decomposition of the additive, were identified as SiC

  12. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    of SiC /Si 3N 4 ceramic upon pyrolysis . This material was used to produce adherent coatings on a variety of substrates, and also infiltration ...the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant accomplishments...projects in the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant

  13. Characterization of Ceramic Matrix Composite Vane Subelements Subjected to Rig Testing in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael; Calomino, Anthony; Thomas, David J.; Robinson, R. Craig

    2004-01-01

    Vane subelements were fabricated from a silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite. A cross-sectional slice of an aircraft engine metal vane was the basis of the vane subelement geometry. To fabricate the small radius of the vane's trailing edge using stiff Sylramic SiC fibers, a unique SiC fiber architecture was developed. A test configuration for the vanes in a high pressure gas turbine environment was designed and fabricated. Testing was conducted using a pressure of 6 atm and combustion flow rate of 0.5 kg/sec, and consisted of fifty hours of steady state operation followed by 102 2-minute thermal cycles. A surface temperature of 1320 C was obtained for the EBC-coated SiC/SiC vane subelement. This paper will briefly discuss the vane fabrication, test configuration, and results of the vane testing. The emphasis of the paper is on characterization of the post-test condition of the vanes.

  14. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE PAGES

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; ...

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  15. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  16. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Phillips, R. E.

    1988-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  17. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  18. Preparation of silicon carbide fibers

    DOEpatents

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  19. FIBER AND INTEGRATED OPTICS: Use of the offset method in an analysis of a non-Gaussian field distribution in single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1990-08-01

    An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.

  20. Manufacture of multi-layer woven preforms

    NASA Technical Reports Server (NTRS)

    Mohamed, M. H.; Zhang, Z.; Dickinson, L.

    1988-01-01

    This paper reviews current three-dimensional weaving processes and discusses a process developed at the Mars Mission Research Center of North Carolina State University to weave three-dimensional multilayer fabrics. The fabrics may vary in size and complexity from simple panels to T-section or I-section beams to large stiffened panels. Parameters such as fiber orientation, volume fraction of the fiber required in each direction, yarn spacings or density, etc., which determine the physical properties of the composites are discussed.

  1. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  2. Centrifugal Spinning: An Alternative for Large Scale Production of Silicon-Carbon Composite Nanofibers for Lithium Ion Battery Anodes.

    PubMed

    Nava, Rocío; Cremar, Lee; Agubra, Victor; Sánchez, Jennifer; Alcoutlabi, Mataz; Lozano, Karen

    2016-11-02

    Composites made of silicon nanostructures in carbon matrixes are promising materials for anodes in Li ion batteries given the synergistic storage capacity of silicon combined with the chemical stability and electrical conductivity of carbonaceous materials. This work presents the development of Si/C composite fine fiber mats produced by carbonization of poly(vinyl alcohol) (PVA)/Si composites. PVA has a high carbon content (ca. 54.5%) and, being water-soluble, it promotes the development of environmentally friendly materials. Si nanoparticles were dispersed in PVA solutions and transformed into fine fibers using a centrifugal spinning technique given its potential for large scale production. The Si/PVA fibers mats were then subjected to dehydration by exposing them to sulfuric acid vapor. The dehydration improved the thermal and chemical stability of the PVA matrix, allowing further carbonization at 800 °C. The resulting Si/C composite fibers produced binder-free anodes for lithium ion batteries that delivered specific discharge and charge capacities of 952 mA h g -1 and 862 mA g -1 , respectively, with a Columbic efficiency of 99% after 50 cycles.

  3. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  4. Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique

    NASA Astrophysics Data System (ADS)

    Velmiskin, Vladimir V.; Egorova, Olga N.; Mishkin, Vladimir; Nishchev, Konstantin; Semjonov, Sergey L.

    2012-04-01

    A procedure for the preparation of optically homogeneous glass for fiber preforms through sintering of coarse oxide particles and further processing of the resultant glass, including several drawing and stacking steps, is described. Reducing the pressure to 10-2 Torr during sintering considerably reduced the amount of gas bubbles in Yb/Al-doped silica glass and decreased the background loss to 100 dB/km after the third drawing-stacking-consolidation cycle. For comparison, a fiber singly doped with alumina was fabricated by the same procedure as above. The level of wavelength- independent losses in that fiber was 65 dB/km.

  5. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) Program, Grumman is developing innovative design concepts and cost-effective fabrication processes for damage-tolerant primary structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. Attention has focused on the use of textile high-performance fiber-reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials/processes methods is described: 'Y' spars fabricated using IM7 angle interlock 0/90 deg woven preforms with +/- 45 deg plies stitched with Toray high-strength graphite thread and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RTM and Tactix 123/H41 epoxy; and 'Y' spars fabricated using AS4(6k)/PEEK 150-g commingled angle interlock 0/90 deg woven preforms with +/- 45 deg commingled plies stitched using high-strength graphite thread and processed by consolidation. A comparison of the structural efficiency, processability, and projected acquisition cost of these representative spars is presented.

  6. Real-Time NDE Using Multi-Function Robotic Sonoscope (MSRF)

    DTIC Science & Technology

    1991-12-31

    constants of graphite fibers using SLAM, operating in a interferogram mode. Also measuring the stress in a Nicalon (SiC) fiber reinforced LAS ...demonstrated. Several Nicolan fibers reinforced LAS composites were used in the studies. A four-point bending fixture applying a known strain to the...was caused by a 0.16 Xc impacto - a"L a s?eed of 6-7 m/s. The field of view is 45 ran x 2 6 mm Mass 0.16 Kg Velocity = 6.70 m

  7. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  8. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  9. Niobium-Matrix-Composite High-Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  10. Friction and wear of carbon-graphite materials for high-energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  11. Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review

    PubMed Central

    Chen, Xinhua; Bei, Guoping

    2017-01-01

    Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for these ternary compounds were controlled by particle toughening, phase-transformation toughening and fiber-reinforced toughening, as well as texture toughening. Based on the various toughening mechanisms in MAX phase, models of SiC particles and fibers toughening Ti3SiC2 are established to predict and explain the toughening mechanisms. The modeling work provides insights and guidance to fabricate MAX phase-related composites with optimized microstructures in order to achieve the desired mechanical properties required for harsh application environments. PMID:28772723

  12. Photonics industry in China: from current status and trends to the importance of innovation

    NASA Astrophysics Data System (ADS)

    Fan, Chongcheng

    2011-12-01

    Current status and trends in various sectors of photonics industry in Mainland China are reviewed, which includes optical fiber communication, optical preform, fiber and cable, photonic devices and chips, LED illumination and display, and photovoltaics. Then, from the challenges and risks they are facing, critical importance of innovation is discussed. In the evolving Innovation Economy, the core competence of a company, an industry or a country is its innovation power and the capability to grab (and manage) talented people.

  13. Polymer Infiltration Studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1991-01-01

    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.

  14. Fatigue behavior of a ceramic matrix composite (CMC), 2D C{sub fiber}/SiC{sub matrix}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, P.A.; Rosa, L.G.; Steen, M.

    The material described in this study is a 2D CMC of continuous carbon fibers embedded in a SiC matrix. This work presents the tensile behaviour of the material at room temperature (RT) and 1200{degrees}C. Results of uniaxial tension-tension fatigue tests carried out at both temperatures (RT and 1200{degrees}C) are also presented.

  15. Electrospinning of ceramic nanofibers

    NASA Astrophysics Data System (ADS)

    Eick, Benjamin M.

    Silicon Carbide (SiC) nanofibers of diameters as low as 20 nm are fabricated. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene (PS) and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fibers flowing during pyrolysis. Electrospun SiC fibers were characterized by FTIR, TGA-DTA, SEM, TEM, XRD, and SAED. Fibers were shown to be polycrystalline and nanograined with alpha-SiC 15R polytype being dominant, where commercial fiber production methods form beta-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced alpha-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core-shell structure of an oxide scale that was variable by pyrolysis conditions. Metal oxide powders (chromium oxide, cobalt oxide, iron oxide, silicon oxide, tantalum oxide, titanium oxide, tungsten oxide, vanadium oxide, and zirconium oxide), were converted to metal carbide powders and metal nitride powders by the process of carbothermal reduction (CTR). Synthetic pitch was explored as an alternative to graphite which is a common carbon source for CTR. It was shown via characterization with XRD that pitch performs as well and in some cases better than graphite and is therefore a viable alternative in CTR. Conversion of metal oxide powders with pitch led to conversion of sol-gel based metal oxide nanofibers produced by electrospinning. Pitch was soluble in the solutions xv that were electrospun allowing for intimate contact between the sol-gel and the carbon source for CTR. This method became a two step processing method to produce metal carbide and nitride nanofibers: first electrospin sol-gel based metal oxide nanofibers and subsequently pyrolize them in the manner of CTR to transform them. Results indicate that this method was capable of transforming hafnium, niobium, tantalum, titanium, vanadium, and zirconium sol-gel nanofibers to metal carbides and nitrides.

  16. Effect of Steam Activation on Development of Light Weight Biomorphic Porous SiC from Pine Wood Precursor

    NASA Astrophysics Data System (ADS)

    Manocha, Satish M.; Patel, Hemang; Manocha, L. M.

    2013-02-01

    Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.

  17. Study of silicon carbide formation by liquid silicon infiltration of porous carbon structures

    NASA Astrophysics Data System (ADS)

    Margiotta, Jesse C.

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making fully dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure followed by conversion of this carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low reactivity and porosity, and cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose:resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800°C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process were studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Such knowledge can be used to further refine the LSI technique. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. Thus, SiC made by our LSI process is an ideally suited material for use in high temperature heat exchanger applications. Electron probe microanalysis (EPMA) and Auger electron spectroscopy (AES) were used to study the chemical composition of LSI SiC materials. Optimized low voltage microanalysis conditions for EPMA of SiC were theoretically determined. EPMA and AES measurements indicate that the SiC phase in our materials is slightly carbon rich. Carbon contamination was identified as a possible source of error during EPMA of SiC, and this error was corrected by using high purity SiC standards. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp 2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin.

  18. Experimentation and analysis of mechanical behavior modification of titanium matrix composites through controlled fiber placement

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl Lynne

    Titanium composites reinforced with SiC fibers in a uniaxial direction are being considered for various high temperature applications which require high specific strength or stiffness in the primary loading direction. However the very low tensile and creep strength of these composites in the transverse direction (loading perpendicular to the fiber axis) limits their use in many practical applications. Recent advances in composite fabrication techniques have provided not only better control of fiber volume fraction and distribution, but also the ability to control the relative fiber placement. The goal of this research was produce continuously reinforced SiC/Ti composites with precise fiber arrangement in order to ascertain the significance of fiber arrangements on transverse mechanical properties. In this study, TIMETAL 21S and Ti-6-4 composites reinforced with SCS-6 SiC fibers were produced with six distinct fiber placement arrangements. The effect of fiber placement on uniaxial tensile and creep behaviors was assessed and the results compared to analytical predictions. Consistent with analytical predictions, the fiber arrangements used in this study did not significantly change the longitudinal tensile behavior, but differences were obtained in the transverse loading response. For example, a diamond (non-equilateral triangle) fiber packing was found to have a higher transverse ultimate tensile strength and better transverse creep resistance than a rectangular fiber packing arrangement for a given volume fraction and fiber spacing (within-ply vs. between-ply). Initially this result appeared to be in contrast to previous computational and analytical simulations which predicted more favorable mechanical behavior for rectangular-type arrangements. However, this experimental/predictive conflict was resolved, in part, by simply defining a fiber spacing ratio which could describe both rectangular type and diamond-type arrangements. The computationally efficient Micromechanical Analysis Code based on the Generalized Method of Cells captured the correct behavior trends for these fiber arrangements and thus can be used to estimate the optimum fiber arrangement for a given materials system. Although this research utilized SiC/titanium alloy composites, the results should be relevant to any composite with a continuous reinforcement, a ductile matrix, and a finite fiber/matrix interfacial bond strength.

  19. Novel Composites for Wing and Fuselage Applications

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.

    1996-01-01

    Design development was successfully completed for textile preforms with continuous cross-stiffened epoxy panels with cut-outs. The preforms developed included 3-D angle interlock weaving of graphite structural fibers impregnated by resin film infiltration (RFI) and shown to be structurally suitable under conditions requiring minimum acquisition costs. Design guidelines/analysis methodology for such textile structures are given. The development was expanded to a fuselage side-panel component of a subsonic commercial airframe and found to be readily scalable. The successfully manufactured panel was delivered to NASA Langley for biaxial testing. This report covers the work performed under Task 3 -- Cross-Stiffened Subcomponent; Task 4 -- Design Guidelines/Analysis of Textile-Reinforced Composites; and Task 5 -- Integrally Woven Fuselage Panel.

  20. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  1. Design and fabrication of bismith-silicate photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomoharu

    2012-09-01

    The process of design and fabrication of bismuth-silicate photonic crystal fiber (Bi-PCF) is reported. The Bi-PCF was fabricated by stack and draw method. This is the first trial of the fabrication of photonic crystal fiber made of bismuth-based glass with stack and draw method. The Bi-PCF structure was designed to reduce group-velocity-dispersion (GVD) in a plausible process. Thermal properties of the glass are investigated to establish the fabrication process. The applying pressure and pumping in fiber preform preparation were effectively utilized to control the air-hole diameter and arrangement. The fabricated Bi-PCF shows the well reduced GVD as the numerical calculation predicted. Fusion splicing between Bi-PCF and SMF-28 was also demonstrated.

  2. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less

  3. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  4. Friction and Wear of Monolithic and Fiber Reinforced Silicon-Ceramics Sliding Against IN-718 Alloy at 25 to 800 C in Atmospheric Air at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1988-01-01

    The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.

  5. Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites

    DTIC Science & Technology

    1991-05-01

    mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical

  6. Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites

    DTIC Science & Technology

    1988-10-01

    carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor

  7. Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Beheim, Glenn; Anthan, Donald J.

    1987-01-01

    Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.

  8. High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.

    2014-01-01

    The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.

  9. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  10. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Dane F.

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity],more » a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O 2 cannot be ignored, especially for the FHR, in which environment the product, SiO 2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.« less

  11. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique.

    PubMed

    Dupuis, Alexandre; Mazhorova, Anna; Désévédavy, Frédéric; Rozé, Mathieu; Skorobogatiy, Maksim

    2010-06-21

    We report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule. The melted material is then poured into the silica mold to cast the microstructured preform. Another approach uses a microstructured mold made of a sacrificial plastic which is co-drawn with a cast preform. Material from the sacrificial mold is then dissolved after fi ber drawing. We also describe a novel THz-TDS setup with an easily adjustable optical path length, designed to perform cutback measurements using THz fibers of up to 50 cm in length. We fi nd that while both porous and non-porous subwavelength fibers of the same outside diameter have low propagation losses (alpha

  12. MoSi2-Base Hybrid Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically important property measured was impact resistance. Aircraft engine components require sufficient toughness to resist manufacturing defects, assembly damage, stress concentrations at notches, and foreign object damage. Engine company designers indicated that impact resistance would have to be measured before they would seriously consider these types of composites. The Charpy V-notch test was chosen to assess impact resistance, and both monolithic and composite versions Of MOSi2 were tested from -300 to 1400 C. The results (see the following graphs) show that nitride-particulate-reinforced MoSi2 exhibited impact resistance higher than that of many monolithic ceramics and intermetallics, and that the fiber-reinforced composites had even higher values, approaching that of cast superalloys.

  13. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2001-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  14. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2002-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  15. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  16. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  17. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  18. Composite fibres based on cellulose and vinyltriethoxysilane: preparation, properties and carbonization

    NASA Astrophysics Data System (ADS)

    Makarov, I. S.; Golova, L. K.; Mironova, M. V.; Vinogradov, M. I.; Kulichikhin, V. G.

    2018-04-01

    For the first time the composite fibers based on cellulose with additives of vinyltriethoxysilane (VTEOS) have been obtained. The choice of the additive was justified by the chemical structure of the VTEOS, namely the Si-C links content and the low C/O ratio. Composite fibers were prepared from solid phase pre-solutions of cellulose with VTEOS in N-methylmorpholine-N-oxide (NMMO). An investigation of the rheological behavior of the filled cellulose solutions with VTEOS showed a slight effect of the additive on the viscosity properties of the system. Introduction of 5% of VTEOS to cellulose does not lead to significant structural changes and, as a result, mechanical properties of the fibers. The thermal behavior of composite fibers differs from cellulose fibers.

  19. Deposition of BN interphase coatings from B-trichloroborazine and its effects on the mechanical properties of SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Wu, Haitang; Chen, Mingwei; Wei, Xi; Ge, Min; Zhang, Weigang

    2010-12-01

    Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl 3B 3N 3H 3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.

  20. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. Themore » materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.« less

  2. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  3. Numerical Simulation with Experimental Validation of the Draping Behavior of Woven Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Pasupuleti, Praveen; Zhao, Selina

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process. In this step, the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the tows may change significantly compared to the initial orientations. Accurate prediction of the tow orientations after molding is important for evaluating the structural performance of the final part. This paper investigates the fiber angle changes for carbon fiber woven fabrics during draping over a truncatedmore » pyramid tool designed and fabricated at the General Motors Research Labs. This aspect of study is a subset of the broad study conducted under the purview of a Department of Energy project funded to GM in developing state of the art computational tools for integrated manufacturing and structural performance prediction of carbon fiber composites. Fabric bending, picture frame testing, and bias-extension evaluations were carried out to determine the material parameters for these fabrics. The PAM-FORM computer program was used to model the draping behavior of these fabrics. Following deformation, fiber angle changes at different locations on the truncated pyramid were measured experimentally. The predicted angles matched the experimental results well as measured along the centerline and at several different locations on the deformed fabric. Details of the test methods used as well as the numerical results with various simulation parameters will be provided.« less

  4. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  5. Investigation of reaction kinetics and interfacial phase formation in Ti3Al + Nb composites

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Gundel, D. B.

    1992-01-01

    Titanium aluminide metal matrix composites are prominent materials systems being considered for high temperature aerospace applications. One of the major problems with this material is the reactivity between existing reinforcements and the matrix after prolonged thermal exposure. This paper presents results from an investigation of reaction kinetics between Ti-14Al-21Nb (wt pct) and SCS-6 fibers and SiC fibers with surface coatings of TiB2, TiC, TiN, W, and Si. Microstructural evaluation of the reaction layers as well as matrix regions around the fibers is presented.

  6. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  7. Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, H.-C.; Yu, W.-R.; Guo, Z.

    The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transversemore » axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.« less

  8. Improvement of optical damage in specialty fiber at 266 nm wavelength

    NASA Astrophysics Data System (ADS)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  9. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  10. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

  11. High-resolution Surface Analysis by Microarea Auger Spectroscopy: Computerization and Characterization

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1986-01-01

    A custom scanning Auger electron microscope (SAM) capable of introducing a 3-5 keV electron beam of several nA into a 30 nm diameter sample area was fitted with a sample introduction system and was fully computerized to be used for materials science research. The method of multispectral Auger imaging was devised and implemented. The instrument was applied to various problems in materials science, including the study of the fiber/matrix interface in a SiC reinforced titanium alloy, the study of SiC whiskers in Al alloy 2124 (in cooperation with NASA-Langley), the study of NiCrAl superalloys (in collaboration with NASA-Lewis), the study of zircalloy specimens (in collaboration with Stanford University), and the microstructure of sintered SiC specimens (in collaboration with NASA-Lewis). The report contains a number of manuscripts submitted for publication on these subjects.

  12. Orthorhombic Titanium Matrix Composite Subjected to Simulated Engine Mission Cycles

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1997-01-01

    Titanium matrix composites (TMC's) are commonly made up of a titanium alloy matrix reinforced by silicon carbide fibers that are oriented parallel to the loading axis. These composites can provide high strength at lower densities than monolithic titanium alloys and superalloys in selected gas turbine engine applications. The use of TMC rings with unidirectional SiC fibers as reinforcing rings within compressor rotors could significantly reduce the weight of these components. In service, these TMC reinforcing rings would be subjected to complex service mission loading cycles, including fatigue and dwell excursions. Orthorhombic titanium aluminide alloys are of particular interest for such TMC applications because their tensile and creep strengths are high in comparison to those of other titanium alloys. The objective of this investigation was to assess, in simulated mission tests at the NASA Lewis Research Center, the durability of a SiC (SCS-6)/Ti-22Al-23Nb (at.%) TMC for compressor ring applications, in cooperation with the Allison Engine Company.

  13. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    PubMed

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  14. Mechanical behavior of high strength ceramic fibers at high temperatures

    NASA Technical Reports Server (NTRS)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  15. Damage and failure behavior of metal matrix composites under biaxial loads

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  16. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  17. UV-fibers: two decades of improvements for new applications

    NASA Astrophysics Data System (ADS)

    Klein, Karl-Friedrich; Khalilov, Valery K.

    2015-03-01

    Multimode UV-fibers with high-OH synthetic silica core and F-doped silica cladding have been available for over 40 years. At the beginning, the spectral UV-range above 250 nm wavelength was commonly used, because the generation of UV-absorbing defect centers prevented reliable light transfer below 250 nm; even light from a low-power broadband deuterium-lamp was sufficient to damage these UV-fibers of the 1st generation. However, even then, applications in the field of spectroscopy, laser light delivery, sensors and process control were discussed and improvements of fiber quality in this very interesting UVC range required by researchers and industrial end-users. Starting in 1993 with hydrogen-loaded fibers, further modification in preform and fiber manufacturing including additional fiber treatments lead to currently available hydrogen-free UV-fiber (4th generation) with significantly improved stability in the UVC, enabling routine use of optical fibers in this field. In addition to the UV-fiber improvements, some selected UV fiber-optic applications using broadband deuterium-lamps will be discussed. Finally, there is still room for further improvements, especially in combination with newly available pulsed UV light sources, which are low-cost, small sized and highly reliable.

  18. Controlling Fiber Morphology in Simultaneous Centrifugal Spinning and Photopolymerization

    NASA Astrophysics Data System (ADS)

    Fang, Yichen; Dulaney, Austin; Ellison, Christopher

    2015-03-01

    Current synthetic fiber manufacturing technologies use either solvent or heat to transform a solid preformed polymer into a liquid before applying a force to draw the liquid into fiber. While the use of solvent poses concerns regarding process safety and environmental impact, the use of heat may also lead to polymer degradation and excessive energy consumption. To address these critical challenges, here we present an alternative fiber manufacturing method that encompasses extruding a monomer solution through an orifice, drawing it using centrifugal Forcespinning and polymerizing the monomer jet into solid fiber in flight using UV initiated thiol-ene chemistry. This method not only negates the use of both heat and solvent, but also produces fibers that are highly crosslinked, mechanically robust, and thermally stable. In this process, the balance between curing kinetics, fiber flight time, and solution viscoelasticity is essential. Studies were conducted to quantitatively investigate the effect of these factors on fiber formation and morphology. An operating diagram was developed to show how the intricate interplay of these factors led to the formation of smooth fibers and other undesirable fiber defects, such as beads-on-string, fused fibers, and droplets.

  19. Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers

    PubMed Central

    Auguste, Jean-Louis; Humbert, Georges; Leparmentier, Stéphanie; Kudinova, Maryna; Martin, Pierre-Olivier; Delaizir, Gaëlle; Schuster, Kay; Litzkendorf, Doris

    2014-01-01

    The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix. PMID:28788176

  20. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  1. Preformed amide-containing biopolymer for improving the environmental performance of synthesized urea–formaldehyde in agro-fiber composites

    Treesearch

    Altaf H. Basta; Houssni El-Saied; Jerrold E. Winandy; Ronald Sabo

    2011-01-01

    Investigations have continued for production high performance agro-based composites using environmentally acceptable approaches. This study examines the role of adding amide-containing biopolymers during synthesis of urea–formaldehyde (UF) on properties of adhesive produced, especially its adhesion potential. The environmental performance of UF-resin synthesized in the...

  2. Ceramic fibers from Si-B-C polymer precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.

    1993-01-01

    Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.

  3. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  4. Creep of Hi-Nicalon S Ceramic Fiber Tows at 800 deg C in Air and in Silicic Acid-Saturated Steam

    DTIC Science & Technology

    2015-12-26

    earliest recorded instances is that of Egyptian brick making. As far back as approximately 1500 BC, Egyptians added straw to clay for bricks [3]. This...The accuracy of this calculation method depends on the accuracy of amorphous silica viscosity data, which, in turn, are affected by impurities in...the SiC fiber. Lack of availability of viscosity data for crystobalite and tridymite pre- cluded calculation of growth stresses in crystallized silica

  5. Environmental Effects on the Tensile Strength of Chemically Vapor Deposited Silicon Carbide Fibers.

    DTIC Science & Technology

    1985-04-01

    typical tensile@ fracture surface shoting source offacue S 3 b) o* / C) (d) y ,p Figure 9. - SEM photographs of carbon coated SiC fiber surface before...111112.11111~ * L1.8 Jfl 1.25 J~l..A f .6 MICROCOPY RESOLUTION TEST CHART - • ARDS-1963-A .- +./~ . - .: .-- . 2’.’+., NASA USAAVSCOM Technical...Performing Organization Name and Address 11. Contract or Grant No. NASA Lewis Research Center and Propulsion Laboratory U.S. Army Research and Technology

  6. Modeling damage evolution in a hybrid ceramic matrix composite under static tensile load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, N.; Newaz, G.

    In this investigation, damage evolution in a unidirectional hybrid ceramic composite made from Nicalon and SiC fibers in a Lithium Aluminosilicate (LAS) glass matrix was studied. The static stress-strain response of the composite exhibited a linear response followed by load drop in a progressive manner. Careful experiments were conducted stopping the tests at various strain levels and using replication technique, scanning and optical microscopy to monitor the evolution of damage in these composites. It was observed that the constituents of the composite failed in a sequential manner at increasing strain levels. The matrix cracks were followed by SiC fiber failuresmore » near ultimate tensile stress. After that, the load drop was associated with progressive failure of the Nicalon fibers. Identification of these failure modes were critical to the development of a concentric cylinder model representing all three constituent phases to predict the constitutive response of the CMC computationally. The strain-to-failure of the matrix and fibers were used to progressively fail the constituents in the model and the overall experimental constitutive response of the CMC was recovered. A strain based analytical representation was developed relating stiffness loss to applied strain. Based on this formulation, damage evolution and its consequence on tensile stress-strain response was predicted for room temperature behavior of hybrid CMCs. The contribution of the current work is that the proposed strain-damage phenomenological model can capture the damage evolution and the corresponding material response for continuous fiber-reinforced CMCs. The modeling approach shows much promise for the complex damage processes observed in hybrid CMCs.« less

  7. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  8. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  9. Pest Oxidation Regime in the Hi-Nicalon(Trademark)/BN/SiC Composite

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1998-01-01

    SiC-SiC composites are prone to pest degradation at intermediate temperatures where the formation of a protective scale of silica by direct oxidation of SiC is too slow to offer effective protection from attack by ambient gases. The attack results in the removal of the BN interphase and its replacement by a borosilicate liquid (which dissolves and weakens the fiber) and finally by SiO2, (which embrittles the composite by bonding fiber to fiber or to matrix). This paper reports a study aimed at mapping out the temperature range of such pest degradation and the severity of its effect.

  10. Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.

    2009-01-01

    A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.

  11. Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.

    2004-01-01

    Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.

  12. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  13. Mid-infrared chalcogenide fiber devices for medical applications

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Buff, Andrew

    2018-02-01

    High-purity chalcogenide glasses and fiber draw processes enable the production of state-of-the-art mid-infrared fibers for 1.5 to 10 micron transmission. Multimode and single-mode mid-infrared fibers are produced with low-loss (<0.2 dB/m), high tensile strength (>25 kpsi), and high power laser handling capability (>11.8 MW/cm2). Chalcogenide fibers support the development of cutting-edge devices for mid-infrared medical applications. Connectorized cables transmit laser power to a sample or mid-infrared radiation to a detector. Broadband antireflection microstructures are thermally stamped on the chalcogenide fiber tip to reduce the surface reflection from 17% to <5%. Also custom fiber-optic probe bundles are made with multiple fiber legs (source, sample, signal) for reflection and backscatter spectroscopy measurement. For example, a 7 x 1 fiber probe bundle is presented. Additionally imaging fiber bundle is made to perform remote thermal and spectral imaging. Square preforms are drawn, stacked, squared and fused multiple times to produce a 64 x 64 imaging fiber bundle with fiber pixel size of 34 microns and the numerical aperture of 0.3. The 2- meter long imaging fiber bundle is small (2.2 mm x 2.2 mm), flexible (bend radius >10 mm) and transmits over the spectral range of 1.5 to 6.5 micron.

  14. Oxidation of Boron Nitride in Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1998-01-01

    Boron nitride (BN) is a prime candidate for fiber coatings in silicon carbide (SiC) fiber-reinforced SiC matrix composites. The properties of BN allow the fiber to impart beneficial composite properties to the matrix, even at elevated temperatures. The problem with BN is that it is readily attacked by oxygen. Although BN is an internal component of the composite, a matrix crack or pore can create a path for hot oxygen to attack the BN. This type of attack is not well understood. A variety of phenomena have been observed. These include borosilicate glass formation, volatilization of the BN, and under some conditions, preservation of the BN. In this study at the NASA Lewis Research Center, a series of BN materials and BN-containing model composites were methodically examined to understand the various issues dealing with the oxidation of BN in composites. Initial studies were done with a series of monolithic BN materials prepared by hot pressing and chemical vapor deposition (CVD). From these studies, we found that BN showed a strong orientation effect in oxidation and was extremely sensitive to the presence of water vapor in the environment. In addition, CVD material deposited at a high temperature showed much better oxidation behavior than CVD material deposited at a lower temperature.

  15. The effect of electrospun nanofibers alignment on the synthesis of one-dimensional silicon carbide nanostructure

    NASA Astrophysics Data System (ADS)

    Hooshyar, Ali; Kokabi, Mehrdad

    2018-01-01

    One-dimensional silicon carbide (1D SiC) nanostructure has shown unusual properties such as extremely high strength, good flexibility, fracture toughness, wide band gap ( 3.2eV), large breakdown electric field strength (>2 MV cm-1, 10 times that of silicon), and inverse Hall-Petch effect. Because of these advantages, 1D SiC nanomaterial has gained extensive attention on the wide range of applications in microelectronics, optoelectronics, nanocomposites, and catalyst supports. Many methods have been used for the synthesis of 1D SiC nanostructures such as chemical vapor deposition, carbon nanotube-confined reaction, laser ablation, high-frequency induction heating, and arc discharge. However, these methods have also some shortcomings such as using catalyst, high-cost, low yield, irregular geometry and impurity. In this work, electrospinning was used to prepare aligned PVA/SiO2 composite nanofibers and the effect of fiber alignment on the production efficiency and quality of 1D SiC nanostructure was investigated. For this purpose, aligned electrospun nanofibers, as the desirable precursor, were put in a tube furnace and heated up to 1250°C under a controlled program in an inert atmosphere. Finally, the grown 1D SiC nanostructure product was characterized using SEM, XRD, and FTIR. The results confirmed the successful synthesis of pure crystalline1D β-SiC nanostructure with high yield, more regular, and metal catalyst-free.

  16. Textile composite processing science

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.

    1993-01-01

    A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.

  17. Raman Study of Uncoated and P-bn/sic-coated Hi-nicalon Reinforced Celsian Matrix Composites. Part 2; Residual Stress in the Fibers

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.

  18. Development of Al2O3 fiber-reinforced Al2O3-based ceramics.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2004-09-01

    The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.

  19. Cross-stiffened continuous fiber structures

    NASA Technical Reports Server (NTRS)

    Ewen, John R.; Suarez, Jim A.

    1993-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.

  20. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  1. Production of Bulk and Fiber Glass in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.

  2. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    PubMed

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  3. Lateral Growth Expansion of 4H/6H-SiC m-plane Pseudo Fiber Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Powell, J. A.; Spry, David J.; Raghothamachar, Balaji; Dudley, Michael

    2011-01-01

    Lateral expansion of small mixed polytype 4H/6H-SiC slivers were realized by hot wall chemical vapor deposition (HWCVD). Small slivers cut from m-oriented ..11..00.. SiC boule slices containing regions of 4H and 6H SiC were exposed to HWCVD conditions using standard silane/propane chemistry for a period of up to eight hours. The slivers exhibited approximately 1500 microns (1.5 mm) of total lateral expansion. Initial analysis by synchrotron white beam x-ray topography (SWBXT) confirms, that the lateral growth was homoepitaxial, matching the polytype of the respective underlying region of the seed sliver.

  4. Microstructures of BN/SiC coatings on nicalon fibers

    NASA Technical Reports Server (NTRS)

    Dickerson, R. M.; Singh, M.

    1995-01-01

    The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.

  5. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  6. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  7. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  8. Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    1999-01-01

    A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.

  9. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  10. Composite fiber structures for catalysts and electrodes

    NASA Technical Reports Server (NTRS)

    Marrion, Christopher J.; Cahela, Donald R.; Ahn, Soonho; Tatarchuk, Bruce J.

    1993-01-01

    We have recently envisioned a process wherein fibers of various metals in the 0.5 to 15 micron diameter range are slurried in concert with cellulose fibers and various other materials in the form of particulates and/or fibers. The resulting slurry is cast via a wet-lay process into a sheet and dried to produce a free-standing sheet of 'composite paper.' When the 'preform' sheet is sintered in hydrogen, the bulk of the cellulose is removed with the secondary fibers and/or particulates being entrapped by the sinter-locked network provided by the metal fibers. The resulting material is unique, in that it allows the intimate contacting and combination of heretofore mutually exclusive materials and properties. Moreover, due to the ease of paper manufacture and processing, the resulting materials are relatively inexpensive and can be fabricated into a wide range of three-dimensional structures. Also, because cellulose is both a binder and a pore-former, structures combining high levels of active surface area and high void volume (i.e., low pressure drop) can be prepared as freestanding flow through monoliths.

  11. High Temperature Advanced Structural Composites. Book 1: Executive Summary and Intermetallic Compounds

    DTIC Science & Technology

    1993-04-02

    Misiolek, W.Z. and German, R.M., "Economical Aspects of Experiment Design for Compaction of High Temperature Composites," Proceedings of the American...ten years, the computational capability should be available. For infiltrated matrix depositions, the research has shown that design fiber... designed for manufacturing, was not completed. However, even with present 2-D fabric composite preforms, a two-step deposition procedure, optimized for the

  12. Comparative study of tow buckling defect during preforming of structural composites based on vegetable fibers

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Fazzini, Marina; Ouagne, Pierre

    2018-02-01

    During the complex shape forming of composite fibrous reinforcement, the planar bending of roving tows results in an out-of-plane deflection, along with a rotation on its central axis. The need to accurately follow and quantify the mechanism of formation of such defect has led us to consider two 3D imaging techniques, of which, have been tested and compared in this work.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bin, E-mail: huangbin@nwpu.edu.cn; Li, Maohua; Chen, Yanxia

    The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC{sub f}/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC{sub f}/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC{sub f}/Ti-6Al-4V composites can be described as SiC||TiC||Ti{sub 5}Si{sub 3} + TiC||Ti-6Al-4V and SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces.more » For the SiC{sub f}/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC{sub F}||TiC{sub C}||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti-6Al-4V. Furthermore, in SiC{sub f}/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC{sub f}/Ti-6Al-4 V composites as well as in the SiC{sub f}/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC{sub f}/Ti-6Al-4 V composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.« less

  14. Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.

    1995-01-01

    Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.

  15. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  16. Novel Approach for Positioning Sensor Lead Wires on SiC-Based Monolithic Ceramic and FRCMC Components/Subcomponents Having Flat and Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.

    1999-01-01

    A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.

  17. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  18. Modeling the Relationship Between Porosity and Permeability During Oxidation of Ablative Materials

    NASA Technical Reports Server (NTRS)

    Thornton, John M.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Mansour, Nagi N.

    2017-01-01

    The ablative materials used in thermal protection systems (TPS) undergo oxidation during atmospheric entry which leads to an in-depth change in both permeability and porosity. These properties have a significant affect on heat transfer in a TPS during entry. X-ray micro-tomography has provided 3D images capturing the micro-structure of TPS materials. In this study, we use micro-tomography based simulations to create high-fidelity models relating permeability to porosity during oxidation of FiberForm, the carbon fiber preform of the Phenolic Impregnated Carbon Ablator (PICA) often used as a TPS material. The goal of this study is to inform full-scale models and reduce uncertainty in TPS modeling.

  19. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  20. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  1. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  2. Molten salt corrosion of hot-pressed Si sub 3 N sub 4 /SiC-reinforced composites and effects of molten salt exposure on slow crack growth of hot-pressed Si sub 3 N sub 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, C.H. Jr.; Jones, R.H.

    1989-11-03

    Corrosion and slow crack growth of hot-pressed Si{sub 3}N{sub 4}- based ceramic materials were studied to arrive at an initial determination of the severity of Na{sub 2}SO{sub 4} molten salt environments. Slow crack growth testing revealed that Na{sub 2}SO{sub 4} molten salt exposure accelerated crack growth in hot-pressed Si{sub 3}N{sub 4} compared to crack growth in air at 1300 C. The salt exposure was observed to reduce the time to failure of precracked specimens by factors of two or three. Measured crack velocity was observed to obey a power law, V = AK{sup n}, with n = 5.2 {plus minus}more » 0.2 and A = 7.6 {times} 10{sup {minus}10}. Standard corrosion coupon tests were performed on specimens of Si{sub 3}N{sub 4}/SiC-reinforced composites and hot-pressed Si{sub 3}N{sub 4} monolithic material. Weight change measurements were performed after eight-hour immersion exposures at 950, 975, and 1000 C to Na{sub 2}SO{sub 4}. Hot-pressed Si{sub 3}N{sub 4} + 5% MgO and Si{sub 3}N{sub 4}/SiC whisker-reinforced material exhibited similar surface features after molten salt exposure. A Si{sub 3}N{sub 4}/SiC fiber-reinforced material, however, revealed complete dissolution of SiC chopped fiber reinforcements.« less

  3. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  4. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.

  5. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  6. Health hazard evaluation determination report No. 78-128-549, Nixon Power Plant, Colorado Springs, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunter, B.J.

    1978-12-01

    Asbestos (CAS 1332-21-4) concentrations during sanding and buffing operations were measured at the Nixon Power facility (SIC-4911) in Colorado Springs, Colorado on September 29, 1978. The evaluation was requested by the vice president of the Watkin Construction Company on behalf of plumbers engaged in sanding asbestos joints and connections. Breathing zone asbestos concentrations of fibers greater than five microns in length ranged from 0.02 to 0.187 fibers per cubic centimeter. The OSHA asbestos standard of 2 fibers per cubic centimeter was not exceeded, however, the author concludes that a potential asbestos hazard does exist. He recommends that respirators be usedmore » by workers until exhaust ventilation is provided.« less

  7. EFFECTS OF TEMPERATURE AND ENVIRONMENT ON MECHANICAL PROPERTIES OF TWO CHOPPED-FIBER AUTOMOTIVE STRUCTURAL COMPOSITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles-Wrenn, M.B.

    2003-10-06

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the U.S. Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on composite materials consisting of polyurethane reinforced with E-glass. Current focus of the project is on composite materials reinforced with carbon fibers. The primary purpose of this report is to provide the individual specimen test date. Basic mechanical property testing and results for two chopped-fiber composite materials, one reinforced with glass- and themore » other with carbon fiber are provided. Both materials use the same polyurethane matrix. Preforms for both materials were produced using the P4 process. Behavioral trends, effects of temperature and environment, and corresponding design knockdown factors are established for both materials. Effects of prior short-time loads and of prior thermal cycling are discussed.« less

  8. Evaluation of CVI SiC/SiC Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.

    2017-01-01

    Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.

  9. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  10. Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications.

    PubMed

    Lu, Xin; Qu, Hang; Skorobogatiy, Maksim

    2017-02-28

    We report an all-polymer flexible piezoelectric fiber that uses both judiciously chosen geometry and advanced materials in order to enhance fiber piezoelectric response. The microstructured/nanostructured fiber features a soft hollow polycarbonate core surrounded by a spiral multilayer cladding consisting of alternating layers of piezoelectric nanocomposites (polyvinylidene enhanced with BaTiO 3 , PZT, or CNT) and conductive polymer (carbon-filled polyethylene). The conductive polymer layers serve as two electrodes, and they also form two spatially offset electric connectors on the fiber surface designed for the ease of connectorization. Kilometer-long piezoelectric fibers of sub-millimeter diameters are thermally drawn from a macroscopic preform. The fibers exhibit high output voltage of up to 6 V under moderate bending, and they show excellent mechanical and electrical durability in a cyclic bend-release test. The micron/nanosize multilayer structure enhances in-fiber poling efficiency due to the small distance between the conducting electrodes sandwiching the piezoelectric composite layers. Additionally, the spiral structure greatly increases the active area of the piezoelectric composite, thus promoting higher voltage generation and resulting in 10-100 higher power generation efficiency over the existing piezoelectric cables. Finally, we weave the fabricated piezoelectric fibers into technical textiles and demonstrate their potential applications in power generation when used as a sound detector, smart car seat upholstery, or wearable materials.

  11. A new approach for high performance fiber manufacturing via simultaneous fiber spinning and UV initiated polymerization

    NASA Astrophysics Data System (ADS)

    Ellison, Chris

    Synthetic fibers have been manufactured for decades using solvents or heat to reduce the viscosity of pre-formed polymers and promote drawing. However, nature has engineered spiders and silkworms with benign ways of making silk fibers with high strength and toughness. Conceptually, their approach of chemically linking small functional units (i.e., proteins) into long chain molecules and solid fibrillar structures ``on-demand'' is fundamentally different from current synthetic fiber manufacturing methods. Drawing inspiration from nature, a method will be described that uses light to trigger a thiol-ene photopolymerization to rapidly transform reactive liquid mixtures into solid thread-like structures as they are forced out of a capillary at high speeds. Besides being manufactured without using solvents/volatile components or heat, these fibers are mechanically robust and have excellent chemical and thermal stability due to their crosslinked nature. During processing, the balance between curing kinetics, fiber flight time, and monomer mixture viscoelasticity is essential for the formation of defect free fibers. This work focuses on developing a universal operating diagram to show how the intricate interplay of gel time, flight time, and fluid relaxation time leads to the formation of uniform fibers and other undesirable fiber morphologies such as beads-on-string, fused fibers, non-uniform fibers, and droplets. This predictive capability enables adaptation of this spinning concept to all existing fiber spinning platforms, and customization of monomer formulations to target desired properties.

  12. Morphological analysis of zirconium nuclear fuel retaining rods braided with SiC: Quality assurance and defect identification

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.; Hiromoto, Robert; Tokuhiro, Akira

    2014-08-01

    In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ∼50,000 individual filaments of 5-10 μm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protective layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.

  13. Characterization of 4H <000-1> Silicon Carbide Films Grown by Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew, A; Sayir, Ali; Neudeck, Philip, G; Raghothamachar, Balaji; Dudley, Michael

    2012-01-01

    Commercially available bulk silicon carbide (SiC) has a high number (>2000/sq cm) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by x-ray transmission Laue diffraction patterns and x-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration.

  14. Morphological Analysis of Zirconium Nuclear Fuel Retaining Rods Braided with SiC: Quality Assurance and Defect Identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael V Glazoff; Robert Hiromoto; Akira Tokuhiro

    In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ~50,000 individual filaments of 5 – 10 µm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protectivemore » layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.« less

  15. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    PubMed

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  16. A preliminary investigation of acousto-ultrasonic NDE of metal matrix composite test specimens

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Lerch, Brad A.

    1991-01-01

    Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of 8 laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The following subject areas are covered: AU signal analysis; tensile behavior; AU and interrupted tensile tests; AU and thermally cycled specimens; AU and stiffness; and AU and specimen geometry.

  17. Microscopic Study of the Influence of Impurities on Interface Bonding.

    DTIC Science & Technology

    1984-01-25

    diffusion-pumped rough vacuum (about 2xlO Ř torr) conditions for 24 hours. A slight degradation was found by Kohara (6) at 6000C. The diffraction pattern...Industries, Inc., 1976. 6. F.S. Lin, S.B. Chakraburtty and E.A. Starke, Jr., Met. Trans. 13A p. 461 (1982). 7. S. Kohara , "Compatibility of SiC Fibers with

  18. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    DTIC Science & Technology

    2016-01-01

    the preforms. It is a low- viscosity 2-phased toughened epoxy resin system consisting of part A (resin mixture of diglycidylether epoxy toughener...Delamination resistant laminates by Z-fiber pinning. Composites: Part A. 2005;36:55–64. 6. Clay S, Pommer A. Z-pin stubble technology advanced research...characterization of montmorillonite clay -filled SC-15 epoxy. Materials Letters. 2006;60:869–873. Approved for public release; distribution is

  19. Flow monitoring of microwave pre-heated resin in LCM processes

    NASA Astrophysics Data System (ADS)

    Rubino, F.; Paradiso, V.; Carlone, P.

    2017-10-01

    Liquid composite molding is manufacturing techniques that involve the injection or infusion of catalyzed liquid resin into a mold to impregnate a dry fiber preform. The challenges of LCM processes are related to the obtaining of a complete wetting of the reinforcement as well as a reduction of the void to obtain a final product with high mechanical properties. The heating of the resin prior the injection into the mold cavity has proven to be useful to improve the LCM processes. The increasing of temperature results in a reduction of resin viscosity and allows the resin to flow more easily through the reinforcement; the cure stage is also improved resulting in a reduction of global process time required. Besides the conventional solutions to heat up the resin based on the thermal conduction, in-line microwave heating is a suitable method to heat dielectric materials providing an even temperature distribution through the resin, thereby avoiding a thermal gradient between the surface and the core of liquid resin, which could result in a premature and uncontrolled cure. In the present work, an in-line microwave system, manually controlled, have been coupled with a VARTM apparatus to heat the resin before the infusion. In addition, parallel-plate dielectric sensors and pressure sensors, embedded into the mold, were employed to track the flow front through the fiber reinforcement in two distinct cases: unheated resin and pre-heated resin. The aim of work was to assess the effectiveness of microwave pre-heating to improve the macro and micro-impregnation of dry preform. The obtained results showed capability of in-line microwave heating to shorten the impregnation of dry fabric and provide a homogeneous wetting of fibers.

  20. High Temperature Mechanical Characterization of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.

    1998-01-01

    A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory provides the best approximation of the first matrix cracking stress when residual stresses are ignored. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate strength. The enhanced SiC/SiC composite exhibited nonlinear stress/strain behavior from 24 C to 1370 C in air with increased ultimate strain when compared to monolithic SiC. The theory of Yang and Chou with the assumption of a frictional fiber/matrix interface provided the best estimate of the Young's modulus. The theory of Cao and Thouless gave the best estimate for the ultimate strength.

  1. Tension-Tension Fatigue Behavior of Unidirectional C/Sic Ceramic-Matrix Composite at Room Temperature and 800 °C in Air Atmosphere

    PubMed Central

    Li, Longbiao

    2015-01-01

    The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.

  2. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  3. Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming

    2016-01-01

    In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.

  4. High temperature compounds for turbine vanes

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.; Cannon, R. M., Jr.

    1972-01-01

    Fabrication and microstructure control studies were conducted on SiC, Si3N4, and composites based on these compounds. Charpy mode impact testing to 2400 F established that beta-spodumene, lithium aluminum silicate, coated Si3N4, Si3N4 derived from alpha-Si3N4 powder, and SiC containing 5-25 v/o chopped C fibers had the most promising strengths. Several other composite systems had excellent microstructures and could prove interesting materials in the future. Stress-rupture testing on Si3N4 established that increasing 2000 F - 100 hour strengths were obtained for increasing grain size to at least 5 micrometers, increasing density and possibly increasing phase purity. These parameters became less important at 2400 F where it is thought a grain boundary phase controls strength.

  5. Process simulation for advanced composites production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less

  6. Modeling of Different Fiber Type and Content SiC/SiC Minicomposites Creep Behavior

    NASA Technical Reports Server (NTRS)

    Almansour, Amjad S.; Morscher, Gregory N.

    2017-01-01

    Silicon Carbide based Ceramic Matrix Composites (CMCs) are attractive materials for use in high-temperature applications in the aerospace and nuclear industries. However, creep damage mechanism in CMCs is the most dominant mechanism at elevated temperatures. Consequently, the tensile creep behavior of Hi-Nicalon, Hi-Nicalon Type S SiC fibers and Chemical vapor infiltrated Silicon Carbide matrix (CVI-SiC) were characterized and creep parameters were extracted from creep experiments. Some fiber creep tests were performed in inert environment at 1200 C on individual fibers. Creep behavior of different fiber content pristine and precracked Hi-Nicalon and Hi-Nicalon Type S reinforced minicomposites with BN interphases and CVI-SiC matrix were then modelled using the creep data found in this study and the literature and compared with creep experiments results for the pristine and precracked Hi-Nicalon and Hi-Nicalon Type S minicomposites. Finally, the effects of load-sharing and matrix cracking on CMC creep behavior will be discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel A. Riza

    The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, andmore » to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.« less

  8. Verification of a three-dimensional resin transfer molding process simulation model

    NASA Technical Reports Server (NTRS)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  9. Silsesquioxane-derived ceramic fibres

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  10. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  11. Materials Refining for Structural Elements From Lunar Resources

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.

    1998-01-01

    Use of in situ resources for construction on the Moon will require manufacturing structural materials out of lunar resources. Many materials that are currently used for aerospace and construction require materials that have low availability on the Moon. For example, graphite fiber, SiC fiber, and artificial fiber composites (such as Kevlar, Spectra, etc.) are used as advanced lightweight structural materials on Earth, but the low availability of C on the Moon makes these poor choices. Likewise the polymers used as the matrix for these composites, epoxy or polyester, also suffer from the low availability of C. Bulk paving and construction materials such as cement or concrete suffer from the low availability of water on the Moon, while asphalt, a common paving material on Earth, suffers from the low availability of C.

  12. In-plane and Interlaminar Shear Strength of a Unidirectional Hi-nicalon Fiber-reinforced Celsian Matrix Composite

    NASA Technical Reports Server (NTRS)

    Uenal, O.; Bansal, N. P.

    2000-01-01

    In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.

  13. Recent achievements using chemical vapor composite silicon carbide (CVC SiC)

    NASA Astrophysics Data System (ADS)

    Goodman, William A.; Tanaka, Clifford

    2009-08-01

    This annual review documents our progress towards inexpensive mass production of silicon carbide mirrors and optical structures. Results are provided for a NASA Small Business Technology Transfer (STTR) X-Ray Mirror project. Trex partnered with the University of Alabama-Huntsville Center for Advanced Optics (UAH-CAO) to develop fabrication methods for polished cylindrical and conical chemical vapor composite (CVCTM) SiC mandrels. These mandrels are envisioned as pre-forms for the replication of fused silica x-ray optics to be eventually used in the International X-Ray Observatory (IXO). CVC SiCTM offers superior high temperature stability, thermal and mechanical performance and polishability required for this precision replication process. In this program, Trex fabricated prototype mandrels with design diameters of 10.5cm, 20cm and 45cm. UAH-CAO was Trex's university partner in this effort and worked on polishing and metrology of the unusual x-ray mandrel geometries. UAH-CAO successfully developed an innovative interferometric method for measuring the CVC SiCTM x-ray mandrels based on a precision cylindrical lens system. UAH-CAO also developed finishing and polishing methods for CVC SiCTM that utilized a Zeeko IRP200 computer controlled polishing tool. The three technologies key technologies demonstrated in this program (near net shape forming of CVC SiCTM mandrels, the x-ray mandrel metrology and free-form polishing capability on CVC SiCTM) could enable cost-effective manufacture of the x-ray mandrels required for the International X-Ray Observatory (IXO).

  14. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  15. Method of making a high performance ultracapacitor

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  16. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  17. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  18. NASA/USRA advanced design program activity, 1991-1992

    NASA Astrophysics Data System (ADS)

    Dorrity, J. Lewis; Patel, Suneer

    The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.

  19. NASA/USRA advanced design program activity, 1991-1992

    NASA Technical Reports Server (NTRS)

    Dorrity, J. Lewis; Patel, Suneer

    1992-01-01

    The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.

  20. Study of flexural rigidity of weavable powder-coated towpreg

    NASA Technical Reports Server (NTRS)

    Hirt, Douglas E.; Marchello, Joseph M.; Baucom, Robert M.

    1990-01-01

    An effort has been made to weave powder-impregnated tow into a two-dimensional preform, controlling process variables to obtain high flexural rigidity in the warp direction and greater flexibility in the fill direction. The resulting prepregs have been consolidated into laminates with LaRC-TPI matrices. Complementary SEM and DSC studies have been performed to deepen understanding of the relationship between tow flexibility and heat treatment. Attention is also given to the oven temperature and residence time variables' effects on power/fiber fusion.

  1. Fiber optic systems in the UV region

    NASA Astrophysics Data System (ADS)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  2. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Petrie, Christian M.

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Officemore » of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high heat flux configurations have been assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. These rabbits contain a wide variety of specimens including monolith tubes, SiC fiber SiC matrix (SiC/SiC) composites, duplex specimens (inner composite, outer monolith), and specimens with a variety of metallic or ceramic coatings on the outer surface. The rabbits are targeted for insertion during HFIR cycle 475, which is scheduled for September 2017.« less

  3. A novel liquid-filled microstructured polymer optical fiber as bio-sensing platform for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Azkune, Mikel; Arrospide, Eneko; Berganza, Amaia; Bikandi, Iñaki; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba

    2018-02-01

    One approach to overcome the poor efficiency of the Raman scattering as a sensing platform is to use microstructured optical fibers. In this type of fibers with a longitudinal holey structure, light interacts with the target sample, which is confined in the core, giving rise to a light intensity increase of the obtained Raman spectra due to the large interaction distances and the guidance of the scattered light. In this work, we present an ad-hoc fabricated liquid-core microstructured polymer optical fiber (LC-mPOF) as a bio-sensing platform for Raman Spectroscopy. Arising from an initial simulation stage, we create the desired preform using the drilling technique and afterwards the LC-mPOF is drawn in our fiber drawing tower. The guiding mechanism of the light through the solution has a major importance, being a key factor to obtain appreciable enhancements in Raman scattering. In this case, in order to optimize the Raman scattering signal of dissolved glucose (target molecule), we have filled the core with an aqueous solution of the target molecule, enabling in this way the modified total internal reflection mechanism. Experimental Raman measurements are performed and results are discussed.

  4. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  5. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  6. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  7. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, C.F. Jr.; Jones, R.H.; Snead, L.L.

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies aremore » in progress to evaluate the stability of these materials.« less

  8. A study to improve the mechanical properties of silicon carbide ribbon fibers

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Robey, R. J.

    1976-01-01

    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.

  9. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were imaged. Away from local defects, step bunching was observed to yield step heights of hundreds of angstroms, with possible implications for the uniformity of dopants incorporated in SiC devices during fabrication. The quantitative topographic data from the AFM allow the relevant defect information to be extracted, such as the size and distribution of step bunching and the Burgers vector of screw dislocations. These atomic force microscopy results have furthered the understanding of the dynamic epitaxial SiC growth process. A model describing the observed hillock step bunching has been proposed. This cooperation between researchers involved in crystal growth, electronic device fabrication, and surface structural characterization is likely to continue as atomic force microscopy is used to improve SiC films for high-temperature electronic devices for NASA's advanced turbine engines and space power devices, as well as for future applications in the automotive industry.

  10. LANSCE harp upgrade: analysis, design, fabrication and installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilpatrick, John D; Chacon, Phillip; Martinez, Derwin

    2010-01-01

    The primary goal of this newly installed beam profile measurement is to provide the facility operators and physicists with a reliable horizontal and vertical projected beam distribution and location with respect to the proton beam target and beam aperture. During a 3000-hour annual run cycle, 5 {mu}C of charge is delivered every 50 milliseconds through this harp to the downstream TRMS Mark III target. The resulting radioactive annual dose near this harp is at least 6 MGy. Because of this harsh environment, the new harp design has been further optimized for robustness. For example, compared to an earlier design, thismore » harp has half of the sensing wires and utilizes only a single bias plane. The sensing fibers are 0.079-mm diameter SiC fibers. To hold these fibers to a rigid ceramic structure, a collet fiber-clamping device accomplishes the three goals of maintaining a mechanical fiber clamp, holding the sense fibers under a slight tensile force, and providing a sense-fiber electrical connection. This paper describes the harp analysis and design, and provides fabrication, assembly, and some installation information, and discusses wiring alterations.« less

  11. Inorganic Composite Materials in Japan: Status and Trends

    DTIC Science & Technology

    1989-11-01

    is planned with have already done some preliminary work) more sayby engineers and scientists and less on titanium and aluminide matrix compos- by...structural reliability of continued research in elevated tempera- the components. ture fiber and ceramic matrix composites. F=aMoving Blade (FRP...Forming Kawasaki 11eavy Ind with regard to these program target goals ONRFE M7 6 for carbon (CF), SiC, and boron filaments in isotropic titanium

  12. Advanced Tomographic Imaging Methods for the Analysis of Materials

    DTIC Science & Technology

    1991-08-01

    used in composite manufacture: aluminum, silicon carbide, and titanium aluminide . Also depicted in Fig. 2 are the energy intervals which can...SiC-fiber (SCS6) in a titanium - aluminide matrix. The contrast between SiC and AtIis only 10% over a broad eiaergy range. Therefore, distinguishing the...borehole logging, orrodent detection on turbine blades , kerogen analysis of shale, and contents of coals (sulfur, minerals, and btu). APSTNG

  13. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    PubMed

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  14. Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Katagiri, T.; Matsuura, Y.

    2018-02-01

    Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.

  15. Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

    DOE PAGES

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    2017-01-02

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  16. Damage Characterization in SiC/SiC Composites using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Xia, Zhenhai

    2011-01-01

    SiC/SiC ceramic matrix composites (CMCs) under creep-rupture loading accumulate damage by means of local matrix cracks that typically form near a stress concentration, such as a 90o fiber tow or large matrix pore, and grow over time. Such damage is difficult to detect through conventional techniques. Electrical resistance changes can be correlated with matrix cracking to provide a means of damage detection. Sylramic-iBN fiber-reinforced SiC composites with both melt infiltrated (MI) and chemical vapor infiltrated (CVI) matrix types are compared here. Results for both systems exhibit an increase in resistance prior to fracture, which can be detected either in situ or post-damage.

  17. Detection and characterization of microdefects and microprecipitates in Si wafers by Brewster angle illumination using an optical fiber system

    NASA Astrophysics Data System (ADS)

    Taijing, Lu; Toyoda, Koichi; Nango, Nobuhito; Ogawa, Tomoya

    1991-10-01

    Microdefects and microprecipitates were non-destructively detected in bulk and near surface of a Si wafer by Brewster angle illumination using an optical fiber system, because the p-component of the illumination enters completely into the wafer and then makes scattering from the defects while the other s-component reflects on the wafer surface so as to deviate from an objective lens for the detection of the scattering. Some results of observations and discussions will be done here about the scatterers in epitaxially grown Si layers, denuded zones of Si wafers, annealed amorphous SiC films, SIMOX specimens and slip bands in Si crystals.

  18. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  19. Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer

    NASA Astrophysics Data System (ADS)

    Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto

    2008-02-01

    In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.

  20. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

Top