Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun
2014-05-28
3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.
Quantifying side-chain conformational variations in protein structure
Miao, Zhichao; Cao, Yang
2016-01-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406
Quantifying side-chain conformational variations in protein structure
NASA Astrophysics Data System (ADS)
Miao, Zhichao; Cao, Yang
2016-11-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
Quantifying side-chain conformational variations in protein structure.
Miao, Zhichao; Cao, Yang
2016-11-15
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.
Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain
2018-05-08
We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...
2018-04-24
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong
2018-02-13
The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strong liquid-crystalline polymeric compositions
Dowell, Flonnie
1993-01-01
Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.
Strong liquid-crystalline polymeric compositions
Dowell, F.
1993-12-07
Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.
Switching effect of the side chain on quantum walks on triple graphs
NASA Astrophysics Data System (ADS)
Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan
2015-07-01
We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the main chain, we find that a switching effect appears if there is an odd number of points in the side chain when concrete conditions between the length of the main chain and the position of the side chain are satisfied. However, such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals for experiments to demonstrate this effect, which may be employed to design a new type of switching device.
Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd
2013-01-01
We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645
Topological side-chain classification of beta-turns: ideal motifs for peptidomimetic development.
Tran, Tran Trung; McKie, Jim; Meutermans, Wim D F; Bourne, Gregory T; Andrews, Peter R; Smythe, Mark L
2005-08-01
Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments
Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke
2016-01-01
Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909
Antibody side chain conformations are position-dependent.
Leem, Jinwoo; Georges, Guy; Shi, Jiye; Deane, Charlotte M
2018-04-01
Side chain prediction is an integral component of computational antibody design and structure prediction. Current antibody modelling tools use backbone-dependent rotamer libraries with conformations taken from general proteins. Here we present our antibody-specific rotamer library, where rotamers are binned according to their immunogenetics (IMGT) position, rather than their local backbone geometry. We find that for some amino acid types at certain positions, only a restricted number of side chain conformations are ever observed. Using this information, we are able to reduce the breadth of the rotamer sampling space. Based on our rotamer library, we built a side chain predictor, position-dependent antibody rotamer swapper (PEARS). On a blind test set of 95 antibody model structures, PEARS had the highest average χ 1 and χ1+2 accuracy (78.7% and 64.8%) compared to three leading backbone-dependent side chain predictors. Our use of IMGT position, rather than backbone ϕ/ψ, meant that PEARS was more robust to errors in the backbone of the model structure. PEARS also achieved the lowest number of side chain-side chain clashes. PEARS is freely available as a web application at http://opig.stats.ox.ac.uk/webapps/pears. © 2018 Wiley Periodicals, Inc.
Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish
2014-08-28
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.
Tobias, Fernando; Keiderling, Timothy A
2016-05-10
Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.
Rajeshwar T, Rajitha; Krishnan, Marimuthu
2017-05-25
A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp
Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-08
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each other or the main chain.
2016-01-01
Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M–1 s–1) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M–2 s–1] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison with the corresponding parameters for wild-type, I172A, and L232A TbbTIM-catalyzed reactions shows that the effect of I172A and L232A mutations on ΔG⧧ for the wild-type TbbTIM-catalyzed reactions of the substrate pieces is nearly the same as the effect of the same mutations on TbbTIM previously mutated at the second side chain. This provides strong evidence that mutation of the first hydrophobic side chain does not affect the functioning of the second side chain in catalysis of the reactions of the substrate pieces. By contrast, the effects of I172A and L232A mutations on ΔG⧧ for wild-type TbbTIM-catalyzed reactions of the whole substrate are different from the effect of the same mutations on TbbTIM previously mutated at the second side chain. This is due to the change in the rate-determining step that determines the barrier to the isomerization reaction. X-ray crystal structures are reported for I172A, L232A, and I172A/L232A TIMs and for the complexes of these mutants to the intermediate analogue phosphoglycolate (PGA). The structures of the PGA complexes with wild-type and mutant enzymes are nearly superimposable, except that the space opened by replacement of the hydrophobic side chain is occupied by a water molecule that lies ∼3.5 Å from the basic side chain of Glu167. The new water at I172A mutant TbbTIM provides a simple rationalization for the increase in the activation barrier ΔG⧧ observed for mutant enzyme-catalyzed reactions of the whole substrate and substrate pieces. By contrast, the new water at the L232A mutant does not predict the decrease in ΔG⧧ observed for the mutant enzyme-catalyzed reactions of the substrate piece GA. PMID:27149328
Solution structure of a small protein containing a fluorinated side chain in the core
Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.
2007-01-01
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960
Ionizable side chains at catalytic active sites of enzymes.
Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob
2012-05-01
Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.
Ionizable Side Chains at Catalytic Active Sites of Enzymes
Jimenez-Morales, David; Liang, Jie
2012-01-01
Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856
Han, Hongling; Xia, Yu; McLuckey, Scott A.
2008-01-01
A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403
A protein-dependent side-chain rotamer library.
Bhuyan, Md Shariful Islam; Gao, Xin
2011-12-14
Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.
Andrews, Casey T; Campbell, Brady A; Elcock, Adrian H
2017-04-11
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Hu, Yuanyuan; Berdunov, Nikolai; Di, Chong-an; Nandhakumar, Iris; Zhang, Fengjiao; Gao, Xike; Zhu, Daoben; Sirringhaus, Henning
2014-07-22
We have investigated the influence of the symmetry of the side chain substituents in high-mobility, solution processable n-type molecular semiconductors on the performance of organic field-effect transistors (OFETs). We compare two molecules with the same conjugated core, but either symmetric or asymmetric side chain substituents, and investigate the transport properties and thin film growth mode using scanning Kelvin probe microscopy (SKPM) and atomic force microscopy (AFM). We find that asymmetric side chains can induce a favorable two-dimensional growth mode with a bilayer structure, which enables ultrathin films with a single bilayer to exhibit excellent transport properties, while the symmetric molecules adopt an unfavorable three-dimensional growth mode in which transport in the first monolayer at the interface is severely hindered by high-resistance grain boundaries.
Structure-Function of the Cytochrome b 6f Complex of Oxygenic Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, W. A.; Yamashita, E.; Baniulis, D.
2014-03-20
Structure–function of the major integral membrane cytochrome b 6f complex that functions in cyanobacteria, algae, and green plants to transfer electrons between the two reaction center complexes in the electron transport chain of oxygenic photosynthesis is discussed in the context of recently obtained crystal structures of the complex and soluble domains of cytochrome f and the Rieske iron–sulfur protein. The energy-transducing function of the complex, generation of the proton trans-membrane electrochemical potential gradient, centers on the oxidation/reduction pathways of the plastoquinol/plastoquinone (QH 2/Q), the proton donor/acceptor within the complex. These redox reactions are carried out by five redox prosthetic groupsmore » embedded in each monomer, the high potential two iron–two sulfur cluster and the heme of cytochrome f on the electropositive side (p) of the complex, two noncovalently bound b-type hemes that cross the complex and the membrane, and a covalently bound c-type heme (c n) on the electronegative side (n). These five redox-active groups are organized in high- (cyt f/[2Fe–2S] and low-potential (hemes b p, b n, c n) electron transport pathways that oxidize and reduce the quinol and quinone on the p- and n-sides in a Q-cycle-type mechanism, while translocating as many as 2 H + to the p-side aqueous side for every electron transferred through the high potential chain to the photosystem I reaction center. The presence of heme c n and the connection of the n-side of the membrane and b 6f complex to the cyclic electron transport chain indicate that the Q cycle in the oxygenic photosynthetic electron transport chain differs from those connected to the bc 1 complex in the mitochondrial respiratory chain and the chain in photosynthetic bacteria. Inferences from the structure and C2 symmetry of the complex for the pathway of QH 2/Q transfer within the complex, problems posed by the presence of lipid in the inter-monomer cavity, and the narrow portal for QH2 passage through the p-side oxidation site proximal to the [2Fe–2S] cluster are discussed.« less
Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty
2013-01-01
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738
Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon
2015-02-11
New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.
Polymer in a pore: Effect of confinement on the free energy barrier
NASA Astrophysics Data System (ADS)
Kumar, Sanjiv; Kumar, Sanjay
2018-06-01
We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.
Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R
2015-03-10
Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics.
Chen, Xiaofei; Xiong, Fangjun; Chen, Wenxue; He, Qiuqin; Chen, Fener
2014-03-21
An efficient asymmetric synthesis of atorvastatin calcium has been achieved from commercially available diethyl 3-hydroxyglutarate through a novel approach that involves an organocatalytic enantioselective cyclic anhydride desymmetrization to establish C(3) stereogenicity and cyanide-free assembly of C7 amino type side chain via C5+C2 strategy as the key transformations.
Singh, J; Thornton, J M
1990-02-05
Automated methods have been developed to determine the preferred packing arrangement between interacting protein groups. A suite of FORTRAN programs, SIRIUS, is described for calculating and analysing the geometries of interacting protein groups using crystallographically derived atomic co-ordinates. The programs involved in calculating the geometries search for interacting pairs of protein groups using a distance criterion, and then calculate the spatial disposition and orientation of the pair. The second set of programs is devoted to analysis. This involves calculating the observed and expected distributions of the angles and assessing the statistical significance of the difference between the two. A database of the geometries of the 400 combinations of side-chain to side-chain interaction has been created. The approach used in analysing the geometrical information is illustrated here with specific examples of interactions between side-chains, peptide groups and particular types of atom. At the side-chain level, an analysis of aromatic-amino interactions, and the interactions of peptide carbonyl groups with arginine residues is presented. At the atomic level the analyses include the spatial disposition of oxygen atoms around tyrosine residues, and the frequency and type of contact between carbon, nitrogen and oxygen atoms. This information is currently being applied to the modelling of protein interactions.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty
2012-12-18
The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.
Saer, Rafael G; Hardjasa, Amelia; Rosell, Federico I; Mauk, A Grant; Murphy, Michael E P; Beatty, J Thomas
2013-04-02
In the native reaction center (RC) of Rhodobacter sphaeroides, the side chain of (M)L214 projects orthogonally toward the plane and into the center of the A branch bacteriopheophytin (BPhe) macrocycle. The possibility that this side chain is responsible for the dechelation of the central Mg(2+) of bacteriochlorophyll (BChl) was investigated by replacement of (M)214 with residues possessing small, nonpolar side chains that can neither coordinate nor block access to the central metal ion. The (M)L214 side chain was also replaced with Cys, Gln, and Asn to evaluate further the requirements for assembly of the RC with BChl in the HA pocket. Photoheterotrophic growth studies showed no difference in growth rates of the (M)214 nonpolar mutants at a low light intensity, but the growth of the amide-containing mutants was impaired. The absorbance spectra of purified RCs indicated that although absorbance changes are associated with the nonpolar mutations, the nonpolar mutant RC pigment compositions are the same as in the wild-type protein. Crystal structures of the (M)L214G, (M)L214A, and (M)L214N mutants were determined (determined to 2.2-2.85 Å resolution), confirming the presence of BPhe in the HA pocket and revealing alternative conformations of the phytyl tail of the accessory BChl in the BA site of these nonpolar mutants. Our results demonstrate that (i) BChl is converted to BPhe in a manner independent of the aliphatic side chain length of nonpolar residues replacing (M)214, (ii) BChl replaces BPhe if residue (M)214 has an amide-bearing side chain, (iii) (M)214 side chains containing sulfur are not sufficient to bind BChl in the HA pocket, and (iv) the (M)214 side chain influences the conformation of the phytyl tail of the BA BChl.
NASA Astrophysics Data System (ADS)
Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an
2017-03-01
Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.
Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.
Kong, Yingzhen; Peña, Maria J; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G; Darvill, Alan G; York, William S; O'Neill, Malcolm A
2015-04-01
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. © 2015 American Society of Plant Biologists. All Rights Reserved.
Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins.
Duddy, William J; Nissink, J Willem M; Allen, Frank H; Milner-White, E James
2004-11-01
Hydrogen-bonded beta-turns in proteins occur in four categories: type I (the most common), type II, type II', and type I'. Asx-turns resemble beta-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of beta-turns. We propose asx- and ST-turns be named using the type I, II, I', and II' beta-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II' > type I > type II > type I', whereas for beta-turns it is type I > type II > type I' > type II'. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest.
Mimicry by asx- and ST-turns of the four main types of β-turn in proteins
Duddy, William J.; Nissink, J. Willem M.; Allen, Frank H.; Milner-White, E. James
2004-01-01
Hydrogen-bonded β-turns in proteins occur in four categories: type I (the most common), type II, type II’, and type I’. Asx-turns resemble β-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of β-turns. We propose asx- and ST-turns be named using the type I, II, I’, and II’ β-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II’ > type I > type II > type I’, whereas for β-turns it is type I > type II > type I’ > type II’. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest. PMID:15459339
Weininger, Ulrich; Respondek, Michal; Akke, Mikael
2012-09-01
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.
Bandyopadhyay, Sanjay; Allison, William S
2004-07-27
In crystal structures of the bovine F(1)-ATPase (MF(1)), the side chains of gammaMet(23), gammaMet(232), and gammaLeu(77) interact in a cluster. Substitution of the corresponding residues in the alpha(3)beta(3)gamma subcomplex of TF(1) with lysine lowers the ATPase activity to 2.3, 11, and 15%, respectively, of that displayed by wild-type. In contrast, TF(1) subcomplexes containing the gammaM(23)C, gammaM(232)C, and gammaL(77)C substitutions display 36, 36, and 130%, respectively, of the wild-type ATPase activity. The ATPase activity of the gammaM(23)C/gammaM(232)C double mutant subcomplex is 36% that of the wild-type subcomplex before and after cross-linking the introduced cysteines, whereas the ATPase activity of the gammaM(23)C/L(77)C double mutant increased from 50 to 85% that of wild-type after cross-linking the introduced cysteines. Only beta-beta cross-links formed when the alpha(3)(betaE(395)C)(3)gammaM(23)C double mutant was inactivated with CuCl(2). The overall results suggest that the attenuated ATPase of the mutant subcomplexes containing the gammaM(23)K, gammaL(77)K, and gammaM(232)K substitutions is caused by disruption of the cluster of hydrophobic amino acid side chains and that the midregion of the coiled-coil comprised of the amino- and carboxyl-terminal alpha helices of the gamma subunit does not undergo unwinding or major displacement from the side chain of gammaLeu(77) during ATP-driven rotation of the gamma subunit.
Flemer, Stevenson; Wurthmann, Alexander; Mamai, Ahmed; Madalengoitia, José S
2008-10-03
A strategy for the solid-phase diversification of PPII mimic scaffolds through guanidinylation is presented. The approach involves the synthesis N-Pmc-N'-alkyl thioureas as diversification reagents. Analogues of Fmoc-Orn(Mtt)-OH can be incorporated into a growing peptide chain on Wang resin. Side chain deprotection with 1% TFA/CH2Cl2 followed by EDCI-mediated reaction of N-Pmc-N'-alkyl thioureas with the side chain amine affords arginine analogues with modified guanidine head groups. The scope, limitations, and incidental chemistry are discussed.
Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A
2006-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function. PMID:16484308
Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea
2010-08-06
A new variation on the Boulton-Katritzky reaction is reported, namely, involving use of a CNC side chain. A novel Montmorillonite-K10 catalyzed nonreductive transamination of a 3-benzoyl-1,2,4-oxadiazole afforded a 3-(alpha-aminobenzyl)-1,2,4-oxadiazole, which was condensed with benzaldehydes to afford the corresponding imines. In the presence of strong base, these imines underwent Boulton-Katritzky-type rearrangement to afford novel 4(5)-acylaminoimidazoles.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.
Nguyen, Bao Linh; Pettitt, B Montgomery
2015-04-14
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.
Hydration of non-polar anti-parallel β-sheets
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dias, Cristiano L.
2014-04-01
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions of water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.
Hydration of non-polar anti-parallel β-sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbic, Tomaz; Dias, Cristiano L., E-mail: cld@njit.edu
2014-04-28
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions ofmore » water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.« less
Protein side chain rotational isomerization: A minimum perturbation mapping study
NASA Astrophysics Data System (ADS)
Haydock, Christopher
1993-05-01
A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.
Fang, Chen; Kievit, Forrest M; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W; Zhang, Miqin
2012-11-21
Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pK(a)'s, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.
NASA Astrophysics Data System (ADS)
Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin
2012-10-01
Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.
Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas
2008-05-01
Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be tuned to be either mainly bulk or surface erosion.
Carvajal, Rodrigo; González, Cesar; Olea, Andrés F; Fuentealba, Mauricio; Espinoza, Luis
2018-05-29
Natural brassinosteroids are widespread in the plant kingdom and it is known that they play an important role in regulating plant growth. In this study, two new brassinosteroid analogs with shorter side chains but keeping the diol function were synthesized. Thus, the synthesis of 2-deoxybrassinosteroids analogs of the 3α-hydroxy-24-nor, 22,23-dihydroxy-5α-cholestane side chain type is described. The starting material is a derivative from hyodeoxycholic acid ( 4 ), which was obtained with an overall yield of 59% following a previously reported five step route. The side chain of this intermediate was modified by oxidative decarboxylation to get a terminal olefin at the C22-C23 position (compound 20 ) and subsequent dihydroxylation of the olefin. The resulting epimeric mixture of 21a , 21b was separated and the absolute configuration at the C22 carbon for the main product 21a was elucidated by single crystal X-ray diffraction analysis of the benzoylated derivative 22 . Finally, lactonization of 21a through a Baeyer-Villiger oxidation of triacetylated derivative 23 , using CF₃CO₃H/CHCl₃ as oxidant system, leads to lactones 24 and 25 in 35% and 14% yields, respectively. Deacetylation of these compounds leads to 2-deoxybrassinosteroids 18 and 19 in 86% and 81% yields. Full structural characterization of all synthesized compounds was achieved using their 1D, 2D NMR, and HRMS data.
Evidence for a jacketed nematic polymer
NASA Astrophysics Data System (ADS)
Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.
1991-05-01
The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.
Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A
2018-04-19
We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.
From Comb-like Polymers to Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei
We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
Zhang, Xinxing; Bhar, Subhradeep; Jones Lipinski, Rachel A; Han, Jungsoo; Feng, Likui
2018-01-01
Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced. PMID:29863473
Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano
2003-10-17
A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.
NASA Astrophysics Data System (ADS)
Porter, Stephen Christopher
1999-10-01
New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased affinity for albumin, and reduced elutability. Among these, PEU-C18-HS demonstrated a significant reduction in platelet adhesion at low plasma pre-adsorption concentrations. However, competitive binary adsorption of fibrinogen in the presence of HSA demonstrated lower relative albumin affinity for PEU-C18-HS than other PEUs. The observed effects are thought to be mainly a result of increased surface hydrophobicity of the alkyl-side chain modified PEU, and not high specificity albumin binding.
Zhang, Cheng; Zang, Yaping; Zhang, Fengjiao; Diao, Ying; McNeill, Christopher R; Di, Chong-An; Zhu, Xiaozhang; Zhu, Daoben
2016-10-01
"Molecule-framework" and "side-chain" engineering is powerful for the design of high-performance organic semiconductors. Based on 2DQTTs, the relationship between molecular structure, film microstructure, and charge-transport property in organic thin-film transistors (OTFTs) is studied. 2DQTT-o-B exhibits outstanding electron mobilities of 5.2 cm 2 V -1 s -1 , which is a record for air-stable solution-processable n-channel small-molecule OTFTs to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang
2017-11-15
Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Said, Ahmed M; Hangauer, David G
2015-01-01
One of the underappreciated non-covalent binding factors, which can significantly affect ligand-protein binding affinity, is the cooperativity between ligand functional groups. Using four different series of thrombin inhibitors, we reveal a strong positive cooperativity between an H-bond accepting carbonyl functionality and the adjacent P3 hydrophobic side chain. Adding an H-bond donating amine adjacent to the P3 hydrophobic side chain further increases this positive cooperativity thereby improving the Ki by as much as 546-fold. In contrast, adding an amidine multiple H-bond/salt bridge group in the distal S1 pocket does not affect this cooperativity. An analysis of the crystallographic B-factors of the ligand groups inside the binding site indicates that the strong cooperativity is mainly due to a significant mutual reduction in the residual mobility of the hydrophobic side chain and the H-bonding functionalities that is absent when the separation distance is large. This type of cooperativity is important to encode in binding affinity prediction software, and to consider in SAR studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Improved side-chain torsion potentials for the Amber ff99SB protein force field
Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E
2010-01-01
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171
Progress in the field of physiologically active lanosterol compounds
NASA Astrophysics Data System (ADS)
Reshetova, I. G.; Tkhaper, R. K.; Kamernitskii, Alexey V.
1992-08-01
This review correlates the studies (up to 1991) on the isolation, structural determination, biological activity, and synthesis of physiologically active polyoxidised lanosterol derivatives of vegetable (inotodiol, ganoderic acids) and animal (seychellogenin) origin. The cytotoxic, cardiovascular, and other forms of activity of compounds of this type are of considerable interest in relation to their medical use. It is noted that the functionalised side chain (in an open form or containing lactones, lactols, etc.) is generally responsible for the activity exhibited by lanosterol derivatives. Two basic approaches to the derivation of these structures are defined: either by complete reconstruction of the side chain of lanosterol (degradation and rebuilding with oxygen-containing residues) or by progressive functionalisation of the Δ24-side chain of lanosterol. The synthesis of the known anticancer compound "inotodiol", seychellogenins, ganoderic acids, and other compounds are described. The bibliography includes 105 references.
Nielsen, Bjørn G; Jensen, Morten Ø; Bohr, Henrik G
2003-01-01
The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse. Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 71: 577-592, 2003
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
An improved approach to the analysis of drug-protein binding by distance geometry
NASA Technical Reports Server (NTRS)
Goldblum, A.; Kieber-Emmons, T.; Rein, R.
1986-01-01
The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins
Nguyen, Bao Linh; Pettitt, B. Montgomery
2015-01-01
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations. PMID:26388706
Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.
2016-01-01
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD. PMID:26899474
NASA Astrophysics Data System (ADS)
Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.
2016-02-01
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mapping the Geometric Evolution of Protein Folding Motor.
Jerath, Gaurav; Hazam, Prakash Kishore; Shekhar, Shashi; Ramakrishnan, Vibin
2016-01-01
Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design.
Solvation thermodynamics of amino acid side chains on a short peptide backbone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de
The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.« less
Solvation thermodynamics of amino acid side chains on a short peptide backbone
NASA Astrophysics Data System (ADS)
Hajari, Timir; van der Vegt, Nico F. A.
2015-04-01
The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.
SCit: web tools for protein side chain conformation analysis.
Gautier, R; Camproux, A-C; Tufféry, P
2004-07-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.
DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes
Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.
2009-01-01
The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334
A Modular PV System Using Chain-Link-Type Multilevel Converter
NASA Astrophysics Data System (ADS)
Hatano, Nobuhiko; Ise, Toshifumi
This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.
Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine
2007-01-01
The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.
Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.
Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu
2014-01-01
Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.
Side-chain mobility in the folded state of Myoglobin
NASA Astrophysics Data System (ADS)
Lammert, Heiko; Onuchic, Jose
We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.
Residues with similar hexagon neighborhoods share similar side-chain conformations.
Li, Shuai Cheng; Bu, Dongbo; Li, Ming
2012-01-01
We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.
Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design.
Thyme, Summer B; Baker, David; Bradley, Philip
2012-06-08
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. Published by Elsevier Ltd.
Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.
Merle, B; Durussel, L; Delmas, P D; Clézardin, P
1999-12-01
Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.
SCit: web tools for protein side chain conformation analysis
Gautier, R.; Camproux, A.-C.; Tufféry, P.
2004-01-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438
Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki
2013-05-23
We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.
Steric interactions determine side-chain conformations in protein cores.
Caballero, D; Virrueta, A; O'Hern, C S; Regan, L
2016-09-01
We investigate the role of steric interactions in defining side-chain conformations in protein cores. Previously, we explored the strengths and limitations of hard-sphere dipeptide models in defining sterically allowed side-chain conformations and recapitulating key features of the side-chain dihedral angle distributions observed in high-resolution protein structures. Here, we show that modeling residues in the context of a particular protein environment, with both intra- and inter-residue steric interactions, is sufficient to specify which of the allowed side-chain conformations is adopted. This model predicts 97% of the side-chain conformations of Leu, Ile, Val, Phe, Tyr, Trp and Thr core residues to within 20°. Although the hard-sphere dipeptide model predicts the observed side-chain dihedral angle distributions for both Thr and Ser, the model including the protein environment predicts side-chain conformations to within 20° for only 60% of core Ser residues. Thus, this approach can identify the amino acids for which hard-sphere interactions alone are sufficient and those for which additional interactions are necessary to accurately predict side-chain conformations in protein cores. We also show that our approach can predict alternate side-chain conformations of core residues, which are supported by the observed electron density. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kono, H; Saven, J G
2001-02-23
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.
Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae
2017-02-01
The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.
Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q
1991-12-01
The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.
Quéméner, Bernard; Vigouroux, Jacqueline; Rathahao, Estelle; Tabet, Jean Claude; Dimitrijevic, Aleksandra; Lahaye, Marc
2015-01-01
Xyloglucans of apple, tomato, bilberry and tamarind were hydrolyzed by commercial endo β-1-4-D-endoglucanase. The xylo-gluco-oligosaccharides (XylGos) released were separated on CarboPac PA 200 column in less than 15 min, and, after purification, they were structurally characterized by negative electrospray ionization mass spectrometry using a quadrupole time-of-flight (ESI-Q-TOF), a hybrid linear ion trap (LTQ)/Orbitrap and a hybrid quadrupole Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. In order to corroborate the fragmentation routes observed on XylGos, some commercial galacto-manno-oligosaccharides (GalMOs) and glucurono-xylo-oligosaccharides were also studied. The fragmentation pathways of the ionized GalMos were similar to those of XylGos ones. The product ion spectra were mainly characterized by prominent double cleavage (D) ions corresponding to the entire inner side chains. The directed fragmentation from the reducing end to the other end was observed for the main glycosylated backbone but also for the side-chains, allowing their complete sequencing. Relevant cross-ring cleavage ions from (0,2)X(j)-type revealed to be diagnostic of the 1-2-linked- glycosyl units from XylGos together with the 1-2-linked glucuronic acid unit from glucuronoxylans. Resonant activation in the LTQ Orbitrap allowed not only determining the type of all linkages but also the O-acetyl group location on fucosylated side-chains. Moreover, the fragmentation of the different side chains using the MS(n) capabilities of the LTQ/Orbitrap analyzer also allowed differentiating terminal arabinosyl and xylosyl substituents inside S and U side-chains of XylGos, respectively. The CID spectra obtained were very informative for distinction of isomeric structures differing only in their substitution pattern. These features together makes the fragmentation in negative ionization mode a relevant and powerful technique useful to highlight the subtle structural changes generally observed during the development of plant organs such as during fruit ripening and for the screening of cell wall mutants with altered hemicellulose structure. Copyright © 2015 John Wiley & Sons, Ltd.
Protein side chain conformation predictions with an MMGBSA energy function.
Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas
2016-06-01
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Structural properties of atactic polystyrene adsorbed onto solid surfaces.
Tatek, Yergou B; Tsige, Mesfin
2011-11-07
In the present work, we are studying the local conformation of chains in a thin film of polystyrene adsorbed on a solid substrate by using atomistically detailed simulations. The simulations are carried out by using the readily available and massively parallel molecular dynamics code known as LAMMPS. In particular, a special emphasis is given to the density and orientation of side chains (which consist of phenyl groups and methylene units) at solid/polymer and polymer/vacuum interfaces. Three types of substrates were used in our study: α-quartz, graphite, and amorphous silica. Our investigation was restricted to atactic polystyrene. Our results show that the density and structural properties of side chains depend on the type of surface. An excess of phenyl rings is observed near the α-quartz substrate while the film adsorbed on graphite is depleted in C(6)H(5). Moreover, the orientation of the rings and methylene units on the substrate/film interface show a strong dependence on the type of the substrate, while the rings at the film/vacuum interface show a marked tendency to point outward, away from the film. The results we obtained are in a large part in good agreement with previous experimental and simulation results.
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
2011-01-01
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0.8 – 1.5 Å from the reference structures determined by traditional NMR approaches. PMID:21706248
Xue, Lingwei; Yang, Yankang; Xu, Jianqiu; Zhang, Chunfeng; Bin, Haijun; Zhang, Zhi-Guo; Qiu, Beibei; Li, Xiaojun; Sun, Chenkai; Gao, Liang; Yao, Jia; Chen, Xiaofeng; Yang, Yunxu; Xiao, Min; Li, Yongfang
2017-10-01
Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm -2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automated side-chain model building and sequence assignment by template matching.
Terwilliger, Thomas C
2003-01-01
An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.
Abiedalla, Younis; DeRuiter, Jack; Clark, C Randall
2016-07-30
Precursor materials are available to prepare aminoketone drugs containing regioisomeric propyl and isopropyl side-chain groups related to the drug alpha-pyrrovalerone (Flakka) and MDPV (3,4-methylenedioxypyrrovalerone). These compounds yield equivalent regioisomeric iminium cation base peaks in electron ionization mass spectrometry (EI-MS). The propyl and isopropyl side-chain groups related to alpha-pyrrovalerone and MDPV were prepared and evaluated in EI-MS and tandem mass spectrometry (MS/MS) product ion experiments. Deuterium labeling in both the pyrrolidine and alkyl side-chain groups allowed for the confirmation of the structures for the major product ions formed from the regioisomeric EI-MS iminium cation base peaks. These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the side-chain propyl and isopropyl groups in the structure. The n-propyl side chain containing iminium cation base peak (m/z 126) in the EI-MS spectrum yields a major product ion at m/z 84 while the regioisomeric m/z 126 base peak for the isopropyl side chain yields a characteristic product ion at m/z 70. Deuterium labeling in both the pyrrolidine ring and the alkyl side chain confirmed the process for the formation of these major product ions. Product ion fragmentation provides useful data for differentiation of n-propyl and isopropyl side-chain iminium cations from cathinone derivative drugs of abuse. Regioisomeric n-propyl and isopropyl iminium cations of equal mass yield characteristic product ions identifying the alkyl side-chain regioisomers in the pyrrolidine cathinone derivatives. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Protein-ligand docking with multiple flexible side chains
NASA Astrophysics Data System (ADS)
Zhao, Yong; Sanner, Michel F.
2008-09-01
In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 Å) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful.
Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R
2013-10-01
We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.
Cui, Chaohua; Wong, Wai-Yeung
2016-02-01
Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SPPS of protected peptidyl aminoalkyl amides.
Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis
2002-11-01
Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.
Antosiewicz, Jan M; Shugar, David
In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.
Antosiewicz, Jan M; Shugar, David
2016-06-01
In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.
Hidden regularity and universal classification of fast side chain motions in proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajeshwar, Rajitha; Smith, Jeremy C.; Krishnam, Marimuthu
Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 s MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O axis 2), populationsmore » of side chain rotamer states (ρ), conformational entropies (S conf), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O axis 2 and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O axis 2 and the side chain rotamer populations (ρ). In conclusion, the apparent universality in O axis 2 versus correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.« less
Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)
Buffetto, F.; Ropartz, D.; Zhang, X. J.; Gilbert, H. J.; Guillon, F.; Ralet, M.-C.
2014-01-01
Background and Aims Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. Methods RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. Key Results The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1–4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Conclusions Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. PMID:24908680
Shimizu, Satoko; Yokoyama, Tomoya; Akiyama, Takuya; Matsumoto, Yuji
2012-07-04
The reactivity of lignin during alkaline delignification was quantitatively investigated focusing on the effect of the structural differences between syringyl and guaiacyl aromatic nuclei and between erythro and threo in the side chain of β-O-4 type lignin substructure on the β-O-4 bond cleavage rate. It was known that the ratio of this reaction rate of the erythro to threo isomers of the dimeric β-O-4 type lignin model compound with two guaiacyl aromatic nuclei was ca. 4. However, the presence of a syringyl nucleus strongly influenced the rate, and the ratio of the syringyl type analogue was in the range between 2.7 and 8.0 depending on the reaction temperature. The effect of syringyl nucleus on the enhancement of the reaction rate appeared to be greater when the syringyl nucleus consists of the cleaving ether bond rather than being a member of the carbon framework.
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning the thermal conductivity of solar cell polymers through side chain engineering.
Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei
2014-05-07
Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.
Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan
2016-08-10
The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting thin film surface, buried interfacial, and bulk structures is a first crucial step in understanding the structure-function relationship of such films in order to optimize device performance. An in-depth understanding on how the side-chain influences the interfacial and surface polymer orientation will guide the future molecular structure design of organic semiconductors.
Quasi-one-dimensional magnetism in MnxFe1-xNb2O6 compounds: From Heisenberg to Ising chains
NASA Astrophysics Data System (ADS)
Hneda, M. L.; Oliveira Neto, S. R.; da Cunha, J. B. M.; Gusmão, M. A.; Isnard, O.
2018-06-01
A series of MnxFe1-xNb2O6 compounds (0 ⩽ x ⩽ 1) is investigated by both X-ray and neutron powder diffraction, as well as specific-heat and magnetic measurements. The samples present orthorhombic Pbcn crystal symmetry, and exhibit weakly coupled magnetic chains. These chains are of Heisenberg type (weak anisotropy) on the Mn-rich side, and Ising-like (strong anisotropy) on the Fe-rich side. Except for 100% Fe (x = 0) , which has weakly-interacting ferromagnetic Ising chains, a negative Curie-Weiss temperature is obtained from the magnetic susceptibility, indicating dominant antiferromagnetic interactions. At the lowest probed temperature, T = 1.5K , true long-range magnetic order is only observed for x = 1 , 0.8, and 0. Although the ordering is globally antiferromagnetic in all cases, the first two are characterized by a two-sublattice structure with propagation vector k = (0, 0, 0) , while the latter presents alternatingly oriented ferromagnetic chains described by k = (0,1/2, 0) . For other compositions, short-range magnetic correlations are extracted from diffuse neutron-scattering data.
Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.
Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H
2012-09-26
Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.
Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M
1999-03-12
In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.
Protein structure modeling for CASP10 by multiple layers of global optimization.
Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2014-02-01
In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.
Yoon, Ki-Young; Dong, Guangbin
2018-05-23
Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi
2017-04-01
A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
Repacking the Core of T4 lysozyme by automated design.
Mooers, Blaine H M; Datta, Deepshikha; Baase, Walter A; Zollars, Eric S; Mayo, Stephen L; Matthews, Brian W
2003-09-19
Automated protein redesign, as implemented in the program ORBIT, was used to redesign the core of phage T4 lysozyme. A total of 26 buried or partially buried sites in the C-terminal domain were allowed to vary both their sequence and side-chain conformation while the backbone and non-selected side-chains remained fixed. A variant with seven substitutions ("Core-7") was identified as having the most favorable energy. The redesign experiment was repeated with a penalty for the presence of methionine residues. In this case the redesigned protein ("Core-10") had ten amino acid changes. The two designed proteins, as well as the constituent single mutants, and several single-site revertants were over-expressed in Escherichia coli, purified, and subjected to crystallographic and thermal analyses. The thermodynamic and structural data show that some repacking was achieved although neither redesigned protein was more stable than the wild-type protein. The use of the methionine penalty was shown to be effective. Several of the side-chain rotamers in the predicted structure of Core-10 differ from those observed. Rather than changing to new rotamers predicted by the design process, side-chains tend to maintain conformations similar to those seen in the native molecule. In contrast, parts of the backbone change by up to 2.8A relative to both the designed structure and wild-type. Water molecules that are present within the lysozyme molecule were removed during the design process. In the redesigned protein the resultant cavities were, to some degree, re-occupied by side-chain atoms. In the observed structure, however, water molecules were still bound at or near their original sites. This suggests that it may be preferable to leave such water molecules in place during the design procedure. The results emphasize the specificity of the packing that occurs within the core of a typical protein. While point substitutions within the core are tolerated they almost always result in a loss of stability. Likewise, combinations of substitutions may also be tolerated but usually destabilize the protein. Experience with T4 lysozyme suggests that a general core repacking methodology with retention or enhancement of stability may be difficult to achieve without provision for shifts in the backbone.
Degradation of poly(2-hydroxyethyl methacrylate) by gamma irradiation
NASA Astrophysics Data System (ADS)
Hill, David J. T.; O'Donnell, James H.; Pomery, Peter J.; Saadat, Giti
1996-11-01
Electron Spin Resinance (ESR) spectroscopy has been utilised to examine the effect of high energy radiation on poly(2-hydroxyethyl methacrylate) PHEMA. Radiation chemical yields ( G-values) for radicals were 1.7 and 1.2 for γ-irradiation at 77 K and ambient temperature, respectively. The ESR spectra at 77 and 300 K were simulated. The ESR spectrum at 77 K is a combination of six types of radicals ·CH 3, ·CH 2CH 2OH, COOCHCH 2OH, ·COO-, -CH- and ·CHO. However, after room temperature irradiation, the spectrum is a combination of methacrylate main chain scission radical and -CH-. The high stability of this radical at room temperature indicates the system is very rigid as a result of hydrogen bonding from the inherent side chain structure and radiation induced crosslinking due to labile hydrogen atoms in the side chain.
1991-05-03
Report No. 21 - Latigmuir-Blodgett Films of Aromatic Schiffs Bases , K Fuctionalized in the Side Chains of Polymethacrylate by T. Takahashi, P. Miller...aromatic Schiff’s bases functionalized in the side chains of Polymethacrylate T. Takahashi**, P. Miller*, Y. M. Chen*, L. Samuelson***, D. Galotti, B...has been investigated for polymers in which nonlinear optical (NLO) moieties are attachcd i, the side chain of polymethacrylate (PMA) backbone. Polymer
Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.
Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F
2013-06-20
The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.
Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu
2017-01-01
Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510
Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu
2017-01-01
Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.
Improved Modeling of Side-Chain–Base Interactions and Plasticity in Protein–DNA Interface Design
Thyme, Summer B.; Baker, David; Bradley, Philip
2012-01-01
Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed “motifs”) was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein–DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. PMID:22426128
A Markov Random Field Framework for Protein Side-Chain Resonance Assignment
NASA Astrophysics Data System (ADS)
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.
Armes, Steven P.; Aldissi, Mahmoud
1990-01-01
Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.
Influence of Protein Scaffold on Side-Chain Transfer Free Energies.
Marx, Dagen C; Fleming, Karen G
2017-08-08
The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔG sc o ). In the absence of other interactions, ΔΔG sc o is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔG sc o . Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔG sc o for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔG sc o measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔG sc o for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔG sc o of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔG sc o . Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.
2011-01-01
The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755
Phase separation of comb polymer nanocomposite melts.
Xu, Qinzhi; Feng, Yancong; Chen, Lan
2016-02-07
In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.
Lietzow, Michael A; Hubbell, Wayne L
2004-03-23
A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.
Zhang, Xu; Li, Shanshan; Sun, Lin; Ji, Li; Zhu, Jingjing; Fan, Yuying; Tai, Guihua; Zhou, Yifa
2012-06-20
In this paper, we further analysed the structure of a type I rhamnogalacturonan (RG-I) pectin (WGPA-2-RG) fractionated from ginseng polysaccharides. Methylation and periodate oxidation analyses showed that WGPA-2-RG has a backbone consisting of alternating rhamnose (Rha) and galacturonic acid (GalA) residues and side chains consisting of type II arabinogalactan (AG-II). Partial acidic hydrolysis for 6h completely removed arabinose (Ara), partial galactose (Gal), but little GalA and Rha. During partial hydrolysis, the molecular weight of WGPA-2-RG decreased smoothly, suggesting that the Ara and cleavable Gal residues exist on the surface of the molecule, while GalA and Rha residues exist in the core of the molecule. The bioactivity assay showed that the arabinogalactan side chains of WGPA-2-RG are essential structures for stimulating NO secretion and lymphocyte proliferation. However, removal of the Ara and Gal residues through hydrolysis did not appreciably affect the ability of WGPA-2-RG to enhance macrophage phagocytosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.
NASA Astrophysics Data System (ADS)
Ryu, Jiho; Lee, Won Bo
2015-03-01
Using molecular dynamics simulations the effect of copolymers as compatibilizer for reducing interfacial tension and enhancement of interfacial adhesion at the interface of thermodynamic unfavorable homopolymers blend is studied with block- and graft-copolymers. We have calculated local pressure tensor of system along the axis perpendicular to interface, varying bending potential energy of one part, which consist of just one kind of beads, of copolymer chain to examine the effect of stiffness of surfactin molecules. Here we consider symmetric diblock copolymer (f =1/2) having 1/2 N make of beads of type A and the other part made of beads of type B, and graft copolymer having backbone linear chain consist of 1/2 N beads of type of A and branched with two side-chain consist of 1/4 N beads of type B. All simulations were performed under the constant NPT ensemble at T* =1, ρ* ~0.85. Also we studied changes of effect of copolymers with increasing pairwise repulsive interaction potential between two beads of types A and B while homopolymers chain length are fixed, N =30. Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
Side-chain-side-chain interactions and stability of the helical state
NASA Astrophysics Data System (ADS)
Zangi, Ronen
2014-01-01
Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.
Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz
2015-01-01
Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791
Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi
2013-11-01
A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khawas, Sadhana; Nosáľová, Gabriela; Majee, Sujay Kumar; Ghosh, Kanika; Raja, Washim; Sivová, Veronika; Ray, Bimalendu
2017-06-01
Piper nigrum L. fruits are not only a prized spice, but also highly valued therapeutic agent that heals many ailments including asthma, cold and respiratory problems. Herein, we have investigated structural features and in vivo antitussive activity of three fractions isolated from Piper nigrum fruits. The water extract (PN-WE) upon fractionation with EtOH yielded two fractions: a soluble fraction (PN-eSf) and a precipitated (PN-ePf) one. The existence of a pectic polysaccharide with arabinogalactan type II side chains (147kDa) in PN-ePf and piperine in PN-eSf were revealed. Moreover, oligosaccharides providing fine structural details of side chains were generated from PN-ePf and then characterized. The parental water extract (PN-WE) that contained both pectic polysaccharide and piperine, after oral administration (50mgkg -1 body weight) to guinea pigs, showed antitussive activity comparable to codeine phosphate (10mgkg -1 body weight). The EtOH precipitated fraction (PN-ePf) containing pectic polysaccharide showed comparatively higher antitussive activity than EtOH soluble fraction (PN-eSf) that contained piperine, but their potencies are lower than the parental water extract. Significantly, the specific airway smooth muscle reactivity of all three fractions remained unchanged. Finally, pectic polysaccharide-piperine combination in parental extract synergistically enhances antitussive effect in guinea pigs. Copyright © 2017 Elsevier B.V. All rights reserved.
Sachs, B; Al Masaoudi, T; Merk, H F; Erdmann, S
2004-10-01
Amino-penicillins are a major cause of delayed-type reactions to penicillins. The aim of this study was to establish a diagnostic approach for the characterization of the individual penicillin-specific polyclonal lymphocyte reactivity in order to detect side chain-specific sensitization to amino-penicillins. Patients can then be advised to undergo a tolerance test with safe penicillins instead of provocation with culprit penicillins for confirmation of penicillin allergy. We investigated penicillin-specific polyclonal lymphocyte reactivity in nine patients with delayed-type reactions to amino-penicillins by a combined in vivo (patch, prick and intracutaneous tests with delayed readings) and in vitro (lymphocyte transformation test, LTT) approach. A combination of LTT and skin tests improved the sensitivity for the characterization of penicillin-specific polyclonal lymphocyte reactivity and allowed the detection of three different patterns of lymphocyte reactivity. Four patients showed a side chain-specific sensitization to amino-penicillins in vivo and in vitro and were advised to undergo tolerance tests with safe penicillins. Two patients agreed and were exposed to parenteral benzyl-penicillin and oral phenoxymethyl-penicillin which they tolerated without complications. These data suggest that a combined in vivo and in vitro approach is helpful for the detection of side chain-specific sensitization to amino-penicillins. Patients with such sensitization are very likely to tolerate safe penicillins, thereby expanding their therapeutic options when antibiotic treatment is required.
Synthesis and analgesic activity of some side-chain modified anpirtoline derivatives.
Rádl, S; Hezky, P; Proska, J; Hejnová, L; Krejcí, I
2000-05-01
New derivatives of anpirtoline and deazaanpirtoline modified in the side chain have been synthesized. The series includes compounds 3 with side-chains containing piperidine or pyrrolidine rings, compounds 4 containing 8-azabicyclo[3.2.1]octane moiety, and compounds 5 having piperazine ring in their side-chains. Their receptor binding profiles (5-HT1A, 5-HT1B) and analgesic activity (hot plate, acetic acid induced writhing) have been studied. Optimized structures (PM3-MOPAC, Alchemy 2000, Tripos Inc.) of the synthesized compounds 3-5 were compared with that of anpirtoline.
Barnett, Shonoi A; Amyes, Tina L; Wood, Bryant M; Gerlt, John A; Richard, John P
2008-07-29
Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.
Sohn, Woon Yong; Habka, Sana; Gloaguen, Eric; Mons, Michel
2017-07-14
The presence in crystallized proteins of a local anchoring between the side chain of a His residue, located in the central position of a γ- or β-turn, and its local main chain environment, was assessed by the comparison of protein structures with relevant isolated model peptides. Gas phase laser spectroscopy, combined with relevant quantum chemistry methods, was used to characterize the γ- and β-turn structures in these model peptides. A conformer-selective NH stretch infrared study provided evidence for the formation in vacuo of two types of short-range H-bonded motifs, labelled ε-6 δ and δ- δ 7/π H , bridging the His side chain (in its gauche+ rotamer) to the neighbouring NH(i) and CO(i) sites of the backbone; each side chain-backbone motif was found to be specific of the tautomer (ε or δ) adopted by the His side chain in its neutral form. A close comparison between β- and γ-turns, selected from the Protein Data Bank, and the gas phase models demonstrated that a significant proportion of the gauche+ His rotamer distribution of proteins was well described by the corresponding gas phase H-bonded structures. This is consistent with the persistence of local 6 δ and δ 7/π H intramolecular interactions in proteins, emphasizing the relevance of gas phase data to secondary structures that are poorly accessible to solvents, e.g., in the case of a specific compact topology (Xxx-His β-turns). Deviations from the gas phase structures were also observed, mainly in His-Xxx β-turns, and assigned to solvent accessible turn structures. They were well accounted for by theoretical models of microhydrated turns, in which a few solvent molecules take over the gas phase motifs, constituting a water-mediated local anchoring of the His side chain to the backbone. Finally, the present gas phase benchmark models also pinpointed weaknesses in the protein structure determination by X-ray diffraction analysis; in particular, besides the lack of tautomer information, inaccuracies in the description of imidazole ring flip rotamerism were identified.
Liu, Zitong; Zhang, Guanxin; Zhang, Deqing
2018-06-19
Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.
Niu, Xiaowei
2011-01-01
Large-conductance Ca2+- and voltage-activated K+ (BK) channels have the largest conductance (250–300 pS) of all K+-selective channels. Yet, the contributions of the various parts of the ion conduction pathway to the conductance are not known. Here, we examine the contribution of the entrance to the inner cavity to the large conductance. Residues at E321/E324 on each of the four α subunits encircle the entrance to the inner cavity. To determine if 321/324 is accessible from the inner conduction pathway, we measured single-channel current amplitudes before and after exposure and wash of thiol reagents to the intracellular side of E321C and E324C channels. MPA− increased currents and MTSET+ decreased currents, with no difference between positions 321 and 324, indicating that side chains at 321/324 are accessible from the inner conduction pathway and have equivalent effects on conductance. For neutral amino acids, decreasing the size of the entrance to the inner cavity by substituting large side-chain amino acids at 321/324 decreased outward single-channel conductance, whereas increasing the size of the entrance with smaller side-chain substitutions had little effect. Reductions in outward conductance were negated by high [K+]i. Substitutions had little effect on inward conductance. Fitting plots of conductance versus side-chain volume with a model consisting of one variable and one fixed resistor in series indicated an effective diameter and length of the entrance to the inner cavity for wild-type channels of 17.7 and 5.6 Å, respectively, with the resistance of the entrance ∼7% of the total resistance of the conduction pathway. The estimated dimensions are consistent with the structure of MthK, an archaeal homologue to BK channels. Our observations suggest that BK channels have a low resistance, large entrance to the inner cavity, with the entrance being as large as necessary to not limit current, but not much larger. PMID:21576375
Spontaneous symmetry breaking by double lithium adsorption in polyacenes
NASA Astrophysics Data System (ADS)
Ortiz, Yenni. P.; Seligman, Thomas H.
2010-12-01
We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.
Spontaneous symmetry breaking by double lithium adsorption in polyacenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Yenni. P.; Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos
2010-12-23
We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.
Feverati, Giovanni; Achoch, Mounia; Zrimi, Jihad; Vuillon, Laurent; Lesieur, Claire
2012-01-01
Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual β-strands (β-interfaces), but are otherwise unrelated. The results show that the β-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the β-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular β-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular β-strands, of intramolecular β-strands and of β-strands forming β-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the β-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a β-interface formation. Such β-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development. PMID:22496732
Dhar, Jesmita; Chakrabarti, Pinak; Saini, Harpreet; Raghava, Gajendra Pal Singh; Kishore, Raghuvansh
2015-02-01
Mimicry of structural motifs is a common feature in proteins. The 10-membered hydrogen-bonded ring involving the main-chain C − O in a β-turn can be formed using a side-chain carbonyl group leading to Asx-turn. We show that the N − H component of hydrogen bond can be replaced by a C(γ) -H group in the side chain, culminating in a nonconventional C − H···O interaction. Because of its shape this β-turn mimic is designated as ω-turn, which is found to occur ∼ three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C − H···O interaction occurring between the terminal residues, constraining the torsion angles ϕi + 1, ψi + 1, ϕi + 2 and χ'1(i + 2) (using the interacting C(γ) atom). Based on these angles there are two types of ω-turns, each of which can be further divided into two groups. C(β) -branched side-chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal-binding sites. N-linked glycosylation occurs at the consensus pattern Asn-Xaa-Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω-turn, which may be the recognition site for protein modification. Location between two β-strands is the most common occurrence in protein tertiary structure, and being generally exposed ω-turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. © 2014 Wiley Periodicals, Inc.
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...
2017-04-07
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... and supplies, and fencing and siding for residential installation. In addition to selling the goods... installation of chain link fences around a home or small business establishment is involved, will normally be...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and supplies, and fencing and siding for residential installation. In addition to selling the goods... installation of chain link fences around a home or small business establishment is involved, will normally be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and supplies, and fencing and siding for residential installation. In addition to selling the goods... installation of chain link fences around a home or small business establishment is involved, will normally be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and supplies, and fencing and siding for residential installation. In addition to selling the goods... installation of chain link fences around a home or small business establishment is involved, will normally be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and supplies, and fencing and siding for residential installation. In addition to selling the goods... installation of chain link fences around a home or small business establishment is involved, will normally be...
Kumaki, Yasuhiro; Nitta, Katsutoshi; Hikichi, Kunio; Matsumoto, Takeshi; Matsushima, Norio
2004-07-01
Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.
Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.
Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu
2015-03-01
Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.
Lee, Junghoon; Han, A-Reum; Kim, Jonggi; Kim, Yiho; Oh, Joon Hak; Yang, Changduk
2012-12-26
There is a fast-growing demand for polymer-based ambipolar thin-film transistors (TFTs), in which both n-type and p-type transistor operations are realized in a single layer, while maintaining simplicity in processing. Research progress toward this end is essentially fueled by molecular engineering of the conjugated backbones of the polymers and the development of process architectures for device fabrication, which has recently led to hole and electron mobilities of more than 1.0 cm(2) V(-1) s(-1). However, ambipolar polymers with even higher performance are still required. By taking into account both the conjugated backbone and side chains of the polymer component, we have developed a dithienyl-diketopyrrolopyrrole (TDPP) and selenophene containing polymer with hybrid siloxane-solubilizing groups (PTDPPSe-Si). A synergistic combination of rational polymer backbone design, side-chain dynamics, and solution processing affords an enormous boost in ambipolar TFT performance, resulting in unprecedentedly high hole and electron mobilities of 3.97 and 2.20 cm(2) V(-1) s(-1), respectively.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.
2014-06-01
Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.
Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu
2017-01-25
Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm 2 /(V s) (PTV6B) and 2.58 cm 2 /(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (V inv ) was positioned near the ideal switching point at half (1/2) of supplied voltage (V DD ) due to fairly balanced p- and n-channels.
Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.
Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei
2017-11-24
Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Relationship between ion pair geometries and electrostatic strengths in proteins.
Kumar, Sandeep; Nussinov, Ruth
2002-01-01
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384
Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo
2018-05-02
Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular design of polymers is the subject of our current research, which will enable the fabrication of porous films using various functional polymers.
Molecular modeling of calmodulin: a comparison with crystallographic data
NASA Technical Reports Server (NTRS)
McDonald, J. J.; Rein, R.
1989-01-01
Two methods of side-chain placement on a modeled protein have been examined. Two molecular models of calmodulin were constructed that differ in the treatment of side chains prior to optimization of the molecule. A virtual bond analysis program developed by Purisima and Scheraga was used to determine the backbone conformation based on 2.2 angstroms resolution C alpha coordinates for the molecules. In the first model, side chains were initially constructed in an extended conformation. In the second model, a conformational grid search technique was employed. Calcium ions were treated explicitly during energy optimization using CHARMM. The models are compared to a recently published refined crystal structure of calmodulin. The results indicate that the initial choices for side-chains, but also significant effects on the main-chain conformation and supersecondary structure. The conformational differences are discussed. Analysis of these and other methods makes possible the formulation of a methodology for more appropriate side-chain placement in modeled proteins.
Inouye, Hideyo; Gleason, Katherine A; Zhang, Dong; Decatur, Sean M; Kirschner, Daniel A
2010-08-01
The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation. (c) 2010 Wiley-Liss, Inc.
Sun, Shengtong; Wu, Peiyi
2015-12-28
One easy strategy to comprehend the complex folding/crystallization behaviors of proteins is to study the self-assembly process of their synthetic polymeric analogues with similar properties owing to their simple structures and easy access to molecular design. Poly(2-isopropyl-2-oxazoline) (PIPOZ) is often regarded as an ideal pseudopeptide with similar two-step crystallization behavior to proteins, whose aqueous solution experiences successive lower critical solution temperature (LCST)-type liquid-liquid phase separation upon heating and irreversible crystallization when annealed above LCST for several hours. In this paper, by microscopic observations, IR and Raman spectroscopy in combination with 2D correlation analysis, we show that the second step of PIPOZ crystallization in hot water can be further divided into two apparent stages, i.e., nucleation and crystal growth, and perfect crystalline PIPOZ chains are found to only develop in the second stage. While all the groups exhibit changes in initial nucleation, only methylene groups on the backbone participate in the crystal growth stage. During nucleation, a group motion transfer is found from the side chain to the backbone, and nucleation is assumed to be mainly driven by the cleavage of bridging C=O···D-O-D···O=C hydrogen bonds followed by chain arrangement due to amide dipolar orientation. Nevertheless, during crystal growth, a further chain ordering process occurs resulting in the final formation of crystalline PIPOZ chains with partial trans conformation of backbones and alternative side chains on the two sides. The underlying crystallization mechanism of PIPOZ in hot water we present here may provide very useful information for understanding the crystallization of biomacromolecules in biological systems.
Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P
2015-05-01
β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmeier, M.; Rappich, J.; Nickel, N. H.
The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell.more » We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.« less
Template based protein structure modeling by global optimization in CASP11.
Joo, Keehyoung; Joung, InSuk; Lee, Sun Young; Kim, Jong Yun; Cheng, Qianyi; Manavalan, Balachandran; Joung, Jong Young; Heo, Seungryong; Lee, Juyong; Nam, Mikyung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2016-09-01
For the template-based modeling (TBM) of CASP11 targets, we have developed three new protein modeling protocols (nns for server prediction and LEE and LEER for human prediction) by improving upon our previous CASP protocols (CASP7 through CASP10). We applied the powerful global optimization method of conformational space annealing to three stages of optimization, including multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain remodeling. For more successful fold recognition, a new alignment method called CRFalign was developed. It can incorporate sensitive positional and environmental dependence in alignment scores as well as strong nonlinear correlations among various features. Modifications and adjustments were made to the form of the energy function and weight parameters pertaining to the chain building procedure. For the side-chain remodeling step, residue-type dependence was introduced to the cutoff value that determines the entry of a rotamer to the side-chain modeling library. The improved performance of the nns server method is attributed to successful fold recognition achieved by combining several methods including CRFalign and to the current modeling formulation that can incorporate native-like structural aspects present in multiple templates. The LEE protocol is identical to the nns one except that CASP11-released server models are used as templates. The success of LEE in utilizing CASP11 server models indicates that proper template screening and template clustering assisted by appropriate cluster ranking promises a new direction to enhance protein 3D modeling. Proteins 2016; 84(Suppl 1):221-232. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke
2018-03-01
Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
Sadeghi Moghadam, Behnoosh; Razmkhah, Mohammad; Hamed Mosavian, Mohammad Taghi; Moosavi, Fatemeh
2016-12-07
Electric double layer (EDL) supercapacitors, using ionic liquid electrolytes, have been receiving a great deal of attention in response to the growing demand for energy storage systems. In the present study, the nanoscopic structure of amino acid ionic liquids (AAILs) as biodegradable electrolytes near a neutral graphene surface was studied by molecular dynamics (MD) simulation. In order to explore the influence of the anion type and structure, the effect of the alkyl side-chain length of amino acids on the EDL was investigated. The results for the AAILs, composed of 1-ethyl-3-methylimidazolium ([EMIM]) cations near alanine ([ALA]) and isoleucine ([ILE]) anions, were compared to a conventional electrolyte, [EMIM][PF 6 ]. A lower mobility of AAIL compared to [EMIM][PF 6 ], with diffusions as low as 10 -11 m 2 s -1 , was observed. The structural results demonstrated a layered structure near the surface and most of the adsorbed imidazolium cation rings lay flat on the graphene surface. Both MD and quantum computations were performed to shed light on the charge behavior of AAIL electrolytes. As the current results demonstrate, an increase in the anion side-chain length leads to a decrease in both the number of adsorbed ions on the surface and the thickness of the first adsorbed layer. More impressively, it was observed that a low charge concentration in the EDL of AAILs is due to more side-side interactions. This remarkable feature could introduce AAILs as more efficient electrolyte materials than conventional [EMIM][PF 6 ].
Improved packing of protein side chains with parallel ant colonies.
Quan, Lijun; Lü, Qiang; Li, Haiou; Xia, Xiaoyan; Wu, Hongjie
2014-01-01
The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains. It provides a frame-work for combining different inaccuracy/usefulness objective functions by designing parallel heuristic search algorithms.
Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R
2000-08-18
Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.
Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions
NASA Astrophysics Data System (ADS)
Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens
2013-12-01
Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.
Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.
Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert
2017-10-01
For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.
Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang
2017-03-29
In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.
22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ...
22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ENTRY THROUGH CHAIN LOCKER BULKHEAD. PAWL BITT SHOWN IN FOREGROUND - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D
2014-04-17
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.
NASA Astrophysics Data System (ADS)
Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.
1996-09-01
This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.
Babot, Esteban D; Del Río, José C; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T; Gutiérrez, Ana
2015-06-15
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106-118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Babot, Esteban D.; del Río, José C.; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T.
2015-01-01
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. PMID:25862224
Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P
2014-07-16
The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).
NASA Astrophysics Data System (ADS)
Bauer, William Joseph, Jr.
The fate of an individual cell, or even an entire organism, is often determined by minute, yet very specific differences in the conformation of a single protein species. Very often, proteins take on alternate folds or even side chain conformations to deal with different situations present within the cell. These differences can be as large as a whole domain or as subtle as the alteration of a single amino acid side chain. Yet, even these seemingly minor side chain conformational differences can determine the development of a cell type during differentiation or even dictate whether a cell will live or die. Two examples of situations where minor conformational differences within a specific protein could lead to major differences in the life cycle of a cell are described herein. The first example describes the variations seen in DNA conformations which can lead to slightly different Hox protein binding conformations responsible for recognizing biologically relevant regulatory sites. These specific differences occur in the minor groove of the bound DNA and are limited to the conformation of only two side chains. The conformation of the bound DNA, however, is not solely determined by the sequence of the DNA, as multiple sequences can result in the same DNA conformation. The second example takes place in the context of a yeast prion protein which contains a mutation that decreases the frequency at which fibrils form. While the specific interactions leading to this physiological change were not directly detected, it can be ascertained from the crystal structure that the structural changes are subtle and most likely involve another binding partner. In both cases, these conformational changes are very slight but have a profound effect on the downstream processes.
Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming
2017-09-16
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M
2015-10-20
Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis.
Hackel, Richard P.
1992-01-01
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.
Linear rheology and structure of molecular bottlebrushes with short side chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.
We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less
Choi, Mun Hwan; Xu, Ju; Rho, Jong Kook; Zhao, Xu Ping; Yoon, Sung Chul
2010-06-01
The deletion of the intracellular polyhydroxyalkanoate (PHA) depolymerase gene (phaZ) in Pseudomonas fluorescens BM07 was found to increase more efficiently the levels of longer medium-chain-length (MCL) omega-aromatic monomer-units than in the wild-type strain when the cells were grown with a mixture of fructose and MCL omega-aromatic fatty acid in the presence of salicylic acid that is known as a beta-oxidation inhibitor in BM07 strain. When 11-phenoxyundecanoic acid was used as co-carbon source, the longest monomer-unit 3-hydroxy-11-phenoxyundecanoate, not reported in literature yet, was incorporated into the polymer chain up to approximately 10 mol%. An advantage of salicylic acid inhibition technique is that salicylic acid is not metabolized in BM07 strain, thus, the effective concentration of the inhibitor remaining constant throughout the cultivation. In conclusion, this new technique could be exploited for the enhanced production of side-chain modulated functional MCL-PHA with improved physicochemical properties in P. fluorescens BM07. (c) 2010 Elsevier Ltd. All rights reserved.
Helicity of short E-R/K peptides.
Sommese, Ruth F; Sivaramakrishnan, Sivaraj; Baldwin, Robert L; Spudich, James A
2010-10-01
Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.
Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo
2010-07-05
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).
Häckel, M; Hinz, H J; Hedwig, G R
1999-11-15
The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.
Chromatography of Penicillins, Penicilloates, and Penicilloylamides on Dextran Gels
Hyslop, Newton E.; Milligan, Richard J.
1974-01-01
The factors influencing the chromatographic behavior on dextran gels of penicillins and their derivatives were investigated by comparing elution profiles and partition coefficients (KD and KAV) of penicillins differing in side-chain structure and among penicillin derivatives of identical side-chain but different nuclear structure. Under the conditions of pH and ionic strength employed (pH 7.4, 0.145 M NaCl, 0.05 M PO4), side-chain adsorptive effects best explained the anomalous behavior of benzylpenicillin and of oxacillin and its chlorine-substituted analogues. Polar side-chain substituents, such as the amino group of ampicillin and the carboxyl group of carbenicillin, and cleavage of the β-lactam ring, exemplified by penicilloates and penicilloylamines, both appeared to interfere with side-chain-directed adsorption. The differential adsorption of penicillins and their derivatives to dextran gels is not only of theoretical interest relative to the mechanism of chromatography but of practical application to analytical and preparative procedures in penicillin chemistry. PMID:15825415
De Lorimier, R.; Hellinga, H. W.; Spicer, L. D.
1996-01-01
Core-packing mutants of proteins often approach molten globule states, and hence may have attributes of folding intermediates. We have studied a core-packing mutant of thioredoxin, L78K, in which a leucine residue is substituted by lysine, using 15N heteronuclear two- and three-dimensional NMR. Chemical shift differences between the mutant and wild-type main-chain resonances reveal that structural changes caused by the mutation are localized within 12 A of the altered side chain. The majority of resonances are unchanged, as are many 1H-1H NOEs indicative of the main-chain fold, suggesting that the structure of L78K is largely similar to wild type. Hydrogen exchange studies reveal that residues comprising the central beta-sheet of both mutant and wild-type proteins constitute a local unfolding unit, but with the unfolding/folding equilibrium approximately 12 times larger in L78K. The dynamics of main-chain NH bonds in L78K were studied by 15N spin relaxation and compared with a previous study of wild type. Order parameters for angular motion of NH bonds in the mutant are on average lower than in wild type, suggesting greater spatial freedom on a rapid time scale, but may also be related to different rotational correlation times in the two proteins. There is also evidence of greater conformational exchange in the mutant. Differences between mutant and wild type in hydrogen exchange and main-chain dynamics are not confined to the vicinity of the mutation. We infer that mispacking of the protein core in one location affects local dynamics and stability throughout. PMID:8976564
Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.
2010-01-01
The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016
2015-01-01
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute–solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance. PMID:24650057
NASA Astrophysics Data System (ADS)
Shute, Richard E.; Jackson, David E.; Bycroft, Barrie W.
1989-06-01
The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic β-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3 R-compounds possess notable Gram-positive antibacterial activity and potent β-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain β-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3 R, and 3 S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3 R and the 3 S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3 R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, `bioactive' conformer for the classical β-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 α-carboxylate functionality is presented.
Guddat, L W; Shan, L; Broomell, C; Ramsland, P A; Fan, Z; Anchin, J M; Linthicum, D S; Edmundson, A B
2000-09-29
The three-dimensional structure of a complex of an Fab from a murine IgG2b(lambda) antibody (NC10.14) with a high potency sweet tasting hap- ten, N-(p-cyanophenyl)-N'-(diphenylmethyl)-N"-(carboxymethyl)guan idine (NC174), has been determined to 2.6 A resolution by X-ray crystallography. This complex crystallized in the triclinic space group P1, with two molecules in the asymmetric unit. In contrast to a companion monoclonal antibody (NC6.8) with a kappa-type light chain and similar high affinity for the NC174 ligand, the NC10.14 antibody possessed a large and deep antigen combining site bounded primarily by the third complementarity-determining regions (CDR3s) of the light and heavy chains. CDR3 of the heavy chain dominated the site and its crown protruded into the external solvent as a type 1' beta-turn. NC174 was nested against HCDR3 and was held in place by two tryptophan side-chains (L91 and L96) from LCDR3. The diphenyl rings were accommodated on an upper tier of the binding pocket that is largely hydrophobic. At the floor of the site, a positively charged arginine side-chain (H95) stabilized the orientation of the electronegative cyano group of the hapten. The negative charge on the acetate group was partially neutralized by a hydrogen bond with the phenolic hydroxyl group of tyrosine H58. Comparisons of the modes of binding of NC174 to the NC6.8 and NC10.14 antibodies illustrate the enormous structural and mechanistic diversity manifest by immune responses. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Nguyen, Huong T. H.; Tureček, František
2017-07-01
Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second ( B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.
2005-01-11
Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP + were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP +-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contactsmore » of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P) + in the wild-type remains partly disordered in the NADP +-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.« less
Aletras, A; Barlos, K; Gatos, D; Koutsogianni, S; Mamos, P
1995-05-01
N alpha-9-Fluorenylmethoxycarbonyl-N epsilon-4=methyltrityl-lysine, [Fmoc-Lys(Mtt)-OH], was prepared in two steps from lysine, in 42% overall yield. The N epsilon-Mtt function can be quantitatively removed upon treatment with 1% TFA in dichloromethane or with a 1:2:7 mixture of acetic acid/trifluoroethanol/dichloromethane for 30 min and 1 h at room temperature, respectively. Under these conditions, groups of the tert-butyl type and peptide ester bonds to TFA-labile resins, such as the 2-chlorodiphenylmethyl- and the Wang-resin, remained intact. The utility of the new derivative in peptide synthesis has been exemplified with the synthesis of a cyclic cholecystokinin analog. As an example of further application, five types of lysine cores suitable for the solid-phase synthesis of one, two or three epitopes containing antigenic peptides or template-assembled synthetic proteins have been synthesized on Merrifield, Wang and 2-chlorodiphenylmethyl resin.
Hackel, R.P.
1992-10-20
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.
Comparison of the nutrient content of children's menu items at US restaurant chains, 2010-2014.
Deierlein, Andrea L; Peat, Kay; Claudio, Luz
2015-08-15
To determine changes in the nutritional content of children's menu items at U.S. restaurant chains between 2010 and 2014. The sample consisted of 13 sit down and 16 fast-food restaurant chains ranked within the top 50 US chains in 2009. Nutritional information was accessed in June-July 2010 and 2014. Descriptive statistics were calculated for nutrient content of main dishes and side dishes, as well as for those items that were added, removed, or unchanged during the study period. Nutrient content of main dishes did not change significantly between 2010 and 2014. Approximately one-third of main dishes at fast-food restaurant chains and half of main dishes at sit down restaurant chains exceeded the 2010 Dietary Guidelines for Americans recommended levels for sodium, fat, and saturated fat in 2014. Improvements in nutrient content were observed for side dishes. At sit down restaurant chains, added side dishes contained over 50% less calories, fat, saturated fat, and sodium, and were more likely to contain fruits/vegetables compared to removed sides (p < 0.05 for all comparisons). Added side dishes at fast-food restaurant chains contained less saturated fat (p < 0.05). The majority of menu items, especially main dishes, available to children still contain high amounts of calories, fat, saturated fat, and sodium. Efforts must be made by the restaurant industry and policy makers to improve the nutritional content of children's menu items at restaurant chains to align with the Dietary Guidelines for Americans. Additional efforts are necessary to help parents and children make informed choices when ordering at restaurant chains.
In Vitro Enzymatic Synthesis of New Penicillins Containing Keto Acids as Side Chains
Ferrero, Miguel A.; Reglero, Angel; Martínez-Blanco, Honorina; Fernández-Valverde, Martiniano; Luengo, Jose M.
1991-01-01
Seven different penicillins containing α-ketobutyric, β-ketobutyric, γ-ketovaleric, α-ketohexanoic, δ-ketohexanoic, ε-ketoheptanoic, and α-ketooctanoic acids as side chains have been synthesized in vitro by incubating the enzymes phenylacetyl coenzyme A (CoA) ligase from Pseudomonas putida and acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum with CoA, ATP, Mg2+, dithiothreitol, 6-aminopenicillanic acid, and the corresponding side chain precursor. PMID:1952871
[Study on anti-bacterium activity of ginkgolic acids and their momomers].
Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin
2004-09-01
Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.
NASA Astrophysics Data System (ADS)
Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman
2017-09-01
Dynamical coupling between water and amino acid side-chain residues in solvation dynamics is investigated by selecting residues often used as natural probes, namely tryptophan, tyrosine and histidine, located at different positions on protein surface. Such differently placed residues are found to exhibit different timescales of relaxation. The total solvation response measured by the probe is decomposed in terms of its interactions with (i) protein core, (ii) side-chain and (iii) water. Significant anti cross-correlation among these contributions are observed. When the motion of the protein side-chains is quenched, solvation either becomes faster or slower depending on the location of the probe.
Improved packing of protein side chains with parallel ant colonies
2014-01-01
Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains. It provides a frame-work for combining different inaccuracy/usefulness objective functions by designing parallel heuristic search algorithms. PMID:25474164
Gao, Yang; Shen, Lu; Honzatko, Richard B
2014-03-21
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.
NASA Astrophysics Data System (ADS)
Köster, Jürgen; Van Kaam-Peters, Heidy M. E.; Koopmans, Martin P.; De Leeuw, Jan W.; Sinninghe Damsté, Jaap S.
1997-06-01
Sulphurisation has been recognised as the most important diagenetic pathway acting on hopanoids in the organic-rich limestones, marlstone, and dolomite investigated. The qualitative and quantitative analysis of free and S-bound hopanoid moieties revealed that the incorporation of sulphur has a major impact on the carbon number distribution, the speciation and on the 22 S/(22S+22 R) ratio of the hopanoids. C 35 carbon skeletons are preferentially preserved by sulphur incorporation at the end of the side chain. Hopanoid sulphides, with the sulphur atom attached to one carbon atom of ring D or E and to one carbon atom of the side chain (condensed-type), are predominantly formed from precursors with a partially degraded side chain. In all samples the degree of sulphurisation of hopanoids increases with increasing carbon number. The carbon skeleton speciation changes with maturation in favour of hopanoid thiophenes, which are evidently the most stable hopanoid sulphur compounds, and hopanes. Hopanes are mainly formed via a sulphurisation/desulphurisation pathway and increase in concentration with maturity. Their original carbon number distribution is strongly shifted towards the lower homologues. With increasing maturity only a slight dominance of the C 35 members emerges. The most abundant series of condensed-type hopanoid sulphides have a 22R homohopane carbon skeleton that is not isomerised during maturation. The generation of hopanes from these condensed-type hopanoid sulphides during maturation leads to 22 S/(22S+22 R) ratios which increase with carbon number (e.g., from about 0.2 for C 31 to 0.5 for C 35 homologues). Data acquired from the sedimentary rock samples are supported by those obtained from artificial maturation experiments of a limestone by hydrous pyrolysis at different temperatures. The data show that generally accepted molecular maturation parameters have to be applied with caution.
Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes
NASA Astrophysics Data System (ADS)
Zhu, Liang; Yu, Xuedi; Hickner, Michael A.
2018-01-01
In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.
Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.
Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei
2017-09-01
Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jong, KwangHyok; Grisanti, Luca; Hassanali, Ali
2017-07-24
We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ 30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.
Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.
1998-01-01
The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962
Dantsker, David; Roche, Camille; Samuni, Uri; Blouin, George; Olson, John S; Friedman, Joel M
2005-11-18
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.
Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A
2011-05-19
A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. © 2011 American Chemical Society
Functional modulation of a protein folding landscape via side-chain distortion
Kelch, Brian A.; Salimi, Neema L.; Agard, David A.
2012-01-01
Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267
1986-10-01
Report No. 2 Liquid Crystalline Polymers Containing Heterocycloalkane Mesogeus 1. Side-Chain Liquid Crystalline Polymethacrylates and . Polyacrylates...8217. " "-"-"-" " "" ’CS" i Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens 1. Side-Chain Liquid Crystalline Polymethacrylates and Polyacrylates...University Cleveland, OH 44106 ABSTRACT Polymethacrylates and polyacrylates containing 2-(p-hydroxyphenyl)-5-(p-meth- oxyphenyl)-1,3-dioxane as a
Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.
Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing
2010-07-07
The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.
How accurately do force fields represent protein side chain ensembles?
Petrović, Dušan; Wang, Xue; Strodel, Birgit
2018-05-23
Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER ...
21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER FROM CHAIN LOCKER BULKHEAD; PAWL BITT SHOWN IN EXTREME LEFT FOREGROUND, WITH APRON IN BACKGROUND. BREASTHOOK, SHELF AND CLAMP SHOWN AT TOP OF IMAGE - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A
2009-09-01
A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.
An Amino Acid Code for β-sheet Packing Structure
Joo, Hyun; Tsai, Jerry
2014-01-01
To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the 2 types of 4 residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between 2 adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of 4 residues i,i+2 on one strand and j,j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a 3 residue XY:H socket (i,i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, 2 types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing. PMID:24668690
INOUE, Masayuki
2014-01-01
Antillatoxin 1 is a unique natural product that displays potent neurotoxic and neuritogenic activities through activation of voltage-gated sodium channels. The peptidic macrocycle of 1 was attached to a side chain with an exceptionally high degree of methylation. In this review, we discuss the total synthesis and biological evaluation of 1 and its analogues. First we describe an efficient synthetic route to 1. This strategy enabled the unified preparation of nine side chain analogues. Structure-activity relationship studies of these analogues revealed that subtle side chain modification leads to dramatic changes in activity, and detailed structural analyses indicated the importance of the overall size and three dimensional shape of the side chain. Based on these data, we designed and synthesized a photoresponsive analogue, proving that the activity of 1 was modulated via a photochemical reaction. The knowledge accumulated through these studies will be useful for the rational design of new tailor-made molecules to control the function and behavior of ion channels. PMID:24522155
Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan
2017-10-04
Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.
Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu
2014-04-01
Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.
Radiolytic degradation scheme for 60Co-irradiated corticosteroids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, M.P.; Tsuji, K.
The cobalt 60 radiolytic degradation products have been identified in the following corticosteroids: cortisone, cortisone acetate, hydrocortisone, hydrocortisone acetate, hydrocortisone sodium succinate, isoflupredone acetate, methylprednisolone, methylprednisolone acetate, prednisolone, prednisolone acetate, and prednisone. Two major types of degradation processes have been identified: loss of the corticoid side chain on the D-ring to produce the C-17 ketone and conversion of the C-11 alcohol, if present, to the C-11 ketone. Minor degradation products derived from other changes affecting the side chain are also identified in several corticosteroids. These compounds are frequently associated in corticosteroids as process impurities or degradation compounds. No new radiolyticmore » compounds unique to 60Co-irradiation have been found. The majority of corticosteroids have been shown to be stable to 60Co-irradiation. The rates of radiolytic degradation ranged from 0.2 to 1.4%/Mrad.« less
Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons
NASA Astrophysics Data System (ADS)
Savin, A. V.; Mazo, M. A.
2018-04-01
A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.
Huang, Kun; Chan, Shu Jin; Hua, Qing-xin; Chu, Ying-Chi; Wang, Run-ying; Klaproth, Birgit; Jia, Wenhua; Whittaker, Jonathan; De Meyts, Pierre; Nakagawa, Satoe H; Steiner, Donald F; Katsoyannis, Panayotis G; Weiss, Michael A
2007-11-30
The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.
NASA Astrophysics Data System (ADS)
Chwastyk, Mateusz; Poma Bernaola, Adolfo; Cieplak, Marek
2015-07-01
We propose to improve and simplify protein refinement procedures through consideration of which pairs of amino acid residues should form native contacts. We first consider 11 330 proteins from the CATH database to determine statistical distributions of contacts associated with a given type of amino acid. The distributions are set across the distances between the α-C atoms that are in contact. Based on this data, we determine typical radii of effective spheres that can be placed on the α-C atoms in order to reconstruct the distribution of the contact lengths. This is done by checking for overlaps with enlarged van der Waals spheres associated with heavy atoms on other amino acids. The resulting contacts can be used to identify non-native contacts that may arise during the time evolution of structure-based models. Here, the radii are used to guide reconstruction of nine missing side chains in a type I cohesin domain with the Protein Data Bank code 1AOH. We first identify the likely missing contacts and then sculpt the corresponding side chains by standard refinement tools to achieve consistency with the expected contact map. One ambiguity in refinement is resolved by determining all-atom conformational energies.
Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase.
Salvi, Francesca; Rodriguez, Isela; Hamelberg, Donald; Gadda, Giovanni
2016-03-15
Choline oxidase from Arthrobacter globiformis catalyzes the oxidation of choline to glycine betaine by using oxygen as an electron acceptor. A partially rate limiting isomerization of the reduced wild-type enzyme during the reaction with oxygen was previously detected using solvent viscosity effects. In this study, we hypothesized that the side chains of M62 and F357, located at the entrance to the active site of choline oxidase, may be related to the slow isomerization detected. We engineered a double-variant enzyme M62A/F357A. The kinetic characterization of the double-variant enzyme showed a lack of the isomerization detected in wild-type choline oxidase, and a lack of saturation with an oxygen concentration as high as 1 mM, while most other kinetic parameters were similar to those of wild-type choline oxidase. The kinetic characterization of the single-variant enzymes established that only the side chain of F357 plays a role in the isomerization of choline oxidase in the oxidative half-reaction. Molecular dynamics studies suggest that the slow isomerization related to F357 is possibly due to the participation of the phenyl ring in a newly proposed gating mechanism for a narrow tunnel, assumed to regulate the access of oxygen to the reduced cofactor.
Using spiral chain models for study of nanoscroll structures
NASA Astrophysics Data System (ADS)
Savin, Alexander V.; Sakovich, Ruslan A.; Mazo, Mikhail A.
2018-04-01
Molecular nanoribbons with different chemical structures can form scrolled packings possessing outstanding properties and application perspectives due to their morphology. Here, we propose a simplified two-dimensional model of the molecular chain that allows us to describe the molecular nanoribbon's scrolled packings of various structures as a spiral packaging chain. The model allows us to obtain the possible stationary states of single-layer nanoribbon scrolls of graphene, graphane, fluorographene, fluorographane (graphene hydrogenated on one side and fluorinated on the other side), graphone C4H (graphene partially hydrogenated on one side), and fluorographone C4F . The obtained states and the states of the scrolls found through all-atomic models coincide with good accuracy. We show the stability of scrolled packings and calculate the dependence of energy, the number of coils, and the inner and outer radius of the scrolled packing on the nanoribbon length. It is shown that a scrolled packing is the most energetically favorable conformation for nanoribbons of graphene, graphane, fluorographene, and fluorographane at large lengths. A double-scrolled packing when the nanoribbon is symmetrically rolled into a scroll from opposite ends is more advantageous for longer length nanoribbons of graphone and fluorographone. We show the possibility of the existence of scrolled packings for nanoribbons of fluorographene and the existence of two different types of scrolls for nanoribbons of fluorographane, which correspond to the left and right Archimedean spirals of the chain model. The simplicity of the proposed model allows us to consider the dynamics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time intervals.
Straight-Chain Alkyl Isocyanides Open the Distal Histidine Gate in Crystal Structures of Myoglobin†
Smith, Rober D.; Blouin, George C.; Johnson, Kenneth A.; Phillips, George N.; Olson, John S.
2014-01-01
Crystal structures of methyl, ethyl, propyl and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a “closed” position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an “open” position, allowing the ligand side chain to point outward. A progressive increase in the population of the out conformer is observed with increasing ligand length in P21 crystals of native Mb at pH 7.0. This switch from in to out with increasing ligand size also occurs in solution as measured by the decrease in the relative intensity of the low (~2075 cm 1) versus high frequency (~2125 cm 1) isocyano bands. In contrast, all four isocyanides in P6 crystals of wild type recombinant Mb occupy the in conformation. However, mutating either His64 to Ala, creating a “hole” to solvent, or Phe46 to Val, freeing rotation of His64, causes bound butyl isocyanide to point completely outward in P6 crystals. Thus, the unfavorable hindrance caused with crowding a large alkyl side chain into the distal pocket appears to be roughly equal to that for pushing open the His(E7) gate and is easily affected by crystal packing. This structural conclusion supports the “side path” kinetic mechanism for O2 release, in which the dissociated ligand first moves toward the protein interior and then encounters steric resistance, which is roughly equal to that for escaping to solvent through the His(E7) channel. PMID:20481504
Jayaram, M.; Murthy, S. K.; Ganguly, J.
1973-01-01
The cholesterol side-chain cleavage enzyme activity is decreased considerably at the mild stage of vitamin A deficiency in rat testes and ovaries and the decrease in activity becomes more pronounced with progress of deficiency. Supplementation of the deficient rats with retinyl acetate, but not retinoic acid, restores the enzyme activity to normal values. The cholesterol side-chain cleavage enzyme of adrenals is not affected by any of the above treatments. PMID:4772624
Gerecht, Karola; Figueiredo, Angelo Miguel
2017-01-01
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203
Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y
2015-12-10
The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules. Copyright © 2015. Published by Elsevier Ltd.
Clarkson, Michael W; Lee, Andrew L
2004-10-05
Long-range interactions are fundamental to protein behaviors such as cooperativity and allostery. In an attempt to understand the role protein flexibility plays in such interactions, the distribution of local fluctuations in a globular protein was monitored in response to localized, nonelectrostatic perturbations. Two valine-to-alanine mutations were introduced into the small serine protease inhibitor eglin c, and the (15)N and (2)H NMR spin relaxation properties of these variants were analyzed in terms of the Lipari-Szabo dynamics formalism and compared to those of the wild type. Significant changes in picosecond to nanosecond dynamics were observed in side chains located as much as 13 A from the point of mutation. Additionally, those residues experiencing altered dynamics appear to form contiguous surfaces within the protein. In the case of V54A, the large-to-small mutation results in a rigidification of connected residues, even though this mutation decreases the global stability. These findings suggest that dynamic perturbations arising from single mutations may propagate away from the perturbed site through networks of interacting side chains. That this is observed in eglin c, a classically nonallosteric protein, suggests that such behavior will be observed in many, if not all, globular proteins. Differences in behavior between the two mutants suggest that dynamic responses will be context-dependent.
Kariev, Alisher M; Green, Michael E
2015-01-12
The gating mechanism of voltage sensitive ion channels is generally considered to be the motion of the S4 transmembrane segment of the voltage sensing domains (VSD). The primary supporting evidence came from R → C mutations on the S4 transmembrane segment of the VSD, followed by reaction with a methanethiosulfonate (MTS) reagent. The cys side chain is -SH (reactive form -S-); the arginine side chain is much larger, leaving space big enough to accommodate the MTS sulfonate head group. The cavity created by the mutation has space for up to seven more water molecules than were present in wild type, which could be displaced irreversibly by the MTS reagent. Our quantum calculations show there is major reorientation of three aromatic residues that face into the cavity in response to proton displacement within the VSD. Two phenylalanines reorient sufficiently to shield/unshield the cysteine from the intracellular and extracellular ends, depending on the proton positions, and a tyrosine forms a hydrogen bond to the cysteine sulfur with its side chain -OH. These could produce the results of the experiments that have been interpreted as evidence for physical motion of the S4 segment, without physical motion of the S4 backbone. The computations strongly suggest that the interpretation of cysteine substitution reaction experiments be re-examined in the light of these considerations.
Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S
2017-04-10
Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca 2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca 2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.
Nieto Penalver, Carlos G; Morin, Danièle; Cantet, Franck; Saurel, Olivier; Milon, Alain; Vorholt, Julia A
2006-01-23
Acyl-homoserine lactones (acyl-HSLs) have emerged as important regulatory molecules for many gram-negative bacteria. We have found that Methylobacterium extorquens AM1, a member of the pink-pigmented facultative methylotrophs commonly present on plant surfaces, produces several acyl-HSLs depending upon the carbon source. A novel HSL was discovered with a double unsaturated carbon chain (N-(tetradecenoyl)) (C14:2) and characterized by MS and proton NMR. This long-chain acyl-HSL is synthesized by MlaI that also directs synthesis of C14:1-HSL. The Alphaproteobacterium also produces N-hexanoyl-HSL (C6-HSL) and N-octanoyl-HSL (C8-HSL) via MsaI.
Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R
2009-05-01
Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.
Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C
2015-03-01
The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.
Idowu, O R; Peggins, J O; Brewer, T G
1995-01-01
Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.
Tandem catalysis for the preparation of cylindrical polypeptide brushes.
Rhodes, Allison J; Deming, Timothy J
2012-11-28
Here, we report a method for synthesis of cylindrical copolypeptide brushes via N-carboxyanhydride (NCA) polymerization utilizing a new tandem catalysis approach that allows preparation of brushes with controlled segment lengths in a straightforward, one-pot procedure requiring no intermediate isolation or purification steps. To obtain high-density brush copolypeptides, we used a "grafting from" approach where alloc-α-aminoamide groups were installed onto the side chains of NCAs to serve as masked initiators. These groups were inert during cobalt-initiated NCA polymerization and gave allyloxycarbonyl-α-aminoamide-substituted polypeptide main chains. The alloc-α-aminoamide groups were then activated in situ using nickel to generate initiators for growth of side-chain brush segments. This use of stepwise tandem cobalt and nickel catalysis was found to be an efficient method for preparation of high-chain-density, cylindrical copolypeptide brushes, where both the main chains and side chains can be prepared with controlled segment lengths.
CADB: Conformation Angles DataBase of proteins
Sheik, S. S.; Ananthalakshmi, P.; Bhargavi, G. Ramya; Sekar, K.
2003-01-01
Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/. PMID:12520049
NASA Astrophysics Data System (ADS)
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.
Deady, L W; Desneves, J; Kaye, A J; Finlay, G J; Baguley, B C; Denny, W A
2001-02-01
A series of 11-oxo-11H-indeno[1,2-b]quinolines bearing a carboxamide-linked cationic side chain at various positions on the chromophore was studied to determine structure-activity relationships between cytotoxicity and the position of the side chain. The compounds were prepared by Pfitzinger synthesis from an appropriate isatin and 1-indanone, followed by various oxidative steps, to generate the required carboxylic acids. The 4- and 6-carboxamides (with the side chain on a terminal ring, off the short axis of the chromophore) were effective cytotoxins. The dimeric 4- and 6-linked analogues were considerably more cytotoxic than the parent monomers, but had broadly similar activities. In contrast, analogues with side chains at the 8-position (on a terminal ring but off the long axis of the chromophore) or 10-position (off the short axis of the chromophore but in a central ring) were drastically less effective. The 4,10- and 6,10-biscarboxamides had activities between those of the corresponding parent monocarboxamides. The first of these showed good activity against advanced subcutaneous colon 38 tumours in mice.
Tension amplification in tethered layers of bottle-brush polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.
2016-02-26
In this paper, molecular dynamics simulations of a coarse-grained bead–spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones N bb (50 ≤ N bb ≤ 200) and side chains N sc (50 ≤ N sc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate.more » From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.« less
Stieglitz, Kimberly A.; Pastra-Landis, Styliani C.; Xia, Jiarong; Tsuruta, Hiro; Kantrowitz, Evan R.
2005-01-01
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7Å resolution. Time-resolved small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low activity low affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase. PMID:15890205
Kepska, Kinga
2018-01-01
The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties. PMID:29558448
Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian
2009-09-15
We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.
V-type multicylinder internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuboi, M.
1986-05-20
A V-type multicylinder internal combustion engine is described for vehicles comprising front and rear cylinder blocks arrayed in V shape longitudinally of a vehicle body, front and rear cylinder heads fixed on each cylinder block, pistons sliding in the cylinder blocks, a crank and transmission case formed uniformly on the cylinder blocks, a crankshaft extending transversely of the vehicle body borne rotatably on both side walls of the crank and transmission case at journals on both sides, the crankshaft being coupled to the pistons at a crank pin through connecting rods and provided with front and rear driving sprockets, frontmore » and rear cam shafts mounted rotatably on the cylinder heads with driven sprockets fixed thereon, a front timing chain laid between the front driving sprocket and the front driven sprocket and constituting together with the front driving and driven sprockets a front cam driving means, a rear timing chain laid between the rear driving sprocket and the rear driven sprocket and constituting together with the rear driving and driven sprockets a rear cam driving means, and a speed change gear coupled to the crankshaft by way of a primary reduction gear and a clutch.« less
Boyce, John D.; Harper, Marina; St. Michael, Frank; John, Marietta; Aubry, Annie; Parnas, Henrietta; Logan, Susan M.; Wilkie, Ian W.; Ford, Mark; Cox, Andrew D.; Adler, Ben
2009-01-01
We previously determined the structure of the Pasteurella multocida Heddleston type 1 lipopolysaccharide (LPS) molecule and characterized some of the transferases essential for LPS biosynthesis. We also showed that P. multocida strains expressing truncated LPS display reduced virulence. Here, we have identified all of the remaining glycosyltransferases required for synthesis of the oligosaccharide extension of the P. multocida Heddleston type 1 LPS, including a novel α-1,6 glucosyltransferase, a β-1,4 glucosyltransferase, a putative bifunctional galactosyltransferase, and two heptosyltransferases. In addition, we identified a novel oligosaccharide extension expressed only in a heptosyltransferase (hptE) mutant background. All of the analyzed mutants expressing LPS with a truncated main oligosaccharide extension displayed reduced virulence, but those expressing LPS with an intact heptose side chain were able to persist for long periods in muscle tissue. The hptC mutant, which expressed LPS with the shortest oligosaccharide extension and no heptose side chain, was unable to persist on the muscle or cause any disease. Furthermore, all of the mutants displayed increased sensitivity to the chicken antimicrobial peptide fowlicidin 1, with mutants expressing highly truncated LPS being the most sensitive. PMID:19168738
Ollikainen, Noah; Smith, Colin A.; Fraser, James S.; Kortemme, Tanja
2013-01-01
Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remains experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side chain conformations, native side chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid co-variation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. PMID:23422426
Gharakhanian, Eric G; Deming, Timothy J
2016-07-07
A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.
Fragmentation of alpha-Radical Cations of Arginine-Containing Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Yang, Zhibo; Ng, Dominic C.
2010-04-01
Fragmentation pathways of peptide radical cations, M+, with well-defined initial location of the radical site were explored using collision-induced dissociation (CID) experiments. Peptide radical cations were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes [salen = N,N´-ethylenebis (salicylideneaminato)]. Subsequent hydrogen abstraction from the -carbon of the side chain followed by Ca-C bond cleavage results in the loss of a neutral side chain and formation of an a-radical cation with the radical site localized on the a-carbon of the backbone. Similar CID spectra dominated by radical-driven dissociation products were obtained for a number of a-radicals when the basic arginine side chain wasmore » present in the sequence. In contrast, proton-driven fragmentation dominates CID spectra of a-radicals produced via the loss of the arginine side chain. Our results suggest that in most cases radical migration precedes fragmentation of large peptide radical cations.« less
Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm
NASA Astrophysics Data System (ADS)
Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas
2012-02-01
Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.
Microscopic insights into the NMR relaxation based protein conformational entropy meter
Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua
2013-01-01
Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504
Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen
2017-04-19
An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2015-11-03
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
NASA Astrophysics Data System (ADS)
Mansbach, Rachael A.; Ferguson, Andrew L.
2015-03-01
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Mansbach, Rachael A; Ferguson, Andrew L
2015-03-14
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Palmgren, M G; Sommarin, M; Ulvskov, P; Larsson, C
1990-01-29
In search for a detergent to be used to assess the sidedness of plant plasma membrane vesicles by enzyme latency we tested the effect of 42 detergents on the ATPase activity of right-side-out and inside-out plasma membrane vesicles from sugar beet leaves. Most of the detergents seemed to inactivate the ATPase in addition to disrupting the permeability barrier to ATP. There were two main exceptions, namely long chain polyoxyethylene acyl ethers, such as detergents of the Brij series and Lubrol WX, and long chain lysophospholipids. These two types of detergents permeabilized the membranes at low concentrations and did not inhibit the ATPase at higher concentrations. Unmasking of latent active sites seemed to explain the activation of the plasma membrane H(+)-ATPase produced by long chain polyoxyethylene acyl ethers. These detergents should therefore be ideal for determination of vesicle orientation based on ATPase latency. By contrast, long chain lysophospholipids were found to be highly specific activators of the enzyme. In addition, long chain fatty acids were found to strongly inhibit ATP-dependent proton accumulation in the vesicles without inhibiting ATP hydrolysis. This uncoupling effect of the fatty acids could be abolished by the addition of fatty acid-free bovine serum albumin (BSA). Similarly, the proton transport capacity of ageing vesicles could be restored by addition of BSA. The latter findings may explain why isolated plasma membranes so often exhibit increased permeability to protons on ageing.
Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.
Dong, Chuan-Ding; Beenken, Wichard J D
2016-10-10
In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.
Kannan, Srinivasaraghavan; Zacharias, Martin
2014-01-01
The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686
Taskent-Sezgin, Humeyra; Marek, Peter; Thomas, Rosanne; Goldberg, Daniel; Chung, Juah; Carrico, Isaac; Raleigh, Daniel P.
2011-01-01
p-Cyanophenylalanine is an extremely useful fluorescence probe of protein structure which can be recombinantly and chemically incorporated into proteins. The probe has been used to study protein folding, protein-membrane interactions, protein-peptide interactions and amyloid formation, however the factors that control its fluorescence are not fully understood. Hydrogen bonding to the cyano group is known to play a major role in modulating the fluorescence quantum yield, but the role of potential side-chain quenchers has not yet been elucidated. A systematic study on the effects of different side-chains on p-cyanophenylalanine fluorescence is reported. Tyr is found to have the largest effect followed by deprotonated His, Met, Cys, protonated His, Asn, Arg, and protonated Lys. Deprotonated amino groups are much more effective fluorescence quenchers than protonated amino groups. Free neutral imidazole and hydroxide ion are also effective quenchers of p-cyanophenylalanine fluorescence with Stern-Volmer constants of 39.8 M−1 and 22.1 M−1, respectively. The quenching of p-cyanophenylalanine fluorescence by specific side-chains is exploited to develop specific, high sensitivity, fluorescence probes of helix formation. The approach is demonstrated with Ala based peptides that contain a p-cyanophenylalanine-His or a p-cyanophenylalanine-Tyr pair located at positions i and i+4. The p-cyanophenylalanine-His pair is most useful when the His side-chain is deprotonated and is, thus, complimentary to Trp-His pair which is most sensitive when the His side-chain is protonated. PMID:20565125
NASA Astrophysics Data System (ADS)
Koehl, Patrice; Orland, Henri; Delarue, Marc
2011-08-01
We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.
Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne
2011-01-01
Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873
Popoff, Alexandre; Fichou, Denis
2008-05-01
We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.
The dehydroalanine effect in the fragmentation of ions derived from polypeptides
Pilo, Alice L.; Peng, Zhou; McLuckey, Scott A.
2016-01-01
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N—Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. PMID:27484024
From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.
Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M
2004-04-30
A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caselli, E.; Powers, R.A.; Blaszczak, L.C.
2010-03-05
Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in {beta}-lactam inhibitors or {beta}-lactam substrates of serine {beta}-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.« less
Sioud, Salim; Kharbatia, Najeh; Amad, Maan H; Zhu, Zhiyong; Cabanetos, Clement; Lesimple, Alain; Beaujuge, Pierre
2014-11-30
The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M-H](+) ion peaks were observed. In this work we investigate the formation of [M-H](+) ions observed under APPI conditions. Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M-H](+) ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H](+) vs [M-H](+) ions and computational approaches were used. [M-H](+) ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M-H](+) and [M + H](+) ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H](+) ions is the most favourable condition under which to form [M-H](+) ions. [M-H](+) ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M-H](+) ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H](+) ions is proposed to be necessary. Copyright © 2014 John Wiley & Sons, Ltd.
Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer
NASA Astrophysics Data System (ADS)
Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.
2017-09-01
Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.
2015-06-01
Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.
Derboven, Pieter; Van Steenberge, Paul H M; Vandenbergh, Joke; Reyniers, Marie-Francoise; Junkers, Thomas; D'hooge, Dagmar R; Marin, Guy B
2015-12-01
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pazos, Gonzalo; Rivadulla, Marcos L; Pérez-García, Xenxo; Gandara, Zoila; Pérez, Manuel
2014-01-01
The Gemini analogs are the last significant contribution to the family of vitamin D derivatives in medicine, for the treatment of cancer. The first Gemini analog was characterized by two symmetric side chains at C-20. Following numerous modifications, the most active analog bears a C-23-triple bond, C-26, 27- hexafluoro substituents on one side chain and a terminal trideuteromethylhydroxy group on the other side chain. This progression was possible due to improvements in the synthetic methods for the preparation of these derivatives, which allowed for increasing molecular complexity and complete diastereoselective control at C-20 and the substituted sidechains.
Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian
2009-01-01
We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain. PMID:19703776
Polymer composites containing nanotubes
NASA Technical Reports Server (NTRS)
Bley, Richard A. (Inventor)
2008-01-01
The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.
Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C
1997-06-06
A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.
Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.
Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki
2011-09-22
In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society
Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations.
Andersen, N. H.; Tong, H.
1997-01-01
A modification of the Lifson-Roig formulation of helix/coil transitions is presented; it (1) incorporates end-capping and coulombic (salt bridges, hydrogen bonding, and side-chain interactions with charged termini and the helix dipole) effects, (2) helix-stabilizing hydrophobic clustering, (3) allows for different inherent termination probabilities of individual residues, and (4) differentiates helix elongation in the first versus subsequent turns of a helix. Each residue is characterized by six parameters governing helix formation. The formulation of the conditional probability of helix initiation and termination that we developed is essentially the same as one presented previously (Shalongo W, Stellwagen, E. 1995. Protein Sci 4:1161-1166) and nearly the mathematical equivalent of the new capping formulation incorporated in the model presented by Rohl et al. (1996. Protein Sci 5:2623-2637). Side-chain/side-chain interactions are, in most cases, incorporated as context dependent modifications of propagation rather than nucleation parameters. An alternative procedure for converting [theta]221 values to experimental fractional helicities (
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS)☟
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M.; Ioerger, Thomas R.; Burgess, Kevin
2013-01-01
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, “minimalist helical mimics”. It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i+4, i+7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i+3, i+7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds;(iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain “triads” in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the “side-chain correspondences” (eg i, i+4, i+7 or i, i+3, i+4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1 – 8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites. PMID:24121516
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS).
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M; Ioerger, Thomas R; Burgess, Kevin
2013-11-28
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, "minimalist helical mimics". It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i + 4, i + 7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i + 3, i + 7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; (iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain "triads" in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the "side-chain correspondences" (e.g. i, i + 4, i + 7 or i, i + 3, i + 4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1-8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites.
Identification of the antigenic determinants of factors 8, 9, and 34 of genus Candida.
Kobayashi, H; Oyamada, H; Suzuki, A; Shibata, N; Suzuki, S; Okawa, Y
1996-10-21
We investigated the antigenic determinants of factors 8, 9, and 34 of the genus Candida among pathogenic yeasts by enzyme-linked immunosorbent assay (ELISA) using mannans of Saccharomyces cerevisiae wild type and mutant types, mnn 1-mnn 4 and mnn 2. Results of ELISA including antisera against the antigenic factors of genus Candida (Candida Check, latron; FAbs) indicated that these three types of mannan distinctly react with FAbs 34, 8 and 9, respectively. To identify the recognition sites of these FAbs, we compared the ability of various oligosaccharides to inhibit the binding of the mannans to FAbs. The results indicated that FAb 34 preferentially recognizes linear side chains containing a non-reducing terminal alpha-1,3-linked mannose residue, Man(alpha)1 --> 3Man(alpha)1 --> (2Man(alpha)1 --> )n(2Man) (n > or = 0), and that one of the recognition sites of FAb 9 is linear alpha-1,6-linked oligomannosyl series, Man(alpha)1 --> (6Man(alpha)1 --> )n(6Man) (n > or = 2). On the other hand, the recognition site of FAb 8 apparently consisted of two alpha-1,2-linked oligomannosyl side chains and an alpha-1,6-linked mannose residue that originated from the mannan backbone, Man(alpha)1 --> 2Man(alpha)1 --> 2(Man(alpha)1 -->2Man(alpha)1 --> 6)Man.
Samuelsen, Anne Berit; Westereng, Bjørge; Yousif, Osman; Holtekjølen, Ann Katrin; Michaelsen, Terje E; Knutsen, Svein H
2007-02-01
Leaves of different cabbage species are used both as food and as wound healing remedies in traditional medicine. This supposed wound healing activity might be connected to presence of immunomodulating water soluble polysaccharides. To study this, three different cabbage varieties, white cabbage (W), kale (K), and red kale (RK), were pretreated with 80% ethanol and then extracted with water at 50 degrees C and 100 degrees C for isolation of polysaccharide-containing fractions. The fractions were analyzed for monosaccharide composition, glycosidic linkages, Mw distribution, protein content, and phenolic compounds and then tested for complement-fixing activity. All fractions contained pectin type polysaccharides with linkages corresponding to homogalacturonan and hairy regions. Those extracted at 50 degrees C contained higher amounts of neutral side chains and were more active in the complement-fixation test than those extracted at 100 degrees C. The fractions can be ranged by decreasing activity: K-50 > RK-50 > W-50 approximately = K-100 > RK100 approximately = W-100. Studies on structure-activity relationships (SAR) employing multivariate statistical analysis strongly suggest that the magnitude of the measured activity is influenced by the content of certain side chains in the polymers. High activity correlates to large neutral side chains with high amounts of (1-->6)- and (1-->3,6)-linked Gal and low amounts of (1-->4)-linked GalA but not on molecular weight distribution of the polymers.
Kariev, Alisher M.; Green, Michael E.
2015-01-01
The gating mechanism of voltage sensitive ion channels is generally considered to be the motion of the S4 transmembrane segment of the voltage sensing domains (VSD). The primary supporting evidence came from R→C mutations on the S4 transmembrane segment of the VSD, followed by reaction with a methanethiosulfonate (MTS) reagent. The cys side chain is –SH (reactive form –S−); the arginine side chain is much larger, leaving space big enough to accommodate the MTS sulfonate head group. The cavity created by the mutation has space for up to seven more water molecules than were present in wild type, which could be displaced irreversibly by the MTS reagent. Our quantum calculations show there is major reorientation of three aromatic residues that face into the cavity in response to proton displacement within the VSD. Two phenylalanines reorient sufficiently to shield/unshield the cysteine from the intracellular and extracellular ends, depending on the proton positions, and a tyrosine forms a hydrogen bond to the cysteine sulfur with its side chain –OH. These could produce the results of the experiments that have been interpreted as evidence for physical motion of the S4 segment, without physical motion of the S4 backbone. The computations strongly suggest that the interpretation of cysteine substitution reaction experiments be re-examined in the light of these considerations. PMID:25588216
Hydrophobic core malleability of a de novo designed three-helix bundle protein.
Walsh, S T; Sukharev, V I; Betz, S F; Vekshin, N L; DeGrado, W F
2001-01-12
De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. Copyright 2001 Academic Press.
Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d
Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Ting-Wan; Chou, Chia-Cheng; Chen, Chun-Jung; Wang, Andrew H.-J.
2005-01-01
Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA. PMID:15653643
Device and method to relieve cordelle action in a chain driven pump
Dysarz, Edward D.
1994-01-01
A cordelle action relief apparatus or device for use in sucker rod pumps in a petroleum or water well. The device is incorporated in a chain driven pump to prevent the chain from forming a bow or archlike configuration as the chain rolls off of the sprocket and down into the well. When the chain is allowed to form this bow or arch it could damage the well and well casing. The device includes a first rod on the side of the chain and a second rod on the second side of the chain that will allow the rollers of the chain to roll on the rod and further prevent the chain from bowing or arching and will further allow the rollers on the chain to roll on the rods which will further prevent damage to the well casing, the well, and the chain.
2014-05-28
SECURITY CLASSIFICATION OF: Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the...effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial ?- peptide ...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Antimicrobial peptidomimetics; Peptide –peptoid chimeras; Guanidinium cation; Bacterial
Diterpene lactones with labdane, halimane and clerodane frameworks.
Silva, Lúcia; Gomes, Arlindo C; Rodilla, Jesus M L
2011-04-01
The labdane, halimane and clerodane type diterpenoids are compounds that have been isolated in plants of several families. These molecules and their derivatives with a lactone group on the side chain or on the decaline system, have a great interest because of their biological properties as insect antifeedant, antiviral, cytotoxic and trypanocidal. The scope of this review is lactones diterpenoids with labdane, halimane and clerodane frameworks.
Gao, Yang; Shen, Lu; Honzatko, Richard B.
2014-01-01
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P. PMID:24436333
Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; ...
2016-04-12
Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less
Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya; Mehta, Shrenik C.; Sankaran, Banumathi; Zwart, Peter; Prasad, B.V. Venkataram; Palzkill, Timothy
2016-01-01
Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine by glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48 and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intra-helical hydrogen bond network compared to the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability. PMID:27073009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stojanoski, Vlatko; Adamski, Carolyn J.; Hu, Liya
Serine β-lactamases are bacterial enzymes that hydrolyze β- lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. Here, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M- 14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutantmore » were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. In addition, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. Our findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.« less
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, NW; Leng, YJ; Hickner, MA
2013-07-10
To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers withmore » benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.« less
Kim, Zin-Sig; Lim, Sang Chul; Kim, Seong Hyun; Yang, Yong Suk; Hwang, Do-Hoon
2012-01-01
This report presents biotin-functionalized semiconducting polymers that are based on fluorene and bithiophene co-polymers (F8T2). Also presented is the application of these polymers to an organic thin film transistor used as a biosensor. The side chains of fluorene were partially biotinylated after the esterification of the biotin with corresponding alcohol-groups at the side chain in F8T2. Their properties as an organic semiconductor were tested using an organic thin film transistor (OTFT) and were found to show typical p-type semiconductor curves. The functionality of this biosensor in the sensing of biologically active molecules such as avidin in comparison with bovine serum albumin (BSA) was established through a selective decrease in the conductivity of the transistor, as measured with a device that was developed by the authors. Changes to the optical properties of this polymer were also measured through the change in the color of the UV-fluorescence before and after a reaction with avidin or BSA. PMID:23112654
In silico molecular engineering for a targeted replacement in a tumor-homing peptide
Zanuy, David; Flores-Ortega, Alejandra; Jiménez, Ana I.; Calaza, M. Isabel; Cativiela, Carlos; Nussinov, Ruth; Ruoslahti, Erkki; Alemán, Carlos
2009-01-01
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and Molecular Dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone···backbone and side chain···side chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptide exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu and Lys side chains face the same side of the molecule, which is considered essential for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity. PMID:19432404
Gibson, James M; Popham, Jennifer M; Raghunathan, Vinodhkumar; Stayton, Patrick S; Drobny, Gary P
2006-04-26
Extracellular matrix proteins regulate hard tissue growth by acting as adhesion sites for cells, by triggering cell signaling pathways, and by directly regulating the primary and/or secondary crystallization of hydroxyapatite, the mineral component of bone and teeth. Despite the key role that these proteins play in the regulation of hard tissue growth in humans, the exact mechanism used by these proteins to recognize mineral surfaces is poorly understood. Interactions between mineral surfaces and proteins very likely involve specific contacts between the lattice and the protein side chains, so elucidation of the nature of interactions between protein side chains and their corresponding inorganic mineral surfaces will provide insight into the recognition and regulation of hard tissue growth. Isotropic chemical shifts, chemical shift anisotropies (CSAs), NMR line-width information, (13)C rotating frame relaxation measurements, as well as direct detection of correlations between (13)C spins on protein side chains and (31)P spins in the crystal surface with REDOR NMR show that, in the peptide fragment derived from the N-terminal 15 amino acids of salivary statherin (i.e., SN-15), the side chain of the phenylalanine nearest the C-terminus of the peptide (F14) is dynamically constrained and oriented near the surface, whereas the side chain of the phenylalanine located nearest to the peptide's N-terminus (F7) is more mobile and is oriented away from the hydroxyapatite surface. The relative dynamics and proximities of F7 and F14 to the surface together with prior data obtained for the side chain of SN-15's unique lysine (i.e., K6) were used to construct a new picture for the structure of the surface-bound peptide and its orientation to the crystal surface.
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Suzuki, Junya; Kurosu, Hiromichi; Yamanobe, Takeshi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a well-defined α-helical octadecapeptide composed of L-alanine (Ala) and L-phenylalanine (Phe) residues, H-(Ala) 8-Phe-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy and the precise secondary structural parameters such as main-chain dihedral angles and hydrogen-bond parameters of the optimized structure, we confirmed that the conformational stability of an α-helix is affected dominantly by the side-chain conformation ( χ1) of the Phe residue in this system: model A ( T form: around 180° of χ1) is most stable in α-helix and model B ( G + form: around -60° of χ1) is next stable, but model C ( G - form: around 60° of χ1) is less stable. In addition, we demonstrate that the stable conformation of poly( L-phenylalanine) is an α-helix with the side-chain T form, by comparison of the carbonyl 13C chemical shift measured by 13C CP-MAS NMR and the calculated one.
Synthesis and Characterization of Itaconic Anhydride and Stearyl Methacrylate Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, S.; Huang, S; Weiss, R
The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulusmore » of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.« less
Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra
2011-02-10
The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.
Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.
2009-01-01
Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900
Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D
2008-06-26
Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Pengjie; Wang, Huan; Qu, Shiwei
Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less
Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034
Francis, Brian R.
2015-01-01
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet. PMID:25679748
A theoretical case study of type I and type II beta-turns.
Czinki, Eszter; Császár, Attila G; Perczel, András
2003-03-03
NMR chemical shielding anisotropy tensors have been computed by employing a medium size basis set and the GIAO-DFT(B3LYP) formalism of electronic structure theory for all of the atoms of type I and type II beta-turn models. The models contain all possible combinations of the amino acid residues Gly, Ala, Val, and Ser, with all possible side-chain orientations where applicable in a dipeptide. The several hundred structures investigated contain either constrained or optimized phi, psi, and chi dihedral angles. A statistical analysis of the resulting large database was performed and multidimensional (2D and 3D) chemical-shift/chemical-shift plots were generated. The (1)H(alpha-13)C(alpha), (13)C(alpha-1)H(alpha-13)C(beta), and (13)C(alpha-1)H(alpha-13)C' 2D and 3D plots have the notable feature that the conformers clearly cluster in distinct regions. This allows straightforward identification of the backbone and side-chain conformations of the residues forming beta-turns. Chemical shift calculations on larger For-(L-Ala)(n)-NH(2) (n=4, 6, 8) models, containing a single type I or type II beta-turn, prove that the simple models employed are adequate. A limited number of chemical shift calculations performed at the highly correlated CCSD(T) level prove the adequacy of the computational method chosen. For all nuclei, statistically averaged theoretical and experimental shifts taken from the BioMagnetic Resonance Bank (BMRB) exhibit good correlation. These results confirm and extend our previous findings that chemical shift information from selected multiple-pulse NMR experiments could be employed directly to extract folding information for polypeptides and proteins.
The introduction of strain and its effects on the structure and stability of T4 lysozyme.
Liu, R; Baase, W A; Matthews, B W
2000-01-07
In order to try to better understand the role played by strain in the structure and stability of a protein a series of "small-to-large" mutations was made within the core of T4 lysozyme. Three different alanine residues, one involved in backbone contacts, one in side-chain contacts, and the third adjacent to a small cavity, were each replaced with subsets of the larger residues, Val, Leu, Ile, Met, Phe and Trp. As expected, the protein is progressively destabilized as the size of the introduced side-chain becomes larger. There does, however, seem to be a limit to the destabilization, suggesting that a protein of a given size may be capable of maintaining only a certain amount of strain. The changes in stability vary greatly from site to site. Substitution of larger residues for both Ala42 and Ala98 substantially destabilize the protein, even though the primary contacts in one case are predominantly with side-chain atoms and in the other with backbone. The results suggest that it is neither practical nor meaningful to try to separate the effects of introduced strain on side-chains from the effects on the backbone. Substitutions at Ala129 are much less destabilizing than at sites 42 or 98. This is most easily understood in terms of the pre-existing cavity, which provides partial space to accommodate the introduced side-chains. Crystal structures were obtained for a number of the mutants. These show that the changes in structure to accommodate the introduced side-chains usually consist of essentially rigid-body displacements of groups of linked atoms, achieved through relatively small changes in torsion angles. On rare occasions, a side-chain close to the site of substitution may change to a different rotamer. When such rotomer changes occur, they permit the structure to dissipate strain by a response that is plastic rather than elastic. In one case, a surface loop moves 1.2 A, not in direct response to a mutation, but in an interaction mediated via an intermolecular contact. It illustrates how the structure of a protein can be modified by crystal contacts. Copyright 2000 Academic Press.
Molecular design of anti-MRSA agents based on the anacardic acid scaffold.
Green, Ivan R; Tocoli, Felismino E; Lee, Sang Hwa; Nihei, Ken-Ichi; Kubo, Isao
2007-09-15
A series of anacardic acid analogues possessing different side chains viz. phenolic, branched, and alicyclic were synthesized and their antibacterial activity tested against methicillin-resistant Staphylococcus aureus (MRSA). The maximum activity against this bacterium occurred with the branched side-chain analogue, 6-(4',8'-dimethylnonyl)salicylic acid, and the alicyclic side-chain analogue, 6-cyclododecylmethyl salicylic acid, with the minimum inhibitory concentration (MIC) of 0.39 microg/mL, respectively. This activity was superior to that of the most potent antibacterial anacardic acid isolated from the cashew Anacardium occidentale (Anacardiaceae), apple and nut, that is, the 6-[8'(Z),11'(Z),14'-pentadecatrienyl]salicylic acid.
Nakajima, Ryo; Yamamoto, Naoshi; Hirayama, Shigeto; Iwai, Takashi; Saitoh, Akiyoshi; Nagumo, Yasuyuki; Fujii, Hideaki; Nagase, Hiroshi
2015-10-01
We designed and synthesized pentacyclic propellane derivatives with a 6-amide side chain to afford compounds with higher MOR/KOR ratio and lower sedative effects than nalfurafine. The obtained etheno-bridged derivative with a β-amide side chain, YNT-854, showed a higher MOR/KOR ratio than nalfurafine. YNT-854 also exhibited a higher dose ratio between the sedative effect and the analgesic effect than observed with nalfurafine, which may guide the future design of useful analgesics with a weaker sedative effect than nalfurafine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A.; Ryu, Seong Eon; Kim, Deok-Soo
2016-01-01
Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. PMID:27151195
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J.; Warby, C; Whitby, F
2009-01-01
Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connectedmore » by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.« less
Michalak, Karol; Wicha, Jerzy
2011-08-19
An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.
NASA Astrophysics Data System (ADS)
Madkour, Tarek M.
2013-08-01
Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.
Servagent-Noinville; Revault; Quiquampoix; Baron
2000-01-15
Interactions between proteins and clays perturb biological activity in ecosystems, particularly soil extracellular enzyme activity. The pH dependence of hydrophobic, hydrophilic, and electrostatic interactions on the adsorption of bovine serum albumin (BSA) is studied. BSA secondary structures and hydration are revealed from computation of the Amide I and II FTIR absorption profiles. The influence of ionization of Asp, Glu, and His side chains on the adsorption processes is deduced from correlation between p(2)H dependent carboxylic/carboxylate ratio and Amide band profiles. We quantify p(2)H dependent internal and external structural unfolding for BSA adsorbed on montmorillonite, which is an electronegative phyllosilicate. Adsorption on talc, a hydrophobic surface, is less denaturing. The results emphasize the importance of electrostatic interactions in both adsorption processes. In the first case, charged side chains directly influence BSA adsorption that generate the structural transition. In the second case, the forces that attract hydrophobic side chains toward the protein-clay interface are large enough to distort peripheral amphiphilic helical domains. The resulting local unfolding displaces enough internal ionized side chains to prevent them from establishing salt bridges as for BSA native structure in solution. On montmorillonite, a particular feature is a higher protonation of the Asp and Glu side chains of the adsorbed BSA than in solution, which decreases coulombic repulsion. Copyright 2000 Academic Press.
Harschneck, Tobias; Zhou, Nanjia; Manley, Eric F; Lou, Sylvia J; Yu, Xinge; Butler, Melanie R; Timalsina, Amod; Turrisi, Riccardo; Ratner, Mark A; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J
2014-04-21
The influence of solubilizing substituents on the photovoltaic performance and thin-film blend morphology of new benzo[1,2-b:6,5-b']dithiophene (bBDT) based small molecule donor semiconductors is investigated. Solar cells based on bBDT(TDPP)2-PC71BM with two different types of side chains exhibit high power conversion efficiencies, up to 5.53%.
Harpole, Tyler J; Grosman, Claudio
2014-08-05
On the basis of single-channel currents recorded from the muscle nicotinic acetylcholine receptor (AChR), we have recently hypothesized that the conformation adopted by the glutamate side chains at the first turn of the pore-lining α-helices is a key determinant of the rate of ion permeation. In this paper, we set out to test these ideas within a framework of atomic detail and stereochemical rigor by conducting all-atom molecular dynamics and Brownian dynamics simulations on an extensively validated model of the open-channel muscle AChR. Our simulations provided ample support to the notion that the different rotamers of these glutamates partition into two classes that differ markedly in their ability to catalyze ion conduction, and that the conformations of the four wild-type glutamates are such that two of them "fall" in each rotamer class. Moreover, the simulations allowed us to identify the mm (χ(1) ≅ -60°; χ(2) ≅ -60°) and tp (χ(1) ≅ 180°; χ(2) ≅ +60°) rotamers as the likely conduction-catalyzing conformations of the AChR's selectivity-filter glutamates. More generally, our work shows an example of how experimental benchmarks can guide molecular simulations into providing a type of structural and mechanistic insight that seems otherwise unattainable.
Takeoka, Yuko; Saito, Fumihiko; Rikukawa, Masahiro
2013-07-09
Regioregular polythiophenes containing an optically active substituent in the third position of the thiophene ring, head-to-tail poly(3-[2-((S)-1-methyloctyloxy)ethyl]thiophene)s (HT-P(S)MOETs), were synthesized using highly reactive zinc. For comparison, HT-P(R)MOET and achiral HT-P(±)MOET also were synthesized from R-type monomers and racemic monomers, respectively. The HT-PMOET possessed greater than 95% head-to-tail coupling with a weight-average molecular weight (Mw) between 1.96 × 10(4) and 2.94 × 10(4). The polymers were characterized using (1)H and (13)C NMR, optical rotatory power measurements, circular dichroism (CD), and UV-vis spectroscopy. X-ray diffraction patterns of the cast films demonstrated that regioregular HT-PMOET possessed a strong tendency to self-assemble into highly ordered, crystalline structures. The HT-P(S)MOET and HT-P(R)MOET showed strong Cotton effects, while HT-P(±)MOET showed very weak Cotton effects. The presence of a circular dichroism effect indicated that the side chain chirality induced optical activity in poly(thiophene) main chains. The monolayer formation of HT-PMOET spread on the water surface was characterized using a pressure-area (π-A) isotherm. The molecular areas of HT-P(S)MOET and HT-P(R)MOET molecules on the water surface were 33.5 and 32.9 Å(2), respectively, at 10 °C, which were larger than that of HT-P(±)MOET (27.9 Å(2)), suggesting that optically active HT-PMOET expanded because of the chiral repulsion between side chains. Multilayer films of HT-PMOET were prepared by repeating horizontal deposition of the monolayer on the water surface. The multilayer films of optically active HT-PMOET obtained showed stronger Cotton effects than did the cast films. In addition, electrical conductivities of HT-PMOET multilayer films were superior to those of spin-coated films. Head-to-tail poly(3-[2-((S)-1-methylpropyloxy)ethyl]thiophene) (HT-P(S)MPET), which contained shorter side chain lengths compared to HT-P(S)MOET, also was synthesized. The CD intensities of HT-P(S)MPET multilayer films were smaller than those of HT-P(S)MOET multilayer films, suggesting that the optically active side-chain length is critically important to the optically active self-assembly.
Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun
2011-04-10
A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells. Copyright © 2010 Elsevier B.V. All rights reserved.
Mitra, Rajat; Londhe, S M; Kumar, Prasanna
2011-04-01
Aim of this study was to compare the rate of space closure between E-chain mechanics in one side of upper arch and by elastomeric module with ligature wire on the contralateral side in same patient. Thirty bimaxillary dentoalveolar protrusion cases were taken up for comprehensive fixed orthodontic treatment after extraction of all first premolars to retract both upper and lower anterior teeth. After initial alignment and levelling, alginate impressions were made for upper and lower arches and models constructed. In the upper arch model a vernier caliper was used to measure the extraction space in both sides from middle point of distal surface of canine to the middle most point of mesial surface of second premolar. This is the amount of space present before the onset of retraction mechanics. During space closure procedure two different retracting components were applied in right and left sides of each case. On right side elastic chain (E-chain) applied in both upper and lower arches and on left side elastomeric module with steel ligature (0.010") stretched double its diameter fixed in both arches. Both the mechanisms produced approximately 250-300 g of force as measured by a tension gauge. After onset of retraction mechanism all patients were recalled after every six weeks for three visits. In all these three visits modules and E-chains were changed. In all three visits impression was made, models constructed, and the remaining available space was measured by a vernier caliper up to 0.1 mm level variations. Mean value for total space closure in case of E-chain was 2.777 mm whereas in case of module with ligature wire the value increased to 3.017 mm. Mean value for rate of space closure in case of E-chain was 0.2143 mm, whereas in case of module with ligature wire the value increased to 0.2343 mm with a standard deviation of 0.001104 and 0.001194, respectively. The standard deviation for total space closure was 0.1305 for E-chain and 0.1487 for module with ligature wire. Space closure by elastomeric module with ligature wire is better than the E-chain.
NASA Astrophysics Data System (ADS)
Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang
2018-03-01
Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.
2014-07-24
Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less
Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides
NASA Astrophysics Data System (ADS)
Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.
Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng
2016-01-01
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319
Polymerization of ethylene through reversible addition-fragmentation chain transfer (RAFT).
Dommanget, Cédric; D'Agosto, Franck; Monteil, Vincent
2014-06-23
The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition-fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl-OC(=S)S-R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl-type propagating radicals induces a side fragmentation reaction of the stabilizing O-alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2013-10-01
acids. These sites constitute a variable environment, with the effect of mutations largely isolated to effects on interactions with the P4 side chain. 2...desires to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only...first five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2012-10-14
effect of mutations largely isolated to effects on interactions with the P4 side chain. 2) Most mutations at some sites (e.g. 126, 128) decrease...to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only ground...five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus of the
Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A; Ryu, Seong Eon; Kim, Deok-Soo
2016-07-08
Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers
NASA Astrophysics Data System (ADS)
Peron, Jennifer; Edwards, Dave; Haldane, Mark; Luo, Xiaoyan; Zhang, Yongming; Holdcroft, Steven; Shi, Zhiqing
Porous catalyst layers (CLs) containing short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomers of different ion exchange capacity (IEC: 1.3, 1.4 and 1.5 meq g -1) were deposited onto Nafion 211 to form catalyst-coated membranes. The porosity of SSC-PFSA-based CLs is larger than Nafion-CL analogues. CLs incorporating SSC ionomer extend the current density of fuel cell polarization curves at elevated temperature and lower relative humidity compared to those based on long-side chain PFSA (e.g., Nafion)-based CLs. Fuel cell polarization performance was greatly improved at 110 °C and 30% relative humidity (RH) when SSC PFSI was incorporated into the catalyst layer.
Kim, Hye Ryun; Kim, Jae-Ho; Bae, Dong-Hoon; Ahn, Byung-Hak
2010-12-01
Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (〉80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5- 2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.
The 1:1 inclusion compounds zolmitriptan-benzene and zolmitriptan-phenol.
Swamy, G Y S K; Sridhar, B; Ravikumar, K; Krishnan, Harihara
2007-07-01
In the benzene and phenol solvates of (S)-4-{3-[2-(dimethylamino)ethyl]-1H-indol-5-ylmethyl}oxazolidin-2-one, viz. C(16)H(21)N(3)O(2) x C(6)H(6), (I), and C(16)H(21)N(3)O(2) x C(6)H(5)OH, (II), the host molecule has three linked residues, namely a planar indole ring system, an ethylamine side chain and an oxazolidinone system. It has comparable features to that of sumatriptan, although the side-chain orientations of (I) and (II) differ from those of sumatriptan. Both (I) and (II) have host-guest-type structures. The host molecule in (I) and (II) has an L-shaped form, with the oxazolidinone ring occupying the base and the remainder of the molecule forming the upright section. In (I), each benzene guest molecule is surrounded by four host molecules, and these molecules are linked by a combination of N-H...N, N-H...O and C-H...O hydrogen bonds into chains of edge-fused R(4)(4)(33) rings. In (II), two independent molecules are present in the asymmetric unit, with similar conformations. The heterocyclic components are connected through N-H...N, N-H...O and C-H...O interactions to form chains of edge-fused R(6)(4)(38) rings, from which the phenol guest molecules are pendent, linked by O-H...O hydrogen bonds. The structures are further stabilized by extensive C-H...pi interactions.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Pengjie; Wang, Huan; Mo, Daize
By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.
Chao, Pengjie; Wang, Huan; Mo, Daize; ...
2017-12-18
By taking the advantage of chlorination and fully conjugated side chains,2D-PBTClshows a PCE of up to 8.81% in non-fullerene solar cells, which corresponds to an approximately 28% improvement compared to that ofPTB7-Th-based devices.
Zhu, Tong; Zhang, John Z H; He, Xiao
2014-09-14
In this work, protein side chain (1)H chemical shifts are used as probes to detect and correct side-chain packing errors in protein's NMR structures through structural refinement. By applying the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method for ab initio calculation of chemical shifts, incorrect side chain packing was detected in the NMR structures of the Pin1 WW domain. The NMR structure is then refined by using molecular dynamics simulation and the polarized protein-specific charge (PPC) model. The computationally refined structure of the Pin1 WW domain is in excellent agreement with the corresponding X-ray structure. In particular, the use of the PPC model yields a more accurate structure than that using the standard (nonpolarizable) force field. For comparison, some of the widely used empirical models for chemical shift calculations are unable to correctly describe the relationship between the particular proton chemical shift and protein structures. The AF-QM/MM method can be used as a powerful tool for protein NMR structure validation and structural flaw detection.
Entropy and enthalpy of interaction between amino acid side chains in nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, S., E-mail: vaithee05@gmail.com; Thirumalai, D.; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
2014-12-14
Understanding the stabilities of proteins in nanopores requires a quantitative description of confinement induced interactions between amino acid side chains. We use molecular dynamics simulations to study the nature of interactions between the side chain pairs ALA-PHE, SER-ASN, and LYS-GLU in bulk water and in water-filled nanopores. The temperature dependence of the bulk solvent potentials of mean force and the interaction free energies in cylindrical and spherical nanopores is used to identify the corresponding entropic and enthalpic components. The entropically stabilized hydrophobic interaction between ALA and PHE in bulk water is enthalpically dominated upon confinement depending on the relative orientationsmore » between the side chains. In the case of SER-ASN, hydrogen bonded configurations that are similar in bulk water are thermodynamically distinct in a cylindrical pore, thus making rotamer distributions different from those in the bulk. Remarkably, salt bridge formation between LYS-GLU is stabilized by entropy in contrast to the bulk. Implications of our findings for confinement-induced alterations in protein stability are briefly outlined.« less
Schumann, Marcel; Armen, Roger S
2013-05-30
Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.
Etchebest, C; Pullman, A
1985-02-01
Computations on the energy profiles for Na+ in the gramicidin A (GA) channel have been extended by introducing the effect, previously neglected, of the amino acid side chains of GA, fixed in their most stable conformations. The calculations have been performed in two approximations: 1) with the ethanolamine tail fixed in its most stable conformation, 2) with the tail allowed to optimize its conformation upon the progression of the ion. In both approximations the overall shape of the energy profile is very similar to that obtained in the absence of the side chains. One observes, however, a general lowering of the profile upon the adjunction of the side chains. The analysis of the factors responsible for this energy lowering indicates that it is due essentially to the electrostatic and polarisation components of the interaction which interplay differently, however, in the different parts of the channel. A particular role is attributed in this respect to the tryptophan residues of GA. The role of the 4 tryptophans present, Trp 15, 13, 11 and 9, is individualized by stripping of one of them at a time. The strongest effect on the energy deepening is due to Trp 13 and is particularly prominent in the entrance zone at 14.5A from the center of the channel. The result indicates the possibility of investigating theoretically the effect on the energy profiles of the substitution of the "natural" side chain by others.
Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P
2008-04-15
The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.
2003-03-14
streptococcal superantigen binding to MHCII on the surface of cells (7–9), suggesting an essential role in both MHCII molecular recognition and TCR-mediated...extent, mutations of side chains found in a second conserved MHCII alpha-chain-binding site consisting of a hydrophobic surface loop decreased T-cell...fraction of dimer is present at T-cell stimulatory concentrations of Spe-C following mutation of the unpaired side chain of cys- teine at residue 27 to
Abnormal viscoelastic behavior of side-chain liquid-crystal polymers
NASA Astrophysics Data System (ADS)
Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.
1994-03-01
We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.
Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.
Pottel, Joshua; Moitessier, Nicolas
2015-12-28
Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.
Sun, Delin; Forsman, Jan; Woodward, Clifford E
2015-04-14
Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.
Reorientation Motion and Preferential Interactions of a Peptide in Denaturants and Osmolyte.
Jas, Gouri S; Rentchler, Eric C; Słowicka, Agnieszka M; Hermansen, John R; Johnson, Carey K; Middaugh, C Russell; Kuczera, Krzysztof
2016-03-31
Fluorescence anisotropy decay measurements and all atom molecular dynamics simulations are used to characterize the orientational motion and preferential interaction of a peptide, N-acetyl-tryptophan-amide (NATA) containing two peptide bonds, in aqueous, urea, guanidinium chloride (GdmCl), and proline solution. Anisotropy decay measurements as a function of temperature and concentration showed moderate slowing of reorientations in urea and GdmCl and very strong slowing in proline solution, relative to water. These effects deviate significantly from simple proportionality of peptide tumbling time to solvent viscosity, leading to the investigation of microscopic preferential interaction behavior through molecular dynamics simulations. Examination of the interactions of denaturants and osmolyte with the peptide backbone uncovers the presence of strongest interaction with urea, intermediate with proline, and weakest with GdmCl. In contrast, the strongest preferential solvation of the peptide side chain is by the nonpolar part of the proline zwitterion, followed by urea, and GdmCl. Interestingly, the local density of urea around the side chain is higher, but the GdmCl distribution is more organized. Thus, the computed preferential solvation of the side chain by the denaturants and osmolyte can account for the trend in reorientation rates. Analysis of water structure and its dynamics uncovered underlying differences between urea, GdmCl, and proline. Urea exerted the smallest perturbation of water behavior. GdmCl had a larger effect on water, slowing kinetics and stabilizing interactions. Proline had the largest overall interactions, exhibiting a strong stabilizing effect on both water-water and water-peptide hydrogen bonds. The results for this elementary peptide system demonstrate significant differences in microscopic behavior of the examined solvent environments. For the commonly used denaturants, urea tends to form disorganized local aggregates around the peptide groups and has little influence on water, while GdmCl only forms specific interactions with the side chain and tends to destabilize water structure. The protective osmolyte proline has the strongest and most specific interactions with the tryptophan side chain, and also stabilizes both water-water and water-peptide hydrogen bonds. Our results strongly suggest protein or peptide denaturation triggered by urea occurs by direct interaction, whereas GdmCl interacts favorably with side chains and destabilizes peptide-water hydrogen bonds. The stabilization of biopolymers by an osmolyte such as proline is governed by favorable preferential interaction with the side chains and stabilization of water.
NASA Astrophysics Data System (ADS)
Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard
2018-03-01
The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.
Gao, Xiaoge; Zhi, Yuan; Sun, Lin; Peng, Xiaoxia; Zhang, Tao; Xue, Huiting; Tai, Guihua; Zhou, Yifa
2013-11-22
Pectin has been shown to inhibit the actions of galectin-3, a β-galactoside-binding protein associated with cancer progression. The structural features of pectin involved in this activity remain unclear. We investigated the effects of different ginseng pectins on galectin-3 action. The rhamnogalacturonan I-rich pectin fragment, RG-I-4, potently inhibited galectin-3-mediated hemagglutination, cancer cell adhesion and homotypic aggregation, and binding of galectin-3 to T-cells. RG-I-4 specifically bound to the carbohydrate recognition domain of galectin-3 with a dissociation constant of 22.2 nm, which was determined by surface plasmon resonance analysis. The structure-activity relationship of RG-I-4 was investigated by modifying the structure through various enzymatic and chemical methods followed by activity tests. The results showed that (a) galactan side chains were essential to the activity of RG-I-4, whereas arabinan side chains positively or negatively regulated the activity depending on their location within the RG-I-4 molecule. (b) The activity of galactan chain was proportional to its length up to 4 Gal residues and largely unchanged thereafter. (c) The majority of galactan side chains in RG-I-4 were short with low activities. (d) The high activity of RG-I-4 resulted from the cooperative action of these side chains. (e) The backbone of the molecule was very important to RG-I-4 activity, possibly by maintaining a structural conformation of the whole molecule. (f) The isolated backbone could bind galectin-3, which was insensitive to lactose treatment. The novel discovery that the side chains and backbone play distinct roles in regulating RG-I-4 activity is valuable for producing highly active pectin-based galectin-3 inhibitors.
The binding of analogs of porphyrins and chlorins with elongated side chains to albumin
Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M.; O’Neal, William G.; Jacobi, Peter A.; Ehrenberg, Benjamin
2012-01-01
In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203; Pace, Jim
2012-12-01
Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B{sub 5}) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B{sub 5}, butmore » not the LT-IIb-B{sub 5} Ser74Asp variant [LT-IIb-B{sub 5}(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B{sub 5}(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B{sub 5} and the LT-IIb-B{sub 5} Thr13Ile [LT-IIb-B{sub 5}(T13I)] and LT-IIb-B{sub 5} Ser74Ala [LT-IIb-B{sub 5}(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B{sub 5} have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B{sub 5}(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B{sub 5}(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B{sub 5}(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B{sub 5}(T13I) variant to GD1a ganglioside.« less
Biopolymers Containing Unnatural Amino Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter
Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less
Jha, Vikash; Donald, Lynda J; Loewen, Peter C
2012-09-15
The monofunctional catalase KatE of Esherichia coli exhibits exceptional resistance to heat denaturation and proteolytic degradation. During an investigation of subtle conformation changes in Arg111 and Phe413 on the proximal side of the heme induced by H(2)O(2), variants at position R111, T115 and F413 were constructed. Because the residues are not situated in the distal side heme cavity where catalysis occurs, significant changes in reactivity were not expected and indeed, only small changes in the kinetic characteristics were observed in all of the variants. However, the F413Y variant was found to have undergone main chain cleavage whereas the R111A, T115A, F413E and F413K variants had not. Two sites of cleavage were identified in the crystal structure and by mass spectrometry at residues 111 and 115. In addition to main chain cleavage, modifications to the side chains of Tyr413, Thr115 and Arg111 were suggested by differences in the electron density maps compared to maps of the native and inactive variant H128N/F413Y. The inactive variant H128N/F413Y and the active variant T115A/F413Y both did not exhibit main chain cleavage and the R11A/F413Y variant exhibited less cleavage. In addition, the apparent modification of three side chains was largely absent in these variants. It is also significant that all three F413 single variants contained heme b suggesting that the fidelity of the phenyl group was important for mediating heme b oxidation to heme d. The reactions are attributed to the introduction of a new reactive center possibly involving a transient radical on Tyr413 formed during catalytic turn over. Copyright © 2011 Elsevier Inc. All rights reserved.
Biopolymers Containing Unnatural Building Blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter G.
2013-06-30
Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less
Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA
2008-04-08
A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.
Novel Semiconducting Polymers for Highly Efficient Solar Energy Harvesting
2014-03-11
pyrrole -4,6-dione, a well known electron-deficient monomer, to obtain the new copolymer PTTATPD-1 for comparison in physical properties. The number...bulk side chain showed a PCE about 0.6%; PTTATT-4 with 2- ethyldedocyl side chain showed a PCE about 3.0% and the copolymer with thieno[3,4-c] pyrrol
Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao
The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.
Korn, Alexander; Surendran, Dayana; Krueger, Martin; Maiti, Sudipta; Huster, Daniel
2018-05-24
We investigated the influence of the chemical structure of the phenylalanine side chain in position 19 of the 40 residue amyloid β peptide. Side chain modifications in this position yielded fibrils of essentially unaltered morphology, structure, and dynamics, but significantly increased fibrillation kinetics and diminished the toxicity of the peptides.
Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview
Ganicz, Tomasz; Stańczyk, Włodzimierz
2009-01-01
This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.
Awartani, Omar M.; Gautam, Bhoj; Zhao, Wenchao; ...
2018-01-01
The performance of the 11.25% efficient PBDB-T : ITIC system degraded to 4.35% after a minor side-chain modification in PBDB-O : ITIC. In this study, the underlying reasons behind this vast difference in efficiencies are investigated.
Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.
Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro
2018-06-01
This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.
Secondary cell-wall assembly in flax phloem fibres: role of galactans.
Gorshkova, Tatyana; Morvan, Claudine
2006-01-01
Non-lignified fibre cells (named gelatinous fibres) are present in tension wood and the stems of fibre crops (such as flax and hemp). These cells develop a very thick S2 layer within the secondary cell wall, which is characterised by (1) cellulose microfibrils largely parallel to the longitudinal axis of the cell, and (2) a high proportion of galactose-containing polymers among the non-cellulosic polysaccharides. In this review, we focus on the role of these polymers in the assembly of gelatinous fibres of flax. At the different stages of fibre development, we analyse in detail data based on sugar composition, linkages of pectic polymers, and immunolocalisation of the beta-(1-->4)-galactans. These data indicate that high molecular-mass gelatinous galactans accumulate in specialised Golgi-derived vesicles during fibre cell-wall thickening. They consist of RG-I-like polymers with side chains of beta-(1-->4)-linked galactose. Most of them are short, but there are also long chains containing up to 28 galactosyl residues. At fibre maturity, two types of cross-linked galactans are identified, a C-L structure that resembles the part of soluble galactan with long side chains and a C-S structure with short chains. Different possibilities for soluble galactan to give rise to C-L and C-S are analysed. In addition, we discuss the prospect for the soluble galactan in preventing the newly formed cellulose chains from completing immediate crystallisation. This leads to a hypothesis that firstly the secretion of soluble galactans plays a role in the axial orientation of cellulose microfibrils, and secondly the remodelling and cross-linking of pectic galactans are linked to the dehydration and the assembly of S2 layer.
Slavova-Kazakova, Adriana K; Angelova, Silvia E; Veprintsev, Timur L; Denev, Petko; Fabbri, Davide; Dettori, Maria Antonietta; Kratchanova, Maria; Naumov, Vladimir V; Trofimov, Aleksei V; Vasil'ev, Rostislav F; Delogu, Giovanna; Kancheva, Vessela D
2015-01-01
This study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6-9. Four models were applied: model 1 - chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 - lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 - oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 - density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure-activity relationship. Dimers showed 2-2.5-fold higher values of k A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,β-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two "halves" by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results.
Asada, Ryoko; Kageyama, Katsuhiro; Tanaka, Hiroshi; Kimura, Masatugu; Saitoh, Yasukazu; Miwa, Nobuhiko
2012-05-01
In this study, using human tongue squamous carcinoma cells (HSC-4) carcinostatic activity was compared for diverse L-ascorbic acid (Asc) derivatives, including the 'straight-C(16)-chain types', 6-O-palmitoyl-Asc (A6-P) and Asc-2-phosphate-6-O-palmitate sodium salt (APPS), as well as the 'branched-C(16)-chain types', Asc-2-phosphate-6-O-(2'-hexyl)decanoate (APHD), an isomer of APPS, and Asc-2,3,5,6-O-tetra-(2'-hexyl)decanoate (VCIP). The order of magnitude of the carcinostatic effects at 37°C was: APPS>A6-P = APHD>VCIP and at 42°C was APPS = A6-P>APHD>VCIP. Therefore, the two straight-C(16)-chain derivatives, APPS and A6-P, had a greater effect compared to the two branched-C(16)-chain Asc derivatives, which are considered to have more difficulty with 'orientation along cell-membrane-glycerolipid direction'. APPS-treated HCS-4 cells were observed for a decrease in cell number, cell shrinkage, pycnosis indicative of apoptosis and cell deformation. The order of cytotoxicity for the normal human dermal fibroblasts (OUMS-36) at 37°C was: A6-P (50% inhibitory concentration: 150-300 μM)>APHD (450-600 μM)>Asc = APPS (800-1000 μM). Accordingly, APHD was more cytotoxic than APPS, since the straight-C(16)-chain type, which was eliminated after the enzymatic esterolysis of APPS, is metabolized via the 'fatty acid β-oxidation cycle' more efficiently in normal cells. Thus, APPS had a greater advantage over APHD, A6-P and VCIP in terms of carcinostatic effects at 37°C, carcinostasis promotion at 42°C and a decrease of cytotoxicity to normal cells. This observation suggests a marked potential for aliphatic chain-moiety structures as anticancer agents, due to their cancer-selective carcinostasis and combined efficacy with hyperthermia, without causing side effects.
Ramya, L; Gautham, N; Chaloin, Laurent; Kajava, Andrey V
2015-09-01
Significant progress has been made in the determination of the protein structures with their number today passing over a hundred thousand structures. The next challenge is the understanding and prediction of protein-protein and protein-ligand interactions. In this work we address this problem by analyzing curved solenoid proteins. Many of these proteins are considered as "hub molecules" for their high potential to interact with many different molecules and to be a scaffold for multisubunit protein machineries. Our analysis of these structures through molecular dynamics simulations reveals that the mobility of the side-chains on the concave surfaces of the solenoids is lower than on the convex ones. This result provides an explanation to the observed preferential binding of the ligands, including small and flexible ligands, to the concave surface of the curved solenoid proteins. The relationship between the landscapes and dynamic properties of the protein surfaces can be further generalized to the other types of protein structures and eventually used in the computer algorithms, allowing prediction of protein-ligand interactions by analysis of protein surfaces. © 2015 Wiley Periodicals, Inc.
Chen, Chih-Ping; Hsu, Hsiang-Lin
2013-10-01
A fused ladder indacenodithiophene (IDT)-based donor-acceptor (D-A)-type alternating conjugated polymer, PIDTHT-BT, presenting n-hexylthiophene conjugated side chains is prepared. By extending the degree of intramolecular repulsion through the conjugated side chain moieties, an energy level for the highest occupied molecular orbital (HOMO) of -5.46 eV--a value approximately 0.27 eV lower than that of its counterpart PIDTDT-BT--is obtained, subsequently providing a fabricated solar cell with a high open-circuit voltage of approximately 0.947 V. The hole mobility (determined using the space charge-limited current model) in a blend film containing 20 wt% PIDTHT-BT) and 80 wt% [6,6]-phenyl-C71 butyric acid methyl ester (PC71 BM) is 2.2 × 10(-9) m(2) V(-1) s(-1), which is within the range of reasonable values for applications in organic photovoltaics. The power conversion efficiency is 4.5% under simulated solar illumination (AM 1.5G, 100 mW cm(-2)). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of sequence-defined highly functionalized nucleic acid polymers
NASA Astrophysics Data System (ADS)
Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.
2018-03-01
The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.
Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.
Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan
2016-04-01
A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cescutti, Paola; Scussolin, Silvia; Herasimenka, Yury; Impallomeni, Giuseppe; Bicego, Massimiliano; Rizzo, Roberto
2006-01-20
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.
Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon
2016-06-01
Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.
Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.
Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin
2016-03-17
Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, Fabrizio
Chlorpromazine (CPZ) is an anti-psychotic drug widely used to treat disorders such as schizophrenia or manic-depression. Unfortunately, CPZ exhibits undesirable side effects such as phototoxic and photoallergic reactions in humans. In general, the influence of drug metabolism on this type of reactions has not been previously considered in photosafety testing. Thus, the present work aims to investigate the possible photo(geno)toxic potential of drug metabolites, using CPZ as an established reference compound. In this case, the metabolites selected for the study are demethylchlorpromazine (DMCPZ), didemethylchlorpromazine (DDMCPZ) and chlorpromazine sulfoxide (CPZSO). The demethylated CPZ metabolites DMCPZ and DDMCPZ maintain identical chromophore tomore » the parent drug. In this work, it has been found that the nature of the aminoalkyl side chain modulates the hydrophobicity and the photochemical properties (for instance, the excited state lifetimes), but it does not change the photoreactivity pattern, which is characterized by reductive photodehalogenation, triggered by homolytic carbon-chlorine bond cleavage with formation of highly reactive aryl radical intermediates. Accordingly, these metabolites are phototoxic to cells, as revealed by the 3T3 NRU assay; their photo-irritation factors are even higher than that of CPZ. The same trend is observed in photogenotoxicity studies, both with isolated and with cellular DNA, where DMCPZ and DDMCPZ are more active than CPZ itself. In summary, side-chain demethylation of CPZ, as a consequence of Phase I biotransformation, does not result a photodetoxification. Instead, it leads to metabolites that exhibit in an even enhanced photo(geno)toxicity. - Highlights: • Demethylated CPZ metabolites are phototoxic to cells, as revealed by the NRU assay. • Single cell electrophoresis (Comet Assay) confirms the photodamage to cellular DNA. • DNA single strand breaks formation is observed on agarose gel electrophoresis. • Photochemical and EPR studies support generation of aryl radicals by C-Cl cleavage. • The aminoalkyl side chain of metabolites modulates the photo(geno)toxic potential.« less
McCormack, Thomas J; Melis, Claudio; Colón, José; Gay, Elaine A; Mike, Arpad; Karoly, Robert; Lamb, Patricia W; Molteni, Carla; Yakel, Jerrel L
2010-01-01
The rat α7 nicotinic acetylcholine receptor (nAChR) has a proline residue near the middle of the β9 strand. The replacement of this proline residue at position 180 (P180) by either threonine (α7-P180T) or serine (α7-P180S) slowed the onset of desensitization dramatically, with half-times of ∼930 and 700 ms, respectively, compared to 90 ms for the wild-type receptor. To investigate the importance of the hydroxyl group on the position 180 side-chains, the mutant receptors α7-P180Y and α7-P180F were studied and showed half-times of desensitization of 650 and 160 ms, respectively. While a position 180 side-chain OH group may contribute to the slow desensitization rates, α7-P180S and α7-P180V resulted in receptors with similar desensitization rates, suggesting that increased backbone to backbone H bonding expected in the absence of proline at position 180 would likely exert a great effect on desensitization. Single channel recordings indicated that for the α7-P180T receptor there was a significantly reduced closed time without any change in single channel conductance (as compared to wild-type). Kinetic simulations indicated that all changes observed for the mutant channel behaviour were reproduced by decreasing the rate of desensitization, and increasing the microscopic affinity to resting receptors. Molecular dynamics (MD) simulations on a homology model were used to provide insight into likely H bond interactions within the outer β-sheet that occur when the P180 residue is mutated. All mutations analysed increased about twofold the predicted number of H bonds between the residue at position 180 and the backbone of the β10 strand. Moreover, the α7-P180T and α7-P180S mutations also formed some intrastrand H bonds along the β9 strand, although H bonding of the OH groups of the threonine or serine side-chains was predicted to be infrequent. Our results indicate that rapid desensitization of the wild-type rat α7 nAChR is facilitated by the presence of the proline residue within the β9 strand. PMID:20837638
McCormack, Thomas J; Melis, Claudio; Colón, José; Gay, Elaine A; Mike, Arpad; Karoly, Robert; Lamb, Patricia W; Molteni, Carla; Yakel, Jerrel L
2010-11-15
The rat α7 nicotinic acetylcholine receptor (nAChR) has a proline residue near the middle of the β9 strand. The replacement of this proline residue at position 180 (P180) by either threonine (α7-P180T) or serine (α7-P180S) slowed the onset of desensitization dramatically, with half-times of ~930 and 700 ms, respectively, compared to 90 ms for the wild-type receptor. To investigate the importance of the hydroxyl group on the position 180 side-chains, the mutant receptors α7-P180Y and α7-P180F were studied and showed half-times of desensitization of 650 and 160 ms, respectively. While a position 180 side-chain OH group may contribute to the slow desensitization rates, α7-P180S and α7-P180V resulted in receptors with similar desensitization rates, suggesting that increased backbone to backbone H bonding expected in the absence of proline at position 180 would likely exert a great effect on desensitization. Single channel recordings indicated that for the α7-P180T receptor there was a significantly reduced closed time without any change in single channel conductance (as compared to wild-type). Kinetic simulations indicated that all changes observed for the mutant channel behaviour were reproduced by decreasing the rate of desensitization, and increasing the microscopic affinity to resting receptors. Molecular dynamics (MD) simulations on a homology model were used to provide insight into likely H bond interactions within the outer β-sheet that occur when the P180 residue is mutated. All mutations analysed increased about twofold the predicted number of H bonds between the residue at position 180 and the backbone of the β10 strand. Moreover, the α7-P180T and α7-P180S mutations also formed some intrastrand H bonds along the β9 strand, although H bonding of the OH groups of the threonine or serine side-chains was predicted to be infrequent. Our results indicate that rapid desensitization of the wild-type rat α7 nAChR is facilitated by the presence of the proline residue within the β9 strand.
Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S
2018-05-01
We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.
Fakhraee, Mostafa; Gholami, Mohammad Reza
2016-04-14
The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.
Li, Xiao-Ping; Kahn, Peter C; Kahn, Jennifer Nielsen; Grela, Przemyslaw; Tumer, Nilgun E
2013-10-18
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.
Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study.
Cong, Shan; Ma, Xiao-Tu; Li, Yi-Xue; Wang, Jing-Fang
2013-06-24
Arachidonic acid is an essential fatty acid in cells, acting as a key inflammatory intermediate in inflammatory reactions. In cardiac tissues, CYP2J2 can adopt arachidonic acid as a major substrate to produce epoxyeicosatrienoic acids (EETs), which can protect endothelial cells from ischemic or hypoxic injuries and have been implicated in the pathogenesis of coronary artery disease and hypertension. However, some CYP2J2 polymorphisms, i.e., T143A and N404Y, significantly reduce the metabolism of arachidonic acid. Lacking experimental structural data for CYP2J2, the detailed mechanism for the mutation-induced dysfunction in the metabolism of arachidonic acid is still unknown. In the current study, three-dimensional structural models of the wild-type CYP2J2 and two mutants (T143A and N404Y) were constructed by a coordinate reconstruction approach and ab initio modeling using CYP2R1 as a template. The structural analysis of the computational models showed that the wild-type CYP2J2 exhibited a typical CYP fold with 12 alpha-helices and three beta-sheets on one side and with the heme group buried deeply inside the core. Due to the small and hydrophobic side-chain, T143A mutation could destabilize the C helix, further placing the water access channel in a closed state to prevent the escape of the produced water molecules during the catalytic processes. N404Y mutation could reposition the side-chain of Leu(378), making it no longer form a hydrogen bond with the carboxyl group of arachidonic acid. However, this hydrogen bond was essential for substrate recognition and positioning in a correct orientation.
Yu, Ai-Ping; Shi, Bing-Xing; Dong, Chun-Na; Jiang, Zhong-Hua; Wu, Zu-Ze
2005-07-01
To combine the fibrinolytic with anticoagulant activities for therapy of thrombotic deseases, a fusion protein made of tissue-type plasminogen activator (t-PA) and hirudin was constructed and expressed in chia pastoris. To improve thrombolytic properties of t-PA and reduce bleeding side effect of hirudin, FXa-recognition sequence was introduced between t-PA and hirudin molecules.The anticoagulant activity of hirudin can be target-released through cleavage of FXa at thrombus site. t-PA gene and hirudin gene with FXa-recognition sequence at its 5'-terminal were obtained by RT-PCR and PCR respectively. The fusion protein gene was cloned into plasmid pIC9K and electroporated into the genome of Pichia pastoris GS115. The expression of fusion protein was induced by methanol in shaking flask and secreted into the culture medium. Two forms of the fusion protein, single-chain and double-chain linked by a disulfide bond (due to the cleveage of t-PA at Arg275-Ile276), were obtained. The intact fusion protein retained the fibrinolytic activity but lacked any anticoagulant activity. After cleavage by FXa, the fusion protein liberated intact free hirudin to exert its anticoagulant activity. So, the fusion protein is a bifunctional molecule having good prospect to develop into a new targeted therapeutic agent with reduced bleeding side effect for thrombotic diseases.
Feng, Mei-Tang; Wang, Ting; Liu, Ai-Hong; Li, Jia; Yao, Li-Gong; Wang, Bin; Guo, Yue-Wei; Mao, Shui-Chun
2018-02-01
Ten stigmastane-type steroids bearing unusual Δ 28 -24-hydroxy side chains, dictyopterisins A-J, including three pairs of C-24 epimers, dictyopterisins B/C, F/G, and I/J, were isolated from the brown alga Dictyopteris undulata Holmes, together with two previously reported analogues, (24S)- and (24R)-saringosterol. Their structures were elucidated on the basis of extensive spectroscopic analysis, with their absolute configurations at the stereogenic center C-24 of the side chain being assigned by a direct comparison of 1 H NMR data with those of related known compounds. The absolute configurations of the steroidal nuclei of dictyopterisins A, B, and H were determined using the modified Mosher's method. The mixture of dictyopterisins D and E and dictyopterisin I exhibited promising PTP1B inhibitory activities with IC 50 values of 1.88 and 3.47 μM, respectively, comparable to the positive control oleanolic acid (IC 50 , 2.78 μM). In addition, the mixture of dictyopterisins D and E and dictyopterisins F-J displayed significant cytotoxicities against the human cancer cell lines HL-60 (IC 50 from 1.02 to 2.70 μM) and A-549 (IC 50 from 1.35 to 2.85 μM). Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of structure-property relationships in systematic series of novel polymers
NASA Technical Reports Server (NTRS)
Gillham, J. K.
1976-01-01
Solid state transitions in polymeric materials was associated with the onset of sub-molecular motions of the polymer chains. Although these were considered to be intramolecular in general, the local environment of the polymer molecule exerts a strong influence through, for example, the effects of crystallinity, polarity and diluents. The manner of specimen preparation and previous history also affect transitions. The transitions are considered to arise when sufficient free volume is available to permit the occurrence of these side chain and backbone reorientations. The glass transition is the principal transition of amorphous polymeric materials and is associated with the onset of long range segmental motion of the polymer backbone. The various types of shorter range motion occurring below the glass transition have been catalogued.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Chen, Xiang; Shang, Zhicai
2009-03-01
In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.
Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.
2014-01-01
Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082
NASA Astrophysics Data System (ADS)
Dorenbos, G.
2017-06-01
Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with
Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR
Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.
2005-01-01
In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891
Highly conductive side chain block copolymer anion exchange membranes.
Wang, Lizhu; Hickner, Michael A
2016-06-28
Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.
Kálmán, Ferenc K.; Woods, Mark; Caravan, Peter; Jurek, Paul; Spiller, Marga; Tircsó, Gyula; Király, Róbert; Brücher, Ernő; Sherry, A. Dean
2008-01-01
The pH sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during preparation of GdDOTA, we tentatively assign this to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of pH dependent change in relaxivity of Gd1 was found to be less than earlier reported (S. Zhang, K. Wu, and A. D. Sherry, Angew. Chem., Int. Ed., 1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the NMRD and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side-chains enables rapid prototropic exchange between the single bound water of the complex with those of the bulk water thereby giving Gd1 a unique pH dependent relaxivity that is quite useful for pH mapping of tissues by MRI. PMID:17539632
Antigenic determinants of Staphylococcus aureus type 5 and type 8 capsular polysaccharide vaccines.
Fattom, A I; Sarwar, J; Basham, L; Ennifar, S; Naso, R
1998-10-01
Bacterial capsular polysaccharides (CP) are carbohydrate polymers comprised of repeating saccharide units. Several of these CP have side chains attached to their backbone structures. The side chains may include O-acetyl, phosphate, sialic acid, and other moieties. Those moieties represent the immunodominant epitopes and the most functional ones. The clinically significant Staphylococcus aureus type 5 CP (CP 5) and type 8 CP (CP 8) are comprised of a trisaccharide repeat unit with one O-acetyl group attached to each repeat unit. The immunogenicity of these CP and the functionality of antibodies to the backbone and the O-acetyl moieties were investigated. Immunization with the native CP conjugates (CP with 75% O-acetylation) elicited a high proportion of antibodies directed against the O-acetyl moiety. Nonetheless, all of the vaccinees produced antibodies to the backbone moieties as well. Conjugate vaccines made of de-O-acetylated CP elicited backbone antibodies only. Antibodies to both backbone and O-acetyl groups were found to be opsonic against S. aureus strains which varied in their O-acetyl content. Absorption studies with O-acetylated and de-O-acetylated CP showed that (i) native CP conjugates generated antibodies to both backbone and O-acetyl groups and (ii) O-acetylated isolates were opsonized by both populations of antibodies while the non-O-acetylated strains were predominantly opsonized by the backbone antibodies. These results suggest that S. aureus CP conjugate vaccines elicit multiple populations of antibodies with diverse specificities. Moreover, the antibodies of different specificities (backbone or O-acetyl) are all functional and efficient against the variations in bacterial CP that may occur among clinically significant S. aureus pathogenic isolates.
Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides
NASA Astrophysics Data System (ADS)
Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.
2017-06-01
Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.
Aromatic Anchor at an Invariant Hormone-Receptor Interface
Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.; Whittaker, Linda; Cox, Gabriella P.; Wickramasinghe, Nalinda; Menting, John G.; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Weiss, Michael A.
2014-01-01
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of PheB24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, MetB24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of PheB24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [ChaB24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the ChaB24 analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of PheB24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. PMID:25305014
Versatile On-Resin Synthesis of High Mannose Glycosylated Asparagine with Functional Handles
Chen, Rui; Pawlicki, Mark A.; Tolbert, Thomas J.
2013-01-01
Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine. PMID:24326091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe B24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met B24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchormore » at the hormone-receptor interface. These findings motivated further substitution of Phe B24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha B24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha B24 analog, determined as an R 6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe B24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Finally, our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.« less
Peters, R; King, C Y; Ukiyama, E; Falsafi, S; Donahoe, P K; Weiss, M A
1995-04-11
SRY, a genetic "master switch" for male development in mammals, exhibits two biochemical activities: sequence-specific recognition of duplex DNA and sequence-independent binding to the sharp angles of four-way DNA junctions. Here, we distinguish between these activities by analysis of a mutant SRY associated with human sex reversal (46, XY female with pure gonadal dysgenesis). The substitution (168T in human SRY) alters a nonpolar side chain in the minor-groove DNA recognition alpha-helix of the HMG box [Haqq, C.M., King, C.-Y., Ukiyama, E., Haqq, T.N., Falsalfi, S., Donahoe, P.K., & Weiss, M.A. (1994) Science 266, 1494-1500]. The native (but not mutant) side chain inserts between specific base pairs in duplex DNA, interrupting base stacking at a site of induced DNA bending. Isotope-aided 1H-NMR spectroscopy demonstrates that analogous side-chain insertion occurs on binding of SRY to a four-way junction, establishing a shared mechanism of sequence- and structure-specific DNA binding. Although the mutant DNA-binding domain exhibits > 50-fold reduction in sequence-specific DNA recognition, near wild-type affinity for four-way junctions is retained. Our results (i) identify a shared SRY-DNA contact at a site of either induced or intrinsic DNA bending, (ii) demonstrate that this contact is not required to bind an intrinsically bent DNA target, and (iii) rationalize patterns of sequence conservation or diversity among HMG boxes. Clinical association of the I68T mutation with human sex reversal supports the hypothesis that specific DNA recognition by SRY is required for male sex determination.
Kaya, Merve; Sousa, António G.; Crépeau, Marie-Jeanne; Sørensen, Susanne O.; Ralet, Marie-Christine
2014-01-01
Background and Aims Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. Key Results Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains. PMID:25081519
Kaneshiro, Edna S; Johnston, Laura Q; Nkinin, Stephenson W; Romero, Becky I; Giner, José-Luis
2015-01-01
The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild-type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy ((1)H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ(24(28)) -sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Kaneshiro, Edna S.; Johnston, Laura Q.; Nkinin, Stephenson W.; Romero, Becky I.; Giner, José-Luis
2014-01-01
The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The P. carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography (HPLC) and proton nuclear magnetic resonance spectroscopy (1H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ24(28)-sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii. PMID:25230683
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng
2016-11-15
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.
Pandyarajan, Vijay; Smith, Brian J; Phillips, Nelson B; Whittaker, Linda; Cox, Gabriella P; Wickramasinghe, Nalinda; Menting, John G; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A
2014-12-12
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Simkovic, Martin; Frerman, Frank E
2004-01-01
Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer. PMID:14640977
Simkovic, Martin; Frerman, Frank E
2004-03-01
Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.
Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.; ...
2014-10-10
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe B24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met B24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchormore » at the hormone-receptor interface. These findings motivated further substitution of Phe B24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha B24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha B24 analog, determined as an R 6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe B24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Finally, our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.« less
Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C
2015-09-01
Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.
Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.
2015-01-01
Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907
Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang
2016-04-06
Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
Yoshiba, Kazuto; Dobashi, Toshiaki; Ulset, Ann-Sissel T; Christensen, Bjørn E
2018-06-18
Carboxylated schizophyllan ("sclerox") is a chemically modified polysaccharide obtained by partial periodate oxidation and subsequent chlorite oxidation of schizophyllan, a water-soluble neutral polysaccharide having a β-1,3-linked glucan backbone and a β-1,6-linked d-glucose residue side chain at every third residue of the main chain. The triple helix of schizophyllan in water has a cooperative order-disorder transition associated with the side chains. The transition is strongly affected by the presence (mole fraction) of dimethylsulfoxide (DMSO). In the present study, the solvent effects on the order-disorder transition of sclerox with different degrees of carboxylation (DS) in water-DMSO mixtures were investigated with differential scanning calorimetry and optical rotation. The transition temperature ( T r ) and transition enthalpy (Δ H r ) strongly depended on the mole fraction of DMSO ( x D ). Data were further analyzed with the statistical theory for the linear cooperative transition, taking into account the solvent effect, where DMSO molecules are selectively associated with the unmodified side chains. The modified side chain does not contribute to the transition; hence, Δ H r decreases with increasing DS. The dependence of T r on the DMSO content becomes weaker than that for unmodified schizophyllan. The theoretical analyses indicated that the number of sites binding with the DMSO molecule and the successive ordered sequence of the ordered unit of the triple helix are changed by carboxylation.
Grate, Jay W.; Mo, Kai -For; Daily, Michael D.
2016-02-10
Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less
Grate, Jay W; Mo, Kai-For; Daily, Michael D
2016-03-14
Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Mo, Kai -For; Daily, Michael D.
Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdes, Haydee; Pluhackova, Kristyna; Hobza, Pavel
The performance of a wide range of quantum chemical calculations for the ab initio study of realistic model systems of aromatic-aromatic side chain interactions in proteins (in particular those π-π interactions occurring between adjacent residues along the protein sequence) is here assessed on the phenylalanyl-glycyl-phenylalanine (FGF) tripeptide. Energies and geometries obtained at different levels of theory are compared with CCSD(T)/CBS benchmark energies and RI-MP2/cc-pVTZ benchmark geometries, respectively. Consequently, a protocol of calculation alternative to the very expensive CCSD(T)/CBS is proposed. In addition to this, the preferred orientation of the Phe aromatic side chains is discussed and compared with previous resultsmore » on the topic.« less
Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes
NASA Astrophysics Data System (ADS)
Wang, Jing; Gu, Jiande; Leszczynski, Jerzy
2007-07-01
The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.
Keil, Harry; Wasserman, David; Dawson, Charles R.
1944-01-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive. PMID:19871415
Keil, H; Wasserman, D; Dawson, C R
1944-10-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive.
Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune
2011-12-01
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.
ONR Far East Scientific Information Bulletin
1990-09-01
In bone, grafting onto a polymer chain, inter- continuous processes, such as reactive extru- chain reactions, formation of interpenetrat- sion and...reaction kinetics, rheology, and side- and end-chain grafting , homopolymer transport phenomena occurring during REX. chain coupling, polymer...the Grafting reactions yield block or graft coupling species becomes a part of the chain, copolymers. Polyethylene, polypropylene, or by
Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.
Toshchevikov, V; Saphiannikova, M; Heinrich, G
2009-04-16
We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.
Tension Amplification in Molecular Brushes in Solutions and on Substrates
Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael
2009-01-01
Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133
NASA Astrophysics Data System (ADS)
Nilsson, Peter; Magnusson, Karin; Appelqvist, Hanna; Cieslar-Pobuda, Artur; Bäck, Marcus; Kågedal, Bertil; Jonasson, Jon; Los, Marek
2015-10-01
Molecular tools for fluorescent imaging of cells and their components are vital for understanding the function and activity of cells. Here, we report an imidazole functionalized pentameric oligothiophene, p-HTIm, that can be utilized for fluorescent imaging of cells. p-HTIm fluorescence in normal cells appeared in a peripheral punctate pattern partially co-localized with lysosomes, whereas a one-sided perinuclear Golgi associated localization of the dye was observed in malignant cells. The uptake of p-HTIm was temperature dependent and the intracellular target was reached within 1 h after staining. The ability of p-HTIm to stain cells was reduced when the imidazole side chain was chemically altered, verifying that specific imidazole side-chain functionalities are necessary for achieving the observed cellular staining. Our findings confirm that properly functionalized oligothiophenes can be utilized as fluorescent tools for vital staining of cells and that the selectivity towards distinct intracellular targets are highly dependent on the side-chain functionalities along the conjugated thiophene backbone.
Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi
2013-12-10
Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.
Magnucka, Elzbieta G; Suzuki, Yoshikatsu; Pietr, Stanislaw J; Kozubek, Arkadiusz; Zarnowski, Robert
2009-10-01
Cycloate inhibits the biosynthesis of very-long-chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 degrees C; very-long-side-chain compounds were less abundant, whereas both short-chain saturated and unsaturated homologues were generally accumulated. No cycloate-related effects caused by homologue pattern modifications were observed at elevated temperature. This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very-long-side-chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate-driven accumulation of 5-n-alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright 2009 Society of Chemical Industry.
Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue
NASA Astrophysics Data System (ADS)
Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won
2000-11-01
A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab
Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for controlling reactivity and efficiency of Ni(P 2N 2) 2 complexes with the outer coordination sphere.« less
Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism
Casabon, Israël; Swain, Kendra; Crowe, Adam M.
2014-01-01
Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes. PMID:24244004
Luo, Wenbin; Mani, Rajeswari; Hong, Mei
2007-09-13
The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.
Inuzuka, Tatsutoshi; Suzuki, Hironori; Kawasaki, Masato; Shibata, Hideki; Wakatsuki, Soichi; Maki, Masatoshi
2010-08-06
ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2DeltaGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. We solved the X-ray crystal structure of the PEF domain of ALG-2DeltaGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened alpha-helix 5 (alpha5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121-GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. The F122 substitutions exhibited different effects on binding of ALG-2 to other known interacting proteins, including TSG101 (Tumor susceptibility gene 101) and annexin A11. The X-ray crystal structure of the F122A mutant revealed that removal of the bulky F122 side chain not only created an additional open space in Pocket 2 but also abolished inter-helix interactions with W95 and V98 (present in alpha4) and that alpha5 inclined away from alpha4 to expand Pocket 2, suggesting acquirement of more appropriate positioning of the interacting residues to accept Alix. We found that the inability of the two-residue shorter ALG-2 isoform to bind Alix is not due to the absence of bulky side chain of F122 but due to deformation of a main-chain wall facing pockets 1 and 2. Moreover, a residue at the position of F122 contributes to target specificity and a smaller side chain is preferable for Alix binding but not favored to bind annexin A11.
Yamada-Kato, Tomoe; Nagai, Masashi; Ohnishi, Motoko; Yoshida, Kazutoshi
2012-01-01
Wasabi is a plant of Japanese origin. It belongs to the family Brassicaceae and produces various isothiocyanates (ITCs). To clarify the type I allergies inhibited by wasabi ITCs, we investigated the inhibitory effect on chemical mediator release from dinitrophenylated bovine serum albumin (DNP-BSA)-stimulated RBL-2H3 rat basophilic leukemia cells. Allyl ITC (AITC), sec-butyl ITC (s-BuITC), and 3-butenyl ITC (3-BuITC), which have 3 or 4 carbon chains, inhibited histamine release but did not inhibit the release of leukotriene B4 (LTB4) or cysteinyl LTs (CysLTs). 4-Pentenyl ITC (4-PeITC) and 5-hexenyl ITC (5-HeITC), which have 5 or 6 carbon chains and an unsaturated bond at the end, inhibited LTB4 release but did not inhibit the release of histamine or CysLTs. 6-Methylthiohexyl ITC (6-MTITC), 6-methylsulfinylhexyl ITC (6-MSITC), and 6-methylsulfonylhexyl ITC (6-MSFITC), which have a sulfur atom inserted at the end of a 6-carbon chain, inhibited the release of histamine, LTB4, and CysLTs and the elevation in intracellular Ca(2+). These results suggest that wasabi ITCs inhibited type I allergies by inhibiting chemical mediator release and that the inhibitory effects on each chemical mediator were due to differences in the side chain structure of the wasabi ITCs.
Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T
2016-05-01
Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the environment and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum.
1982-03-31
A. Chandross in "The Exciplex ", M. Gordon and W. R. Ware, Ed., Academic Press, New York, 1975, p. 187. (5) K. Rotkiewicz, K. H. Grellmann, and Z. R...reaction of the end groups on the opposite sides of the chain. W_ -( 0 ) In our earlier studies (8 )’ (9 ) we determined that exciplex (excited charge...sandwich type structure. We have used picosecond laser excitation and streak camera-optical multi- channel detection of exciplex fluorescence at
2017-01-01
The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer’s side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics. PMID:28979937
Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls
Schendel, Rachel R.; Meyer, Marleen R.; Bunzel, Mirko
2016-01-01
Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763
Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study
NASA Astrophysics Data System (ADS)
Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman
2017-10-01
In order to inquire the microscopic origin of observed multiple time scales in solvation dynamics, we carry out several computer experiments. We perform atomistic molecular dynamics simulations on three protein-water systems, namely, lysozyme, myoglobin, and sweet protein monellin. In these experiments, we mutate the charges of the neighbouring amino acid side chains of certain natural probes (tryptophan) and also freeze the side chain motions. In order to distinguish between different contributions, we decompose the total solvation energy response in terms of various components present in the system. This allows us to capture the interplay among different self- and cross-energy correlation terms. Freezing the protein motions removes the slowest component that results from side chain fluctuations, but a part of slowness remains. This leads to the conclusion that the slow component approximately in the 20-80 ps range arises from slow water molecules present in the hydration layer. While the more than 100 ps component has multiple origins, namely, adjacent charges in amino acid side chains, hydrogen bonded water molecules and a dynamically coupled motion between side chain and water. In addition, the charges enforce a structural ordering of nearby water molecules and helps to form a local long-lived hydrogen bonded network. Further separation of the spatial and temporal responses in solvation dynamics reveals different roles of hydration and bulk water. We find that the hydration layer water molecules are largely responsible for the slow component, whereas the initial ultrafast decay arises predominantly (approximately 80%) due to the bulk. This agrees with earlier theoretical observations. We also attempt to rationalise our results with the help of a molecular hydrodynamic theory that was developed using classical time dependent density functional theory in a semi-quantitative manner.
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.
Schmatz, Brian; Yuan, Zhibo; Lang, Augustus W; Hernandez, Jeff L; Reichmanis, Elsa; Reynolds, John R
2017-09-27
The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.
Maruta, Akiho; Yamane, Mirei; Matsubara, Midori; Suzuki, Shiho; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji
2017-08-01
We previously reported that Fusarium oxysporum 12S produces two bifunctional proteins, FoAP1 and FoAP2, with α-d-galactopyranosidase (GPase) and β-l-arabinopyranosidase (APase) activities. The aim of this paper was to purify a third GPase, FoGP1, from culture supernatant of F. oxysporum 12S, to characterize it, and to determine its mode of action towards gum arabic. A cDNA encoding FoGP1 was cloned and the protein was overexpressed in Escherichia coli. Module sequence analysis revealed the presence of a GH27 domain in FoGP1. The recombinant enzyme (rFoGP1) showed a GPase/APase activity ratio of 330, which was quite different from that of FoAP1 (1.7) and FoAP2 (0.2). Among the natural substrates tested, rFoGP1 showed the highest activity towards gum arabic. In contrast to other well-characterized GPases, rFoGP1 released a small amount of galactose from α-galactosyl oligosaccharides such as raffinose and exhibited no activity toward galactomannans, which are highly substituted with α-galactosyl side chains. This indicated that FoGP1 is an unusual type of GPase. rFoGP1 released 30% of the total galactose from gum arabic, suggesting the existence of a large number of α-galactosyl residues at the non-reducing ends of gum arabic side chains. Together, rFoGP1 and α-l-arabinofuranosidase released four times more arabinose than α-l-arabinofuranosidase acting alone. This suggested that a large number of α-l-arabinofuranosyl residues is capped by α-galactosyl residues. 1 H NMR experiments revealed that rFoGP1 hydrolyzed the α-1,3-galactosidic linkage within the side chain structure of [α-d-Galp-(1→3)-α-l-Araf-(1→] in gum arabic. In conclusion, rFoGP1 is highly active toward α-1,3-galactosyl linkages but negligibly or not active toward α-1,6-galactosyl linkages. The novel FoGP1 might be used to modify the physical properties of gum arabic, which is an industrially important polysaccharide used as an emulsion stabilizer and coating agent. Copyright © 2017 Elsevier Inc. All rights reserved.
Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong
2017-10-18
A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.
Chondroitin-4-sulfation negatively regulates axonal guidance and growth
Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.
2008-01-01
Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934
High-resolution protein design with backbone freedom.
Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S
1998-11-20
Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.
5-Ethynyl-2'-deoxycytidine: a DNA building block with a 'clickable' side chain.
Seela, Frank; Mei, Hui; Xiong, Hai; Budow, Simone; Eickmeier, Henning; Reuter, Hans
2012-10-01
The title compound [systematic name: 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-ethynylpyrimidin-2(1H)-one], C(11)H(13)N(3)O(4), shows two conformations in the crystalline state. The N-glycosylic bonds of both conformers adopt similar conformations, with χ = -149.2 (1)° for conformer (I-1) and -151.4 (1)° for conformer (I-2), both in the anti range. The sugar residue of (I-1) shows a C2'-endo envelope conformation ((2)E, S-type), with P = 164.7 (1)° and τ(m) = 36.9 (1)°, while (I-2) shows a major C3'-exo sugar pucker (C3'-exo-C2'-endo, (3)T(2), S-type), with P = 189.2 (1)° and τ(m) = 33.3 (1)°. Both conformers participate in the formation of a layered three-dimensional crystal structure with a chain-like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David; ...
2015-09-03
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji
2014-07-01
A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.
Feng, Shiyu; Zhang, Cai'e; Liu, Yahui; Bi, Zhaozhao; Zhang, Zhe; Xu, Xinjun; Ma, Wei; Bo, Zhishan
2017-11-01
A kind of new fused-ring electron acceptor, IDT-OB, bearing asymmetric side chains, is synthesized for high-efficiency thick-film organic solar cells. The introduction of asymmetric side chains can increase the solubility of acceptor molecules, enable the acceptor molecules to pack closely in a dislocated way, and form favorable phase separation when blended with PBDB-T. As expected, PBDB-T:IDT-OB-based devices exhibit high and balanced hole and electron mobility and give a high power conversion efficiency (PCE) of 10.12%. More importantly, the IDT-OB-based devices are not very sensitive to the film thickness, a PCE of 9.17% can still be obtained even the thickness of active layer is up to 210 nm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TROSY of side-chain amides in large proteins
Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao
2012-01-01
By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000
Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo,J.; Resnick, P.; Efimenko, K.
2008-01-01
The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less
Novel arabinan and galactan oligosaccharides from dicotyledonous plants
NASA Astrophysics Data System (ADS)
Wefers, Daniel; Tyl, Catrin; Bunzel, Mirko
2014-11-01
Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS2 and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation.
Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme
Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.
1992-01-01
An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.
Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme
Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.
1993-01-01
An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.
Baker, Edward N; Squire, Christopher J; Young, Paul G
2015-10-01
The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.
Shah, Dhawal; Shaikh, Abdul Rajjak
2016-01-01
Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.
Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M
1989-10-01
New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n
Optimization and Implementation of Long Nerve Allografts
2013-03-01
chondroitin sulfate proteoglycans. All processing methods include the same treatment step with...methods effectively eliminate the chondroitin sulfate side-‐chains after detergent extractions...the three processing methods effectively eliminate the chondroitin sulfate side-‐chains and yet
Erythrolic acids A-E, Meroterpenoids from a Marine-Derived Erythrobacter sp
Hu, Youcai; Legako, Aaron G.; Espindola, Ana Paula D.M.; MacMillan, John B.
2012-01-01
Erythrolic acids A-E (1–5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side chain modifications include oxidation of a terminal methyl substituent and in the case of 1–4 addition of a 2-carbon unit to give terpene side chains of unusual length; C22 for 1 and 2, C17 for 3 and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE and Mosher’s analysis. In vitro cytotoxicity towards a number of non-small cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 μM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrate the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA. PMID:22384985
McDonald, Sarah K; Fleming, Karen G
2016-06-29
Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.
Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav
2017-01-01
Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.
Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen
2012-10-01
One-end-connected short poly(ethylene glycol) (PEG) side chains were facilely introduced into the poly(N-isopropylacrylamide) (PNIPAm) nanocomposite hydrogel (NC gel) via in situ copolymerization of NIPAm monomer and PEG macromonomer in the aqueous suspension of hectorite clay Laponite XLS. The NC gels were characterized with Fourier transform infrared and x-ray photoelectron spectroscopy for the composition, DSC and transmittance for the phase separation temperature, dynamic mechanical spectra and swelling ratio for the interaction. Increasing the PEG content led to a small increase in the storage modulus and the lower critical solution temperature (LCST) of the copolymerized NC gels, and the LCST of the copolymerized NC gels was still below 37 °C. The L929 cell adhesion and proliferation on the surface of these NC gels were not suppressed by the incorporation of hydrophilic PEG side chains. By lowering temperature below the LCST, the cell sheet spontaneously detached from the copolymerized NC gels. The surface morphology and surface wettability of the NC gels were detected by atom force microscope and contact angle measurement. A rough and hydrophilic surface induced by a small amount of PEG side chains was found to be favorable to accelerate the cell sheet detachment, probably due to the enhanced water permeation into the gel-cell sheet interface.
Roles of urea and TMAO on the interaction between extended non-polar peptides
NASA Astrophysics Data System (ADS)
Su, Zhaoqian; Dias, Cristiano
Urea and trimethylamine n-oxide (TMAO) are small molecules known to destabilize and stabilize, respectively, the structure of proteins when added to aqueous solution. To unravel the molecular mechanisms of these cosolvents on protein structure we perform explicit all-atom molecular dynamics simulations of extended poly-alanine and polyleucine dimers. We use an umbrella sampling protocol to compute the potential of mean force (PMF) of dimers at different concentrations of urea and TMAO. We find that the large non-polar side chain of leucine is affected by urea whereas backbone atoms and alanine's side chain are not. Urea is found to occupy positions between leucine's side chains that are not accessible to water. This accounts for extra Lennard-Jones bonds between urea and side chains that favors the unfolded state. These bonds compete with urea-solvent interactions that favor the folded state. The sum of these two energetic terms provide the enthalpic driving force for unfolding. We show here that this enthalpy correlate with the potential of mean force of poly-leucine dimers. Moreover, the framework developed here is general and may be used to provide insights into effects of other small molecules on protein interactions. The effect of the TMAO will be in the presentation. Department of Physics, University Heights, Newark, New Jersey, 07102-1982.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
NASA Astrophysics Data System (ADS)
Macleod, Neil A.; Simons, John P.
2002-10-01
The conformational landscapes of 2-phenoxy ethanol (POX) and its hydrated clusters have been studied in the gas-phase, providing a model for pharmaceutical β-blockers. A combination of experimental techniques, including resonant two-photon ionisation (R2PI), laser-induced-fluorescence (LIF) and resonant ion-dip infra-red spectroscopy (RIDIRS), coupled with high-level ab initio calculations has allowed the assignment of the individually resolved spectral features to discrete conformational and supra-molecular structures. Assignments were made by comparison of experimental vibrational spectra and partially resolved ultra-violet rotational band contours with those predicted from quantum chemical calculations. The isolated molecule displays a solitary structure with an extended geometry of the side-chain which is stabilised by an intramolecular hydrogen-bond between the alcohol (proton donor) and the ether (proton acceptor) groups of the side-chain. In singly hydrated clusters the water molecule is accommodated by insertion into the intramolecular hydrogen-bond. In the doubly hydrated and higher clusters cyclic structures are generated which incorporate both the water molecules and the terminal OH group of the side-chain; additional (weak) hydrogen bonded interactions with the phenoxy group provide a degree of selectivity but essentially, the water 'droplet' forms on the end of the alcohol side-chain.
Controlling the mode of operation of organic transistors through side-chain engineering.
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B; Bandiello, Enrico; Hanifi, David A; Sessolo, Michele; Malliaras, George G; McCulloch, Iain; Rivnay, Jonathan
2016-10-25
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors.
Sami, Selim; Haase, Pi A B; Alessandri, Riccardo; Broer, Ria; Havenith, Remco W A
2018-04-19
The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C 60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C 60 .
2018-01-01
The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn–Sham method to calculate the electronic contribution to the dielectric constant for fullerene C60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C60. PMID:29561616
NASA Astrophysics Data System (ADS)
Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.
2015-03-01
Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.
Controlling the mode of operation of organic transistors through side-chain engineering
Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika; Nielsen, Christian B.; Bandiello, Enrico; Hanifi, David A.; Sessolo, Michele; Malliaras, George G.; McCulloch, Iain; Rivnay, Jonathan
2016-01-01
Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors. PMID:27790983
Mamaeva, O K; Gabrielian, A G; Arutiunian, G L; Bocharova, T N; Smirnova, E A; Volodin, A A; Shchelkina, A K; Kaliuzhnyĭ, D N
2014-01-01
Earlier, a new class of compounds--amphiphilic derivatives of 1,3-diazaadamantanes, capable of facilitating the strand exchange in the system of short oligonucleotides was revealed. Longer hydrophobic side chains of 1,3-diazaadamantanes promoted stronger acceleration of the reaction. In this study, interaction with DNA of two 1,3-diazaadamantane derivatives containing different side chains was investigated by use of optical methods. Concentration of the investigated 1,3-diazaadamantans micelles formation were determined by the means of monitoring fluorescence intensity enhancement of 1-anilinonaphtalene-8-sulphonate probe; as well as the ranges of concentrations where the compounds/water mixtures existed as true solutions. 1,3-diazaadamantanes affinity to DNA was determined with Fluorescent Intercalator Displacement (FID) approach. Significant increase in hydrodynamic volume of short DNA hairpins in the complexes with 1,3-diazaadamantanes was revealed by estimation of the fluorescence polarization of ethidium bromide probe bound to the hairpins. Intermolecular association of DNA hairpins upon binding with 1,3-diazaadamantans was confirmed by Förster resonance energy transfer in system of an equimolar mixture of fluorescently labeled with Cy-3 and Cy-5 hairpins. In this study, the number of positive charges at 1,3-diazaadamantane derivatives containing side chains of different lengths was demonstrated to affect their affinity to DNA, whereas longer length of the hydrophobic side chains ensured more efficient interaction between the DNA duplexes that may facilitate, in particular, DNA strand exchange.
Wang, Shu; Robertson, Megan L
2015-06-10
Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.
Amine-controlled assembly of metal-sulfite architecture from 1D chains to 3D framework.
Austria, Cristina; Zhang, Jian; Valle, Henry; Zhang, Qichun; Chew, Emily; Nguyen, Dan-Tam; Gu, J Y; Feng, Pingyun; Bu, Xianhui
2007-08-06
Whereas open-framework materials have been made in a variety of chemical compositions, few are known in which 3-connected SO3(2)- anions serve as basic building units. Here, we report four new metal-sulfite polymeric structures, (ZnSO3)Py (1, py = pyridine), (ZnSO3)2(2,2'-bipy)H2O (2, 2,2'-bipy = 2,2'-bipyridine), (ZnSO3)2(TMDPy) (3, TMDPy = 4,4'-trimethylenedipyridine), and (MnSO3)2en (4, en = ethylenediamine) that have been synthesized hydrothermally and structurally characterized. In these compounds, low-dimensional 1D and 2D inorganic subunits are assembled into higher 2D or 3D covalent frameworks by organic ligands. In addition to the structure-directing effect of organic ligands, the flexible coordination chemistry of Zn2+ and SO3(2)- also contributes to the observed structural diversity. In compounds 1-3, Zn2+ sites alternate with trigonal pyramidal SO3(2)- anions to form three types of [ZnSO3]n chains, whereas in compound 4, a 2D-corrugated [MnSO3]n layer is present. Compound 1 features a rail-like chain with pendant pyridine rings. The pi-pi interaction between 2,2'-bipy ligands is found between adjacent chains in compound 2, resulting in 2D sheets that are further stacked through interlayer hydrogen bonds. Compound 3 exhibits a very interesting inorganic [(ZnSO3)2]n chain constructed from two chairlike subunits, and such chains are bridged by TMDPy ligands into a 2D sheet. In compound 4, side-by-side helical chains permeate through 2D-corrugated [MnSO3]n layers, which are pillared by neutral ethylenediamine molecules into a 3D framework that can be topologically represented as a (3,6)-connected net. The results presented here illustrate the rich structural chemistry of metal-sulfites and the potential of sulfite anions as a unique structural building block for the construction of novel open-framework materials, in particular, those containing polymeric inorganic subunits that may have interesting physical properties such as low-dimensional magnetism or electronic properties.
Qi, Yizhi; Simakova, Antonina; Ganson, Nancy J.; Li, Xinghai; Luginbuhl, Kelli M.; Özer, Imran; Liu, Wenge; Hershfield, Michael S.; Matyjaszewski, Krzysztof; Chilkoti, Ashutosh
2017-01-01
The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) — a therapeutic peptide that is clinically used to treat type 2 diabetes — and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) with precisely controlled molecular weights lowered blood glucose for up to 120 h in fed mice. Most notably, we show that an exendin-C-POEGMA conjugate with an average of 9 side-chain ethylene glycol (EG) repeats exhibits significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (PEG) antibodies than two FDA-approved PEGylated drugs, and that reducing the side-chain length to 3 EG repeats completely eliminates PEG antigenicity without compromising in vivo efficacy. Our findings establish the site-specific conjugation of POEGMA as a next-generation PEGylation technology for improving the pharmacological performance of traditional PEGylated drugs, whose safety and efficacy are hindered by pre-existing anti-PEG antibodies in patients. PMID:28989813
Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1.
Shiba, Tomoo; Kametaka, Satoshi; Kawasaki, Masato; Shibata, Masahiro; Waguri, Satoshi; Uchiyama, Yasuo; Wakatsuki, Soichi
2004-06-01
BACE (beta-site amyloid precursor protein cleaving enzyme, beta-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of beta-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans-Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.
Durec, Matúš; Marek, Radek; Kozelka, Jiří
2018-04-17
In proteins, the indole side chain of tryptophan can interact with water molecules either in-plane, forming hydrogen bonds, or out-of-plane, with the water molecule contacting the aromatic π face. The latter interaction can be either of the lone pair⋅⋅⋅π (lp⋅⋅⋅π) type or corresponds to the O-H⋅⋅⋅π binding mode, an ambiguity that X-ray structures usually do not resolve. Here, we report molecular dynamics (MD) simulations of a solvated β-galactosidase monomer, which illustrate how a water molecule located at the π face of an indole side chain of tryptophan can adapt to the position of proximate residues and "select" its binding mode. In one such site, the water molecule is predicted to rapidly oscillate between the O-H⋅⋅⋅π and lp⋅⋅⋅π binding modes, thus gaining entropic advantage. Our MD simulations provide support for the role of lp⋅⋅⋅π interactions in the stabilization of protein structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and effective interactions of comb polymer nanocomposite melts.
Xu, Qinzhi; Xu, Mengjin; Feng, Yancong; Chen, Lan
2014-11-28
In this work, the structure and effective interactions of branched comb polymer nanocomposite (PNC) melts are investigated by using the polymer reference interaction site model (PRISM) integral equation theory. It is observed that the nanoparticle contact (bridging) aggregation is formed when the nanoparticle-monomer attraction strength is relatively weak (large) in comb PNCs. The organization states of aggregation for the moderate nanoparticle-monomer attraction strength can be well suppressed by the comb polymer architecture, while the bridging structure for relatively large attraction is obviously promoted. With the increase of the particle volume fraction, the organization states of bridging-type structure become stronger and tighter; however, this effect is weaker than that of the nanoparticle-monomer attraction strength. When the particle volume fraction and moderate nanoparticle-monomer attraction strength are fixed, the effects of degree of polymerization, side chain number, side chain length, and nanoparticle-monomer size ratio on the organization states of PNC melts are not prominent and the nanoparticles can well disperse in comb polymer. All the observations indicate that the present PRISM theory can give a detailed description of the comb PNC melts and assist in future design control of new nanomaterials.
Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung
2014-10-15
Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.
4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila
NASA Astrophysics Data System (ADS)
Yadav, Jhillu S.; Lavanya, Madugula P.; Das, Pragna P.; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K.; Pal Bhadra, Manika; Bhadra, Utpal
2010-04-01
p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.
Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.
Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li
2018-03-21
Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.
Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya
2016-01-01
Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129
Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.
Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio
2003-03-01
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.
Deuteration as a Means to Tune Crystallinity of Conducting Polymers
Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya; ...
2017-08-25
The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less
Deuteration as a Means to Tune Crystallinity of Conducting Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya
The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less
Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František
2018-01-16
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František
2018-01-01
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.
Polythiophene Derivative with a Side Chain Chromophore as Photovoltaic and Photorefractive Materials
1993-11-17
the desired bulk property in the polymer such as water solubility,1 8 optical activity,19 ionic conductivity 20 or liquid crystalline properties. 2 1...photoexcitation, which is similar to photoinduced polarization observed in the Langmuir - Blodgett (L-B) films of donor-acceptor molecules. 23 But due to...Maximum 200 Words) A new, solution processable, thiophene copolymer with a side chain nonlinear optical (NLO) chromophore namely Poly (3-octylthiophene
Brownholland, David P.
2017-01-01
A synthetic route that utilizes a cross-metathesis reaction with Δ22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. PMID:28300584
Synthetic Lectins: New Tools for Detection and Management of Prostate Cancer
2015-09-01
were synthesized on Tentagel resin analogous to those previously described.2 The effectiveness of the coupling was assessed using MALDI-MS in the...protecting groups on the Dab side -chains (where boronic acids are attached). This appeared to be a significant portion of the product, composing up...evaluate our synthetic approach and tried different side -chain amine protecting groups on Dab including alloc and MTT. From these studies, we
Biodegradation of lignin by Agaricus Bisporus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vane, C.H.; Abbott, G.D.; Head, I.M.
The lignolytic activity of Agaricus bisporus will be addressed in this paper. Sound and fungally degraded lignins were characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Fourier Transform Infrared Spectroscopy (FnR) and elemental analysis. Fungally degraded lignins displayed increased wt%N, wt%H and wt%O content and decreased wt%C content The FTIR spectrum of decayed lignin showed an increase in the relative intensity of absorption bands assigned to carbonyl and carboxyl functional groups located on the aliphatic side chain and a decrease in absorption bands assigned to aromatic skeletal vibration modes. Semiquantitative Py-GC-MS revealed an 82% decrease in lignin derived pyrolysis products upon biodegradation.more » No significant increase in pyrolysis products with an oxygenated aliphatic side chain were detected in the fungally degraded lignin however shortening of the aliphatic side chain via cleavage at the {alpha}, {beta} and {gamma} positions was observed.« less
MALDI-MS Imaging of Urushiols in Poison Ivy Stem.
Aziz, Mina; Sturtevant, Drew; Winston, Jordan; Collakova, Eva; Jelesko, John G; Chapman, Kent D
2017-04-29
Urushiols are the allergenic components of Toxicodendron radicans (poison ivy) as well as other Toxicodendron species. They are alk-(en)-yl catechol derivatives with a 15- or 17-carbon side chain having different degrees of unsaturation. Although several methods have been developed for analysis of urushiols in plant tissues, the in situ localization of the different urushiol congeners has not been reported. Here, we report on the first analysis of urushiols in poison ivy stems by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Our results show that the urushiol congeners with 15-carbon side chains are mainly localized to the resin ducts, while those with 17-carbon side chains are widely distributed in cortex and vascular tissues. The presence of these urushiols in stem extracts of poison ivy seedlings was confirmed by GC-MS. These novel findings provide new insights into the spatial tissue distribution of urushiols that might be biosynthetically or functionally relevant.
Sakane, Rie; Kimura, Kimito; Hirota, Yoshihisa; Ishizawa, Michiyasu; Takagi, Yuta; Wada, Akimori; Kuwahara, Shigefumi; Makishima, Makoto; Suhara, Yoshitomo
2017-11-01
Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Correlation between protein secondary structure, backbone bond angles, and side-chain orientations.
Lundgren, Martin; Niemi, Antti J
2012-08-01
We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central C(α) carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the C(β) carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the C(α)-C(β) structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.
Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A
2017-07-19
Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.
Negishi, Osamu; Negishi, Yukiko
2017-09-01
Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.
Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua
2016-01-01
Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224
Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua
2016-05-03
Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.
Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.
2014-01-01
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype–phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events. PMID:17078022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Si-Fen; Liu, Zi-Tong; Cai, Zheng-Xu
Side chain engineering of conjugated donor-acceptor polymers is a new way to manipulate their optoelectronic properties. Two new diketopyrrolopyrrole (DPP)-terthiophene-based conjugated polymers PDPP3T-1 and PDPP3T-2, with both hydrophilic triethylene glycol (TEG) and hydrophobic alkyl chains, are reported. It is demonstrated that the incorporation of TEG chains has a significant effect on the interchain packing and thin-film morphology with noticeable effect on charge transport. Polymer chains of PDPP3T-1 in which TEG chains are uniformly distributed can self-assemble spontaneously into a more ordered thin film. As a result, the thin film of PDPP3T-1 exhibits high saturated hole mobility up to 2.6 cm(2)more » V-1 s(-1) without any post-treatment. This is superior to those of PDPP3T with just alkyl chains and PDPP3T-2. Moreover, the respective field effect transistors made of PDPP3T-1 can be utilized for sensing ethanol vapor with high sensitivity (down to 100 ppb) and good selectivity.« less
5. EXTERIOR OF SOUTH SIDE SHOWING ELECTRICAL JUNCTION BOX NEXT ...
5. EXTERIOR OF SOUTH SIDE SHOWING ELECTRICAL JUNCTION BOX NEXT TO SOUTH SIDE DOOR AND CHAIN-LINK FENCE AROUND GARDEN AREA AT REAR OF HOUSE. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
LaCuran, Alecander E; Pegg, Kevin M; Liu, Eleanor M; Bethel, Christopher R; Ai, Ni; Welsh, William J; Bonomo, Robert A; Oelschlaeger, Peter
2015-12-01
Antibiotic resistance in bacteria is ever changing and adapting, as once-novel β-lactam antibiotics are losing their efficacy, primarily due to the production of β-lactamases. Metallo-β-lactamases (MBLs) efficiently inactivate a broad range of β-lactam antibiotics, including carbapenems, and are often coexpressed with other antibacterial resistance factors. The rapid dissemination of MBLs and lack of novel antibacterials pose an imminent threat to global health. In an effort to better counter these resistance-conferring β-lactamases, an investigation of their natural evolution and resulting substrate specificity was employed. In this study, we elucidated the effects of different amino acid substitutions at position 67 in IMP-type MBLs on the ability to hydrolyze and confer resistance to a range of β-lactam antibiotics. Wild-type β-lactamases IMP-1 and IMP-10 and mutants IMP-1-V67A and IMP-1-V67I were characterized biophysically and biochemically, and MICs for Escherichia coli cells expressing these enzymes were determined. We found that all variants exhibited catalytic efficiencies (kcat/Km) equal to or higher than that of IMP-1 against all tested β-lactams except penicillins, against which IMP-1 and IMP-1-V67I showed the highest kcat/Km values. The substrate-specific effects of the different amino acid substitutions at position 67 are discussed in light of their side chain structures and possible interactions with the substrates. Docking calculations were employed to investigate interactions between different side chains and an inhibitor used as a β-lactam surrogate. The differences in binding affinities determined experimentally and computationally seem to be governed by hydrophobic interactions between residue 67 and the inhibitor and, by inference, the β-lactam substrates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.