NASA Astrophysics Data System (ADS)
Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.
2014-06-01
High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Boeing Delta II rocket arrives at the top of the mobile service tower. The element will be mated to the Delta II, which will launch NASAs Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Temperature Map This image composite shows comet Tempel 1 in visible (left) and infrared (right) light (figure 1). The infrared picture highlights the warm, or sunlit, side of the comet, where NASA's Deep Impact probe later hit. These data were acquired about six minutes before impact. The visible image was taken by the medium-resolution camera on the mission's flyby spacecraft, and the infrared data were acquired by the flyby craft's infrared spectrometer.NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a crane begins lifting the third in a set of three Solid Rocket Boosters (SRBs). The SRBs will be hoisted up the mobile service tower and join three others already mated to the Boeing Delta II rocket that will launch the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
Lunar impact basins and crustal heterogeneity - New western limb and far side data from Galileo
NASA Technical Reports Server (NTRS)
Belton, Michael J. S.; Head, James W., III; Pieters, Carle M.; Greeley, Ronald; Mcewen, Alfred S.; Neukum, Gerhard; Klaasen, Kenneth P.; Anger, Clifford D.; Carr, Michael H.; Chapman, Clark R.
1992-01-01
Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (greater than 2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials. These features suggest that the impact may have penetrated into the deep crust or lunar mantle or that the basin contains ancient mare basalts that were later covered by highlands ejecta.
Lunar impact basins and crustal heterogeneity: New western limb and far side data from galileo
Belton, M.J.S.; Head, J. W.; Pieters, C.M.; Greeley, R.; McEwen, A.S.; Neukum, G.; Klaasen, K.P.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Gierasch, P.J.; Greenberg, R.; Ingersoll, A.P.; Johnson, T.; Paczkowski, B.; Pilcher, C.B.; Veverka, J.
1992-01-01
Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (>2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials. These features suggest that the impact may have penetrated into the deep crust or lunar mantle or that the basin contains ancient mare basalts that were later covered by highlands ejecta.
Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.
Heins, P; Hartigan, M; Low, S; Chace, R
1989-01-01
The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)
Walston, Steve; Quick, Allison M; Kuhn, Karla; Rong, Yi
2017-02-01
To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V 20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.
1996-11-01
and has determined a finding of no significant impact (FONSI). The selected Syracuse Inner Harbor dredging plan would allow the New York State Canal...Facility (CDF) UDS 5-19. The proposed plan calls for a 60 foot bottom wide channel, 10 feet deep, 3H (height): 1 (vertical) side slopes, with only the...sediments in an urban environment. The selected Syracuse Inner Harbor dredging plan would allow the New York State Canal Corporation to dredge the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli
2006-11-15
Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors onmore » the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI {>=}25 kg/m{sup 2} compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI {>=}25 kg/m{sup 2} may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT-induced perfusion defects.« less
Looking Back at a Job Well Done
NASA Technical Reports Server (NTRS)
2005-01-01
This image shows the view from Deep Impact's flyby spacecraft as it turned back to look at comet Tempel 1. Fifty minutes earlier, the spacecraft's probe was run over by the comet. That collision kicked up plumes of ejected material, seen here streaming away from the back side of the comet. This image was taken by the flyby craft's high-resolution camera.DeepMeSH: deep semantic representation for improving large-scale MeSH indexing.
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-06-15
Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the 'learning to rank' framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. The software is available upon request. zhusf@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
Peng, Shengwen; You, Ronghui; Wang, Hongning; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng
2016-01-01
Motivation: Medical Subject Headings (MeSH) indexing, which is to assign a set of MeSH main headings to citations, is crucial for many important tasks in biomedical text mining and information retrieval. Large-scale MeSH indexing has two challenging aspects: the citation side and MeSH side. For the citation side, all existing methods, including Medical Text Indexer (MTI) by National Library of Medicine and the state-of-the-art method, MeSHLabeler, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. Methods: We propose DeepMeSH that incorporates deep semantic information for large-scale MeSH indexing. It addresses the two challenges in both citation and MeSH sides. The citation side challenge is solved by a new deep semantic representation, D2V-TFIDF, which concatenates both sparse and dense semantic representations. The MeSH side challenge is solved by using the ‘learning to rank’ framework of MeSHLabeler, which integrates various types of evidence generated from the new semantic representation. Results: DeepMeSH achieved a Micro F-measure of 0.6323, 2% higher than 0.6218 of MeSHLabeler and 12% higher than 0.5637 of MTI, for BioASQ3 challenge data with 6000 citations. Availability and Implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307646
NASA Astrophysics Data System (ADS)
Truscott, Tadd; Hurd, Randy; Belden, Jesse; Speirs, Nathan; Merritt, Andrew; Allen, John
2017-11-01
Female musicians from the northern islands of Vanuatu (within larger Polynesia) use the water surface as an instrument to create a variety of unique sounds. Water music is often made by a line of performers standing side by side, waist deep in clear island waters. Accompanied by singing, the women work in unison exhibiting several percussive techniques, which include striking the water surface and throwing handfuls of water which scatter into droplets before impacting the surface. Each interaction produces a unique acoustic response corresponding to the air-water-hand interaction. We highlight the connection between water interaction, cavity shape and the resulting sound which was discovered by these people through their own experimentation.
Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey
2007-01-01
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.
The treatment of Parkinson's disease with deep brain stimulation: current issues.
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-07-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.
Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Hylander, William L
2007-04-01
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.
The treatment of Parkinson's disease with deep brain stimulation: current issues
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-01-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809
Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas
Gibson, T.G.; Schlee, J.
1967-01-01
In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.
NASA Technical Reports Server (NTRS)
Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian;
2015-01-01
In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.
Broadhurst, Matt K.; Sterling, David J.; Millar, Russell B.
2014-01-01
The effects of reducing mesh size while concomitantly varying the side taper and wing depth of a generic penaeid-trawl body were investigated to improve engineering performance and minimize bycatch. Five trawl bodies (with the same codends) were tested across various environmental (e.g. depth and current) and biological (e.g. species and sizes) conditions. The first trawl body comprised 41-mm mesh and represented conventional designs (termed the ‘41 long deep-wing'), while the remaining trawl bodies were made from 32-mm mesh and differed only in their side tapers, and therefore length (i.e. 1N3B or ‘long’ and ∼28o to the tow direction vs 1N5B or ‘short’ and ∼35o) and wing depths (‘deep’–97 T vs ‘shallow’–60 T). There were incremental drag reductions (and therefore fuel savings – by up to 18 and 12% per h and ha trawled) associated with reducing twine area via either modification, and subsequently minimizing otter-board area in attempts to standardize spread. Side taper and wing depth had interactive and varied effects on species selectivity, but compared to the conventional 41 long deep-wing trawl, the 32 short shallow-wing trawl (i.e. the least twine area) reduced the total bycatch by 57% (attributed to more fish swimming forward and escaping). In most cases, all small-meshed trawls also caught more smaller school prawns Metapenaeus macleayi but to decrease this effect it should be possible to increase mesh size slightly, while still maintaining the above engineering benefits and species selectivity. The results support precisely optimizing mesh size as a precursor to any other anterior penaeid-trawl modifications designed to improve environmental performance. PMID:24911786
Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.
Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi
2017-06-01
Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.
Beheshti, Mohammadali; Nayyar, Sachin; Magtibay, Karl; Massé, Stéphane; Porta-Sanchez, Andreu; Haldar, Shouvik; Bhaskaran, Abhishek; Vigmond, Edward; Nanthakumar, Kumaraswamy
2018-05-28
Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of extrastimuli has a small additional decremental effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
Existing Whole-House Solutions Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-12-01
This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy retrofit. New HVAC and extensive insulation upgrades including rigid XPS and new siding over the old lead painted siding, and EPS on the basement walls and in cathedral ceiling helped bring HERS down to 68.
Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z
2015-05-01
This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume coverage and organs at risks. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Influence of asymmetrical drawing radius deviation in micro deep drawing
NASA Astrophysics Data System (ADS)
Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.
2017-09-01
Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.
3. VIEW ACROSS FOOTBRIDGE OVER DEEP LOCK, SHOWING NORTHWEST AND ...
3. VIEW ACROSS FOOTBRIDGE OVER DEEP LOCK, SHOWING NORTHWEST AND SOUTHWEST SIDES - Delaware & Raritan Canal, Locktender's House, North of Hamilton, East of George & East of Pumping Station, New Brunswick, Middlesex County, NJ
A new vision for fusion energy research: Fusion rocket engines for planetary defense
Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...
2015-11-16
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
A new vision for fusion energy research: Fusion rocket engines for planetary defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, G. A.; Weber, T. E.; Turchi, P. J.
Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.
Inferior Vena Cava Filter from Left-Sided Superior Vena Cava
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Sujit, E-mail: drsnnair@hotmail.com; Ettles, Duncan; Robinson, Graham
We describe the unusual case of a 71-year-old male with a history of deep vein thrombosis and recurrent multiple pulmonary embolism (PE) despite adequate anticoagulation. Computed tomography (CT) and brachiocephalic venography revealed a left-sided superior vena cava. We describe successful placement of an inferior vena cava filter via a left-sided superior vena cava.
Quality Improvement Initiatives in Colorectal Surgery: Value of Physician Feedback.
Waters, Joshua A; Francone, Todd; Marcello, Peter W; Roberts, Patricia L; Schoetz, David J; Read, Thomas E; Stafford, Caitlin; Ricciardi, Rocco
2017-02-01
The impact of process improvement through surgeon feedback on outcomes is unclear. We sought to evaluate the effect of biannual surgeon-specific feedback on outcomes and adherence to departmental and Surgical Care Improvement Project process measures on colorectal surgery outcomes. This was a retrospective analysis of prospectively collected 100% capture surgical quality improvement data. This study was conducted at the department of colorectal surgery at a tertiary care teaching hospital from January 2008 through December 2013. Each surgeon was provided with biannual feedback on process adherence and surgeon-specific outcomes of urinary tract infection, deep vein thrombosis, surgical site infection, anastomotic leak, 30-day readmission, reoperation, and mortality. We recorded adherence to Surgical Care Improvement Project process measures and departmentally implemented measures (ie, anastomotic leak testing) as well as surgeon-specific outcomes. We abstracted 7975 operations. There was no difference in demographics, laparoscopy, or blood loss. Adherence to catheter removal increased from 73% to 100% (p < 0.0001), whereas urinary tract infection decreased 52% (p < 0.01). Adherence to thromboprophylaxis administration remained unchanged as did the deep vein thrombosis rate (p = not significant). Adherence to preoperative antibiotic administration increased from 72% to 100% (p < 0.0001), whereas surgical site infection did not change (7.6%-6.6%; p = 0.3). There were 2589 operative encounters with anastomoses. For right-sided anastomoses, the proportion of handsewn anastomoses declined from 19% to 1.5% (p < 0.001). For left-sided anastomoses, without diversion, anastomotic leak testing adherence increased from 88% to 95% (p < 0.01). Overall leak rate decreased from 5.2% to 2.9% (p < 0.05). Concurrent process changes make isolation of the impact from individual process improvement changes challenging. Nearly complete adherence to process measures for deep vein thrombosis and surgical site infection did not lead to measureable outcomes improvement. Process measure adherence was associated with decreased rate of anastomotic leak and urinary tract infection. Biannual surgeon-specific feedback of outcomes was associated with improved process measure adherence and improvement in surgical quality.
Functional Long-Term Outcome after Left- versus Right-Sided Intracerebral Hemorrhage.
Beuscher, Vanessa D; Kuramatsu, Joji B; Gerner, Stefan T; Köhn, Julia; Lücking, Hannes; Kloska, Stephan P; Huttner, Hagen B
2017-01-01
Hemispheric location might influence outcome after intracerebral hemorrhage (ICH). INTERACT suggested higher short-term mortality in right hemispheric ICH, yet statistical imbalances were not addressed. This study aimed at determining the differences in long-term functional outcome in patients with right- vs. left-sided ICH with a priori-defined sub-analysis of lobar vs. deep bleedings. Data from a prospective hospital registry were analyzed including patients with ICH admitted between January 2006 and August 2014. Data were retrieved from institutional databases. Outcome was assessed using the modified Rankin Scale (mRS) score. Outcome measures (long-term mortality and functional outcome at 12 months) were correlated with ICH location and hemisphere, and the imbalances of baseline characteristics were addressed by propensity score matching. A total of 831 patients with supratentorial ICH (429 left and 402 right) were analyzed. Regarding clinical baseline characteristics in the unadjusted overall cohort, there were differences in disfavor of right-sided ICH (antiplatelets: 25.2% in left ICH vs. 34.3% in right ICH; p < 0.01; previous ischemic stroke: 14.7% in left ICH vs. 19.7% in right ICH; p = 0.057; and presence/extent of intraventricular hemorrhage: 45.0% in left ICH vs. 53.0% in right ICH; p = 0.021; Graeb-score: 0 [0-4] in left ICH vs. 1 [0-5] in right ICH; p = 0.017). While there were no differences in mortality and in the proportion of patients with favorable vs. unfavorable outcome (mRS 0-3: 142/375 [37.9%] in left ICH vs. 117/362 [32.3%] in right ICH; p = 0.115), patients with left-sided ICH showed excellent outcome more frequently (mRS 0-1: 64/375 [17.1%] in left ICH vs. 43/362 [11.9%] in right ICH; p = 0.046) in the unadjusted analysis. After adjusting for confounding variables, a well-balanced group of patients (n = 360/hemisphere) was compared showing no differences in long-term functional outcome (mRS 0-3: 36.4% in left ICH vs. 33.9% in right ICH; p = 0.51). Sub-analyses of patients with deep vs. lobar ICH revealed also no differences in outcome measures (mRS 0-3: 53/151 [35.1%] in left deep ICH vs. 53/165 [32.1%] in right deep ICH; p = 0.58). Previously described differences in clinical end points among patients with left- vs. right-hemispheric ICH may be driven by different baseline characteristics rather than by functional deficits emerging from different hemispheric functions affected. After statistical corrections for confounding variables, there was no impact of hemispheric location on functional outcome after ICH. © 2017 S. Karger AG, Basel.
2006-10-19
This image shows NASA Deep Impact spacecraft being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. on July 2, 2005. The spacecraft impactor was released from Deep Impact flyby spacecraft.
Plastic pollution of the Kuril-Kamchatka Trench area (NW pacific)
NASA Astrophysics Data System (ADS)
Fischer, Viola; Elsner, Nikolaus O.; Brenke, Nils; Schwabe, Enrico; Brandt, Angelika
2015-01-01
During the German-Russian expedition KuramBio (Kuril-Kamchatka Biodiversity Studies) to the northwest Pacific Kuril-Kamchatka Trench and its adjacent abyssal plain, we found several kinds and sizes of plastic debris ranging from fishing nets and packaging to microplastic in the sediment of the deep-sea floor. Microplastics were ubiquitous in the smaller fractions of the box corer samples from every station from depths between 4869 and 5766 m. They were found on the abyssal plain and in the sediments of the trench slope on both sides. The amount of microplastics differed between the stations, with lowest concentration of 60 pieces per m2 and highest concentrations of more than 2000 pieces per m2. Around 75% of the microplastics (defined here as particles <1 mm) we isolated from the sediment samples were fibers. Other particles were paint chips or small cracked pieces of unknown origin. The Kuril-Kamchatka Trench area is known for its very rich marine fauna (Zenkevich, 1963). Yet we can only guess how these microplastics accumulated in the deep sea of the Kuril-Kamchatka Trench area and what consequences the microplastic itself and its adsorbed chemicals will have on this very special and rich deep-sea fauna. But we herewith present an evaluation of the different kinds of plastic debris we found, as a documentation of human impact into the deep sea of this region of the Northwest Pacific.
Babis, G C; Sakellariou, V I; Chatziantoniou, A N; Soucacos, P N; Megas, P
2011-12-01
We report the results of 62 hips in 62 patients (17 males, 45 females) with mean age of 62.4 years (37 to 81), who underwent revision of the acetabular component of a total hip replacement due to aseptic loosening between May 2003 and November 2007. All hips had a Paprosky type IIIa acetabular defect. Acetabular revision was undertaken using a Procotyl E cementless oblong implant with modular side plates and a hook combined with impaction allografting. At a mean follow-up of 60.5 months (36 to 94) with no patients lost to follow-up and one died due to unrelated illness, the complication rate was 38.7%. Complications included aseptic loosening (19 hips), deep infection (3 hips), broken hook and side plate (one hip) and a femoral nerve palsy (one hip). Further revision of the acetabular component was required in 18 hips (29.0%) and a further four hips (6.4%) are currently loose and awaiting revision. We observed unacceptably high rates of complication and failure in our group of patients and cannot recommend this implant or technique.
Composite View of Asteroid Braille from Deep Space 1
1999-08-03
The two images on the left hand side of this composite image frame were taken 914 seconds and 932 seconds after the NASA Deep Space 1 encounter with the asteroid 9969 Braille. The image on the right was created by combining the two images on the left.
Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos
NASA Technical Reports Server (NTRS)
Denegre, J. M.; Danilchik, M. V.
1993-01-01
In fertilized eggs of the frog Xenopus, the vegetal yolk mass rotates away from the future dorsal side (J. P. Vincent and J. Gerhart, 1987, Dev. Biol. 123, 526-539), and a major rearrangement of the deep animal hemisphere cytoplasm produces a characteristic swirl in the prospective dorsal side (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). The relationship between this swirl and determination of the dorsal-ventral axis was further investigated by attempting to experimentally separate the positions of the swirl and the dorsal-ventral axis. Eggs were obliquely oriented in the gravity field to respecify the direction of yolk mass rotation and the position of the dorsal-ventral axis. When yolk mass rotation occurred in the absence of a sperm, as in activated eggs, a swirl pattern formed on the side away from which the yolk mass had rotated. In fertilized eggs tipped with the sperm entry point (SEP) down or to the side, swirl patterns were always found to form on the side away from which the yolk mass was displaced. However, in eggs tipped SEP up, in which the yolk mass was forced to rotate away from the SEP, more complicated rearrangements were observed in addition to the rotation-oriented swirl. Because the direction of yolk mass rotation was found to be influenced by both gravity and the actual position of the SEP in obliquely oriented eggs (SEP to the side), such complicated rearrangement patterns may result from opposing forces generated by both yolk mass rotation and the expanding sperm aster. Thus, except in cases in which the influences of SEP position and unit gravity opposed each other, it was not possible to experimentally separate the position of the deep cytoplasmic swirl from the direction of yolk mass rotation, and therefore the position of the prospective dorsal side.
NASA Astrophysics Data System (ADS)
Breitzke, M.; Bialas, J.; Inggas Working Group
A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All deep-towed and laboratory components are synchronized by DGPS time based trigger signals. This deep-towed system will first be tested during the SO162 cruise of RV Sonne (21.2. - 12.3.02) off Peru and Ecuador along profile lines where conventional multi- channel seismic reflection data have already been collected during a fomer cruise.
NASA Astrophysics Data System (ADS)
Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre
2017-04-01
Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.
Mulders, Anne E P; Leentjens, Albert F G; Schruers, Koen; Duits, Annelien; Ackermans, Linda; Temel, Yasin
2017-08-01
Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD. We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects. Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS. Copyright © 2017 Elsevier Inc. All rights reserved.
Jin, Yong-Ming; Godfrey, Donald A; Wang, Jie; Kaltenbach, James A
2006-01-01
Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 55% in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus.
The redistributional impact of Canada's Employment Insurance Program, 1992–2002.
Finnie, Ross; Irvine, Ian
2011-01-01
For a decade or so starting in the early 1990s, Canada’s major income support programs underwent substantial reform. Meanwhile, the economy first lingered in a deep recession and then recovered with a period of strong growth. This paper focuses on how the distributional impact of Employment Insurance (EI) evolved during this period. We find that EI was strongly redistributive throughout the whole period with respect to the earnings of individuals, and somewhat less so for family income. But we also show that the distribution of benefits and contributions changed substantially over time, becoming less redistributive. Somewhat counter-intuitively, both the benefit and contribution sides of the program are shown to be redistributive, even though the contribution structure is regressive. These findings are relevant in the current context, as the economy struggles with a combination of high unemployment and fiscal pressures on government spending.
2014 Summer Series - Brian Lewis - Skimming the Lunar Surface for Science: The LADEE Mission
2014-07-15
On Sept. 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into space. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. With commissioning completed, LADEE lowered periapsis over the sunrise terminator on Nov. 10, and on Nov. 20 lowered apoapsis as well. On April 11, after its primary mission was complete, LADEE performed it's final maneuver, placing it in a very low-altitude orbit that would yield a short period of highly valuable science while guaranteeing impact on the far side of the moon. On April 15, LADEE flew through a four hour lunar eclipse, demonstrating an ability to survive low temperatures and a deep drain on battery systems. LADEE ultimately impacted on the lunar surface between 9:30 pm and 10:22 pm PDT on April 17, 2014.
The Status of Ka-Band Communications for Future Deep Space Missions
NASA Technical Reports Server (NTRS)
Edwards, C.; Deutsch, L.; Gatti, M.; Layland, J.; Perret, J.; Stelzried, C.
1997-01-01
Over the past decade, the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate has invested in a variety of technologies, targeted at both the flight and ground sides of the communications link, with the goal of developing a Ka-band (32 GHz) communications capability for future deep space missions.
Brumbelow, Matthew L; Mueller, Becky C; Arbelaez, Raul A
2015-01-01
The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012-2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test. NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test. Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted. Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.
Skibinska, Izabela; Tomaszewski, Marek; Andrusiewicz, Miroslaw; Urbaniak, Paulina; Czarnecka-Klos, Roza; Shadi, Milud; Kotwicki, Tomasz; Kotwicka, Malgorzata
2016-01-01
Purpose The aim of this study was to detect and assess the estrogen receptor (ESR) coactivator PELP1 expression within human paraspinal skeletal muscles in patients suffering from idiopathic scoliosis. Methods During surgical correction of scoliosis the muscle biopsies harvested in 29 females. Presence of PELP1, ESR1 and ESR2 genes transcripts was studied using RT-qPCR technique while immunohistochemistry and western blot methods were used to detect the PEPL1 protein presence. Results PELP1 expression in deep paraspinal muscles revealed higher than in superficial back muscles (p = 0.005). Positive immunohistochemical staining for PELP1 was observed in the nuclei of the paraspinal muscle cells. Western blot revealed PELP1 protein in all samples. No significant difference in PELP1 expression between the convex and the concave scoliosis side (p>0.05) was found. In deep paraspinal back muscles, a significant correlation between the PELP1 expression level on the concave side and the Cobb angle (r = 0.4; p<0.05) was noted as well as between the PELP1 and ESR1 expression level (r = 0.7; p<0.05) while no correlation between PELP1 and ESR2 expression level was found. Conclusion To our knowledge, three techniques for the first time demonstrated the presence of the PELP1 in paraspinal muscles of patients with idiopathic scoliosis. The PELP1 potential regulatory impact on back muscle function is to be further investigated. PMID:27045366
Experimental Studies on Pressure and Temperature Effects on Deep Dea Organisms.
1980-02-28
SUPPLEMENTARY NOTES Research published in two papers: (a) George, R.Y. 1979. What Adaptive Strategies Promote Immig ration and Speciation in Deep Sea...Environment. Sarsia 64(1-2):61-65. (b) George, R.Y. 1979. Behavorial and 4etabolic Adaptations o Polar and Deep Sea Crustaceans. Bull. Biol. Soc. W ch #3...pages 283-296. 19. KE WORDS (Continue on reverse side If noeemy and Identify by block nuimber) Pressure adaptation , temperature-pressure interaction
Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems
Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo
2014-01-01
Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid
2010-10-01
More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P < .001). For rear passengers, the added protection from side-curtain air bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.
Luo, Xiaoyun; Zhang, Fuxian; Zhang, Changming; Hu, Lu; Feng, Yaping; Liang, Gangzhu; Niu, Luyuan; Zhang, Huan; Cheng, Long; Qi, Haoshan
2015-08-01
To identify the risk factors associated with the severity of pulmonary embolism among patients with deep venous thrombosis of lower extremities. This prospective study enrolled 208 patients with acute deep venous thrombosis to screen for pulmonary embolism between July 2010 and July 2012 in Beijing Shijitan Hospital. There were 101 male and 107 female patients, with a mean age of (59 ± 16) years. Gender, age, extension, side of lower extremities of deep venous thrombosis was analyzed by χ² test. Ordinal Logistic regression was used to determine risk factors associated with severity of pulmonary embolism. There were 83 patients with iliofemoral deep venous thrombosis, 102 patients with femoropopliteal and 23 patients with calf deep venous thrombosis. Pulmonary embolism was detected in 70 patients with the incidence of 33.7%. Pulmonary embolism was significantly correlated with extension (χ² = 17.286, P = 0.004) and sides (χ² = 15.602, P = 0.008) of deep venous thrombosis, not with age (χ² = 7.099, P = 0.260), gender (χ² = 7.014, P = 0.067), thrombotic risk factors (χ² = 3.335, P = 0.345) in univariate analysis. Results of multivariate ordinal logistic regression showed that iliofemoral vein thrombosis (OR = 6.172, 95% CI: 1.590 to 23.975, P = 0.009) and bilateral venous thrombosis (OR = 7.140, 95% CI: 2.406 to 24.730, P = 0.001) are associated with more serious pulmonary embolism. Incidence of pulmonary embolism is still high in patients with deep venous thrombosis. Extensive iliofemoral and bilateral vein thrombosis may increase risk of severity of pulmonary embolism. Clinicians should pay more attention to these high-risk patients.
Li, Fenghe; Wang, Xuehu; Huang, Wen; Ren, Wei; Cheng, Jun; Zhang, Mao; Zhao, Yu
2014-08-01
The aim of our study is to investigate the prevalence of silent pulmonary embolism in patients with deep venous thrombosis in the lower limbs and to evaluate the associated risk factors. A total of 322 patients with acute deep venous thrombosis confirmed by CT venography or Doppler ultrasonography were studied. The diagnosis of silent pulmonary embolism was established by computed tomography pulmonary arteriography (CTPA). The association between covariates and the prevalence of silent pulmonary embolism in patients with deep venous thrombosis in lower limbs were assessed using chi-square test and multivariable regression. The incidence of silent pulmonary embolism was 33.5% (108 in 322 patients) in all patients with deep venous thrombosis in lower limbs. Chi-square test showed male gender, the right lower limb, proximal location of the thrombus, unprovoked venous thrombosis and coexisting heart diseases were related to a higher incidence of silent pulmonary embolism in patients with deep venous thrombosis in lower limbs. The multivariate regression analysis confirmed that the risk factors associated with silent pulmonary embolism in deep venous thrombosis patients included the right side and proximal location of the thrombus (odds ratio: 2.023, 95% CI: 1.215-3.368; odds ratio: 3.610, 95% CI: 1.772-7.354), unprovoked venous thrombosis (odds ratio: 2.037, 95% CI: 1.188-3.493), coexisting heart diseases (odds ratio: 4.507, 95% CI: 2.667-7.618). Silent pulmonary embolism occurred frequently in patients with deep venous thrombosis in lower limbs. The right side, the proximal location of the thrombus, unprovoked venous thrombosis and coexisting heart diseases increased the risk for the occurrence of silent pulmonary embolism. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Technical Reports Server (NTRS)
Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael
2006-01-01
The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.
Driver injury in near- and far-side impacts: Update on the effect of front passenger belt use.
Parenteau, Chantal S; Viano, David C
2018-04-03
This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury. 1997-2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined. Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%). Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.
NASA Technical Reports Server (NTRS)
2005-01-01
Sixty-nine days before it gets up-close-and-personal with a comet, NASA's Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles. The image, taken on April 25, 2005, is the first of many comet portraits Deep Impact will take leading up to its historic comet encounter on July 4.Deep onchocercomata close to the thigh bones of a Liberian patient.
Kilian, H D
1988-12-01
During nodulectomies on a 53 year old Liberian woman, multiple onchocercomata were detected on the femur distal to the greater trochanter on both sides of the body. The nodules were attached to the periosteum. This location along the shaft of the thigh bone provides a further hint as to where clinically undetectable deep onchocercomata can be located.
Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders.
Gallego, Antonio-Javier; Gil, Pablo; Pertusa, Antonio; Fisher, Robert B
2018-03-06
In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft stands out against an early dawn sky. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft is bathed in light waiting for tower rollback before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
1989-08-27
P-34713 This Voyager image of Triton reveals two kinds of mid-latitude terrain. Near the center and the lower half of the frame is a gently rolling terrain pock-marked with a modest number of impact craters. The density of impact craters is somewhat similiar to that found on the mare surface of Earth's moon. Crossing this rolling surface are narrow rifts, one of which grades into a chain of craters that probably are of collapse origin. In the upper right part of the frame is a smooth terrain with very sparse impact craters. This terrain evidently has been formed by flooding of the surface by low-viscosity fluids rather late in geologic time. One of the vents from which these fluids erupted probably is represented by a deep, elongate crater near the middle of the right side of the image. Two slightly dark regions underlain by late eruptive material also occur in the left half of the image. Apparent vents for these eruptions are marked by shallow depressiions, which may have been formed by drain back of material at the end of the eruptive episode.
NASA Technical Reports Server (NTRS)
2005-01-01
JET PROPULSION LABORATORY, CALIF. At Ball Aerospace in Boulder, Colo., the infrared (IR) spectrometer for the Deep Impact flyby spacecraft is inspected in the instrument assembly area in the Fisher Assembly building clean room. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The spectrometer is part of the High Resolution Instrument in the spacecraft. This imager will be aimed at the ejected matter as the crater forms, and an infrared 'fingerprint' of the material from inside of the comet's nucleus will be taken. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.
A conceptual geochemical model of the geothermal system at Surprise Valley, CA
NASA Astrophysics Data System (ADS)
Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick
2018-03-01
Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and groundwater samples collected in proximity to structures that transmit thermal fluids, suggesting the brine may be thermal in nature. On the western side of the valley at the Lake City mud volcano, the deep brine-meteoric water mixture subsequently boils in the shallow subsurface, precipitates calcite, and re-equilibrates at about 130 °C. On the eastern side of the valley, meteoric fluid mixes to a greater extent with the deep brine, cools conductively without boiling, and the composition is modified as dissolved elements are sequestered by secondary minerals that form along the cooling and outflow path at temperatures <130 °C. Re-equilibration of geothermal fluids at lower temperatures during outflow explains why subsurface temperature estimates based on classical geothermometry methods are highly variable, and fail to agree with temperature estimates based on dissolved sulfate-oxygen isotopes and results of classical and multicomponent geothermometry applied to reconstructed deep well fluids. The proposed model is compatible with the idea suggested by others that thermal fluids on the western and eastern side of the valley have a common source, and supports the hypothesis that low temperature re-equilibration during west to east flow is the major control on hot spring fluid compositions, rather than dilution, evaporation, or differences in rock type.
NASA Astrophysics Data System (ADS)
Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin
2017-06-01
Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Inomata, Naoki; Trung, Nguyen Huu; Ono, Takahito
2018-05-01
This work describes the fabrication and evaluation of the Knudsen pump for on-chip vacuum pumping that works based on the principle of a thermal transpiration. Three AFM (atomic force microscope) cantilevers are integrated into small chambers with a size of 5 mm × 3 mm × 0.4 mm for the pump’s evaluation. Knudsen pump is fabricated using deep RIE (reactive ion etching), wet thermal oxidation and anodic bonding processes. The fabricated device is evaluated by monitoring the quality (Q) factor of the integrated cantilevers. The Q factor of the cantilever is increased from 300 -1150 in cases without and with a temperature difference approximately 25 °C between the top (the hot side at 40 °C) and bottom (the cold side at 15 °C) sides of the fabricated device, respectively. The evacuated chamber pressure of around 10 kPa is estimated from the Q factor of the integrated cantilevers.
Bolukbasi, Yasemin; Saglam, Yucel; Selek, Ugur; Topkan, Erkan; Kataria, Anglina; Unal, Zeynep; Alpan, Vildan
2014-01-01
To investigate the objective utility of our clinical routine of reproducible deep-inspiration breath-hold irradiation for left-sided breast cancer patients on reducing cardiac exposure. Free-breathing and reproducible deep-inspiration breath-hold scans were evaluated for our 10 consecutive left-sided breast cancer patients treated with reproducible deep-inspiration breath-hold. The study was based on the adjuvant dose of 50 Gy in 25 fractions of 2 Gy/fraction. Both inverse and forward intensity-modulated radiotherapy plans were generated for each computed tomography dataset. Reproducible deep-inspiration breath-hold plans with forward intensity-modulated radiotherapy significantly spared the heart and left anterior descending artery compared to generated free-breathing plans based on mean doses - free-breathing vs reproducible deep-inspiration breath-hold, left ventricle (296.1 vs 94.5 cGy, P = 0.005), right ventricle (158.3 vs 59.2 cGy, P = 0.005), left anterior descending artery (171.1 vs 78.1 cGy, P = 0.005), and whole heart (173.9 vs 66 cGy, P = 0.005), heart V20 (2.2% vs 0%, P = 0.007) and heart V10 (4.2% vs 0.3%, P = 0.007) - whereas they revealed no additional burden on the ipsilateral lung. Reproducible deep-inspiration breath-hold and free-breathing plans with inverse intensity-modulated radiotherapy provided similar organ at risk sparing by reducing the mean doses to the left ventricle, left anterior descending artery, heart, V10-V20 of the heart and right ventricle. However, forward intensity-modulated radiotherapy showed significant reduction in doses to the left ventricle, left anterior descending artery, heart, right ventricle, and contralateral breast (mean dose, 248.9 to 12.3 cGy, P = 0.005). The mean doses for free-breathing vs reproducible deep-inspiration breath-hold of the proximal left anterior descending artery were 1.78 vs 1.08 Gy and of the distal left anterior descending artery were 8.11 vs 3.89 Gy, whereas mean distances to the 50 Gy isodose line of the proximal left anterior descending artery were 6.6 vs 3.3 cm and of the distal left anterior descending artery were 7.4 vs 4.1 cm, with forward intensity-modulated radiotherapy. Overall reduction in mean doses to proximal and distal left anterior descending artery with deep-inspiration breath-hold irradiation was 39% (P = 0.02) and 52% (P = 0.002), respectively. We found a significant reduction of radiation exposure to the contralateral breast, left and right ventricles, as well as of proximal and especially distal left anterior descending artery with the deep-inspiration breath-hold technique with forward intensity-modulated radiotherapy planning.
The Vertical Profile of Ocean Mixing
NASA Astrophysics Data System (ADS)
Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.
2014-12-01
The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.
Deep Laser-Assisted Lamellar Anterior Keratoplasty with Microkeratome-Cut Grafts
Yokogawa, Hideaki; Tang, Maolong; Li, Yan; Liu, Liang; Chamberlain, Winston; Huang, David
2016-01-01
Background The goals of this laboratory study were to evaluate the interface quality in laser-assisted lamellar anterior keratoplasty (LALAK) with microkeratome-cut grafts, and to achieve good graft–host apposition. Methods Simulated LALAK surgeries were performed on six pairs of eye bank corneoscleral discs. Anterior lamellar grafts were precut with microkeratomes. Deep femtosecond (FS) laser cuts were performed on host corneas followed by excimer laser smoothing. Different parameters of FS laser cuts and excimer laser smoothing were tested. OCT was used to measure corneal pachymetry and evaluate graft-host apposition. The interface quality was quantified in a masked fashion using a 5-point scale based on scanning electron microscopy images. Results Deep FS laser cuts at 226–380 μm resulted in visible ridges on the host bed. Excimer laser smoothing with central ablation depth of 29 μm and saline as a smoothing agent did not adequately reduce ridges (score = 4.0). Deeper excimer laser ablation of 58 μm and Optisol-GS as a smoothing agent smoothed ridges to an acceptable level (score = 2.1). Same sizing of the graft and host cut diameters with an approximately 50 μm deeper host side-cut relative to the central graft thickness provided the best graft–host fit. Conclusions Deep excimer laser ablation with a viscous smoothing agent was needed to remove ridges after deep FS lamellar cuts. The host side cut should be deep enough to accommodate thicker graft peripheral thickness compared to the center. This LALAK design provides smooth lamellar interfaces, moderately thick grafts, and good graft-host fits. PMID:26890667
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Wang, Xufeng; Fan, Gangwei; Zhang, Dongsheng; Jianbin, Cui
2018-06-01
There is a perception that deep roadways are difficult to maintain. To reverse this and to improve the recovery rate of coal resources, gob-side entry driving is widely used in coal mines, especially deep-mining coal mines, in China. Determination of the reasonable pillar size through in situ observation and experimentation plays a vital role for roadway maintenance. Based on the geological conditions of Pingmei No.6 coal seam, a theoretical analysis, numerical simulation, and industrial experiments are carried out to calculate the reasonable width of chain pillars, analyze the lateral support stress distribution law near the gob side, investigate the relationship between the coal pillar stress distribution, roadway surrounding rock stress distribution, roadway surrounding rock deformation and the coal pillar width. The results indicate that 5 m wide coal pillars can ensure that the chain pillars are at a lower stress level and the deformation of roadway surrounding rock is in a more reasonable range. Industrial experiments show that when the chain pillar width is 5 m, the deformation of roadway surrounding rock can meet the requirements of working face safe production. The numerical results agreed well with field measurement and observations, and the industrial experiments results further validated the results of the numerical simulation.
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake.
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-09-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10(-8) m/s²), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately -1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth's surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution.
Deep-level stereoscopic multiple traps of acoustic vortices
NASA Astrophysics Data System (ADS)
Li, Yuzhi; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong
2017-04-01
Based on the radiation pattern of a planar piston transducer, the mechanisms underlying the generation of axially controllable deep-level stereoscopic multiple traps of acoustic vortices (AV) using sparse directional sources were proposed with explicit formulae. Numerical simulations for the axial and cross-sectional distributions of acoustic pressure and phase were conducted for various ka (product of the wave number and the radius of transducer) values at the frequency of 1 MHz. It was demonstrated that, for bigger ka, besides the main-AV (M-AV) generated by the main lobes of the sources, cone-shaped side-AV (S-AV) produced by the side lobes were closer to the source plane at a relatively lower pressure. Corresponding to the radiation angles of pressure nulls between the main lobe and the side lobes of the sources, vortex valleys with nearly pressure zero could be generated on the central axis to form multiple traps, based on Gor'kov potential theory. The number and locations of vortex valleys could be controlled accurately by the adjustment of ka. With the established eight-source AV generation system, the existence of the axially controllable multiple traps was verified by the measured M-AV and S-AVs as well as the corresponding vortex valleys. The favorable results provided the feasibility of deep-level stereoscopic control of AV and suggested potential application of multiple traps for particle manipulation in the area of biomedical engineering.
Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip
2014-01-01
Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p < 0.0001). Distance of the insertion of side branches from the ligature significantly determines thrombus weight (r2 = 0.5597, p < 0.0001) and length (r2 = 0.5441, p < 0.0001) in the IVC, regardless of the flow measured by pw-Doppler with distances <1.5 mm drastically impairing thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., shadows paint the Boeing Delta II rocket carrying the Deep Impact spacecraft as the mobile service tower at left is rolled back before launch.Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft looms into the night sky as the mobile service tower at right is rolled back before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II carrying the Deep Impact spacecraft rocket shines under spotlights in the early dawn hours as it waits for launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Top tether effectiveness during side impacts.
Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok
2018-02-28
Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The reflective insulation is designed to protect the spacecraft as this side faces the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Deep Space 1 rests on its work platform after being fitted with thermal insulation. The dark insulation is designed to protect the side of the spacecraft that faces away from the sun. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Modeling occupants in far-side impacts.
Douglas, Clay; Fildes, Brian; Gibson, Tom
2011-10-01
Far-side impacts are not part of any regulated NCAP, FMVSS, or similar test regime despite accounting for 43 percent of the seriously injured persons and 30 percent of the harm in U.S. side impact crashes. Furthermore, injuries to the head and thorax account for over half of the serious injuries sustained by occupants in far-side crashes. Despite this, there is no regulated or well-accepted anthropomorphic test device (ATD) or computer model available to investigate far-side impacts. As such, this presents an opportunity to assess a computer model that can be used to measure the effect of varying restraint parameters on occupant biomechanics in far-side impacts. This study sets out to demonstrate the modified TASS human facet model's (MOTHMO) capabilities in modeling whole-body response in far-side impacts. MOTHMO's dynamic response was compared to that of postmortem human subjects (PMHS), WorldSID, and Thor-NT in a series of far-side sled tests. The advantages, disadvantages, and differences of using MOTHMO compared to ATDs were highlighted and described in terms of model design and instrumentation. Potential applications and improvements for MOTHMO were also recommended. The results showed that MOTHMO is capable of replicating the seat belt-to-shoulder complex interaction, pelvis impacts, head displacement, neck and shoulder belt loading from inboard mounted belts, and impacts from multiple directions. Overall, the model performed better than Thor-NT and at least as well as WorldSID when compared to PMHS results. Though WorldSID and Thor-NT ATDs were capable of reproducing many of these impact loads, measuring the seat belt-to-shoulder complex interaction and thoracic deflection at multiple sites and directions was less accurately handled. This study demonstrated that MOTHMO is capable of modeling whole-body response in far-side impacts. Furthermore, MOTHMO can be used as a virtual design tool to explore the effect of varying restraint parameters on occupant kinematics in far-side crash configurations.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.
2017-12-01
The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.
Cervantes, Francisco; Correa, Juan-Gonzalo; Pérez, Isabel; García-Gutiérrez, Valentín; Redondo, Sara; Colomer, Dolors; Jiménez-Velasco, Antonio; Steegmann, Juan-Luis; Sánchez-Guijo, Fermín; Ferrer-Marín, Francisca; Pereira, Arturo; Osorio, Santiago
2017-01-01
To determine whether a lower imatinib dose could minimize toxicity while maintaining the molecular response (MR), imatinib dose was reduced to 300 mg daily in 43 patients with chronic myeloid leukemia (CML) in sustained deep molecular response to first-line imatinib 400 mg daily. At the time of dose reduction, median duration of the deep response was 4.1 (interquartile range (IQR) 2.2-5.9) years; molecular response was MR 4 , MR 4.5 , and MR 5 of the international scale in 6, 28, and 9 patients, respectively. Toxicity grade was 1, 2, and 3 in 28, 8, and 1 patients, respectively; 6 patients underwent dose reduction without having side effects. With a median of 1.6 (IQR 0.7-3.2) years on imatinib 300 mg daily, only one patient lost the deep molecular response to MR 3 . At the last follow-up, response was MR 3 , MR 4 , MR 4.5 , and MR 5 in 1, 3, 9, and 30 patients, respectively. Toxicity improvement was observed in 23 (62.2 %) of the 37 patients with side effects, decreasing to grade 0 in 20 of them. All but one anemic patients improved (p = 0.01), the median Hb increase in this subgroup of patients being 1 g/dL. In CML patients with sustained deep response to the standard imatinib dose, reducing to 300 mg daily significantly improves tolerability and preserves efficacy.
High biodiversity on a deep-water reef in the eastern Fram Strait.
Meyer, Kirstin S; Soltwedel, Thomas; Bergmann, Melanie
2014-01-01
We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796-2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m(-2) and 418.1±49.6 individuals m(-2) on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m(-2) (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water.
Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders
2018-01-01
In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed. PMID:29509720
Impact Flash Monitoring Facility on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Needham, D. H.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.; Kring, D. A.; Neal, C. R.; Fassett, C. I.
2018-02-01
Cameras mounted to the Deep Space Gateway exterior will detect flashes caused by impacts on the lunar surface. Observed flashes will help constrain the current lunar impact flux and assess hazards faced by crews living and working in cislunar space.
Systems for deep brain stimulation: review of technical features.
Amon, A; Alesch, F
2017-09-01
The use of deep brain stimulation (DBS) is an important treatment option for movement disorders and other medical conditions. Today, three major manufacturers provide implantable systems for DBS. Although the underlying principle is basically the same for all available systems, the differences in the technical features vary considerably. This article outlines aspects regarding the technical features of DBS systems. The differences between voltage and current sources are addressed and their effect on stimulation is shown. To maintain clinical benefit and minimize side effects the stimulation field has to be adapted to the requirements of the patient. Shaping of the stimulation field can be achieved by the electrode design and polarity configuration. Furthermore, the electric signal consisting of stimulation rate, stimulation amplitude and pulse width affect the stimulation field. Interleaving stimulation is an additional concept, which permits improved treatment outcomes. Therefore, the electrode design, the polarity, the electric signal, and the concept of interleaving stimulation are presented. The investigated systems can be also categorized as rechargeable and non-rechargeable, which is briefly discussed. Options for interconnecting different system components from various manufacturers are presented. The present paper summarizes the technical features and their combination possibilities, which can have a major impact on the therapeutic effect.
Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation
NASA Astrophysics Data System (ADS)
Baumgarten, C.; Zhao, Y.; Sauleau, P.; Malrain, C.; Jannin, P.; Haegelen, C.
2016-03-01
Deep brain stimulation of the medial globus pallidus is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The lack of side-effect predictive model leads the neurologist to secure an optimal electrode placement by iterating clinical testing on an awake patient during the surgical procedure. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning based method called PyMAN (for Pyramidal tract side effect Model based on Artificial Neural network) that accounted for the current of the stimulation, the 3D electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the medial globus pallidus have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was .78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Lateral impact injuries with side airbag deployments—A descriptive study
Yoganandan, Narayan; Pintar, Frank A.; Zhang, Jiangyue; Gennarelli, Thomas A.
2006-01-01
The present study was designed to provide descriptive data on side impact injuries in vehicles equipped with side airbags using the United States National Automotive Sampling System (NASS). The database was queried with the constraint that all vehicles must adhere to the Federal Motor Vehicle Safety Standards FMVSS 214, injured occupants be in the front outboard seats with no rollovers or ejections, and side impacts airbags be deployed in lateral crashes. Out of the 7812 crashes in the 1997–2004 weighted NASS files, AIS ≥ 2 level injuries occurred to 5071 occupants. There were 3828 cases of torso-only airbags, 955 cases of torso–head bag combination, and 288 inflatable tubular structure/curtain systems. Side airbags were not attributed to be the cause of head or chest injury to any occupant at this level of severity. The predominance of torso-only airbags followed by torso–head airbag combination reflected vehicle model years and changing technology. Head and chest injuries were coupled for the vast majority of occupants with injuries to more than one body region. Comparing literature data for side impacts without side airbag deployments, the presence of a side airbag decreased AIS = 2 head, chest, and extremity injuries when examining raw data incidence rates. Although this is the first study to adopt strict inclusion–exclusion criteria for side crashes with side airbag deployments, future studies are needed to assess side airbag efficacy using datasets such as matched-pair occupants in side impacts. PMID:16911812
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. From a vantage point above, a worker observes the Deep Impact spacecraft exposed after removal of the canister and protective cover. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Astrophysics Data System (ADS)
Oebius, Horst U.; Becker, Hermann J.; Rolinski, Susanne; Jankowski, Jacek A.
The evaluation of marine environmental impacts resulting from the exploitation of marine resources requires the numerical description, parametrization, and modelling of such processes in order to be able to transfer, compare, and forecast the effects of anthropogenic activities in the deep sea. One of the controversial effects is the formation and behaviour of sediment clouds as a consequence of anthropogenic activities on the seafloor. Since there is a need for reliable data, two subprojects of the "Interdisciplinary Deep-sea Environmental Protection Group (TUSCH)"-project "Impacts from Technical Activities on the Deep-Sea Ecosystem of the South East Pacific Offshore Peru (ATESEPP)" were devoted to the assembly of such data. Based on the German technical approach for deep-sea mining, the possible environmental impacts by a miner were estimated, the impacts on the seafloor were simulated and investigated by tests with large volume undisturbed sediment samples on board the research vessel and in the laboratory, and the results were evaluated and extrapolated. This report gives a comprehensive presentation of the physical problems, the technical approach, and the results of these investigations.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a second Solid Rocket Booster (SRB) is raised off a transporter to be lifted up the mobile service tower. It will be attached to the Boeing Delta II launch vehicle for launch of the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact project management is handled by the Jet Propulsion Laboratory in Pasadena, Calif. The spacecraft is scheduled to launch Dec. 30, 2004.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is mated to the Boeing Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the partly enclosed Deep Impact spacecraft (background) waits while the second half of the fairing (foreground left) moves toward it. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved toward the Deep Impact spacecraft for installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Boeing technicians at Astrotech Space Operations in Titusville, Fla., prepare the third stage of a Delta II rocket for mating with the Deep Impact spacecraft. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., workers attach the two halves of the fairing around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Deep Impact Spacecraft Collides With Comet Tempel 1 (Video)
NASA Technical Reports Server (NTRS)
2005-01-01
After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. Comprised of images taken by the targeting sensor aboard the impactor probe, this movie shows the spacecraft approaching the comet up to just seconds before impact. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator for Deep Impact, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)
Ecological impacts of large-scale disposal of mining waste in the deep sea
Hughes, David J.; Shimmield, Tracy M.; Black, Kenneth D.; Howe, John A.
2015-01-01
Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800–2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution. PMID:25939397
Ecological impacts of large-scale disposal of mining waste in the deep sea.
Hughes, David J; Shimmield, Tracy M; Black, Kenneth D; Howe, John A
2015-05-05
Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800-2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution.
Hamani, Clement; Lozano, Andres M.; Mazzone, Paolo A.M.; Moro, Elena; Hutchison, William; Silburn, Peter A.; Zrinzo, Ludvic; Alam, Mesbah; Goetz, Laurent; Pereira, Erlick; Rughani, Anand; Thevathasan, Wesley; Aziz, Tipu; Bloem, Bastiaan R.; Brown, Peter; Chabardes, Stephan; Coyne, Terry; Foote, Kelly; Garcia-Rill, Edgar; Hirsch, Etienne C.; Okun, Michael S.; Krauss, Joachim K.
2017-01-01
The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss short-comings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS. PMID:27728909
49 CFR 572.191 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test Dummy... the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in drawing 180-0000...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash Test... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test Dummy... the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in drawing 180-0000...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test... test sensors for the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in...
49 CFR 572.181 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash Test Dummy, 50th Percentile Adult Male § 572.181 General description. (a) The ES-2re Side Impact Crash... (PADI) of the ES-2re Side Impact Crash Test Dummy, February 2008, incorporated by reference, see § 572...
49 CFR 572.191 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy, Small Adult Female § 572.191 General description. (a) The SID-IIsD Side Impact Crash Test... test sensors for the SID-IIsD Side Impact Crash Test Dummy, 5th percentile adult female, is shown in...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Ball Aerospace in Boulder, Colo., the impactor on the Deep Impact spacecraft is tested. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.
Orzechowski, Kelly M; Edgerton, Elizabeth A; Bulas, Dorothy I; McLaughlin, Patrick M; Eichelberger, Martin R
2003-06-01
Injury patterns among children in frontal collisions have been well documented, but little information exists regarding injuries to children in side impact collisions. Restrained children 14-years-old or younger admitted to the hospital for crash injuries were analyzed. Data concerning injuries, medical treatment, and outcome were correlated with crash data. Case reviews achieved consensus regarding injury contact points. Side impacts were compared with frontal impacts. These results were then compared with data from the National Automotive Sampling System. There were no differences between the groups with respect to age, sex, restraint type, or seat position. Compared with frontal crashes, children in side impacts were more likely to have an Injury Severity Score > 15 (odds ratio [OR], 3.1; 95% confidence interval [CI], 1.7-5.8) and were more likely to have Abbreviated Injury Scale score 2+ injuries to the head (OR, 2.5; 95% CI, 1.4-4.4), chest (OR, 4.0; 95% CI, 2.0-8.0), and cervical spine (OR, 3.7; 95% CI, 1.2-11.3). When compared with National Automotive Sampling System data, similar trends were seen regarding Abbreviated Injury Scale score 2+ injuries to the head, chest, and extremities. In this study population, side impacts resulted in more injuries to the head, cervical spine, and chest. Knowledge of this pattern-the side impact syndrome-can help guide diagnosis, treatment, and prevention strategy.
Mangi, Stephen C; Kenny, Andrew; Readdy, Lisa; Posen, Paulette; Ribeiro-Santos, Ana; Neat, Francis C; Burns, Finlay
2016-08-15
Economic impact assessment methodology was applied to UK fisheries data to better understand the implications of European Commission proposal for regulations to fishing for deep-sea stocks in the North-East Atlantic (EC COM 371 Final 2012) under the Common Fisheries Policy (CFP). The aim was to inform the on-going debate to develop the EC proposal, and to assist the UK fishing industry and Government in evaluating the most effective options to manage deep sea fish stocks. Results indicate that enforcing the EC proposal as originally drafted results in a number of implications for the UK fleet. Because of the proposed changes to the list of species defined as being deep sea species, and a new definition of what constitutes a vessel targeting deep sea species, a total of 695 active UK fishing vessels would need a permit to fish for deep sea species. However, due to existing and capped capacity limits many vessels would potentially not be able to obtain such a permit. The economic impact of these changes from the status quo reveals that in the short term, landings would decrease by 6540 tonnes, reducing gross value added by £3.3 million. Alternative options were also assessed that provide mitigation measures to offset the impacts of the proposed regulations whilst at the same time providing more effective protection of deep sea Vulnerable Marine Ecosystems (VMEs). The options include setting a 400m depth rule that identifies a depth beyond which vessels would potentially be classified as fishing for deep sea species and designating 'core areas' for deep sea fishing at depths>400m to minimise the risk of further impacts of bottom fishing gear on deep sea habitats. Applying a 400m depth limit and 'core fishing' area approach deeper than 400m, the impact of the EC proposal would essentially be reduced to zero, that is, on average no vessels (using the status quo capacity baseline) would be impacted by the proposal. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
Impacts on the deep-sea ecosystem by a severe coastal storm.
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-01-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. PMID:27598158
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES SID-IIsD Side Impact Crash Test Dummy... impacted side removed. The dummy is equipped with a lower spine laterally oriented accelerometer as... side of the seated dummy tangent to a vertical plane located within 10 mm of the side edge of the bench...
Maxillary sinus volume in patients with impacted canines.
Oz, Aslihan Zeynep; Oz, Abdullah Alper; El, Hakan; Palomo, Juan Martin
2017-01-01
To evaluate the maxillary sinus volumes in unilaterally impacted canine patients and to compare the volumetric changes that occur after the eruption of canines to the dental arch using cone beam computed tomography (CBCT). Pre- (T0) and posttreatment (T1) CBCT records of 30 patients were used to calculate maxillary sinus volumes between the impacted and erupted canine sides. The InVivoDental 5.0 program was used to measure the volume of the maxillary sinuses. The distance from impacted canine cusp tip to the target point on the palatal plane was also measured. Right maxillary sinus volume was statistically significantly smaller compared to that of the left maxillary sinus when the canine was impacted on the right side at T0. According to the T1 measurements there was no significant difference between the mean volumes of the impaction side and the contralateral side. The distance from the canine tip to its target point on the palatal plane were 17.17 mm, and the distance from the tip to the target point was 15.14 mm for the left- and right-side impacted canines, respectively, and there was a significant difference between the mean amount of change of both sides of maxillary sinuses after treatment of impacted canines. Orthodontic treatment of impacted canines created a significant increase in maxillary sinus volume when the impacted canines were closer with respect to the maxillary sinus.
Speaker emotion recognition: from classical classifiers to deep neural networks
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2018-04-01
Speaker emotion recognition is considered among the most challenging tasks in recent years. In fact, automatic systems for security, medicine or education can be improved when considering the speech affective state. In this paper, a twofold approach for speech emotion classification is proposed. At the first side, a relevant set of features is adopted, and then at the second one, numerous supervised training techniques, involving classic methods as well as deep learning, are experimented. Experimental results indicate that deep architecture can improve classification performance on two affective databases, the Berlin Dataset of Emotional Speech and the SAVEE Dataset Surrey Audio-Visual Expressed Emotion.
2005-04-27
Taken on April 25, 2005, sixty-nine days before it gets up-close-and-personal with a comet, NASA Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. From the nearby Press Site at Cape Canaveral Air Force Station, Fla., photographers capture the exciting launch of the Deep Impact spacecraft at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Engulfed by flames and smoke, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. With a burst of flames, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill
Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.
2014-01-01
The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.
Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities
Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra
2016-01-01
Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.
What to Expect After Heart Surgery
... medicines will be provided by your nurse or pharmacist before you are discharged. SIDE EFFECTS: It is ... pain when taking in deep breath Skin rash Urinary tract infection: frequent urination, burning with urination, urgency with urination, ...
Deep Impact: 19 gigajoules can make quite an impression
NASA Technical Reports Server (NTRS)
Kubitschek, D.; Bank, T.; Frazier, W.; Blume, W.; Null, G.; Mastrodemos, N.; Synnott, S.
2001-01-01
Deep Impact will impact the comet Tempel-1 on July 4, 2005. The impact event will be clearly visible from small telescopes on Earth, especially in the IR bands. When combined with observations taken from the Flyby spacecraft, this science data set will provide unique insight into the materials and structure within the comet, and the strength of the surface.
NASA Astrophysics Data System (ADS)
Bierlein, Frank P.; Betts, Peter G.
2004-09-01
In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans-lithospheric faults to tap deep-seated metal reservoirs and/or mantle plumbing systems. The approach applied herein demonstrates the value of multi-disciplinary investigations to the critical assessment of long-lived Proterozoic fault systems which, in the absence of methodical analysis, are commonly assumed to represent terrane-bounding sutures.
Stadter, Greg; Grabowski, Jurek G; Burke, Christine; Aldaghlas, Tayseer A; Robinson, Linda; Fakhry, Samir M
2008-12-01
Side impact crashes, the most lethal type, account for 26% of all motor vehicle crashes in the United States. The purpose of this study is to delineate side impact airbag (SIAB) deployment rates, injury rates, and analyze crash factors associated with SIAB deployment and occupant injury. All passenger vehicles equipped with SIABs that were involved in a side impact crash were identified from the National Automotive Sampling System database. Crashes with multiple impacts, ejections, unbelted drivers or rollovers were excluded from the study. The outcome variables of interest were SIAB deployment and driver injury. SIAB deployment was compared in similar crashes to analyze the impact on driver's injury severity score. Other crash factors were also examined to analyze what role they play in SIAB deployment rates and injury rates, such as plane of contact, striking object and Delta-V. The data set for this study contained 247 drivers in near and far side crashes in vehicles with installed SIABs. Overall SIAB deployment was 43% in side impact crashes. A significant factor associated with both the SIAB deployment rate and the driver's injury rate was increased Delta-V. SIABs do not deploy consistently in crashes with a high Delta-V or with a lateral primary direction of force and a front plane of contact. In these two scenarios, further research is warranted on SIAB deployments. With SIAB deployment, it appears drivers are able to sustain a higher Delta-V impact without serious injury.
Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA.
Prasad, Priya; Dalmotas, Dainius; Chouinard, Aline
2015-11-01
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV's), and medium-to-heavy vehicles (MHV's) in the fleet, and the frequency of their interactions with one another in side impacts, were considered. Other factors like, crash severity in terms of closing velocity between two vehicles involved in crash, gender and age of involved drivers in two-vehicle and single vehicle crashes, were also examined. Injury risks in side impacts to drivers and passengers were determined in various circumstances such as near-side, far-side, and single vehicle crashes as a function of crash severity, in terms of estimated closing speed or lateral delta-V. Also injury risks in different pairs of striking and struck cars and LTV's, were estimated. A logistic regression model for studying injury risks in two vehicle crashes was developed. The risk factors included in the model include case and striking vehicles, consisting of cars, SUV's, vans, and pickup trucks, delta-V, damage extent, occupant proximity to the impact side, age and gender of the occupant, and belt use. Results show that car occupants make up the vast majority of serious-to-fatally injured occupants. Injury rates of car occupants in two-vehicle collision are highest when the car is struck by a pickup and lowest when struck by a car. This was the case across all lateral delta-V ranges. Additionally, near-side injury rates are substantially higher than those in far-side impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E.
1991-08-01
Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in themore » area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.« less
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians oversee the final movement of the Deep Impact spacecraft being lowered onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians oversee the final movement of the Deep Impact spacecraft being lowered onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted from its transporter into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is secure in the canister for its move to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians watch as an overhead crane lowers the Deep Impact spacecraft onto the Delta II third stage for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft arrives before dawn at the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. The spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers stand by as the canister is lifted away from the Deep Impact spacecraft. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians watch as an overhead crane lifts the Deep Impact spacecraft, which is being moved for mating to the Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers watch as the protective cover surrounding the Deep Impact spacecraft is lifted away. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach a crane to the Deep Impact spacecraft in order to move it to the Delta II third stage at left for mating. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers begin lowering the Deep Impact spacecraft toward the second stage of the Boeing Delta II launch vehicle below for mating. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers attach the third stage motor, connected to the Deep Impact spacecraft, to the spin table on the second stage of the Boeing Delta II launch vehicle below. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted into the top of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
The Road to Tempel (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Quick Time Movie for PIA02106 The Road to Tempel This animation chronicles the travels of NASA's Deep Impact spacecraft, from its launch in January of 2005 to its dramatic impact 172 days later with comet Tempel 1. The times listed below were updated on July 2, 2005, and differ from those referred to in the animation. The final phase of the mission, called the encounter phase, includes two targeting maneuvers, the last of which occurs at 5:07 p.m. Pacific time (8:07 p.m. Eastern time), July 2. Six hours later, the spacecraft releases an impactor into the path of the charging comet. Twelve minutes later, the remaining craft, called the flyby, steers itself away from the comet's path. The free impactor then autonomously fine-tunes its trajectory, with the goal of hitting the sunlit side of Tempel 1. Impact is scheduled to occur at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The flyby spacecraft will watch the collision from the sidelines, snapping pictures up to 13 minutes after impact. At that point, the craft stops taking images and enters a protective mode, in which its shields block dust from the comet's inner coma. Fifty-nine minutes after impact, the flyby turns around for one last photo opportunity.Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron
NASA Astrophysics Data System (ADS)
Hoff, B. W.; Mardahl, P. J.; Gilgenbach, R. M.; Haworth, M. D.; French, D. M.; Lau, Y. Y.; Franzi, M.
2009-09-01
Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron impacts, combined with multiplication of the secondary populations, were determined to be the likely causes of the poor microwave window performance in the original configuration.
Tylko, Suzanne; Bohman, Katarina; Bussières, Alain
2015-11-01
Passenger car side impact crash tests and sled tests were conducted to investigate the influence of booster seats, near-side occupant characteristics and vehicle interiors on the responses of the Q6/Q6s child ATD positioned in the rear, far-side seating location. Data from nine side impact sled tests simulating a EuroNCAP AEMD barrier test were analyzed with data obtained from 44 side impact crash tests. The crash tests included: FMVSS 214 and IIHS MDB, moving car-to-stationary car and moving car-to-moving car. A Q6 or prototype Q6s ATD was seated on the far-side, using a variety of low and high back booster seats. Head and chest responses were recorded and ATD motions were tracked with high-speed videos. The vehicle lateral accelerations resulting from MDB tests were characterized by a much earlier and more rapid rise to peak than in tests where the bullet was another car. The near-side seating position was occupied by a Hybrid III 10-year-old ATD in the sled tests, and a rear or front facing child restraint or a 5th percentile side impact ATD in the crash tests. Head impacts occurred more frequently in vehicles where a forward facing child restraint was present behind the driver seat for both the low and high back booster seats. Pretensioners were found to reduce lateral head displacements in all sled test configurations but the greatest reduction in lateral excursion was obtained with a high back booster seat secured with LATCH and tested in combination with pretensioners.
Discoveries and Conservation Efforts of Extensive Deep-Sea Coral Habitat off the Southeastern U.S.
NASA Astrophysics Data System (ADS)
Reed, J. K.; Messing, C. G.; Walker, B. K.; Farrington, S.; Brooke, S.; Correa, T.; Brouwer, M.
2012-12-01
The deep-sea floor of the Western Atlantic off the southeastern U.S. supports a variety of deep-sea coral ecosystem (DSCE) habitats, including: coral mounds, rock terraces (Miami and Pourtalès Terraces), canyons (Agassiz and Tortugas Valleys), and island slopes (western Bahamas and northern Cuba). We used NOAA bathymetric contour maps and digital elevation models to identify and delineate the areal extent of potential DSCE habitat (50-1000 m) from northeastern Florida through the Straits of Florida. Recently, shipboard and AUV side-scan and multibeam sonar have further documented portions of the region. The resulting maps have been ground-truthed with over 250 submersible and remotely operated vehicle (ROV) dives, revealing that high-relief topographic features, including steep escarpments and rocky terraces, are good predictors of DSCE habitat in this region. The benthic biota is diverse but locally variable; for example, Lophelia and Enallopsammia stony corals dominate the deep-water mounds, whereas stylasterid corals dominate the rocky terraces where Lophelia is sporadic. Octocorals, black corals, and sponges are common at most sites but different species exhibit site-specific distributional variability. In 2011, the first of two NOAA-sponsored cruises using sonar mapping and an ROV discovered the southernmost Lophelia coral mound in the continental United States, south of the Florida Keys, offering the possibility that more Lophelia mounds may exist in this region where they were previously thought to be absent. The second cruise discovered that deep-water Oculina varicosa coral reefs extend over 70 nmi north of the current boundaries of the Oculina Habitat Area of Particular Concern (OHAPC), which was first designated as a marine protected area in 1984. These studies indicate that cold-water coral mounds are significantly more diverse and abundant in this region than previously thought. These research results were presented to NOAA and the South Atlantic Fishery Management Council (SAFMC), which led to the designation of some of these areas as HAPCs or marine protected areas, restricting bottom trawling, longlines and traps that could be destructive to the fragile coral and sponge habitat. In 2010, NOAA established five deep-water Coral HAPCs encompassing a total area of 62,714 km2 from North Carolina to south Florida; an estimated 69% of the total area of the CHAPCs is off Florida. However, we estimate that ~6,554 km2 (29.7%) of DSCE habitat remains unprotected and outside the boundaries of the CHAPCs in U.S. waters off Florida. Many activities may impact DCSEs, including bottom trawling, energy production, and even global warming. Cuba has recently opened its north slope for deep-sea oil/gas drilling, which could have serious impacts upon both deep and shallow water reefs and coastal areas of the U.S. upstream of these drilling sites. Baseline data is critical to understanding the effects of these anthropogenic activities son DSCEs. High-resolution sonar surveys combined with visual ground-truthing to create deep-water benthic habitat maps are necessary to further define the extent of DSCEs in order to protect and conserve these critical habitats.
NASA Astrophysics Data System (ADS)
Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.
2018-04-01
We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).
Man and the Last Great Wilderness: Human Impact on the Deep Sea
Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.
2011-01-01
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods. PMID:21829635
Late Eocene impact events recorded in deep-sea sediments
NASA Technical Reports Server (NTRS)
Glass, B. P.
1988-01-01
Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.
Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright
2009-01-01
Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.
Neuroergonomics Deep Dive Literature Review, Volume 1: Neuroergonomics and Cognitive State
2010-11-01
Neurophysiology, 108, 1-16. This paper compares TMS to TDCS . TDCS has very mild side effects when compared to those produced by TMS . Larger...use make it a good alternative to TMS . DC polarization can change the efficiency of cognitive processes without side effects. TDCS can alter verbal...with TMS and tDCS to better understand the effects of the stimulation. New imaging technologies such as DSI and MEG are also being considered
2010-02-17
Comet Siding Spring appears to streak across the sky like a superhero in this new infrared image from NASA Wide-field Infrared Survey Explorer. The comet, also known as C/2007 Q3, was discovered in 2007 by observers in Australia.
Deep-Draft Navigation User Charges : Recovery Options and Impacts
DOT National Transportation Integrated Search
1977-08-01
Alternative cost recovery options for Federal deep-draft navigation expenditures are investigated and the impacts of user charges on waterborne trades and commodity traffic, both foreign and domestic (Great Lakes and coastwise), are assessed. In addi...
2005-01-18
The high speed of NASA Deep Impact spacecraft causes it to appear as a long streak across the sky in the constellation Virgo during the 10-minute exposure time of this photograph taken by Mr. Palomar 200-inch telescope.
The Northern end of the Dead Sea Basin: Geometry from reflection seismic evidence
Al-Zoubi, A. S.; Heinrichs, T.; Qabbani, I.; ten Brink, Uri S.
2007-01-01
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N-S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5??km over 10??km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults. ?? 2007 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. After a perfect liftoff at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket with Deep Impact spacecraft aboard soars through the clear blue sky. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Guests of NASA gather near the launch site at Cape Canaveral Air Force Station, Fla., to watch the Deep Impact spacecraft as it speeds through the air after a perfect launch at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
Deep brain stimulation to reduce sexual drive.
Fuss, Johannes; Auer, Matthias K; Biedermann, Sarah V; Briken, Peer; Hacke, Werner
2015-11-01
To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach.
The Lord of the Rings - Deep Learning Craters on the Moon and Other Bodies
NASA Astrophysics Data System (ADS)
Silburt, Ari; Ali-Dib, Mohamad; Zhu, Chenchong; Jackson, Alan; Valencia, Diana; Kissin, Yevgeni; Tamayo, Daniel; Menou, Kristen
2018-01-01
Crater detection has traditionally been done via manual inspection of images, leading to statistically significant disagreements between scientists for the Moon's crater distribution. In addition, there are millions of uncategorized craters on the Moon and other Solar System bodies that will never be classified by humans due to the time required to manually detect craters. I will show that a deep learning model trained on the near-side of the Moon can successfully reproduce the crater distribution on the far-side, as well as detect thousands of small, new craters that were previously uncharacterized. In addition, this Moon-trained model can be transferred to accurately classify craters on Mercury. It is therefore likely that this model can be extended to classify craters on all Solar System bodies with Digital Elevation Maps. This will facilitate, for the first time ever, a systematic, accurate, and reproducible study of the crater records throughout the Solar System.
An Environmental Survey of Canton Atoll Lagoon, 1973
1976-06-01
isolated /’e)ll~opora heads. Observation track perpendicular to shoreline. Numnerous sea 4 ~ urchins (L~Ivnomo’ra sp.) in surf zone. 200 m - ,-observation...narrowest and shallowest point Is approximately 150 m wide and 5 m deep. In his original field notes, E. H -. Bryan. Jr. I(notes at Whitney South Sea ...a height ot over 5 in1 above sea leyel. 1’ho turning basin wits cleared and the deep channel was prouhubly dredged front the lagoon side, Later, the
Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent
Benn, Angela R.; Weaver, Philip P.; Billet, David S. M.; van den Hove, Sybille; Murdock, Andrew P.; Doneghan, Gemma B.; Le Bas, Tim
2010-01-01
Background Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. Methodology The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Principal Findings Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. Conclusions/Significance To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity. PMID:20856885
Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent.
Benn, Angela R; Weaver, Philip P; Billet, David S M; van den Hove, Sybille; Murdock, Andrew P; Doneghan, Gemma B; Le Bas, Tim
2010-09-13
Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity.
Ballester-Moltó, M; Sanchez-Jerez, P; Aguado-Giménez, F
2017-09-01
Particulate wastes derived from cage fish farming are a trophic resource used by wild fish. This study assesses waste consumption by wild fish and the impact on the final balance of wastes. Consumption was determined according to the difference between the particulate matter exiting the cages and that reaching 5 m away at three different depths, in the presence and absence of wild fish. Wild fish around the experimental cages were counted during feeding and non-feeding periods. A weighted abundance of 1057 fish 1000 m -3 consumed 17.75% of the particulate wastes exiting the cages, on average. Consumption was higher below the cages, where waste outflow was greater. However, waste removal by wild fish was noteworthy along the shallow and deep sides of the cages. Wild fish diminished the net particulate wastes by about 14%, transforming them into more easily dispersible and less harmful wastes. This study demonstrates the mitigating potential of wild fish in reducing environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Morales, Fermín
2009-01-01
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO(2) concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F (V)/F (M) or F (V)/F (P)) of the different cell layers. Evidence is presented for a step gradient of F (V)/F (P) ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F (V)/F (P) ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.
NASA Astrophysics Data System (ADS)
Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan
2017-11-01
Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.
Separation Anxiety Over for Deep Impact
2005-07-04
This image of NASA Deep Impact impactor probe was taken by the mission mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 2:07 a.m. Eastern time, July 3, 2005.
Before the Deep Impact Collision
2011-02-18
This series of images shows the area where NASA Deep Impact probe collided with the surface of comet Tempel 1 in 2005. The view zooms in as the images progress from top left to right, and then bottom left to right.
Neuroversion: using electroconvulsive therapy as a bridge to deep brain stimulation implantation.
Williams, Nolan R; Sahlem, Greg; Pannu, Jaspreet; Takacs, Istvan; Short, Baron; Revuelta, Gonzalo; George, Mark S
2017-02-01
Parkinson's disease (PD) is a movement disorder with significant neuropsychiatric comorbidities. Electroconvulsive therapy (ECT) is effective in treating these neuropsychiatric symptoms; however, clinicians are reluctant to use ECT in patients with deep brain stimulation (DBS) implantations for fear of damaging the device, as well as potential cognitive side effects. Right unilateral ultra-brief pulse (RUL UBP) ECT has a more favorable cognitive side-effect profile yet has never been reported in PD patients with DBS implants. We present a case series of three patients with a history of PD that all presented with psychiatric decompensation immediately prior to planned DBS surgery. All three patients had DBS electrode(s) in place at the time and an acute course of ECT was utilized in a novel method to "bridge" these individuals to neurosurgery. The patients all experienced symptom resolution (psychosis and/or depression and/or anxiety) without apparent cognitive side effects. This case series not only illustrates that right unilateral ultra-brief pulse can be utilized in patients with DBS electrodes but also illustrates that this intervention can be utilized as a neuromodulatory "bridge", where nonoperative surgical candidates with unstable psychiatric symptoms can be converted to operative candidates in a manner similar to electrical cardioversion.
Baumgarten, Clement; Zhao, Yulong; Sauleau, Paul; Malrain, Cecile; Jannin, Pierre; Haegelen, Claire
2016-04-01
Deep brain stimulation of the medial globus pallidus (GPm) is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning-based method called PyMAN (PTSE model based on artificial neural network) accounting for the current used in stimulation, the three-dimensional electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the GPm have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was 0.78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Early vertical correction of the deep curve of Spee.
Martins, Renato Parsekian
2017-01-01
Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially.
McGwin, Gerald; Metzger, Jesse; Porterfield, John R; Moran, Stephan G; Rue, Loring W
2003-09-01
Side air bags (SABs) have been introduced in an attempt to reduce the risk of injury in near-side-impact motor vehicle collisions (MVCs). The impact of SABs on MVC-related mortality and morbidity has yet to be evaluated with a large population-based study. The objective of this study was to assess the effectiveness of SABs in reducing the risk of injury or death in near-side-impact MVCs. A retrospective study investigated outboard front seat occupants involved in police-reported, near-side-impact MVCs using data from the General Estimates System (1997-2000). The risk of MVC-related nonfatal and fatal injury for occupants of vehicles with and without SABs was compared. Front seat occupants of vehicles with SABs had a risk of injury similar to that of occupants of vehicles without SABs (risk ratio [RR], 0.96; 95% CI confidence interval [CI], 0.79-1.15). Adjustment for the potentially confounding effects of age, gender, seat belt use, seating position, damage severity and location, and vehicle body type did not meaningfully affect the association (RR, 0.90; 95% CICI, 0.76-1.08). There is no association between the availability of SABs and overall injury risk in near-side-impact MVCs. Future research is necessary to determine the effectiveness of SABs in preventing the injuries for which they were specifically designed.
Occupant seating anthropometry: body ellipses and contact zones for side-impact protection research
NASA Astrophysics Data System (ADS)
Culver, Clyde C.; Viano, David C.
The study has developed an anthropometric description of seated occupants and determined body regions representing major paths in side-impact crashes. The study has identified five major body ellipses defining the head, shoulder, chest, abdomen and pelvis of seated occupants of various sizes, including the six-year-old child. Body contact zones have been determined for front-seated occupants. These templates provide information for the design of side interiors to improve occupant protection in side-impact crashes by load-transfer and energy-absorption characteristics of biocompatible interiors.
10. VIEW SHOWING TWO BUTTRESSES ON THE NORTH ELEVATION, WHICH ...
10. VIEW SHOWING TWO BUTTRESSES ON THE NORTH ELEVATION, WHICH SUPPORT A DEEP CURVE IN THE LONGEST SECTION OF THE WALL, LOOKING SOUTH-SOUTHWEST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA
Worldsid Assessment of Far Side Impact Countermeasures
Pintar, Frank A.; Yoganandan, Narayan; Stemper, Brian D.; Bostrom, Ola; Rouhana, Stephen W.; Smith, Stuart; Sparke, Laurie; Fildes, Brian N.; Digges, Kennerly H.
2006-01-01
Far side impact trauma has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to assess the potential usefulness of countermeasures and assess the trade-offs associated with generic countermeasure design. Because the WorldSID dummy has demonstrated promise as a potential far side impact dummy, it was chosen to assess countermeasures in this mode. A unique far side impact buck was designed for a sled test system that included, as a standard configuration, a center console and outboard three-point belt system. This configuration assumed a left side driver with a right side impact. The buck allowed for additional options of generic restraints including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o’clock PDOF) or a 60-degree (2-o’clock PDOF) orientation. A total of 19 WorldSID tests were completed. The inboard shoulder belt configuration produced high shear forces in the lower neck (2430 N) when the belt position was placed over the mid portion of the neck. Shear forces were reduced and of opposite sign when the inboard belt position was horizontal and over the shoulder; forces were similar to the standard outboard belt configuration (830 – 1100 N). A shoulder or thorax restraint was effective in limiting the head excursion, but each caused significant displacement at the corresponding region on the dummy. A shoulder restraint resulted in shoulder displacements of 30 – 43 mm. A thorax restraint caused thorax deflections of 39 – 64 mm. Inboard restraints for far side impacts can be effective in reducing head excursion but the specific design and placement of these restraints determine their overall injury mitigating characteristics. PMID:16968638
2010-11-18
This 3-D image shows the region where NASA Deep Impact mission sent a probe into the surface of comet Tempel 1 in 2005. This picture was taken six years after the Deep Impact collision. 3D glasses are necessary to view this image.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits at Astrotech Space Operations in Titusville, Fla., for placement of a protective cover before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians place the lower segments of a protective canister around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians roll the Deep Impact spacecraft into another area where the upper canister can be lowered around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., a protective cover is being lowered over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft leaves Astrotech Space Operations in Titusville, Fla., in the pre-dawn hours on a journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians lower a protective cover over the Deep Impact spacecraft to protect it before the canister is installed around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians install a crane onto the upper canister before lifting it to install around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach the upper canister with the lower segments surrounding the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Lai, Xinghua; Ma, Chunsheng; Hu, Jingwen; Zhou, Qing
2012-09-01
Occupant injury in real world vehicle accidents can be significantly affected by a set of crash characteristics, of which impact direction and impact location (or damage location) in general scale interval (e.g., frontal impact is frequently defined as general damage to vehicle frontal end with impact angle range of 11-1 o'clock) have been identified to associate with injury outcome. The effects of crash configuration in more specific scale of interval on the injury characteristics have not been adequately investigated. This paper presents a statistical analysis to investigate the combined effects of specific impact directions and impact locations on the serious-to-fatal injuries of driver occupants involved in near-side collisions using crash data from National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for the calendar years of 1995-2005. The screened injury dataset is categorized by three impact locations (side front, side center and side distributed) and two impact directions (oblique impact at 10 o'clock and pure lateral impact at 9 o'clock), resulting in six crash configurations in total. The weighted counts and the risks of different types of injuries in each subgroup are calculated, with which the relative risks along with 95% confidence intervals under oblique impacts versus lateral impacts in each impact location category are computed. Accordingly, the most frequent injury patterns, the risks and the coded-sources of serious thoracic injuries in different crash configurations are identified. The approach adopted in the present study provides new perspectives into occupant injury outcomes and associated mechanism. Results of the analyses reveal the importance of consideration of the crash configurations beyond the scope of existing side-impact regulatory tests and stress the necessity of vehicle crashworthiness and restraint system design in omni-direction to better protect occupants in real-world crash scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
1980-12-01
is current during normal river stage. The graduations in this category are wide- spread, ranging frcm fast flowing watercourses with high banks to...channel category on the other. They may be former side channels that have been cut off, or that have only intermittent flows in them. They may be...navigation project certainly is a contributor by providing a deep channel and an abundance of beaches. Karaki and Van Hoften noted that small, fast
Field Data on Head Injuries in Side Airbag Vehicles in Lateral Impact
Yoganandan, Narayan; Pintar, Frank A.; Gennarelli, Thomas A.
2005-01-01
Field data on side airbag deployments in lateral crashes and head injuries have largely remained anecdotal. Consequently, the purpose of this research was to report head injuries in lateral motor vehicle impacts. Data from the National Automotive Sampling System files were extracted from side impacts associated with side airbag deployments. Matched pairs with similar vehicle characteristics but without side airbags were also extracted. All data were limited to the United States Federal Motor vehicle Safety Standards FMVSS 214 compliant vehicles so that the information may be more effectively used in the future. In this study, some fundamental analyses are presented regarding occupant- and vehicle-related parameters. PMID:16179147
Vehicle performance evaluation in side impact (MDB) using ES-II dummy
NASA Astrophysics Data System (ADS)
Ganessh, T. S.; Bansode, Praveen; Revankar, Vidyakant; Kumar, Sunil
2018-02-01
Side impact collision is one of the leading causes of death. Protection of people during lateral collision is challenging because of relatively small space available to restraint occupant compared to front. Hence, it is imperative to protect the occupants in side collision. It is a function of vehicle type and restraints for side protection. This paper focuses on evaluation of injury parameters of the ES II dummy during the lateral collision of different vehicles with different spaces, sections and materials. Thus the comparison will enable us to understand the sensitivity of space, B-pillar section and material which affects the injury parameters. This study will help automotive engineers to design side impact crashworthy vehicles.
Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering
NASA Astrophysics Data System (ADS)
Kong, Lingjie; Tang, Jianyong; Cui, Meng
2016-03-01
To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.
Gierczycka, Donata; Cronin, Duane S
2017-09-01
Recent epidemiological studies have identified that thoracic side airbags may vary in efficacy to reduce injury severity in side impact crash scenarios, while previous experimental and epidemiological studies have presented contrasting results. This study aimed to quantify the variations in occupant response in side impact conditions using a human body computational model integrated with a full vehicle model. The model was analyzed for a Moving Deformable Barrier side impact at 61km/h to assess two pre-crash arm positions, the incorporation of a seatbelt, and a thorax air bag on thorax response. The occupant response was evaluated using chest compression, the viscous criterion and thoracic spinal curvature. The arm position accounted for largest changes in the thorax response (106%) compared to the presence of the airbag and seatbelt systems (75%). It was also noted that the results were dependant on the method and location of thorax response measurement and this should be investigated further. Assessment using lateral displacement of the thoracic spine correlated positively with chest compression and Viscous Criterion, with the benefit of evaluating whole thorax response and provides a useful metric to compare occupant response for different side impact safety systems. The thoracic side airbag was found to increase the chest compression for the driving arm position (+70%), and reduced the injury metrics for the vertical arm position (-17%). This study demonstrated the importance of occupant arm position on variability in thoracic response, and provides insight for future design and optimization of side impact safety systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
New ultra deep blue emitters based on chrysene chromophores
NASA Astrophysics Data System (ADS)
Shin, Hwangyu; Kang, Seokwoo; Jung, Hyocheol; Lee, Hayoon; Lee, Jaehyun; Kim, Beomjin; Park, Jongwook
2016-09-01
Chrysene, which has a wide band gap, was selected as an emission core to develop and study new materials that emit ultra-deep-blue light with high efficiency. Six compounds introducing various side groups were designed and synthesized: 6, 12-bis(30,50-diphenylphenyl)chrysene (TP-C-TP), 6-(30,50-diphenylphenyl)-12-(3,5-diphenylbiphenyl-400-yl)chrysene (TP-C-TPB) and 6,12-bis(300,500-diphenylbiphenyl-40-yl)chrysene (TPB-C-TPB), which contained bulky aromatic si de groups; and N,N,N0 ,N0-tetraphenyl-chrysene-6,12-diamine (DPA-C-DPA), [12-(4-diphenylamino-phenyl)-chrysene-6-yl]-diphenylamine(DPA-C-TPA) and 6,12-bis[4-(diphenylamino)phenyl]chrysene (TPA-C-TPA), which contained aromatic amine groups, were designed to afford improved hole injection properties. The synthesized materials showed maxi mum absorption wavelengths at 342-402 nm in the film state and exhibited deep-blue photoluminescence (PL) emission s at 417-464 nm. The use of TP-C-TPB in a non-doped organic light emitting diode (OLED) device resulted in ultra-deep-blue emission with an external quantum efficiency (EQE) of 4.02% and Commission Internationale de L'Eclairage coo rdinates (CIE x, y) of (0.154, 0.042) through effective control of the internal conjugation length and suppression of the p -p* stacking. The use of TPA-C-TPA, which includes an aromatic amine side group, afforded an excellent EQE of 4.83 % and excellent color coordinates CIE x, y of (0.147, 0.077).
ERIC Educational Resources Information Center
Kubicek, Claudia; de Boisferon, Anne Hillairet; Dupierrix, Eve; Loevenbruck, Helene; Gervain, Judit; Schwarzer, Gudrun
2013-01-01
The present eye-tracking study aimed to investigate the impact of auditory speech information on 12-month-olds' gaze behavior to silently-talking faces. We examined German infants' face-scanning behavior to side-by-side presentation of a bilingual speaker's face silently speaking German utterances on one side and French on the other side, before…
a Study on Impact Analysis of Side Kick in Taekwondo
NASA Astrophysics Data System (ADS)
Lee, Jung-Hyun; Lee, Young-Shin; Han, Kyu-Hyun
Taekwondo is a martial art form and sport that uses the hands and feet for attack and defense. Taekwondo basic motion is composed of the breaking, competition and poomsea motions. The side kick is one of the most important breaking motions. The side kick with the front foot can be made in two steps. In the first step, the front foot is extended forward from the back stance free-fighting position. For the second step, the rear foot is followed simultaneously. Then, the side kick is executed while the entire body weight rests on the rear foot. In this paper, the impact analysis on a human model for kicking posture was carried out. The ADAMS/LifeMOD used numerical modeling and simulation for the side kick. The numerical human models for assailant and opponent in competition motion were developed. The maximum impact force on the human body was obtained by experiment and was applied to impact simulation. As a result, the impact displacement and velocity of the numerical human model were investigated.
Footprint of Deepwater Horizon blowout impact to deep-water coral communities
Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.
2014-01-01
On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200
49 CFR 585.76 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection... certified as meeting the moving deformable barrier test requirements of S7.2 of Standard No. 214, Side..., Side Impact Protection (49 CFR 571.214), and the number of vehicles that meet the vehicle-to-pole test...
49 CFR 585.76 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection... certified as meeting the moving deformable barrier test requirements of S7.2 of Standard No. 214, Side..., Side Impact Protection (49 CFR 571.214), and the number of vehicles that meet the vehicle-to-pole test...
49 CFR 585.76 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection... certified as meeting the moving deformable barrier test requirements of S7.2 of Standard No. 214, Side..., Side Impact Protection (49 CFR 571.214), and the number of vehicles that meet the vehicle-to-pole test...
High-Resolution Measurement of Beach Morphological Response to Hurricane-Induced Wave Dynamics
NASA Astrophysics Data System (ADS)
Starek, M.; Slatton, K. C.; Adams, P.
2005-12-01
During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the sudden increase in wave energy delivered to the coast resulted in drastic changes to the coastal morphology. The purpose of this study was to investigate the direct effects of deep-water wave climate and energy setups induced by the hurricanes and relate those processes to the observed change in shoreline morphology. The availability of research-grade Airborne Laser Swath Mapping (ALSM) altimetry data, often referred to as Light Detection and Ranging (LiDAR) data, enabled sub-meter spatial sampling of the coastal topography. The ALSM data were acquired by the University of Florida's Geosensing Engineering and Mapping (GEM) Center. Offshore wave measurements were obtained from the NOAA NDBC buoy network for the Gulf Coast region. The ALSM data acquired shortly before and after the three major hurricane landfalls near the Phillips Inlet barrier island region of Bay County, Florida, were used to calculate changes in the shoreline position and identify regions of erosion and deposition. Time series data of offshore wave height, period, and direction were transformed, through shoaling and refraction calculations, to nearshore wave conditions which were correlated to observed changes in beach morphology. Hurricane wave conditions drove severe shoreline retreat on the west-side of the inlet (~15+ meters) but affected the east-side shoreline minimally. The eastern backside of the inlet, however, witnessed a significant volume of washover sediment.
NASA Technical Reports Server (NTRS)
2005-01-01
the Fischer Assembly building at Ball Aerospace in Boulder, Colo. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.
Fitzharris, Michael; Franklyn, Melanie; Frampton, Richard; Yang, King; Morris, Andrew; Fildes, Brian
2004-09-01
Using in-depth, real-world motor vehicle crash data from the United States and the United Kingdom, we aimed to assess the incidence and risk factors associated with thoracic aorta injuries. De-identified National Automotive Sampling System Crashworthiness Data System (U.S.) and Co-operative Crash Injury Study (U.K.) data formed the basis of this retrospective analysis. Logistic regression was used to assess the level of risk of thoracic aorta injury associated with impact direction, seat belt use and, given the asymmetry of the thoracic cavity, whether being struck toward the left side of the body was associated with increased risk in side-impact crashes. A total of 13,436 U.S. and 3,756 U.K. drivers and front seat passengers were analyzed. The incidence of thoracic aorta injury in the U.S. and U.K. samples was 1.5% (n = 197) and 1.9% (n = 70), respectively. The risk was higher for occupants seated on the side closest to the impact than for occupants involved in frontal impact crashes. This was the case irrespective of whether the force was applied toward the left (belted: relative risk [RR], 4.6; 95% confidence interval [CI], 2.9-7.1; p < 0.001) or the right side (belted: RR, 2.6; 95% CI, 1.4-5.1; p < 0.004) of the occupant's body. For occupants involved in side-impact crashes, there was no difference in the risk of thoracic aorta injury whether the impacting force was applied toward the left or toward the right side of the occupant's body. Seat belt use provided a protective benefit such that the risk of thoracic aorta injury among unbelted occupants was three times higher than among belted occupants (RR, 3.0; 95% CI, 2.2-4.3; p < 0.001); however, the benefit varied across impact direction. Thoracic aorta injuries were found to be associated with high impact severity, and being struck by a sports utility vehicle relative to a passenger vehicle (RR, 1.7; 95% CI, 1.2-2.3; p = 0.001). Aortic injuries have been conventionally associated with frontal impacts. However, emergency clinicians should be aware that occupants of side-impact crashes are at greater risk, particularly if the occupant was unbelted and involved in a crash of high impact severity.
Comet Tempel 1 Six Years Later
2011-02-18
This image shows the surface of comet Tempel 1 before and after NASA Deep Impact mission sent a probe into the comet in 2005. The region was imaged by Deep Impact before the collision left, then six years later on by NASA Stardust-NExT mission.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Launch Pad 17-B, Cape Canaveral Air Force Station, the Boeing Delta II second stage reaches the top of the mobile service tower. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
NASA Astrophysics Data System (ADS)
Tegen, Suzanne Isabel Helmholz
This dissertation introduces new techniques for calculating and comparing statewide economic impacts from new coal, natural gas and wind power plants, as well as from demand-side management programs. The impetus for this work was two-fold. First, reviews of current literature and projects revealed that there was no standard way to estimate statewide economic impacts from new supply- and demand-side electricity options. Second, decision-makers who were interviewed stated that they were overwhelmed with data in general, but also lacked enough specific information about economic development impacts to their states from electricity, to make informed choices. This dissertation includes chapters on electricity decision-making and on economic impacts from supply and demand. The supply chapter compares different electricity options in three states which vary in natural resource content: Arizona, Colorado and Michigan. To account for differing capacity factors, resources are compared on a per-megawatt-hour basis. The calculations of economic impacts from new supply include: materials and labor for construction, operations, maintenance, fuel extraction, fuel transport, as well as property tax, financing and landowner revenues. The demand-side chapter compares residential, commercial and industrial programs in Iowa. Impact calculations include: incremental labor and materials for program planning, installation and operations, as well as sales taxes and electricity saved. Results from supply-side calculations in the three states analyzed indicate that adding new wind power can have a greater impact to a state's economy than adding new gas or coal power due to resource location, taxes and infrastructure. Additionally, demand-side management programs have a higher relative percentage of in-state dollar flow than supply-side solutions, though demand-side programs typically involve fewer MWh and dollars than supply-side generation. Methods for this dissertation include researching existing models and data, gathering new data and interviews with industry representatives and policy makers. The new techniques are important for decision-makers, utilities, energy advocates and others who are concerned with economic development and in-state dollar flows from new electricity decisions.
NASA Astrophysics Data System (ADS)
Goehring, L.
2004-12-01
SEAS is a pilot program for middle and high school students who want to learn science by doing science. SEAS students study the deep sea hydrothermal vent environment and learn to ask questions about this exciting, relatively unexplored world, just as researchers do. SEAS students also learn how to answer their own questions through the process of scientific investigation. With the SEAS program, students have the opportunity to participate in the actual discovery process, along side deep-sea researchers. SEAS builds upon the successes of programs like Dive&Discover and Extreme2000, which demonstrated the capability deep-sea scientists have in engaging students with live research. SEAS extends this concept by inviting students to participate in deep-sea research through formal proposal and report competitions. SEAS challenges students to higher levels of achievement. A curriculum, developed by teachers expert in the translation of scientific inquiry in the classroom, prepares students to participate. SEAS was concept-tested during the 2003-2004 school year, with 14 pilot teachers and approximately 800 students. Twenty Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Five student proposals were selected and conducted at sea in April during a Ridge2000 research cruise to the East Pacific Rise. All results were posted to the SEAS website (http://www.ridge2000.org/SEAS/) during the cruise, and students were invited to analyze data for their final reports. Final student reports, along with scientists comments were also posted. During the 2004-2005 school year, SEAS will be evaluated for its impact on student learning and attitudes toward science. The benefits of SEAS to the Ridge2000 scientific community are many. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement of NSFs Broader Impacts Criterion. They may contribute time and expertise by answering student questions and reviewing student proposals and reports. They may choose to host the student research on their cruise. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. The Ridge2000 Program oversees the development, execution and dissemination of SEAS, helping make outreach efficient and easy for scientists.
Potential benefits of underride guards in large truck side crashes.
Brumbelow, Matthew L
2012-01-01
To evaluate the maximum potential for side underride guards (SUGs) to reduce passenger vehicle occupant fatalities and injuries in crashes with large trucks in the United States. Examination of the Large Truck Crash Causation Study (LTCCS) identified 206 crash events involving a passenger vehicle impact with the side of a large truck. Each case was evaluated to determine whether the most severe injury sustained by a passenger vehicle occupant was a result of the impact with the side of the truck and whether an SUG could have reduced the injury severity. Data from the 2006-2008 Fatality Analysis Reporting System (FARS) and Trucks Involved in Fatal Accidents (TIFA) survey were used to compare the types of trucks involved in all fatal side impacts with passenger vehicles with the truck types in the LTCCS cases that were studied. FARS and TIFA data also were used to estimate the total annual number of passenger vehicle occupants killed in truck side impacts. In 143 of the 206 cases, the truck side impact produced the most severe injury sustained by a passenger vehicle occupant. In the other cases, no passenger vehicle occupant was injured or the most severe injury was due to an event preceding or following the truck side impact. Forty-nine of these occupants sustained injuries coded as level 3 or higher on the abbreviated injury scale (AIS) or were killed. SUGs could have reduced injury severity in 76 of the 143 cases, including 38 of the 49 cases with an AIS ≥ 3 coded injury or fatality. Semi-trailers were the most common type of impacted truck unit, both overall and when considering only cases where an SUG could have mitigated injury severity. Crashes where the front of the passenger vehicle struck the side of the semi-trailer perpendicularly or obliquely from the oncoming direction were less common overall than side-to-side and oblique/same direction crashes but more often produced an AIS ≥ 3 injury or fatality. The distribution of truck types in the LTCCS sample was similar to that in the FARS and TIFA data. Overall, around 1600 passenger vehicle occupants were killed in 2-vehicle truck side impact crashes during 2006-2008, or 22 percent of all passenger vehicle occupants who died in 2-vehicle crashes with large trucks. Structural incompatibility was a common factor in LTCCS crashes between passenger vehicles and the sides of large trucks. SUGs could have reduced injury risk in around three fourths of the crashes that produced an AIS ≥ 3 injury or fatality. Most of these crashes involved semi-trailers. However, the necessary strength and location of these SUGs present technical challenges that need to be addressed.
NASA Technical Reports Server (NTRS)
Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.
2009-01-01
The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.
Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer
NASA Astrophysics Data System (ADS)
Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed
2015-10-01
Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.
Laparoscopic excision of an epidermoid cyst arising from the deep abdominal wall.
Ishikawa, Hajime; Nakai, Takuya; Ueda, Kazuki; Haji, Seiji; Takeyama, Yoshifumi; Ohyanagi, Harumasa
2009-10-01
Epidermoid cysts are the most common type of cutaneous cyst. However, their occurrence in the deep abdominal wall has not yet been reported. Here, we present the case of a 60-year-old woman who developed an epidermoid cyst in the deep abdominal wall, which was resected laparoscopically. The patient presented with right upper quadrant abdominal pain on admission to our hospital. Computed tomography revealed cholecystolithiasis and an incidentally identified well-defined hypoattenuating mass (62 x 47 x 65 mm) in the deep abdominal wall on the left side of the navel. We performed laparoscopic complete resection of the abdominal wall tumor followed by cholecystectomy. The excised specimen was a cyst covered with a smooth thin membrane and contained sludge. Histopathologic examination revealed an epidermoid cyst. This is a very rare case with no previous reports on a similar type of epidermoid cyst.
NASA Astrophysics Data System (ADS)
Feng, Xia-Ting; Pei, Shu-Feng; Jiang, Quan; Zhou, Yang-Yi; Li, Shao-Jun; Yao, Zhi-Bin
2017-08-01
Rocks that are far removed from caverns or tunnels peripheries and subjected to high geostress may undergo `deep fracturing'. Deep fracturing of hard rock can cause serious hazards that cause delays and increase the cost of construction of underground caverns with high sidewalls and large spans (especially when subjected to high geostress). To extensively investigate the mechanism responsible for deep fracturing, and the relationship between fracturing and the excavation & support of caverns, this paper presents a basic procedure for making in situ observations on the deep fracturing process in hard rock. The basic procedure involves predicting the stress concentration zones in the surrounding rocks of caverns induced by excavation using geomechanical techniques. Boreholes are then drilled through these stress concentration zones from pre-existing tunnels (such as auxiliary galleries) toward the caverns before its excavation. Continuous observations of the fracturing of the surrounding rocks are performed during excavation using a borehole camera in the boreholes in order to analyze the evolution of the fracturing process. The deep fracturing observed in a large underground cavern (high sidewalls and large span) in southwest China excavated in basalt under high geostress is also discussed. By continuously observing the hard rock surrounding the arch on the upstream side of the cavern during the excavation of the first three layers, it was observed that the fracturing developed into the surrounding rocks with downward excavation of the cavern. Fracturing was found at distances up to 8-9 m from the cavern periphery during the excavation of Layer III. Also, the cracks propagated along pre-existing joints or at the interfaces between quartz porphyry and the rock matrix. The relationship between deep fracturing of the surrounding rocks and the advance of the cavern working faces was analyzed during excavation of Layer Ib. The results indicate that the extent of the stress relief zone is about 7 m if footage of 3 m is adopted for the rate of advance of the cavern faces. An analysis of the effects of the initial geostress and evolving stress concentration on deep fracturing was also made. It could be concluded that the deep fracturing of the rocks in the upstream side of the cavern is caused by the combined effect of the high initial geostress, the transfer of the stress concentration zone toward the deep surrounding rocks, and the occurrence of discontinuities.
Importance of a Low Radio Frequency Interference Environment for the DSG
NASA Astrophysics Data System (ADS)
MacDowall, R. J.; Farrell, W. M.; Burns, J. O.
2018-02-01
The Deep Space Gateway (DSG) can serve radio astronomy in a variety of ways. Thus, it is important that DSG electronics, transmitters, and the instruments located on the DSG avoid contaminating the radio-quiet environment of the lunar far-side.
Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite
Komor, S.C.; Valley, J.W.
1990-01-01
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
NASA Astrophysics Data System (ADS)
Erukhimova, Tatiana; Fry, Edward
2014-03-01
We will present the first results of an innovative program at Texas A&M University that aims to enhance the learning and research experiences of undergraduate and graduate students through their participation in high-profile outreach activities: principally the Texas A&M Physics and Engineering Festival and the Physics Shows. The goals are to enhance students' knowledge of fundamental physics concepts through collaborative hands-on research and educational activities, to teach them effective communication skills and responsibility, and to enhance their opportunities for interactions with their peers and professors outside the classroom. The program activities include (i) students working side-by-side with their peers and professors on research, concept, design, and fabrication of physics demonstration experiments, (ii) presentation of these exhibits during the Festival and Shows in teams of several students and faculty members, (iii) assessment of students teamwork, and (iv) incorporation of new demonstrations in core curriculum classes. Texas A&M Physics and Engineering Festival is a major annual outreach event at TAMU attracting over 4000 visitors and featuring over 100 interactive exhibits, public lectures by prominent scientists, and various hands-on activities. This program is supported by Tier One Grant from Texas A&M University.
NASA Astrophysics Data System (ADS)
Greenstein, Jesse L.
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.
Early vertical correction of the deep curve of Spee
Martins, Renato Parsekian
2017-01-01
ABSTRACT Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially. PMID:28658363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.
2013-07-01
Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumesmore » of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.« less
Key Challenges for Life Science Payloads on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Anthony, J. H.; Niederwieser, T.; Zea, L.; Stodieck, L.
2018-02-01
Compared to ISS, Deep Space Gateway life science payloads will be challenged by deep space radiation and non-continuous habitation. The impacts of these two differences on payload requirements, design, and operations are discussed.
Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
NASA Astrophysics Data System (ADS)
Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.
2014-12-01
This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding -0.2 (-0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
Hydrogeology of the vicinity of Homestake mine, South Dakota, USA
NASA Astrophysics Data System (ADS)
Murdoch, Larry C.; Germanovich, Leonid N.; Wang, Herb; Onstott, T. C.; Elsworth, Derek; Stetler, Larry; Boutt, David
2012-02-01
The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.
Subduction processes related to the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya
2017-04-01
It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.
Viano, David C; Parenteau, Chantal S
2016-07-03
Insurance Institute for Highway Safety (IIHS) high-hooded side impacts were analyzed for matched vehicle tests with and without side airbags. The comparison provides a measure of the effectiveness of side airbags in reducing biomechanical responses for near-side occupants struck by trucks, SUVs, and vans at 50 km/h. The IIHS moving deformable barrier (MDB) uses a high-hooded barrier face. It weighs 1,500 kg and impacts the driver side perpendicular to the vehicle at 50 km/h. SID IIs dummies are placed in the driver and left second-row seats. They represent fifth percentile female occupants. IIHS tests were reviewed for matches with one test with a side airbag and another without it in 2003-2007 model year (MY) vehicles. Four side airbag systems were evaluated: (1) curtain and torso side airbags, (2) head and torso side airbag, (3) curtain side airbag, and (4) torso side airbag. There were 24 matched IIHS vehicle tests: 13 with and without a curtain and torso side airbags, 4 with and without a head and torso side airbag, 5 with and without a side curtain airbag, and 2 with and without a torso airbag. The head, chest, and pelvis responses were compared for each match and the average difference was determined across all matches for a type of side airbag. The average reduction in head injury criterion (HIC) was 68 ± 16% (P < .001) with curtain and torso side airbags compared to the HIC without side airbags. The average HIC was 296 with curtain and torso side airbags and 1,199 without them. The viscous response (VC) was reduced 54 ± 19% (P < .005) with curtain and torso side airbags. The combined acetabulum and ilium force (7 ± 15%) and pelvic acceleration (-2 ± 17%) were essentially similar in the matched tests. The head and torso side airbag reduced HIC by 42 ± 30% (P < .1) and VC by 32 ± 26% compared to vehicles without a side airbag. The average HIC was 397 with the side head and torso airbag compared to 729 without it. The curtain airbag and torso airbag only showed lower head responses but essentially no difference in the chest and pelvis responses. The curtain and torso side airbags effectively reduced biomechanical responses for the head and chest in 50 km/h side impacts with a high-hooded deformable barrier. The reductions in the IIHS tests are directionally the same as estimated fatality reductions in field crashes reported by NHTSA for side airbags.
Research in biomechanics of occupant protection.
King, A I; Yang, K H
1995-04-01
This paper discusses the biomechanical bases for occupant protection against frontal and side impact. Newton's Laws of Motion are used to illustrate the effect of a crash on restrained and unrestrained occupants, and the concept of ride down is discussed. Occupant protection through the use of energy absorbing materials is described, and the mechanism of injury of some of the more common injuries is explained. The role of the three-point belt and the airbag in frontal protection is discussed along with the potential injuries that can result from the use of these restraint systems. Side impact protection is more difficult to attain but some protection can be derived from the use of padding or a side impact airbag. It is concluded that the front seat occupants are adequately protected against frontal impact if belts are worn in an airbag equipped vehicle. Side impact protection may not be uniform in all vehicles.
First LOCSMITH locations of deep moonquakes
NASA Astrophysics Data System (ADS)
Hempel, S.; Knapmeyer, M.; Sens-Schönfelder, C.; Oberst, J.
2008-09-01
Introduction Several thousand seismic events were recorded by the Apollo seismic network from 19691977. Different types of events can be distinguished: meteoroid impacts, thermal quakes and internally caused moonquakes. The latter subdivide into shallow (100 to 300km) and deep moonquakes (700 to 1100km), which are by far the most common events. The deep quakes would be no immediate danger to inhabitated stations on the Earth's Moon because of their relatively low magnitude and great depth. However, they bear important information on lunar structure and evolution, and their distribution probably reflects their source mechanism. In this study, we reinvestigate location patterns of deep lunar quakes. LOCSMITH The core of this study is a new location method (LOCSMITH, [1]). This algorithm uses time intervals rather than time instants as input, which contain the dedicated arrival with probability 1. LOCSMITH models and compares theoretical and actual travel times on a global scale and uses an adaptive grid to search source locations compatible with all observations. The output is a set of all possible hypocenters for the considered region of repeating, tidally triggered moonquake activity, called clusters. The shape and size of these sets gives a better estimate of the location uncertainty than the formal standard deviations returned by classical methods. This is used for grading of deep moonquake clusters according to the currently available data quality. Classification of deep moonquakes As first step, we establish a reciprocal dependence of size and shape of LOCSMITH location clouds on number of arrivals. Four different shapes are recognized, listed here in an order corresponding to decreasing spatial resolution: 1. "Balls", which are well defined and relatively small types of sets resembling the commonly assumed error ellipsoid. These are found in the best cases with many observations. Locations in this shape are obtained for clusters 1, 18 or 33, these were already well located by earlier works [2,3]. 2. The next best shape of a location set is the "banana" as found for clusters 5, 39 or 53 [Fig. 1]. In this case, only limited depth resolution is available, and the solution spreads over a large volume. The size of a "banana" could be minimized by either finding a not yet discovered shear wave arrival or estimating a S arrival time interval by considering the coda instead of a clear S arrival. 3. Shape of clouds we call "cones" are formed by clusters for which no compressional wave arrivals, but three S arrivals were picked. Such solutions were found for clusters 35, 201 or 218 [Fig. 2]. A depth limitation is given only by the surface of the Moon's far side. In previous works, locations of these clusters were usually determined with a fixed depth, thus neglecting all depth uncertainty [2]. 4. The fourth and worst class shows a "disc"like shape with no depth resolution and almost no latitude resolution. Clusters of this class, like 4, 23 or 43, were not located so far. From class 1 ("ball") to 4 ("disc") the amount of possible hypocenters increases. So we also found a correlation between size and shape of volumes containing possible hypocenter solutions. Aim We classified all clusters according to the solution set scheme by using arrival times of [2] with an estimated error of ±10s as input for LOCSMITH. We reprocess selected clusters of each class to come up with the special requirements and possibilities of this new location method. As said above, one of the requirements of LOCSMITH is the definition of a time interval instead of a time instant for input, and an interesting option is using an estimated S arrival time interval derived from coda and scattering model, lacking a clear S arrival. We try to find fully automated methods for each processing step, dependent on the quality of data. Methods For despiking we merged methods by [4] and [5] and achieve very good results even for worst case as already presented in [6]. Prior to stacking we developed a complex multiparameter correlation algorithm to calculate the optimum time shift. Results We present relocations of selected deep moonquakes in context of data availability and quality. Previous locations are often contained in our location clouds, but realistic location uncertainties allow large deviations from the best fitting solutions, including locations on the far side of the Moon. Perspective By developing new methods for data processing and using the LOCSMITH locating algorithm we hope to reduce the location uncertainty sufficiently to make sure that all sources are on the near side, or to prove a far side origin of some of them. This would answer questions of hemispheric symmetry of lunar deep seismicity and the Moon's internal structure. References [1] Knapmeyer (2008) accepted to GJI. [2] Nakamura (2005) JGR, 110, E01001. [3] Lognonné (2003) EPSL, 211, 2744. [4] Bulow (2005) JGR, 110, E10003. [5] Sonnemann (2005) EGU05A07960. [6] Hempel, Knapmeyer, Oberst (2008) EGU2008A07989.
2005-01-12
KENNEDY SPACE CENTER, FLA. - Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASA’s Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impact’s flyby spacecraft will reveal the secrets of the comet’s interior by collecting pictures and data of how the crater forms, measuring the crater’s depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.
Side impact test and analyses of a DOT-111 tank car : final report.
DOT National Transportation Integrated Search
2015-10-01
Transportation Technology Center, Inc. conducted a side impact test on a DOT-111 tank car to evaluate the performance of the : tank car under dynamic impact conditions and to provide data for the verification and refinement of a computational model. ...
Calabro, Kevin; Kalahroodi, Elaheh Lotfi; Rodrigues, Daniel; Díaz, Caridad; de la Cruz, Mercedes; Cautain, Bastien; Laville, Rémi; Reyes, Fernando; Pérez, Thierry; Soussi, Bassam; Thomas, Olivier P.
2017-01-01
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A–G (1–7). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A–D (1–4) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2′, poecillastrosides E–G (5–7) are characterized by a cyclopropane on the side-chain and a connection at O-3′ between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus. PMID:28672858
Calabro, Kevin; Kalahroodi, Elaheh Lotfi; Rodrigues, Daniel; Díaz, Caridad; Cruz, Mercedes de la; Cautain, Bastien; Laville, Rémi; Reyes, Fernando; Pérez, Thierry; Soussi, Bassam; Thomas, Olivier P
2017-06-26
The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A-G ( 1 - 7 ). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A-D ( 1 - 4 ) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2', poecillastrosides E-G ( 5 - 7 ) are characterized by a cyclopropane on the side-chain and a connection at O-3' between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus .
A Conceptual Hydrogeologic Model of the Vicinity of DUSEL Homestake
NASA Astrophysics Data System (ADS)
Murdoch, L. C.; Germanovich, L. N.; Boutt, D. F.; Kieft, T. L.; Wang, H. F.; Onstott, T. C.
2009-12-01
The Deep Underground Science and Engineering Laboratory (DUSEL) is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota. The hydrogeology was of minor importance to locating and recovering gold ore, so it was overlooked during mining and is relatively unknown. This knowledge gap hinders planning of the Deep EcoHydrology Experiment at DUSEL and motivated the work described here. The conceptual hydrogeologic model is characterized by permeability that is assumed to be anisotropic and controlled by regional foliation, which strikes approximately N20W and dips steeply to the NE. Permeability is on the order of 0.1 mD in fresh rock, but increases to roughly 100 mD at shallow depths. The permeability distribution is assumed to result from unloading of the foliated rock, and a simple model of stress-dependence explains the permeability distribution and suggests that the more permeable zone is on the order of ~100 m thick. A stream hydrograph from Whitetail Creek (station 06436156) was analyzed to estimate recharge flux and the result indicates an average value of approximately 5 x 10-9 m/s. A numerical model of the vicinity of the mine was developed by representing the mine workings as a dual- porosity inclusion embedded in a single-porosity, anisotropic material. The extent of the dual-porosity medium was advanced downward based on the mining records and the hydraulic head within the material representing the mine workings was adjusted to represent filling and draining of the workings. The results suggest that the groundwater is characterized by a shallow flow system of distributed recharge that mostly discharges to nearby streams. The mine itself acts like a large sink that moves downward and to the southeast during mining, and then is controlled by variations in pumping rate once the mine reaches its greatest depth. The deep flow system consists of (i) a zone of relatively rapid flow from the ground surface to the mine workings overlying the southern part of the mine, and (ii) a much larger ellipsoidal zone extending up to several km from the workings where water has been removed from storage. Maximum downward fluxes in the deep system are less than the recharge rate because flow occurs at unit head gradient and the permeability of the rock is relatively low (~0.1 mD). This explains why dewatering has negligible impact on overlying streams and suggests that the regional water table remains within the shallow flow system. The results also indicate that water on the southern side of the mine is probably quite young (<~1 yr) and influenced by recent recharge, whereas water on the north side is much older and affected by removal from storage in deep pore space. The observed dewatering rate at the mine can be explained without requiring additional inflow from a large open pit or other surficial workings.
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 2re Side Impact Crash Test... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
49 CFR 572.180 - Incorporated materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES ES-2re Side Impact Crash... 50th Percentile Adult Male Side Impact Crash Test Dummy, February 2008,” incorporated by reference in...
Atmospheric Science Data Center
2015-03-16
Deep Convective Clouds and Chemistry (DC3) Data and Information The Deep Convective Clouds and Chemistry ( DC3 ) field campaign is investigating the impact of deep, ... processes, on upper tropospheric (UT) composition and chemistry. The primary science objectives are: To quantify and ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
...) obligations related to MTA's request for financing for the East Side Access project through the FRA Railroad... Statement (EIS) and Participation in the Section 106 Programmatic Agreement for the East Side Access Project... adoption and recirculation of the Final Environmental Impact Statement for the East Side Access Project and...
Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge
NASA Astrophysics Data System (ADS)
Björk, Göran; Jakobsson, Martin; Assmann, Karen; Andersson, Leif G.; Nilsson, Johan; Stranne, Christian; Mayer, Larry
2018-01-01
The Lomonosov Ridge represents a major topographical feature in the Arctic Ocean which has a large effect on the water circulation and the distribution of water properties. This study presents detailed bathymetric survey data along with hydrographic data at two deep passages across the ridge: a southern passage (80-81° N), where the ridge crest meets the Siberian continental slope, and a northern passage around 84.5° N. The southern channel is characterized by smooth and flat bathymetry around 1600-1700 m with a sill depth slightly shallower than 1700 m. A hydrographic section across the channel reveals an eastward flow with Amundsen Basin properties in the southern part and a westward flow of Makarov Basin properties in the northern part. The northern passage includes an approximately 72 km long and 33 km wide trough which forms an intra-basin in the Lomonosov Ridge morphology (the Oden Trough). The eastern side of the Oden Trough is enclosed by a narrow and steep ridge rising 500-600 m above a generally 1600 m deep trough bottom. The deepest passage (the sill) is 1470 m deep and located on this ridge. Hydrographic data show irregular temperature and salinity profiles indicating that water exchange occurs as midwater intrusions bringing water properties from each side of the ridge in well-defined but irregular layers. There is also morphological evidence that some rather energetic flows may occur in the vicinity of the sill. A well expressed deepening near the sill may be the result of seabed erosion by bottom currents.
Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk
NASA Astrophysics Data System (ADS)
Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.
2014-06-01
This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding -0.2, (respectively -0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Side impact test and analysis of a DOT-112 tank car.
DOT National Transportation Integrated Search
2016-12-01
As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...
Towards a deeper understanding of parenting on farms: A qualitative study.
Elliot, Valerie; Cammer, Allison; Pickett, William; Marlenga, Barbara; Lawson, Joshua; Dosman, James; Hagel, Louise; Koehncke, Niels; Trask, Catherine
2018-01-01
Children living on farms experience exceptionally high risks for traumatic injury. There is a large body of epidemiological research documenting this phenomenon, yet few complementary studies that have explored the deep underlying reasons for such trends. Fundamental to this is understanding the decision-making processes of parents surrounding their choice to bring children, or not, into the farm worksite. To (1) document farm parent views of the risks and benefits of raising children on a family farm, and, (2) understand more deeply why children are brought into the farm worksite. Interviews were conducted as part of a larger cohort study, The Saskatchewan Farm Injury Cohort. Subsequent to an initial mail-out question focused on parental decision-making, 11 semi-structured telephone interviews were conducted with rural Saskatchewan farm parents. Interviews were digitally recorded and transcribed verbatim, then thematically analyzed using interpretive description methodology. This parental decision-making process on farms fundamentally involves weighing the risks vs. benefits of bringing children into the worksite, as if on a balance scale. One side of this scale holds potential risks such as exposure to physical and chemical farm hazards, in the absence of full supervision. The other side holds potential benefits such as meeting family needs for childcare, labour, and family time; building work ethic and pride; and the positive impacts of involvement and responsibility. Decision-making 'tips the scales', in part dependent upon parental perceptions of the risk-benefit trade-off. This 'perceptual lens' is influenced by factors such as: the agricultural way of life, parents' prior knowledge and past experience, characteristics of children, and safety norms. This novel qualitative study provides deep insight into how Saskatchewan farm parents approach a fundamental decision-making process associated with their parenting. The proposed model provides insight into the etiology of pediatric farm injuries as well as their prevention.
Towards a deeper understanding of parenting on farms: A qualitative study
Elliot, Valerie; Cammer, Allison; Pickett, William; Marlenga, Barbara; Lawson, Joshua; Dosman, James; Hagel, Louise; Koehncke, Niels
2018-01-01
Background Children living on farms experience exceptionally high risks for traumatic injury. There is a large body of epidemiological research documenting this phenomenon, yet few complementary studies that have explored the deep underlying reasons for such trends. Fundamental to this is understanding the decision-making processes of parents surrounding their choice to bring children, or not, into the farm worksite. Objectives To (1) document farm parent views of the risks and benefits of raising children on a family farm, and, (2) understand more deeply why children are brought into the farm worksite. Methods Interviews were conducted as part of a larger cohort study, The Saskatchewan Farm Injury Cohort. Subsequent to an initial mail-out question focused on parental decision-making, 11 semi-structured telephone interviews were conducted with rural Saskatchewan farm parents. Interviews were digitally recorded and transcribed verbatim, then thematically analyzed using interpretive description methodology. Findings This parental decision-making process on farms fundamentally involves weighing the risks vs. benefits of bringing children into the worksite, as if on a balance scale. One side of this scale holds potential risks such as exposure to physical and chemical farm hazards, in the absence of full supervision. The other side holds potential benefits such as meeting family needs for childcare, labour, and family time; building work ethic and pride; and the positive impacts of involvement and responsibility. Decision-making 'tips the scales', in part dependent upon parental perceptions of the risk-benefit trade-off. This 'perceptual lens' is influenced by factors such as: the agricultural way of life, parents' prior knowledge and past experience, characteristics of children, and safety norms. Conclusions This novel qualitative study provides deep insight into how Saskatchewan farm parents approach a fundamental decision-making process associated with their parenting. The proposed model provides insight into the etiology of pediatric farm injuries as well as their prevention. PMID:29897960
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection Phase-in... requirements of S7 of Standard No. 214, Side impact protection (49 CFR 571.214), and the vehicle-to-pole test...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection Phase-in... requirements of S7 of Standard No. 214, Side impact protection (49 CFR 571.214), and the vehicle-to-pole test...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection Phase-in... requirements of S7 of Standard No. 214, Side impact protection (49 CFR 571.214), and the vehicle-to-pole test...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Side Impact Protection Phase-in... requirements of S7 of Standard No. 214, Side impact protection (49 CFR 571.214), and the vehicle-to-pole test...
Arnold, Trisha; Brinkley-Rubinstein, Lauren; Chan, Philip A; Perez-Brumer, Amaya; Bologna, Estefany S; Beauchamps, Laura; Johnson, Kendra; Mena, Leandro; Nunn, Amy
2017-01-01
Pre-exposure prophylaxis (PrEP) is a biomedical intervention that can reduce rates of HIV transmission when taken once daily by HIV-negative individuals. Little is understood about PrEP uptake and retention in care among the populations most heavily impacted by the HIV epidemic, particularly among young men who have sex with men (YMSM) in the Deep South. Therefore, this study explored the structural, social, behavioral, and clinical factors that affect PrEP use and retention in care among YMSM in Jackson, Mississippi. Thirty MSM who were prescribed PrEP at an outpatient primary care clinic were interviewed and included 23 men who had been retained in PrEP care and seven who had not been retained. The mean age of participants was 26.6 years. Most (23) participants were African American. Major factors affecting PrEP use and retention in PrEP care included 1) structural factors such as cost and access to financial assistance for medications and clinical services; 2) social factors such as stigma and relationship status; 3) behavioral factors including sexual risk behaviors; and 4) clinical factors such as perceived and actual side effects. Many participants also discussed the positive spillover effects of PrEP use and reported that PrEP had a positive impact on their health. Four of the seven individuals who had not been retained re-enrolled in PrEP care after completing their interviews, suggesting that case management and ongoing outreach can enhance retention in PrEP care. Interventions to enhance retention in PrEP care among MSM in the Deep South will be most effective if they address the complex structural, social, clinical, and behavioral factors that influence PrEP uptake and retention in PrEP care.
Bergfeld, Isidoor O; Mantione, Mariska; Hoogendoorn, Mechteld L C; Horst, Ferdinand; Notten, Peter; Schuurman, P Richard; Denys, Damiaan
Electroconvulsive Therapy (ECT) and Deep Brain Stimulation (DBS) are effective treatments for patients with treatment-resistant depression (TRD). However, a common side effect of ECT is autobiographical memory loss (e.g., personal experiences), whereas the impact of DBS on autobiographical memories has never been established. Comparing autobiographical memories following DBS and ECT. In two hospitals in The Netherlands, we interviewed 25 TRD patients treated with DBS of the ventral anterior limb of the internal capsule (vALIC), 14 TRD patients treated with ECT and 22 healthy controls (HC) with the Autobiographical Memory Inventory - Short Form (AMI-SF) in a prospective, longitudinal study between March 2010 and August 2016. Patients treated with DBS were interviewed before surgery, after surgery, and twice during treatment over 122.7 (SD: ±22.2) weeks. Patients treated with ECT were tested before ECT, after six right unilateral (RUL) ECT sessions and twice following ECT over 65.1 (±9.3) weeks. Controls were tested four times over 81.5 (±15.6) weeks. Compared to HC, the AMI-SF score decreased faster in both TRD groups (P < 0.001). More specifically, AMI-SF score decreased in a comparable rate as HC after DBS surgery, but decreased more during treatment. The AMI-SF decrease in the ECT group was larger than both the DBS and HC groups. Both ECT and vALIC DBS result in a faster autobiographical memory decline compared to HC. DBS might have a negative impact on autobiographical memories, although less so than ECT. Future work should dissect whether DBS or characteristics of TRD cause this decline. Copyright © 2017 Elsevier Inc. All rights reserved.
Plastic microfibre ingestion by deep-sea organisms
NASA Astrophysics Data System (ADS)
Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.
2016-09-01
Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.
Protection of children restrained in child safety seats in side impact crashes.
Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R; Maltese, Matthew R
2010-10-01
The performance of child restraint systems (CRS) in side impact motor vehicle crashes has been under study due to the injury and fatality burden of these events. Although previous research has quantified injury risk or described injured body regions, safety advances require an understanding of injury causation. Therefore, the objective was to delineate injury causation scenarios for CRS-restrained children in side impacts and document probable contact points in the vehicle interior. Two in-depth crash investigation databases, the Crash Injury Research and Engineering Network and the Partners for Child Passenger Safety Study, were queried for rear-seated, CRS-restrained children in side impact crashes who sustained Abbreviated Injury Scale 2+ injury. These cases were reviewed by a multidisciplinary team of physicians and engineers to describe injury patterns, injury causation, and vehicle components that contributed to the injuries. Forty-one occupants (average age, 2.6 years) met the inclusion criteria. Twenty-four were near side to the crash, 7 were far side, and 10 were center seated. The most common injuries were to the skull and brain with an increasing proportion of skull fracture as age increased. Head and spine injuries without evidence of head contact were rare but present. All thoracic injuries were lung contusions and no rib fractures occurred. Near-side head and face contacts points were along the rear vertical plane of the window and the horizontal plane of the window sill. Head and face contact points for center- and far-side occupants were along the edges of the front seat back and front seat head restraint. Head injuries are the target for injury prevention for children in CRS in side impact crashes. Most of these injuries are due to the contact; for near-side occupants, contact with the CRS structure and the door interior, for far- or center-seated occupants, contact with the front seat back. These data are useful in developing both educational and technological interventions to reduce the burden of injury to these children.
Impact disruption and recovery of the deep subsurface biosphere
Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.
2012-01-01
Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.
Impact disruption and recovery of the deep subsurface biosphere.
Cockell, Charles S; Voytek, Mary A; Gronstal, Aaron L; Finster, Kai; Kirshtein, Julie D; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S; Sanford, Ward E; Horton, J Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S
2012-03-01
Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ∼35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ∼35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Joe Galamback mounts a bracket on a solar panel on the Deep Impact spacecraft. Galamback is a lead mechanic technician with Ball Aerospace and Technologies Corp. in Boulder, Colo. The spacecraft is undergoing verification testing after its long road trip from Colorado.A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. The spacecraft is scheduled to launch Dec. 30, 2004, aboard a Boeing Delta II rocket from Launch Complex 17 at Cape Canaveral Air Force Station, Fla.
49 CFR 572.41 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Side Impact Dummy 50th... set forth in the Side Impact Dummy (SID) User's Manual, dated May 1994 except for pages 7, 20 and 23...
49 CFR 572.41 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Side Impact Dummy 50th... set forth in the Side Impact Dummy (SID) User's Manual, dated May 1994 except for pages 7, 20 and 23...
49 CFR 572.41 - General description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Side Impact Dummy 50th... set forth in the Side Impact Dummy (SID) User's Manual, dated May 1994 except for pages 7, 20 and 23...
49 CFR 572.41 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Side Impact Dummy 50th... set forth in the Side Impact Dummy (SID) User's Manual, dated May 1994 except for pages 7, 20 and 23...
49 CFR 572.41 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Side Impact Dummy 50th... set forth in the Side Impact Dummy (SID) User's Manual, dated May 1994 except for pages 7, 20 and 23...
Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2
Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo
2017-01-01
Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. PMID:28084421
Material and physical model for evaluation of deep brain activity contribution to EEG recordings
NASA Astrophysics Data System (ADS)
Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen
2015-12-01
Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.
Deep Impact Spacecraft Collides With Comet Tempel 1-Video
NASA Technical Reports Server (NTRS)
2005-01-01
After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. The objects met at 23,000 miles per hour. The heat produced by the impact was at least several thousand degrees Kelvin and at that extreme temperature, just about any material begins to glow. This movie, made up of images taken by the medium resolution camera aboard the spacecraft, from May 1 to July 2, shows the Deep Impact approach to comet Tempel 1. The spacecraft detected 3 outbursts during this time period, on June 14th, June 22nd, and July 2nd. The movie ends during the final outburst. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at Marshall Space Flight Center MSFC) in Huntsville, Alabama, assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)
Lessons Learned from Daily Uplink Operations during the Deep Impact Mission
NASA Technical Reports Server (NTRS)
Stehly, Joseph S.
2006-01-01
The daily preparation of uplink products (commands and files) for Deep Impact was as problematic as the final encounter images were spectacular. The operations team was faced with many challenges during the six-month mission to comet Tempel One of the biggest difficulties was that the Deep Impact Flyby and Impactor vehicles necessitated a high volume of uplink products while also utilizing a new uplink file transfer capability. The Jet Propulsion Laboratory (JPL) Multi-Mission Ground Systems and Services (MGSS) Mission Planning and Sequence Team (MPST) had the responsibility of preparing the uplink products for use on the two spacecraft. These responsibilities included processing nearly 15,000 flight products, modeling the states of the spacecraft during all activities for subsystem review, and ensuring that the proper commands and files were uplinked to the spacecraft. To guarantee this transpired and the health and safety of the two spacecraft were not jeopardized several new ground scripts and procedures were developed while the Deep Impact Flyby and Impactor spacecraft were en route to their encounter with Tempel-1. These scripts underwent several adaptations throughout the entire mission up until three days before the separation of the Flyby and Impactor vehicles. The problems presented by Deep Impact's daily operations and the development of scripts and procedures to ease those challenges resulted in several valuable lessons learned. These lessons are now being integrated into the design of current and future MGSS missions at JPL.
Tomonari, Hiroshi; Yagi, Takakazu; Kuninori, Takaharu; Ikemori, Takahiro; Miyawaki, Shouichi
2015-06-01
This case report presents the successful replacement of 1 first molar and 3 second molars by the mesial inclination of 4 impacted third molars. A woman, 23 years 6 months old, had a chief complaint of crowding of her anterior teeth and linguoclination of a second molar on the left side. The panoramic radiographic images showed that the maxillary and mandibular third molars on both sides were impacted. Root resorption on the distal surfaces of the maxillary second molars was suspected. The patient was given a diagnosis of Angle Class II Division 1 malocclusion with severe crowding of the anterior teeth and 4 impacted third molars. After we extracted the treated maxillary second premolars and the second molars on both sides, the treated mandibular second premolar and the second molar on the left side, and the root canal-filled mandibular first molar on the right side, the 4 impacted third molars were uprighted and formed part of the posterior functional occlusion. The total active treatment period was 39 months. The maxillary and mandibular third molars on both sides successfully replaced the first and second molars. The replacement of a damaged molar by an impacted third molar is a useful treatment option for using sound teeth. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2003-01-01
Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.
Potential Uses of Deep Space Cooling for Exploration Missions
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Sweterlitsch, Jeff; Swickrath, Micahel J.
2012-01-01
Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could counter temperature increases thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.
Potential Uses of Deep Space Cooling for Exploration Missions
NASA Technical Reports Server (NTRS)
Chambliss, Joseph; Sweterlitsch, Jeff; Swickrath, Michael
2011-01-01
Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.
Effect of weight, height and BMI on injury outcome in side impact crashes without airbag deployment.
Pal, Chinmoy; Tomosaburo, Okabe; Vimalathithan, K; Jeyabharath, M; Muthukumar, M; Satheesh, N; Narahari, S
2014-11-01
A comprehensive analysis is performed to evaluate the effect of weight, height and body mass index (BMI) of occupants on side impact injuries at different body regions. The accident dataset for this study is based on the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for accident year 2000-08. The mean BMI values for driver and front passenger are estimated from all types of crashes using NASS database, which clearly indicates that mean BMI has been increasing over the years in the USA. To study the effect of BMI in side impact injuries, BMI was split into three groups namely (1) thin (BMI<21), (2) normal (BMI 24-27), (3) obese (BMI>30). For more clear identification of the effect of BMI in side impact injuries, a minimum gap of three BMI is set in between each adjacent BMI groups. Car model years from MY1995-1999 to MY2000-2008 are chosen in order to identify the degree of influence of older and newer generation of cars in side impact injuries. Impact locations particularly side-front (F), side-center (P) and side-distributed (Y) are chosen for this analysis. Direction of force (DOF) considered for both near side and far side occupants are 8 o'clock, 9 o'clock, 10 o'clock and 2 o'clock, 3 o'clock and 4 o'clock respectively. Age <60 years is also one of the constraints imposed on data selection to minimize the effect of bone strength on the occurrence of occupant injuries. AIS2+ and AIS3+ injury risk in all body regions have been plotted for the selected three BMI groups of occupant, delta-V 0-60kmph, two sets (old and new) of car model years. The analysis is carried with three approaches: (a) injury risk percentage based on simple graphical method with respect to a single variable, (b) injury distribution method where the injuries are marked on the respective anatomical locations and (c) logistic regression, a statistical method, considers all the related variables together. Lower extremity injury risk appears to be high for thin BMI group. It is found that BMI does not have much influence on head injuries but it is influenced more by the height of the occupant. Results of logistic analysis suggest that BMI, height and weight may have significant contribution towards side impact injuries across different body regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.
2017-03-01
Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear and consistent message from consultation with wider stakeholders was the need for fundamental knowledge of deep-sea ecosystems. Enhanced deep-sea knowledge is crucial to establish baselines and assess long term impact of human activity on ecosystems and it is also instrumental to inform environmental impact assessments, strategic management plans, effective decision making, environmental regulation and ocean governance (Rogers et al., 2015).
NASA Astrophysics Data System (ADS)
Bosch, Henry
2016-03-01
A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico
White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.
2012-01-01
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.
White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R
2012-12-11
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico
White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.
2012-01-01
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... [Docket No. NHTSA-2010-0146] RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety Administration (NHTSA), Department..., 2008, concerning a 50th percentile adult male side crash test dummy called the ``ES-2re'' test dummy...
Neck injury tolerance under inertial loads in side impacts.
McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand
2007-03-01
Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.
Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.
Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard
2015-01-01
Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.
Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.
Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong
2017-12-01
Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.
Deep-Learning-Based Drug-Target Interaction Prediction.
Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei
2017-04-07
Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.
NASA Astrophysics Data System (ADS)
Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea
2017-11-01
Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
Impact of selected parameters on the development of boiling and flow resistance in the minichannel
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena; Ziętala, Kinga
2015-05-01
The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure), geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.
System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.
1998-07-01
Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts onmore » the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.« less
NASA Astrophysics Data System (ADS)
Shank, T. M.; Hsing, P.; Carney, R. S.; Herrera, S.; Heyl, T.; Munro, C.; Bors, E.; Kiene, W.; Vecchione, M.; Evans, A.; Irion, J.; Warren, D.; Malik, M.; Lobecker, M.; Potter, J.
2012-12-01
Between March 20 and April 6, 2012, the NOAA Ship Okeanos Explorer served as a platform for ship-board and shore-side scientists to explore the deep Gulf of Mexico, targeting the northern West Florida Escarpment, DeSoto Canyon, the vicinity (within 11km) of the Deepwater Horizon (DWH) well, and deepwater shipwrecks. We systematically explored and discovered natural hydrocarbon seeps, diverse coral ecosystems, wooden and iron-hulled shipwrecks more than 100 years old colonized by coral communities, and sperm whale habitat between 600 and 1200m. A total of sixteen dives took advantage of new and recent maps to explore and groundtruth both hard and soft-bottom habitats, from cretaceous carbonates to mounds of coral rubble. The final ROV dive successfully groundtruthed expected methane-release areas imaged by the ship's mapping systems up to 1150m above the seafloor. The source of the mapping imagery was a stream of bubbles issuing from beneath thriving seep mussel communities. We visited five sites in the Mississippi Canyon (MC) area (lease blocks MC294, MC297, MC388, MC255, and MC036; the DWH incident took place in MC252). These sites were 11.3 km SW, 6.8 km SW, 7.6 km SW, 25.7 km E, and 27.4 km to the NE of the DWH, respectively. We used high-definition imaging systems on the Little Hercules ROV and Seirios camera platform to document more than 130 coral colonies and over 400 associated individual animals to continue to assessing the impact of the Deepwater Horizon oil spill. All of these efforts were conducted to provide fundamental knowledge of unknown and poorly known regions, ecosystems, and items of historical significance in the deep Gulf of Mexico.
Observations of seating position of front seat occupants relative to the side of the vehicle.
Dinas, Arthur; Fildes, Brian N
2002-01-01
This study was an on-road observational study of the seating position and limb position of front seat occupants relevant to the side of the car for a representative sample of occupants during straight road driving and turning manoeuvres. A video camera captured over 650 front-on images of passenger car occupants in Metropolitan Melbourne. Results showed a significant numbers of occupants were seated out-of-position while travelling on the road and that a number of these were seated in a manner that may possibly result in injury from the deployment of a side airbag. This was particularly so while turning, a situation common in many side impacts. A substantial number of front seat occupants' arms were exposed to severe injury in the event of a side impact crash. These findings highlight a number of aspects of seating behaviour of driver and front passengers that need to be taken into account when designing side impact airbags.
Determinants of immediate price impacts at the trade level in an emerging order-driven market
NASA Astrophysics Data System (ADS)
Zhou, Wei-Xing
2012-02-01
Common wisdom argues that, in general, large trades cause large price changes, whereas small trades cause small price changes. However, for extremely large price changes, the trade size and news play a minor role, while liquidity (especially price gaps on the limit order book) is a more influential factor. Hence, there might be other factors influencing the immediate price impacts of trades. In this paper, through mechanical analysis of price variations before and after a trade of arbitrary size, we identify that the trade size, the bid-ask spread, the price gaps and the outstanding volumes at the bid and ask sides of the limit order book have an impact on the changes in prices. We propose two regression models to investigate the influence of these microscopic factors on the price impact of buyer-initiated partially filled trades, seller-initiated partially filled trades, buyer-initiated filled trades and seller-initiated filled trades. We find that they have quantitatively similar explanatory powers and these factors can account for up to 44% of the price impacts. Large trade sizes, wide bid-ask spreads, high liquidity at the same side and low liquidity at the opposite side will cause a large price impact. We also find that the liquidity at the opposite side has a more influential impact than the liquidity at the same side. Our results shed new light on the determinants of immediate price impacts.
Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.
Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian
2014-10-01
Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Kill (AK) Railroad Bridge shall be maintained in the full open position for navigation at all times... clearly visible from both the up and downstream sides of the bridge. (c) Tide restrained deep draft vessels shall notify the bridge operator, daily, of their expected times of vessel transits through the...
Will Deep Impact Make a Splash?
NASA Technical Reports Server (NTRS)
Sheldon, Robert B.; Hoover, Richard B.
2005-01-01
Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.
Deep Impact comet encounter: design, development, and operations of the Big Event at Tempel 1
NASA Technical Reports Server (NTRS)
Wissler, Steven
2005-01-01
Deep Impact is NASA's eighth Discovery mission. This low-cost, focused planetary science investigation gathered the data necessary to help scientists unlock early secrets of our solar system. The comet encounter with Tempel 1 was a complex event - requiring extremely accurate timing, robutstness to an unknown environment, and flight team adaptability. The mission operations and flight systems performance were spectacular for approach, impact, and lookback imaging on July 4, 2005.
Deep Impact comet encounter: design, development, and operations of the big event at Tempel 1
NASA Technical Reports Server (NTRS)
Wissler, Steven; Rocca, Jennifer; Kubitschek, Daniel
2005-01-01
Deep Impact is NASA's eighth Discovery mission. This low-cost, focused planetary science investigation gathered the data necessary to help scientists unlock early secrets of our solar system. The comet encounter with Tempel 1 was a complex event - requiring extremely accurate timing, robustness to an unknown environment, and flight team adaptibility. The mission operations and flight systems performance were spectacular for approach, impact, and lookback imaging on July 4, 2005.
Attention and Material-Specific Memory in Children with Lateralized Epilepsy
ERIC Educational Resources Information Center
Engle, Jennifer A.; Smith, Mary Lou
2010-01-01
Epilepsy is frequently associated with attention and memory problems. In adults, lateralization of seizure focus impacts the type of memory affected (left-sided lesions primarily impact verbal memory, while right-sided lesions primarily impact visual memory), but the relationship between seizure focus and the nature of the memory impairment is…
Ashland, Francis; Delano, Helen L.
2015-01-01
A large inventory of landslides exists for Allegheny County, Pa., and historical movement of manyof these has resulted in considerable damage to property, roads, and infrastructure. Along InterstateRoute 79, a subset of the landslide inventory includes deep-seated rockslides, two of which reactivatedduring construction of the highway in the late 1960s (Gray and others, 2011). Following the initialmovement of the rockslides, slope-stability investigations were conducted (Hamel, 1969; Hamel andFlint, 1969), and measures were taken to reduce their impacts to the highway, but movement of at leastone of the rockslides persists even today. Long-term continuous monitoring of such landslides providescritical data used to assess how the state of activity and velocity of movement (when the landslide isactive) change with rainfall and snowmelt. Currently, we are continuously monitoring meteorologicalconditions and movement of a rockslide along the northbound side of Interstate Route 79 in Aleppo, Pa.(Figure 1). The project is intended to extend over many years (approximately 5 to 10) in order to collectsufficient data to assess how extreme storms, prolonged wet periods, and melting of the snowpack affectthe landslide. The rockslide is an ideal location for such long-term monitoring because the land is ownedby the Pennsylvania Department of Transportation (PennDOT), and movement is not directly impactingthe highway; therefore no stabilization measures are necessary in the short term.
Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection
NASA Astrophysics Data System (ADS)
Rapp, A. D.; Sun, L.; Smalley, K.
2017-12-01
The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.
Plastic microfibre ingestion by deep-sea organisms
Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.
2016-01-01
Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics. PMID:27687574
Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge
NASA Astrophysics Data System (ADS)
Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.
2011-12-01
The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.
Burkhardt, Jan-Karl; Winkler, Ethan A; Lawton, Michael T
2017-07-21
OBJECTIVE Deep medial parietooccipital arteriovenous malformations (AVMs) and cerebral cavernous malformations (CCMs) are traditionally resected through an ipsilateral posterior interhemispheric approach (IPIA), which creates a deep, perpendicular perspective with limited access to the lateral margins of the lesion. The contralateral posterior interhemispheric approach (CPIA) flips the positioning, with the midline positioned horizontally for retraction due to gravity, but with the AVM on the upper side and the approach from the contralateral, lower side. The aim of this paper was to analyze whether the perpendicular angle of attack that is used in IPIA would convert to a parallel angle of attack with the CPIA, with less retraction, improved working angles, and no significant increase in risk. METHODS A retrospective review of pre- and postoperative clinical and radiographic data was performed in 8 patients who underwent a CPIA. RESULTS Three AVMs and 5 CCMs were resected using the CPIA, with an average nidus size of 2.3 cm and CCM diameter of 1.7 cm. All lesions were resected completely, as confirmed on postoperative catheter angiography or MRI. All patients had good neurological outcomes, with either stable or improved modified Rankin Scale scores at last follow-up. CONCLUSIONS The CPIA is a safe alternative approach to the IPIA for deep medial parietooccipital vascular malformations that extend 2 cm or more off the midline. Contralaterality and retraction due to gravity optimize the interhemispheric corridor, the surgical trajectory to the lesion, and the visualization of the lateral margin, without resection or retraction of adjacent normal cortex. Although the falx is a physical barrier to accessing the lesion, it stabilizes the ipsilateral hemisphere while gravity delivers the dissected lesion through the transfalcine window. Patient positioning, CSF drainage, venous preservation, and meticulous dissection of the deep margins are critical to the safety of this approach.
NASA Astrophysics Data System (ADS)
Danovaro, R.; Corinaldesi, C.; dell'Anno, A.
2002-12-01
The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and biogeochemical processes and to define possible scenarios dealing with climate induced changes in deep-sea conditions.
Reefal petroleum prospects possible in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadri, V.N.; Quadri, S.M.G.J.
1996-03-25
Carbonate buildups including reefs and banks have proven to be prolific hydrocarbon reservoirs in the US, Canada, Mexico, North Africa, Southeast Asia, and the Middle East. Seismic interpretation, particularly of high quality marine data, and geological analyses, including petrographic studies of selected formations, reveal a broad spectrum of possible reefal prospects in formations of different ages in Pakistan. However, the region with good seismic that provides good recognition of possible reefal buildups remains to date devoid of well confirmation. Oil and Gas Development Corp. of Pakistan formed the technical services department in 1976 for a systematic scientific review of allmore » exploration data and basin analysis. In 1985 this department was renamed offshore department, with responsibility for all offshore exploration. This article is based on the department`s work in collaboration with geoscientists from Russia, the US, Norway, and Canada covering the area shown. Four major types of carbonate buildups, easily recognized from seismic interpretation, include: barrier buildups that are linear with relatively deep water on both sides during deposition; pinnacle buildups that are roughly equidimensional and were surrounded by deep water during deposition; shelf margin buildups that are linear with deep water on one side and shallow water on the other; and patch buildups that form in shallow water either in close proximity to shelf margins, or over broad shallow seas.« less
The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis
NASA Astrophysics Data System (ADS)
Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele
2016-11-01
Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).
Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris
2017-10-01
Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that affect growth and/or reproductive output, potentially impacting fecundity and/or offspring fitness, and thus influencing source-sink dynamics and persistence of wider deep-sea populations. Copyright © 2017 Elsevier B.V. All rights reserved.
Deep sea mega-geomorphology: Progress and problems
NASA Technical Reports Server (NTRS)
Bryan, W. B.
1985-01-01
Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.
Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake.
Apea-Bah, Franklin B; Serem, June C; Bester, Megan J; Duodu, Kwaku G
2017-12-15
Koose, a West African delicacy, is a side dish prepared by deep frying thick cowpea paste. The current research determined the effect of deep-fat frying of cowpea paste on its total phenolic content (TPC), phenolic composition and antioxidant properties. Four cowpea cultivars comprising two reddish-brown, a brownish-cream and cream phenotypes were used. Liquid chromatography-mass spectrometry was used to determine phenolic composition of the samples. TPC was determined using Folin-Ciocalteu method while radical scavenging capacities were by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity and nitric oxide scavenging assays. The phenolic acids identified included benzoic and cinnamic acid derivatives. The predominant flavonoid classes were flavan-3-ols and flavonols. Deep-fat frying of the cowpea pastes decreased their TPC, radical scavenging capacities and total quantified flavonoids. The koose inhibited radical-induced oxidative cellular and DNA damage. It is concluded that koose is a potential functional food that can contribute to alleviating radical-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.
Jun, Xu; Luming, Li; Hongwei, Hao
2009-01-01
With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.
Palacios-Ceña, M; Wang, K; Castaldo, M; Guerrero-Peral, Á; Caminero, A B; Fernández-de-Las-Peñas, C; Arendt-Nielsen, L
2017-09-01
To explore the validity of dynamic pressure algometry for evaluating deep dynamic mechanical sensitivity by assessing its association with headache features and widespread pressure sensitivity in tension-type headache (TTH). One hundred and eighty-eight subjects with TTH (70% women) participated. Deep dynamic sensitivity was assessed with a dynamic pressure algometry set (Aalborg University, Denmark © ) consisting of 11 different rollers including fixed levels from 500 g to 5300 g. Each roller was moved at a speed of 0.5 cm/s over a 60-mm horizontal line covering the temporalis muscle. Dynamic pain threshold (DPT-level of the first painful roller) was determined and pain intensity during DPT was rated on a numerical pain rate scale (NPRS, 0-10). Headache clinical features were collected on a headache diary. As gold standard, static pressure pain thresholds (PPT) were assessed over temporalis, C5/C6 joint, second metacarpal, and tibialis anterior muscle. Side-to-side consistency between DPT (r = 0.843, p < 0.001) and pain evoked (r = 0.712; p < 0.001) by dynamic algometer was observed. DPT was moderately associated with widespread PPTs (0.526 > r > 0.656, all p < 0.001). Furthermore, pain during DPT was negatively associated with widespread PPTs (-0.370 < r < -0.162, all p < 0.05). Dynamic pressure algometry was a valid tool for assessing deep dynamic mechanical sensitivity in TTH. DPT was associated with widespread pressure sensitivity independently of the frequency of headaches supporting that deep dynamic pressure sensitivity within the trigeminal area is consistent with widespread pressure sensitivity. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a new tool for assessing treatment effects. The current study found that dynamic pressure algometry in the temporalis muscle was associated with widespread pressure pain sensitivity in individuals with tension-type headache. The association was independent of the frequency of headaches. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a tool for assessing treatment effects. © 2017 European Pain Federation - EFIC®.
Drop impact into a deep pool: vortex shedding and jet formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.
2015-02-01
One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less
NASA Technical Reports Server (NTRS)
Lederer, S.M.; Jensen, E.A.; Fane, M.; Smith, D.C.; Holmes, J.; Keller, L.P.; Lindsay, S.S.; Wooden, D.H.; Whizin, A.; Cintala, M.J.;
2017-01-01
Comets and asteroids have endured impacts from other solar system bodies that result in outcomes ranging from catastrophic collisions to regolith evolution due to micrometeorid bombardment of the surface ices and refactory components. Experiments designed to better understand these relics of solar system formation have been conducted on Earth in a laboratory setting, as well as in space through, e.g., the Deep Impact Mission to Comet Tempel 1. Deep Impact fired a high-speed impactor into the roughly 6 km nucleus of the comet. The ejecta plume generated by the impact was studied by both spacecraft instrumentation and groundbased telescopes.
Education And Public Outreach For NASA's EPOXI Mission
NASA Astrophysics Data System (ADS)
McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.
2008-09-01
NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.
NASA Astrophysics Data System (ADS)
Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.
2012-11-01
Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.
System Construction of the Stilbene Compact Neutron Scatter Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).
Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.
Viano, David C; Parenteau, Chantal S
2018-07-04
This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P < .001). In a single impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear impact. A near-side impact followed by a rear crash had the highest risk for severe injury at 2.073 ± 1.322%. Restraint systems are generally developed for a single crash or sled test. The risk for severe injury was significantly higher in 2-, 3-, and 4+-impact crashes than a single impact. The majority (57.9%) of severe injuries occurred in multi-impact crashes with belted drivers. The evaluation of restraint performance warrants additional study in multi-impact crashes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguzkurt, Levent, E-mail: loguzkurt@yahoo.com; Ozkan, Ugur; Demirturk, Orhan S.
Purpose: Our purpose was to report the outcome of endovascular treatment with manual aspiration thrombectomy as the first-line thromboablative method for phlegmasia cerulea dolens. Methods: Between October 2006 and May 2010, seven consecutive patients (5 women, 2 men; age range, 31-80 years) with the diagnosis of phlegmasia cerulea dolens secondary to acute iliofemoral deep venous thrombosis had endovascular treatment with manual aspiration thrombectomy. Catheter-directed thrombolysis and stent placement were used as adjunctive procedures. Phlegmasia was left-sided in five and right-sided in two patients. Results: All patients had associated great saphenous vein thrombosis in addition to iliofemoral deep vein thrombosis (DVT).more » Aspiration thrombectomy completely removed the thrombus from the popliteal vein to the inferior vena cava (IVC) in all cases. Three patients with May-Thurner syndrome had stent placement in the left common iliac vein. Two patients had early recurrences. Repeated aspiration thrombectomy was unsuccessful in one patient. There were no complications related to the procedure. One patient who had been successfully treated died of sepsis and another patient who had unsuccessful repeated interventions had below-the-knee amputation. Overall, the clinical success and survival rates of patients in this study were 86%. On follow-up, three patients with successful treatment were asymptomatic with no deep venous insufficiency. One of these patients died during the 4-month follow-up period. Two patients had mild ankle swelling with deep venous insufficiency. Conclusions: Manual aspiration thrombectomy with adjunctive use of catheter-directed thrombolysis and stent placement is an effective endovascular treatment method with high clinical success and survival rates for phlegmasia cerulean dolens.« less
Coastal Upwelling and Deep Fog: 50-year Worldwide Climatology
NASA Astrophysics Data System (ADS)
Koracin, D. R.
2015-12-01
An analysis is presented of the marine fog distribution based upon the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) ship observations taken during 1950-2007. Deep fog occurrence is reported in routine weather reports that are encoded in an ICOADS ship observation. Occurrence is estimated by the number of deep fog observations divided by the total present weather observations in a one-degree area centered on latitude and longitude grid point intersections. The mean fog occurrence for the summer (June-July-August) 1950-2007 was computed for each one degree point for the world. There are five major world locations with coastal SST minimums due to wind driven upwelling. Four of these are during the local summer on the eastern side of a semi-permanent anticyclone on eastern sides of northern and southern mid-latitudes of the Pacifica and the Atlantic. The fifth is during the SW monsoon in the Indian Ocean. For all five of these locations, the deep fog occurrence is at maximum during the upwelling season, with the greatest occurrences concentrated along the coast and isolated over the SST minimum. For the five coastal fog maxima, the greatest and longest duration occurrence along coast occurrence is associated with the coldest sea surface temperature and longest along coast occurrence, which is along N. California- S. Oregon. In contrast, the lowest occurrence of fog and the least along coast occurrence is associated with the warmest sea surface temperatures and least along coast occurrence along the SE Arabian Peninsula. The remaining three zones, Peru-Chile, NW Africa, and SW Africa are between the two extremes in fog occurrence, along coast coverage and sea surface temperature. Peru-Chile is more complex than the others as the Peru upwelling and fog appears the more dominant although ship observations are sparse along Chile.
Hao, Tianzhi; Zhu, Jingmin; Hu, Wenbo; Zhang, Hua; Gao, Zhenhui; Wen, Xuehui; Zhou, Zhi; Lu, Gang; Liu, Jingjie; Li, Wen
2010-06-01
To investigate the effectiveness of autogenous platelet-rich plasma (PRP) gel with acellular xenogeneic dermal matrix in the treatment of deep II degree burns. From January 2007 to December 2009, 30 cases of deep II degree burns were treated. There were 19 males and 11 females with an average age of 42.5 years (range, 32-57 years). The burn area was 10% to 48% of total body surface area. The time from burn to hospitalization was 30 minutes to 8 hours. All patients were treated with tangential excision surgery, one side of the wounds were covered with autogenous PRP gel and acellular xenogeneic dermal matrix (PRP group), the other side of the wounds were covered with acellular xenogeneic dermal matrix only (control group). The healing rate, healing time, infection condition, and scar formation were observed. At 7 days after operation, the infection rate in PRP group (6.7%, 2/30) was significantly lower than that in control group (16.7%, 5/30, P < 0.05). The healing times were (18 +/- 4) days and (22 +/- 4) days respectively in PRP group and control group, showing significant difference (P < 0.05). The healing rates at 14 days and 21 days were 75% +/- 7% and 88% +/- 5% in PRP group, were 62% +/- 15% and 73% +/- 7% in control group, showing significant difference (P < 0.05). RPR group was superior to control group in elasticity, color, appearance, softness, scar formation, and healing quality. Autogenous PRP gel with acellular xenogeneic dermal matrix can accelerate the wound healing of deep II degree burns as well as alleviate the scar proliferation.
Impact of Self-Correction on Extrovert and Introvert Students in EFL Writing Progress
ERIC Educational Resources Information Center
Hajimohammadi, Reza; Makundan, Jayakaran
2011-01-01
To investigate the impact of self-correction method as an alternative to the traditional teacher-correction method, on the one side, and to evaluate the impact of personality traits of Extroversion/Introversion, on the other side, on the writing progress of the pre-intermediate learners three null-hypotheses were proposed. In spite of students…
The dark side of Venus - Near-infrared images and spectra from the Anglo-Australian Observatory
NASA Technical Reports Server (NTRS)
Crisp, D.; Allen, D. A.; Grinspoon, D. H.; Pollack, J. B.
1991-01-01
Near-IR images and spectra of the night side of Venus taken at the Anglo-Australian Telescope during February 1990 reveal four new thermal emission windows at 1.10, 1.18, 1.27, and 1.31 microns, in addition to the previously discovered windows at 1.74 and 2.3 microns. Images of the Venus night side show similar bright and dark markings in all windows, but their contrast is much lower at short wavelengths. The 1.27-micron window includes a bright, high-altitude O2 airglow feature in addition to a thermal contribution from the deep atmosphere. Simulations of the 1.27- and 2.3-micron spectra indicate water vapor mixing ratios near 40 + or - 20 ppm by volume between the surface and the cloud base.
Control of acoustic absorption in one-dimensional scattering by resonant scatterers
NASA Astrophysics Data System (ADS)
Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.
2015-12-01
We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.
Fraxelated radiofrequency device for acne scars
NASA Astrophysics Data System (ADS)
Rao, Babar K.; Khokher, Sairah
2012-09-01
Acne scars can be improved with various treatments such as topical creams, chemical peels, dermal fillers, microdermabrasion, laser, and radiofrequency devices. Some of these treatments especially lasers and deep chemical peels can have significant side effects such as post inflammatory hyperpigmentation in darker skin types. Fraxelated RF Laser devices have been reported to have lower incidence of side effects in all skin phototypes. Nine patients between ages 18 and 35 of various skin phototypes were selected from a private practice and treated with a RF fraxelated device (E-matrix) for acne scars. Outcomes were measured by physician observation, subjective feedback received by patients, and comparison of before and after photographs. In this small group of patients with various skin phototypes, fraxelated radiofrequency device improved acne scars with minimal side effects and downtime.
Yang, Xiaojie; Lorenser, Dirk; McLaughlin, Robert A.; Kirk, Rodney W.; Edmond, Matthew; Simpson, M. Cather; Grounds, Miranda D.; Sampson, David D.
2013-01-01
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ. PMID:24466482
NASA Astrophysics Data System (ADS)
Acernese, Fausto; De Rosa, Rosario; DeSalvo, Riccardo; Giordano, Gerardo; Harms, Jan; Mandic, Vuk; Sajeva, Angelo; Trancynger, Thomas; Barone, Fabrizio
2010-04-01
In this paper we describe the scientific data recorded along one month of data taking of two mechanical monolithic horizontal sensor prototypes located in a blind-ended (side) tunnel 2000 ft deep in the Homestake (South Dakota, USA) mine chosen to host the Deep Underground Science and Engineering Laboratory (DUSEL). The two mechanical monolithic sensors, developed at the University of Salerno, are placed, in thermally insulating enclosures, onto concrete slabs connected to the bedrock, and behind a sound-proofing wall. The main goal of this experiment is to characterize the Homestake site in the frequency band 10-4 - 30Hz and to estimate the level of Newtonian noise in a deep underegropund laboratory. The horizontal semidiurnal Earth tide and the Peterson's New Low Noise Model have been measured.
Small diameter, deep bore optical inspection system
Lord, David E.; Petrini, Richard R.; Carter, Gary W.
1981-01-01
An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... the seat. Many vehicles will depend on side impact air bag technology to meet all of the injury... installing side air bags in vehicle seats and/or door panels and side roof rails. The phase-in of the... expressed concern that: ``* * * torso side air bags are commonly installed in the outboard side of the OEM...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... that many vehicles will depend on side impact air bag technology to meet all of the injury criteria of... ``lead to the installation of new technologies, such as side curtain air bags and torso side air bags... is side air bag technology incorporated in the vehicle's roof rail (side air bag curtain), door, and...
Papadopoulos, C; Hayes, B K
2018-06-01
Previous work has demonstrated a "side-effect effect," such that intentionality is more likely to be attributed to agents who bring about negatively valenced as opposed to positively valenced side effects. The rational-scientist model explains this by suggesting that norm-violating side effects are more informative for inferring intentionality than norm-conforming side effects. In the present study we reexamined this account, addressing limitations of previous empirical tests (e.g., Uttich & Lombrozo, Cognition 116: 87-100, 2010). Side-effect valence and norm status were manipulated factorially, enabling an examination of the impact of norm status on intentionality judgments in both positively and negatively valenced side effects. Additionally, the impact of side-effect norm status on the perceived valences of side effects and agents was examined. Effects of norm status were found for both positive and negative side effects. Violation of an ostensibly neutral norm led to negative perceptions of the side effect. However, a norm status effect on intentionality judgments persisted when these effects were controlled. These results support the view that the side-effect effect is the result of the rational use of social-cognitive evidence.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Potential impact of global climate change on benthic deep-sea microbes.
Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio
2017-12-15
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Suh, Dong Hye; Choi, Jeong Hwee; Lee, Sang Jun; Jeong, Ki-Heon; Song, Kye Yong; Shin, Min Kyung
2015-01-01
High-intensity focused ultrasound (HIFU) and radiofrequency (RF) are used for non-invasive skin tightening. Neocollagenesis and neoelastogenesis have been reported to have a mechanism of controlled thermal injury. To compare neocollagenesis and neoelastogenesis in each layer of the dermis after each session of HIFU and monopolar RF. We analyzed the area fraction of collagen and elastic fibers using the Masson's Trichrome and Victoria blue special stains, respectively, before and after 2 months of treatments. Histometric analyses were performed in each layer of the dermis, including the papillary dermis, and upper, mid, and deep reticular dermis. Monopolar RF led to neocollagenesis in the papillary dermis, and upper, mid, and deep reticular dermis, and neoelastogenesis in the papillary dermis, and upper and mid reticular dermis. HIFU led to neocollagenesis in the mid and deep reticular dermis and neoelastogenesis in the deep reticular dermis. Among these treatment methods, HIFU showed the highest level of neocollagenesis and neoelastogenesis in the deep reticular dermis. HIFU affects deep tissues and impacts focal regions. Monopolar RF also affects deep tissues, but impacts diffuse regions. We believe these data provide further insight into effective skin tightening.
Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B
2016-09-01
Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door. The tether may not influence the kinematics of a near-side-seated occupant as strongly where the vehicle door or side structure interacts with the CRS and influences its motion. The results indicate that there may be an opportunity to improve child head kinematics and head protection in oblique side impacts through different CRS attachment methods and/or alternative vehicle side structure protection or padding.
Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry
NASA Astrophysics Data System (ADS)
Shen, Z.; Zhan, Z.
2017-12-01
It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.
Mantle plumes in the vicinity of subduction zones
NASA Astrophysics Data System (ADS)
Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.
2016-11-01
We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
The Organization of Wariness of Heights in Experienced Crawlers
ERIC Educational Resources Information Center
Ueno, Mika; Uchiyama, Ichiro; Campos, Joseph J.; Dahl, Audun; Anderson, David I.
2012-01-01
Most infants with more than 6 weeks of crawling experience completely avoid the deep side of a visual cliff (Campos, Bertenthal, & Kermoian, 1992; Gibson & Walk, 1960). However, some experienced crawlers do move onto the transparent surface suspended several feet above the ground. An important question is whether these "nonavoiders" lack wariness…
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Artesian Well Abandonment at Launch Complex 39A
NASA Technical Reports Server (NTRS)
Morgan, Lindsay; Johansen, Deda
2015-01-01
The artesian well tasked for abandonment was located on the LOX side (northwest area) of the launch complex. The exact date of well installation is unknown. The well was no longer in use at the time of the abandonment request, but was previously utilized under St. Johns River Water Management District (SJRWMD) consumptive use permit (No. 50054) for the Floridian Aquifer. The exact construction details of the LOX artesian well were also unknown; however, a similar-type artesian well was previously located on the LH2 side of the site, which was abandoned in 2012. Based on discussions with the NASA RPM and review of the LH2 artesian well abandonment completion report, the LH2 artesian well was reported to be an 8-inch diameter, 330-foot deep well. The NASA RPM communicated that the LOX artesian well was likely to be an 8-inch diameter, 380-foot deep well. This information was used for scoping, and was subsequently confirmed to be substantially accurate. No additional information could be found for the LOX artesian well using the NASA Remediation Information System (RIS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2006-06-29
This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).
NASA Technical Reports Server (NTRS)
2008-01-01
Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria. The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.Examination of the impact of airbags on renal injury using a national database.
Smith, Thomas G; Wessells, Hunter B; Mack, Chris D; Kaufman, Robert; Bulger, Eileen M; Voelzke, Bryan B
2010-09-01
Little is known about preventative measures to lessen solid organ injury in motor vehicle collisions (MVCs). To evaluate the efficacy of airbags in reducing renal injuries in MVC, we analyzed renal injury rates in vehicles with and without airbags using the Crash Injury Research and Engineering Network (CIREN) database. The CIREN database was queried for MVC and renal injury from 1996 to September 2008. CIREN is weighted toward late model vehicles and selects more severely injured patients. Search fields were primary direction of force (PDOF), presence of airbags, and location of airbags (steering wheel, instrument panel, seat back, door panel, and roof-side curtain). Abdominal Abbreviated Injury Score was converted to AAST renal injury grade. Renal injury rates were compared between vehicles with and without frontal and side airbags. We reviewed 2,864 records and identified 139 renal injuries (28.9% AAST grade III to V). In MVCs with renal injuries, frontal impact was 54.7% of total (n = 76) and side impact was 45.3% of total (n = 63). Most occupants in frontal impact MVCs had exposure to a steering wheel airbag (74.9%); 16.6% had an instrument panel (passenger) airbags. In side impact MVCs, 32.2% of occupants had a side airbag. Compared with the non-airbags cohort, frontal airbags and side airbags were associated with a 45.3% and 52.8% reduction in renal injury, respectively. Passengers in automobiles with frontal and side airbags have a reduced rate of renal injury compared with those without airbags. Our data support further study of the role of airbags in reducing renal injury after MVC. Copyright 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Rear Seat Occupant Thorax Protection in Near Side Impacts
Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola
2009-01-01
Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828
Considerations on communications network protocols in deep space
NASA Technical Reports Server (NTRS)
Clare, L. P.; Agre, J. R.; Yan, T.
2001-01-01
Communications supporting deep space missions impose numerous unique constraints that impact the architectural choices made for cost-effectiveness. We are entering the era where networks that exist in deep space are needed to support planetary exploration. Cost-effective performance will require a balanced integration of applicable widely used standard protocols with new and innovative designs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... following methods: Government-wide rulemaking Web site: http://www.regulations.gov . Follow the instructions... irrigation system improvements outlined in this plan will provide more efficient use of this water. Deep... reduction of excess deep percolation passing below the plant root zone. Deep percolation of irrigation water...
Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng
2016-12-01
Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation-induced side effects after multiple treatments with conventional stimulation. A return to conventional stimulation may be required if ILS induces new side effects or the needs of the patient change.
Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng
2016-01-01
Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation-induced side effects after multiple treatments with conventional stimulation. A return to conventional stimulation may be required if ILS induces new side effects or the needs of the patient change. PMID:27930569
VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen
2016-01-01
This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality
Suzuki, Yoshihiro; Teranishi, Kotaro; Matsuwaki, Tomonori; Nukazawa, Kei; Ogura, Yoshitoshi
2018-05-28
To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month. Copyright © 2018 Elsevier B.V. All rights reserved.
Past permafrost on the Mid-Atlantic coastal plain, eastern United States
French, H.; Demitroff, M.; Newell, Wayne L.
2009-01-01
Sand-wedge casts, soil wedges and other non-diastrophic, post-depositional sedimentary structures suggest that Late-Pleistocene permafrost and deep seasonal frost on the Mid-Atlantic Coastal Plain extended at least as far south as southern Delaware, the Eastern Shore and southern Maryland. Heterogeneous cold-climate slope deposits mantle lower valley-side slopes in central Maryland. A widespread pre-existing fragipan is congruent with the inferred palaeo-permafrost table. The high bulk density of the fragipan was probably enhanced by either thaw consolidation when icy permafrost degraded at the active layer-permafrost interface or by liquefaction and compaction when deep seasonal frost thawed. ?? 2009 John Wiley & Sons, Ltd.
Abernethy, P; Batman, P
1994-01-01
The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493
Leheta, Tahra Mohamed; Abdel Hay, Rania Mounir; El Garem, Yehia Farouk
2014-04-01
Deep peeling using phenol and percutaneous collagen induction (PCI) are used in treating acne scars. To compare deep peeling using phenol and PCI combined with trichloroacetic acid (TCA) 20% in treating atrophic acne scars. 24 patients with post-acne atrophic scars were randomly divided into two groups; group 1 was subjected to one session of deep peeling using phenol, and group 2 was subjected to four sessions of PCI combined with TCA 20%. As a secondary outcome measure, side effects were recorded and patients were asked to assess their % of improvement by a questionnaire completed 8 months after the procedure. Scar severity scores improved by a mean of 75.12% (p < 0.001) in group 1 and a mean of 69.43% (p < 0.001) in group 2. Comparing the degree of improvement in different types of scars, within the same group after treatment, revealed a significant highest degree of improvement in the rolling type (p = 0.005) in group 2. Deep peeling using phenol and PCI with TCA 20% were effective in treating post-acne atrophic scars.
Factors Influencing Occupant-To-Seat Belt Interaction in Far-Side Crashes
Douglas, C.A.; Fildes, B.N.; Gibson, T.J.; Boström, O.; Pintar, F.A.
2007-01-01
Seat belt interaction with a far-side occupant’s shoulder and thorax is critical to governing excursion towards the struck-side of the vehicle in side impact. In this study, occupant-to-belt interaction was simulated using a modified MADYMO human model and finite element belts. Quasi-static tests with volunteers and dynamic sled tests with PMHS and WorldSID were used for model validation and comparison. Parameter studies were then undertaken to quantify the effect of impact direction, seat belt geometry and pretension on occupant-to-seat belt interaction. Results suggest that lowering the D-ring and increasing pretension reduces the likelihood of the belt slipping off the shoulder. Anthropometry was also shown to influence restraint provided by the shoulder belt. Furthermore, the belt may slip off the occupant’s shoulder at impact angles greater than 40 degrees from frontal when no pretension is used. However, the addition of pretension allowed the shoulder to engage the belt in all impacts from 30 to 90 degrees. PMID:18184500
Wykes, T; Evans, J; Paton, C; Barnes, T R E; Taylor, D; Bentall, R; Dalton, B; Ruffell, T; Rose, D; Vitoratou, S
2017-10-01
Capturing service users' perspectives can highlight additional and different concerns to those of clinicians, but there are no up to date, self-report psychometrically sound measures of side effects of antipsychotic medications. Aim To develop a psychometrically sound measure to identify antipsychotic side effects important to service users, the Maudsley Side Effects (MSE) measure. An initial item bank was subjected to a Delphi exercise (n = 9) with psychiatrists and pharmacists, followed by service user focus groups and expert panels (n = 15) to determine item relevance and language. Feasibility and comprehensive psychometric properties were established in two samples (N43 and N50). We investigated whether we could predict the three most important side effects for individuals from their frequency, severity and life impact. MSE is a 53-item measure with good reliability and validity. Poorer mental and physical health, but not psychotic symptoms, was related to side-effect burden. Seventy-nine percent of items were chosen as one of the three most important effects. Severity, impact and distress only predicted 'putting on weight' which was more distressing, more severe and had more life impact in those for whom it was most important. MSE is a self-report questionnaire that identifies reliably the side-effect burden as experienced by patients. Identifying key side effects important to patients can act as a starting point for joint decision making on the type and the dose of medication.
Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...
Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.
Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne
2012-11-01
We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan
2014-03-01
The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.
Jakobsson, Lotta; Lindman, Magdalena; Svanberg, Bo; Carlsson, Henrik
2010-01-01
This study analyses the outcome of the continuous improved occupant protection over the last two decades for front seat near side occupants in side impacts based on a real world driven working process. The effectiveness of four generations of improved side impact protection are calculated based on data from Volvo’s statistical accident database of Volvo Cars in Sweden. Generation I includes vehicles with a new structural and interior concept (SIPS). Generation II includes vehicles with structural improvements and a new chest airbag (SIPSbag). Generation III includes vehicles with further improved SIPS and SIPSbag as well as the new concept with a head protecting Inflatable Curtain (IC). Generation IV includes the most recent vehicles with further improvements of all the systems plus advanced sensors and seat belt pretensioner activation. Compared to baseline vehicles, vehicles of generation I reduce MAIS2+ injuries by 54%, generation II by 61% and generation III by 72%. For generation IV effectiveness figures cannot be calculated because of the lack of MAIS2+ injuries. A continuous improved performance is also seen when studying the AIS2+ pelvis, abdomen, chest and head injuries separately. By using the same real world driven working process, future improvements and possibly new passive as well as active safety systems, will be developed with the aim of further improved protection to near side occupants in side impacts. PMID:21050597
PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset.
Miller, Carl S; Madura, Nathaniel H; Schneider, Lawrence W; Klinich, Kathleen D; Reed, Matthew P; Rupp, Jonathan D
2013-11-01
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject. The masses of the sleds and the force- deflection characteristics of the energy-absorbing interface material between the sleds were set to provide the impactor sled with a velocity profile that matched the average driver door velocity history produced in a series of side NCAP tests. Impactor padding was also selected so that average ATD pelvis and thorax responses from the same series of side NCAP tests were reproduced when the ATD used in these tests was impacted using the average door-velocity history. Each subject was first impacted on one side of the body using an initial impactor speed of 3 m/s. If a post-test CT scan and strain-gage data revealed two or fewer non-displaced rib fractures, then the PMHS was impacted on the contralateral side of the body at a speed of 8 m/s or 10 m/s. The results of tests in the 3 m/s and 8 m/s conditions were used to develop force-deflection response corridors for the abdomen, force history response corridors for the pelvis (iliac wing and greater trochanter), the midthigh, and the thorax. Response corridors for the lateral acceleration of the pelvis were also developed. Future work will compare side impact ATD responses to these response corridors.
Extraterrestrial demise of banded iron formations 1.85 billion years ago
Slack, J.F.; Cannon, W.F.
2009-01-01
In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.
Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect
NASA Technical Reports Server (NTRS)
Robertson, Darrel
2016-01-01
Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).
The terminal Velocity of the Deep Impact dust Ejecta
NASA Astrophysics Data System (ADS)
Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.
2009-05-01
The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.
Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry
NASA Astrophysics Data System (ADS)
Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J.
1994-12-01
Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
Comets, Charisma, and Celebrity: Reflections on Their Deep Impact
NASA Astrophysics Data System (ADS)
Olson, R. J. M.; Pasachoff, J. M.
In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.
Chesapeake Bay impact structure: A blast from the past
Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright
2015-10-28
Since its discovery in the early 1990s, scientists have conducted deep drilling and geophysical surveys of the impact structure to find out more about its size, composition, structure, age, and biological effects and to understand its lingering influences on the regional groundwater system. These efforts culminated in the drilling of a 1-mile-deep, continuously sampled corehole in 2005 by an international group of scientists and agencies.
Small diameter, deep bore optical inspection system
Lord, D.E.; Petrini, R.R.; Carter, G.W.
An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandergrift, T.L.; Jude, C.V.
1995-12-31
This U.S. Bureau of Mines (USBM) report evaluates three stress-transfer-modification concepts for their potential in reducing longwall gate road stresses and closures. In each of the three concepts--packwalling, gob infilling, and entry filling--support structures are constructed on the headgate side of the panel parallel with or inby the face line. When the headgate becomes the tailgate of the adjacent panel, these structures are in place to accept stresses transferred from the mined-out panel. Using the USBM nonlinear boundary-element program MULSIM/NL, baseline models of typical longwall stress transfer behavior were developed for both intermediate depth and deep mining conditions. These modelsmore » were verified by comparing model results with field measurements and observations. The stress-transfer-modification concepts were then incorporated into the deep baseline model to quantify the effects of each concept on tailgate closure.« less
Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K; den Branden, Stef Van; Broeckaert, Bert
2011-01-01
We wanted to assess Indian palliative-care nurses and physicians' attitudes toward pain control and palliative sedation. From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). The interviewees did not consider administration of painkillers in large doses an ethical problem, provided the pain killers are properly titrated. Mild palliative sedation was considered acceptable. The interviewees disagreed whether palliative sedation can also be deep and continuous. Arguments mentioned against deep continuous palliative sedation were the conviction that it may cause unacceptable side effects, and impedes basic daily activities and social contacts. A few interviewees said that palliative sedation may hasten death. Due to fears and doubts regarding deep continuous palliative sedation, it may sometimes be too easily discarded as a treatment option for refractory symptoms.
Solar-wind proton access deep into the near-Moon wake
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Yokota, S.; Asamura, K.; Tanaka, T.; Tsunakawa, H.; Matsushima, M.; Takahashi, F.; Terasawa, T.; Shibuya, H.; Shimizu, H.
2009-08-01
We study solar wind (SW) entry deep into the near-Moon wake using SELENE (KAGUYA) data. It has been known that SW protons flowing around the Moon access the central region of the distant lunar wake, while their intrusion deep into the near-Moon wake has never been expected. We show that SW protons sneak into the deepest lunar wake (anti-subsolar region at ˜100 km altitude), and that the entry yields strong asymmetry of the near-Moon wake environment. Particle trajectory calculations demonstrate that these SW protons are once scattered at the lunar dayside surface, picked-up by the SW motional electric field, and finally sneak into the deepest wake. Our results mean that the SW protons scattered at the lunar dayside surface and coming into the night side region are crucial for plasma environment in the wake, suggesting absorption of ambient SW electrons into the wake to maintain quasi-neutrality.
NASA Astrophysics Data System (ADS)
Vagsheyg Erenbjerg, Sissal; Albretsen, Jon; Asplin, Lars; Joensen, Erna; Sandvik, Anne; Simonsen, Knud; Kaas, Eigil
2017-04-01
The location of the Faroe Islands on the Greenland-Scotland ridge puts the oceanography on the boundary of deep water and shelf and fjord dynamics. This placement in close proximity of the deep ocean currents, important for heat transport towards the Arctic, makes the Faroe Islands higly exposed to climate change. Therefore it is important to understand the interaction of deep water oceanography and fjord dynamics in general, to be able to predict potential impact, due to changes in ocean parameters. The Faroe Islands consist of 18 islands. The topographic characteristics are typical for an ice sheet shaped land surface with long and slim islands, steep mountain sides divided by narrow and relatively deep fjords. This highly complex topography is greatly influenced by wind conditions. Sundalagið separates the two largest islands: Streymoy and Eysturoy and has three fjordarms and two main basins. The northern part (SUN) is 15km long and 100m-1.6km wide. The sound is bound to the north by a 9m deep sill. Towards the south by a narrowing of a 100 meter wide and around four meter deep sill, depending on tidal conditions. The southern part (SUS) is not as clearly constricted but contains three major basins with depths ranging from 70-100m (Hansen et al., 1990). We have implemented a nested model system using high resolution bathymetry in the fjords and the entire shelf as well as the open-source hydrodynamical model ROMS (Regional Ocean Modeling System, http://myroms.org). The Faroe Islands model applications are using triply, one way nested grids with 800 → 160 → 32 meter resolutions in the horizontal. This gives us the opportunity to both simulate the deep water oceanography applying 800m resolution as well as the dynamics in the shallow regions using finer resolution models. A particular interest in the area is the influence of the tidal regime. In SUN the tidal dynamics are quite limited due to the location of an amphidromeice point in the Nolsoy fjord (M2=10.4cm (www.dmi.dk)) whereas SUN is heavily dominated by tidal dynamics (M2=63.1cm). The general observation is a more pronounced stratification in SUN and higher vertical mixing in the water column in SUS (2016 CTD mesurements). Our ROMS simulations are run for the year 2013 (only part of the year for the 32m resolution) and forced with high-resolution atmospheric conditions (WRF-1km), large-scale ocean fields (ROMS 4km) of currents, hydrography and sea level (Lien et al., 2014), global tides (TPXO7.2) and climatological freshwater discharges including the main rivers. In this study we validate the model simulations using in-situ data coverage (ACDP) in the local area. A well-functioning dynamical model system is highly important for the Faroe Islands where aquaculture is by far the greatest industry. Linking this to a particle tracking module will further increase the understanding of climate impact in the Faroes in particular with regards to the changes for the biological cycle and mitigation of sea lice (a challenging parasite for the aquaculture) by temperature changes.
Climate, carbon cycling, and deep-ocean ecosystems.
Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S
2009-11-17
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.
Thermal Properties of Double-Aluminized Kapton at Low Temperatures
NASA Technical Reports Server (NTRS)
Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.
2007-01-01
Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.
NASA Astrophysics Data System (ADS)
Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Ishihara, Y.; Noda, H.; Ssasaki, S.; Iwata, T.; Hanada, H.; Araki, H.
2009-04-01
The gravity field is a fundamental physical quantity for the study of the internal structure and the evolution of planetary bodies. The most significant problem of the previous lunar gravity models, however, is the lack of direct observations of the far side gravity signals [1]. We then developed a satellite-to-satellite Doppler tracking sub-system for SELENE [2]. In this study, we adopt our new gravity field model with nearly full coverage of the lunar far side to discuss dichotomy of the lunar basins. Because all the nearside impact basins are filled with extensive mare basalt deposits, it is difficult to estimate the subsurface structures, such as uplift of the Moho surface, from gravity measurements. In contrast, far-side impact basins have much less or no mare basalt coverage. This may allow us to investigate the internal structure underneath impact basins. Such knowledge will be important in understanding the response of a solid planetary body to large meteoritic impacts and also the thermal state of the Moon during the late heavy bombardment period. There are distinctive differences between the anomalies of the near side principal mascons and the far side basins. As shown previously [1, 3], the near side principal mascons have sharp shoulders with a gravity plateau and a weakly negative gravity anomaly in the surroundings. In contrast, the far side basins are characterized by concentric rings of positive and negative anomalies. The circular gravity highs agree well with the topographic rims of the basins revealed by SELENE topography model STM-359_grid-02 [4]. In our gravity model, Orientale, Mendel-Rydberg, Lorentz, and Humboldtianum show more affinity with the far side basins than the near side principal mascons [5]. Korolev, Mendeleev, Planck, and Lorentz basins have sharp central peaks of which magnitude in free-air anomalies is almost equivalent to the one in Bouguer anomalies. On the other hand, Orientale, Mendel-Rydberg, Humboldtianum, Moscoviense, and Freundlich-Sharonov basins have a broad peak of which magnitude in free-air anomalies is 20 to 60 % smaller than the one in Bouguer anomalies. We call the former basins Type I and the latter Type II. The central gravity high of Type I basins in Bouguer anomalies suggests the existence of excess mass below the center. Because mare fill is absent from Type I basins, the central gravity high is most likely a manifestation of mantle uplift beneath the basin. The peak height of positive Bouguer anomalies of Type II ranges from 400 to 900 mGal in comparison to those in free-air anomalies from 250 to 500 mGal. This difference can be attributed to local compensation at the center of the Type II basins. We propose a brittle deformation resulting from a load of uplifted mantle. Little relation between the class and formation age is found. On the other hand, there are fewer large lunar basins on the far side. It is unlikely that large impacts concentrated on one side of the Moon and smaller impacts on the other side, as crater diameter depends mostly on impacting energy and momentum, not the properties of the target [6]. A plausible hypothesis is that the primary mascon basins on the near side have deformed more after their initial formation. References: [1] A. S. Konopliv et al., Icarus, 150, 1 (2001). [2] T. Iwata et al., JGSJ, 47, 558 (2001). [3] F. G. Lemoine et al., JGR, 102, 16,339, (1997). [4] H. Araki et al., submitted to Science (2009). [5] N. Namiki et al., accepted by Science (2009). [6] H. J. Melosh, Impact Cratering: A Geologic Process (1989).
Reflecting on the Liberal Reflex: Rhetoric and the Politics of Acknowledgement in Basic Writing
ERIC Educational Resources Information Center
Pavesich, Matthew
2011-01-01
In the 1990s, leading rhetoric and composition scholars criticized basic writing programs for their "liberalism." Basic writing had its defenders, however, and the ensuing debate exposed deep rifts in the field. This article argues that neither side in this formative debate nor the more recent alternative models of teaching basic writing…
Waist-High and Knee-Deep: Humane Learning beyond Polemics and Precincts
ERIC Educational Resources Information Center
Higgins, Chris
2015-01-01
In this essay, Chris Higgins sets out to disentangle the tradition of humane learning from contemporary distinctions and debates. The first section demonstrates how a bloated and incoherent "humanism" now functions primarily as a talisman or a target, that is, as a prompt to choose sides. It closes with the image of Doris Salcedo's…
Deep drilling into the Chesapeake Bay impact structure
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.; Browning, J.V.; Cockell, C.S.; Horton, J. Wright; Kenkmann, T.; Kulpecz, A.A.; Powars, D.S.; Sanford, W.E.; Voytek, M.A.
2008-01-01
Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.
Deep drilling into the Chesapeake Bay impact structure.
Gohn, G S; Koeberl, C; Miller, K G; Reimold, W U; Browning, J V; Cockell, C S; Horton, J W; Kenkmann, T; Kulpecz, A A; Powars, D S; Sanford, W E; Voytek, M A
2008-06-27
Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.
Pycnogenol may alleviate adverse effects in oncologic treatment.
Belcaro, G; Cesarone, M R; Genovesi, D; Ledda, A; Vinciguerra, G; Ricci, A; Pellegrini, L; Gizzi, G; Ippolito, E; Dugall, M; Cacchio, M; Di Renzo, A; Stuard, S
2008-09-01
A large variety of adverse reactions are well known to frequently occur during chemotherapy and radiotherapy in oncology. Specific medications exist to target individual side effects. The aim of this study was to explore in a pilot trial whether supplementation with French maritime pine bark extract Pycnogenol could alleviate side effects and improve patient's quality of life. Cancer patients who previously underwent surgery and who were in view of their pathology in relatively good condition, both physically and psychologically, were recruited for this study and divided into two groups. These patients received their first cycle of radiotherapy or chemotherapy, which lasted from 10 days up to 1 month. Then one group of patients received 150 mg Pycnogenol, the control group comparable placebo in a single-blinded fashion. The authors studied the occurrence of side effects and made attempts to judge their severity on a semi-quantitative visual analogue scale over a 2 months period starting after patients completed their first cycle of chemo- or radiotherapy, respectively. Twenty five radiotherapy patients receiving Pycnogenol showed a decreased frequency of essentially all investigated side-effects as compared to 21 patients receiving placebo, though in many categories the difference was limited. The most apparent improvements of acute side effects related to decreased soreness and ulceration in the mouth and throat as well as less dryness of the mouth and the eyes. A decreased incidence of nausea /vomiting, diarrhoea, edema and weakness was noticed, which was reflected by semi-quantitative evaluation suggesting that severity was only half or even less pronounced than in the control group. Only one case of deep vein thrombosis occurred in the Pycnogenol group whereas 2 cases of superficial vein thromboses and one case of deep vein thrombosis occurred in the control group (2.9% vs 10%). Thirty four chemotherapy patients were supplemented with Pycnogenol and another 30 patients were in the control group. For all patients this was the first chemotherapy treatment period. The Pycnogenol group presented with a lowered incidence of all investigated side effects as compared to the control group, though in many cases to a limited extent. The most prominent improvements were found for nausea, vomiting, diarrhoea and weight loss. Semi-quantitative evaluation showed that here again symptom severity was half or less pronounced than in the control group. Various further symptoms improved such as cognitive impairment and also cardiotoxicity and neutropenia. Effects on anemia could not be investigated as several patients received erythrocyte transfusion. In the Pycnogenol group one case of superficial vein thrombosis was indentified while 3 cases of superficial vein thromboses and one deep vein thrombosis were detected in the control group (4% vs 19%). In both chemotherapy and radiotherapy patients Pycnogenol lowered the requirement for medication to address side effects. This was reflected by less days of hospitalisation the patients required. The authors did not investigate a possible interference with the anti-neoplastic efficacy of chemo- and radiotherapy. This possibility requires attention in future studies with Pycnogenol. From their previous clinical experience the authors suggest that alleviation of side effects described in this study results from Pycnogenol activities related to endothelial protection, and anti-inflammatory anti-edema activities. The results of this pilot trial warrant further prospective studies with larger number of patients to validate benefits more specifically with regard to type of malignancy and treatment regimen.
UNEQUAL RISK: COMBAT OCCUPATIONS IN THE VOLUNTEER MILITARY
MacLEAN, ALAIR; PARSONS, NICHOLAS L.
2011-01-01
This study evaluates the characteristics of the men who served in the volunteer military in combat occupations. It examines whether these characteristics stem from supply-side or demand-side decisions, or reflect class bias. The findings suggest that, on the supply side, men who had greater academic abilities were more likely to go to college, thereby avoiding military service and the possibility of serving in a combat occupation. On the demand side, the armed forces were more likely to exclude men with lower academic abilities but were more likely to assign such men in the military to combat occupations. Net of the impacts of these supply-side and demand-side decisions, men who served in combat occupations still differed from those who did not in terms of their family background. The impact of family background was stronger on entering the military than on being assigned to combat occupations once in the military. PMID:21691446
1998-10-16
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Seon; Kim, Su-Min; Park, Ji-Young; Kim, Jin-Baek
2006-03-01
In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.
Oceanic Impacts: A Growing Field of Fundamental Geoscience
NASA Technical Reports Server (NTRS)
Gersonde, Rainer; Deutsch, Alexander; Ivanov, Boris A.; Kyte, Frank T.
2002-01-01
The importance of oceanic impacts of collisional events and resulting energy release, are briefly described. Data collection methods from the Eltanin (a mesosiderite projectile) deep water impact, are presented.
Injury reduction opportunities of far side impact countermeasures.
Bostrom, Ola; Gabler, Hampton C; Digges, Kennerly; Fildes, Brian; Sunnevang, Cecilia
2008-10-01
Over 17,000 non-struck or far side occupants in side and rollover crashes are seriously or fatally injured annually in the US. Although no legal or rating tests exist for far side crashes, test methods including appropriate dummies as well as countermeasures have been recently suggested. The aim of this study was to establish the incidence and risk of injury / fatality as a function of vehicle change in velocity (Deltav) for the most frequent injuries of belted, far side occupants in side impacts. The study was based upon the NASS/CDS 1995-2006 records of 5,653 occupants exposed to a far side crash. 401 of these were seriously or fatally injured. Combining this data with new and previously published crash test results, the potential opportunities of various concepts of far side countermeasures were evaluated. Head/thorax injuries caused by interaction with the struck side interior were found to dominate. Countermeasures such as side support airbags and altered three-point belt geometry (e.g. four-point belts) are relevant for Deltav of at least 20-30 km/h. The opportunity for mitigating AIS3+ injuries in these severity ranges was found to be 19%- 57%. Countermeasures such as struck-side curtains are able to provide cushioning at Deltav 30 to 50 km/h, which would cover almost a third of all fatalities.
Deep-crustal seismicity in volcanic regions by fluid-enhanced wallrock embrittlement
NASA Astrophysics Data System (ADS)
Sisson, T. W.; Power, J. A.
2013-12-01
Spatial association of deep long-period (DLP) seismicity with volcanoes [1,2], spectral frequencies resembling shallow events attributed to fluid motions, and temporal associations with some eruptions, prompt the interpretation that DLPs mark the locations of magma, or magma with percolating exsolved vapor, in the mid and lower crust. However, various factors are more consistent with the events taking place in the walls surrounding the hot aseismic cores of deep magmatic systems, due to expelled magmatic fluids elevating pore pressures and reducing wall rock brittle strengths, or possibly in largely solidified peripheral intrusions embrittled by interstitial residual melt. First, although exceptions are known, deep seismic events are typically displaced to one or more sides of the locus of volcanism. Compilation of >1000 mid to deep crustal DLP and volcano tectonic events from the Aleutian arc, plotted as radial distance from the respective volcanic locus vs. depth, shows a minimum of events beneath the volcanic loci, encased in a downward broadening halo of events, typically displaced about 6 km to the sides of the volcanic locus. Lateral offsets of deep events are also well established for volcanoes of the Washington Cascades [3], averaging 7.5×4.5(1σ) km, and for some centers in California [1]. Second, while mafic parental magmas can have high concentrations of H2O (CO2 concentrations are comparatively negligible), H2O is highly soluble at mid to lower crustal pressures and will not exsolve appreciably until advanced crystallization and second boiling. Deep vapor exsolution will proceed gradually, delayed well after replenishment events, due to slow cooling and crystallization in the hot deep crust. Exsolution dominantly at high crystallinities argues against bubbles moving through largely liquid replenishing magmas as a major cause of DLPs. Third, isotherms around the mid to deep crustal portions of magmatic systems will propagate outward with time1/2 due to dominantly conductive heat transfer at those depths. Over the ca. 1-5×105 yr durations of convergent margin volcanoes, characteristic isotherms propagate <10 km (k: 2.25 W/mK); temperature dependent thermal conductivity [4] would reduce these distances. Deep magmatic systems are therefore encased in relatively thin thermal sheaths, outboard of which temperatures drop sharply to near-ambient values, and rock strengths increase accordingly. Collectively, these factors support a scenario wherein magmas crystallize in the roots of volcanic systems, gradually exsolving and releasing vapor, some of which percolates into surrounding wallrocks. Beyond some critical isotherm, plastic rock strength increases sufficiently for fluid enhanced brittle failure when the walls are stressed by magma replenishments or by ordinary tectonic forces. If so, the statistical spatial distribution of DLPs indicates that the hot, active portions of the deep magmatic systems are relatively narrow, commonly <6 km in semi-minor radius. 1. Pitt et al., 2002, Seis Res Lett 73:144-152 2. Power et al., 2004, Jour Volc Geotherm Res 138:243-266 3. Nichols et al., 2011, Jour Volc Geotherm Res 200:116-128 4. Whittington et al., 2009, Nature 458, 319-321
The Use of Deep Learning Strategies in Online Business Courses to Impact Student Retention
ERIC Educational Resources Information Center
DeLotell, Pam Jones; Millam, Loretta A.; Reinhardt, Michelle M.
2010-01-01
Interest, application and understanding--these are key elements in successful online classroom experiences and all part of what is commonly referred to as deep learning. Deep learning occurs when students are able to connect with course topics, find value in them and see how to apply them to real-world situations. Asynchronous discussion forums in…
Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.
2016-12-01
Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.
Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.
2017-07-01
We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.
Maltese, Matthew R.; Chen, Irene G.; Arbogast, Kristy B.
2005-01-01
Previous work identified a similar risk of injury for children seated on the struck side and center rear in side impact crashes in passenger cars. In order to further explain this finding, we investigated the effect of sharing the rear row with other occupants on injury risk and delineated differences in injury patterns among the seat positions. These analyses, conducted from a large child specific crash surveillance system, included: children 4–15 years old, rear seated, seat belt restrained, in a passenger car, and in a side impact crash. Injury risk was compared among each rear seat position stratified by the presence of other occupants on the rear row. Occupants are at an increased risk of injury if they sit alone on their row as compared to sitting with other occupants. Patterns of injuries distinct to each seat position were delineated. PMID:16179151
Effect of Booster Seat Design on Children’s Choice of Seating Positions During Naturalistic Riding
Andersson, Marianne; Bohman, Katarina; Osvalder, Anna-Lisa
2010-01-01
The purpose of this naturalistic study was to investigate the effect of booster seat design on the choice of children’s seating positions during naturalistic riding. Data was collected through observations of children during in-vehicle riding by means of a film camera. The children were positioned in high back boosters in the rear seat while a parent drove the car. The study included two different booster designs: one with large head and torso side supports, and one with small head side supports and no torso side supports. Six children between three and six years of age participated in the study. Each child was observed in both boosters. The duration of the seating positions that each child assumed was quantified. The design with large side head supports resulted more often in seating positions without head and shoulder contact with the booster’s back. There was shoulder-to-booster back contact during an average of 45% of riding time in the seat with the large head side supports compared to 75% in the seat with the small head supports. The children in the study were seated with the head in front of the front edge of the head side supports more than half the time, in both boosters. Laterally, the children were almost constantly positioned between the side supports of the booster in both seats. The observed seating positions probably reduce the desired protective effect by the side supports in side impact, and may increase the probability of head impact with the vehicle interior in frontal impact. PMID:21050601
Separation Anxiety Over for Deep Impact
NASA Technical Reports Server (NTRS)
2005-01-01
This image of Deep Impact's impactor probe was taken by the mission's mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 (2:07 a.m. Eastern time, July 3). The impactor is scheduled to collide with comet Tempel 1 at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The impactor can be seen at the center of the image.Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems
NASA Astrophysics Data System (ADS)
Tecchio, Samuele; Coll, Marta; Sardà, Francisco
2015-06-01
Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate-driven reduction of marine snow.
SEAC4RS Data and Information Page
Atmospheric Science Data Center
2015-07-01
... deep convection throughout the troposphere; to determine the evolution of gases and aerosols in deep convective outflow and the implications ... influence of biomass burning and pollution, their temporal evolution, and ultimately, impacts on meteorological processes which can, in ...
Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D
2013-12-03
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean
Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.
2013-01-01
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565
Lambert, M; Conus, P; Eide, P; Mass, R; Karow, A; Moritz, S; Golks, D; Naber, D
2004-11-01
(1) determine which antipsychotic side effects (SE) schizophrenic patients consider the most distressing during treatment with typical antipsychotics, (2) measure the impact of actual and past SE on patients' attitude toward antipsychotics and (3) assess the influence of both on adherence. The 213 schizophrenics, treated with conventional antipsychotics, were recruited in two psychiatric hospitals in Hamburg. Subjects were assessed about type and severity of present and past side effects and their attitude and adherence to antipsychotic treatment. The 82 (39%) patients presented present SE while 131 (61%) did not. Sexual dysfunctions (P < 0.001), extrapyramidal (P < 0.05) and psychic side effects (P < 0.05) were rated as significantly subjectively more distressing than sedation or vegetative side effects. Patients presenting with present SE compared with patients without present SE had a significantly more negative general attitude toward antipsychotics (P < 0.05), were more doubtful about their efficacy (P < 0.01) and were less likely to encourage a relative to take such a medication in case of need (P < 0.001). A regression analysis indicated that nonadherence was mainly influenced by negative general and efficacy attitudes toward antipsychotics and the experience of past or present antipsychotic side effects. All antipsychotic side effects, present or past, can have a durable negative impact on patient's attitude toward antipsychotic treatment and adherence. Non-adherence is mainly determined, among other factors, by these negative attitudes, which are partly influenced by the experience of past or present antipsychotic-induced side effects.
Driver Mortality in Paired Side Impact Collisions Due to Incompatible Vehicle Types
Crandall, C.S.
2003-01-01
Using a matched case control design, this study measured the mortality associated with paired passenger car-sport utility vehicle side impact (‘T-bone’) collisions using FARS data. Survival versus fatal outcome within the matched crash pairs was measured with matched pair odds ratios. Conditional logistic regression adjusted for multiple effects. Overall, passenger car drivers experienced greater mortality than did SUV drivers, regardless if they were in the struck or striking vehicle (odds ratio: 10.0; 95% confidence interval: 7.9, 12.5). Differential mortality persisted after adjustment for confounders. Efforts should be sought to improve passenger car side impact crashworthiness and to reduce SUV aggressivity. PMID:12941243
Jetting from impact of a spherical drop with a deep layer
NASA Astrophysics Data System (ADS)
Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration
2011-11-01
We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.
The role of molecular imaging in diagnosis of deep vein thrombosis
Houshmand, Sina; Salavati, Ali; Hess, Søren; Ravina, Mudalsha; Alavi, Abass
2014-01-01
Venous thromboembolism (VTE) mostly presenting as deep venous thrombosis (DVT) and pulmonary embolism (PE) affects up to 600,000 individuals in United States each year. Clinical symptoms of VTE are nonspecific and sometimes misleading. Additionally, side effects of available treatment plans for DVT are significant. Therefore, medical imaging plays a crucial role in proper diagnosis and avoidance from over/under diagnosis, which exposes the patient to risk. In addition to conventional structural imaging modalities, such as ultrasonography and computed tomography, molecular imaging with different tracers have been studied for diagnosis of DVT. In this review we will discuss currently available and newly evolving targets and tracers for detection of DVT using molecular imaging methods. PMID:25143860
Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites.
Wright, Amy E; Killday, K Brian; Chakrabarti, Debopam; Guzmán, Esther A; Harmody, Dedra; McCarthy, Peter J; Pitts, Tara; Pomponi, Shirley A; Reed, John K; Roberts, Bracken F; Rodrigues Felix, Carolina; Rohde, Kyle H
2017-01-11
A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya . Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N -(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus , Mycobacterium tuberculosis , Plasmodium falciparum, and a panel of pancreatic cancer cell lines.
Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites
Wright, Amy E.; Killday, K. Brian; Chakrabarti, Debopam; Guzmán, Esther A.; Harmody, Dedra; McCarthy, Peter J.; Pitts, Tara; Pomponi, Shirley A.; Reed, John K.; Roberts, Bracken F.; Rodrigues Felix, Carolina; Rohde, Kyle H.
2017-01-01
A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines. PMID:28085024
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.
2000-01-01
The Department of Energy (DOE) and the NASA Glenn Research Center are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft onboard electric power for NASA deep space missions. This high-efficiency converter is being evaluated as an alternative to replace the much lower efficiency radioisotope thermoelectric generator (RTG). The current power requirement (six years after beginning of mission (BOM) for a mission to Jupiter) is 210 W(sub e) (watts electric) to be generated by two separate power systems, one on each side of the spacecraft. Both two-converter and four-converter system designs are being considered, depending on the amount of required redundancy.
Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).
Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto
2004-12-24
Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.
Study of Conrad and Shaban deep brines, Red Sea, using bathymetric, parasound and seismic surveys
NASA Astrophysics Data System (ADS)
Salem, Mohamed
2017-06-01
Red Sea was formed where African and Arabian plates are moving apart. Each year the plates drift about 2.5 cm farther apart, so that the Red Sea is slowly but steadily growing hence known as the next coming ocean simply an embryonic ocean. It is characterized by the presence of many deep fractures, located almost exactly along the middle of the Sea from northwest to southeast. Theses fractures have steep sides, rough bottom and brines coming up form on the bottom. Brine deposits are the result of subsurface magmatic activity. They are formed in graben structure as shown by the bathymetric, parasound and seismic studies in the investigated area.
Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas
2015-01-01
Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.
Code of Federal Regulations, 2011 CFR
2011-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2013 CFR
2013-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2014 CFR
2014-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2012 CFR
2012-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Global University Rankings--Impacts and Unintended Side Effects
ERIC Educational Resources Information Center
Kehm, Barbara M.
2014-01-01
In this article, global and other university rankings are critically assessed with regard to their unintended side effects and their impacts on the European and national landscape of universities, as well as on individual institutions. An emphasis is put on the effects of ranking logics rather than on criticising their methodology. Nevertheless,…
Oblique drop impact onto a deep liquid pool
NASA Astrophysics Data System (ADS)
Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke
2017-08-01
Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.
Plants as Part of the Deep Space Exploration Schema
NASA Astrophysics Data System (ADS)
Paul, A.-L.; Ferl, R. J.
2018-02-01
Modern molecular data evaluating the physiological impact of the deep space environment on terrestrial biology are non-existent. The cis-lunar habitat of Gateway can provide a research platform to fill this gap in knowledge crucial to exploration.
Dynamics of tongue shaped cavity generated during the impact of high-speed microdrops
NASA Astrophysics Data System (ADS)
Deka, Hiranya; Ray, Bahni; Biswas, Gautam; Dalal, Amaresh
2018-04-01
Tongue shaped cavities are seen during the hydrophobic sphere impact, jet impact, and impact of a train of microdrops on a deep liquid pool. For the multiple microdrops' impact, the mechanisms, which lead to deep cavity formation and later bubble entrapment inside the liquid pool, are presented here. The investigations are performed in an air-water system at large values of Froude numbers, thus having a negligible effect of gravity. Depending on the train length, the capillary wave generating from each drop impact affects the necking. The temporal variation of the neck radius shows power law behavior. We delineate the distinctive feature of pinch-off of the cavity in terms of the critical length of the train. Pinch-off is observed when the penetration depth of the cavity is more than three times the diameter of the cavity.
ERIC Educational Resources Information Center
Boumaraf, Assia; Macoir, Joël
2016-01-01
Deep dyslexia is a written language disorder characterized by poor reading of non-words, and advantage for concrete over abstract words with production of semantic, visual and morphological errors. In this single case study of an Arabic patient with input deep dyslexia, we investigated the impact of graphic features of Arabic on manifestations of…
NASA Astrophysics Data System (ADS)
Bouthinon, B.; Clerc, R.; Verilhac, J. M.; Racine, B.; De Girolamo, J.; Jacob, S.; Lienhard, P.; Joimel, J.; Dhez, O.; Revaux, A.
2018-03-01
The External Quantum Efficiency (EQE) of semi-transparent Bulk Hetero-Junction (BHJ) organic photodiodes processed in air shows significant differences when measured from the front or back side contacts. This difference was found significantly reduced when decreasing the active layer thickness or by applying a negative bias. This work brings new elements to help understanding this effect, providing a large set of experiments featuring different applied voltages, active layers, process conditions, and electron and hole layers. By means of detailed electrical simulations, all these measurements have been found consistent with the mechanisms of irreversible photo-oxidation, modeled as deep trap states (and not as p-type doping). The EQE measurement from front and back sides is thus a simple and efficient way of monitoring the presence and amplitude of oxygen contamination in BHJ organic solar cells and photodiodes.
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility lower Deep Space 1 onto its transporter, for movement to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, where it will undergo testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the wings measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
Pierce, Kenneth L.; Morgan, Lisa A.
2009-01-01
Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.
ERIC Educational Resources Information Center
Kark, Ronit; Preser, Ruth; Zion-Waldoks, Tanya
2016-01-01
Transformational learning is a process resulting in deep and significant change in habitual patterns of identity, thought, emotion, and action, enabling new approaches to role enactment. This article explores how moving from a framework of dilemmas, which require solutions and one-sided choices, to a framework of paradoxes that embraces tensions…
[Sequelae of unilateral deep venous thrombosis in plethysmography of the calf].
Zicot, M; Depairon, M
1982-01-01
Twenty four patients suffering from unilateral venous disturbances revealed by Doppler and secondary to a deep venous thrombosis were examined. The calf venous haemodynamics was analyzed by use of a strain-jauge plethysmograph. We determined the increase in venous volume due to the inflation of a thigh pneumatic cuff (pressure at 20, 40 and 60 mm Hg; delta V20, delta V40, delta V60). The maximal venous output (Vout) was measured after a quick release of the 60 mm Hg pressure. The maximal venous drainage (VMM) was assessed during a rhythmic exercise (tiptoeing) while standing; delta V20, delta V40 and delta V60 were nearly constantly reduced on the abnormal side (t of Student respectively 3.49; 6.09 and 5.07). Vout dropped proportionaly to delta V60. Some abnormalities due to valvular insufficiency were frequently present in the beginning of the inflation curve at the level of the abnormal limbs. VMM was nearly always largely decreased on the affected side (t = 5.43). The unilateral flow disturbances displayed by the Doppler were regularly going with abnormalities of the capacitive system, well demonstrated by comparison with the non-affected limbs.
NASA Astrophysics Data System (ADS)
Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David
2018-04-01
The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.
Processing and attenuation of noise in deep seismic-reflection data from the Gulf of Maine
Hutchinson, D.R.; Lee, M.W.
1989-01-01
The U.S. Geological Survey deep crustal studies reflection profile across the Gulf of Maine off southeastern New England was affected by three sources of noise: side-scattered noise, multiples, and 20-Hz whale sounds. The special processing most effective in minimizing this noise consisted of a combination of frequency-wavenumber (F-K) filtering, predictive deconvolution, and spectral whitening, each applied in the shot domain (prestack). Application of the F-K filter to remove side-scatter noise in the poststack domain resulted in a much poorer quality profile. The prestack noise suppression processing techniques resulted in a reflection profile with good signal-to-noise ratios and reliable strong reflections, especially at depths equivalent to the lower crust (24-34 km). Certain geologic features, such as a buried rift basin and a crustal fault are resolved much better within the upper crust after this processing. Finite difference migration of these data using realistic velocities produced excellent results. Migration was essential to distinguish between abundant dipping and subhorizontal reflections in the lower crust as well as to show an essentially transparent upper mantle. ?? 1989 Kluwer Academic Publishers.
Viral infections as controlling factors for the deep biosphere? (Invited)
NASA Astrophysics Data System (ADS)
Engelen, B.; Engelhardt, T.; Sahlberg, M.; Cypionka, H.
2009-12-01
The marine deep biosphere represents the largest biotope on Earth. Throughout the last years, we have obtained interesting insights into its microbial community composition. However, one component that was completely overlooked so far is the viral inventory of deep-subsurface sediments. While viral infections were identified to have a major impact on the benthic microflora of deep-sea surface sediments (Danavaro et al. 2008), no studies were performed on deep-biosphere samples, so far. As grazers probably play only a minor role in anoxic and highly compressed deep sediments, viruses might be the main “predators” for indigenous microorganisms. Furthermore, the release of cell components, called “the viral shunt”, could have a major impact on the deep biosphere in providing labile organic compounds to non-infected microorganisms in these generally nutrient depleted sediments. However, direct counting of viruses in sediments is highly challenging due to the small size of viruses and the high background of small particles. Even molecular surveys using “universal” PCR primers that target phage-specific genes fail due to the vast phage diversity. One solution for this problem is the lysogenic viral life cycle as many bacteriophages integrate their DNA into the host genome. It is estimated that up to 70% of cultivated bacteria contain prophages within their genome. Therefore, culture collections (Batzke et al. 2007) represent an archive of the viral composition within the respective habitat. These prophages can be induced to become free phage particles in stimulation experiments in which the host cells are set under certain stress situations such as a treatment with UV exposure or DNA-damaging antibiotics. The study of the viral component within the deep biosphere offers to answer the following questions: To which extent are deep-biosphere populations controlled by viral infections? What is the inter- and intra-specific diversity and the host-specific viral biogeography? Can viral infections tell us something about the physiological state of indigenous microorganisms? Finally, we will obtain estimates for the viral shunt as an important factor for sustaining the deep biosphere. References: Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiology J 24:261-273 Danovaro R, Dell'Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Weinbauer M (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454: 1084-U1027.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.
1993-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3 (Trailing (wake), or West, side), 12 from tray B-12 (North side), 4 from tray D-6 (South side), 3 from tray H-11 (Space end), and 6 from tray G-10 (Earth end). Residue from manmade debris was identified in craters on all trays. (Aluminum oxide particle residues were not detectable on the Al/Si substrates.) These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the West, Space and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the East, North, and South sides of the satellite, denoting passage through orbital debris clouds or rings.
NASA Astrophysics Data System (ADS)
Hamdan, L. J.; Damour, M.; McGown, C.; Figan, C.; Kassahun, Z.; Blackwell, K.; Horrell, C.; Gillevet, P.
2014-12-01
Shipwrecks serve as artificial reefs in the deep ocean. Because of their inherent diversity compared to their surrounding environment and their random distribution, shipwrecks are ideal ecosystems to study pollution impacts and microbial distribution patterns in the deep biosphere. This study provides a comparative assessment of Deepwater Horizon spill impacts on shipwreck and local sedimentary microbiomes and the synergistic effects of contaminants on these communities and the physical structures that support them. For this study, microbiomes associated with wooden 19th century shipwrecks and World War II era steel shipwrecks in the northern Gulf of Mexico were investigated using next generation sequencing. Samples derived from in situ biofilm monitoring platforms deployed adjacent to 5 shipwrecks for 4 months, and sediment collected from distances ranging from 2-200m from each shipwreck were evaluated for shifts in microbiome structure and gene function relative to proximity to the spill, and oil spill related contaminants in the local environment. The goals of the investigation are to determine impacts to recruitment and community structure at sites located within and outside of areas impacted by the spill. Taxonomic classification of dominant and rare members of shipwreck microbiomes and metabolic information extracted from sequence data yield new understanding of microbial processes associated with site formation. The study provides information on the identity of microbial inhabitants of shipwrecks, their role in site preservation, and impacts of the Deepwater Horizon spill on the primary colonizers of artificial reefs in the deep ocean. This approach could inform about the role of microorganisms in establishment and maintenance of the artificial reef environment, while providing information about ecosystem feedbacks resulting from spills.
Seacrist, Thomas; Locey, Caitlin M; Mathews, Emily A; Jones, Dakota L; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B
2014-01-01
Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts. Consequently, far-side impacts represent increased injury and mortality rates compared to frontal impacts. Thus, the objective of this study was to evaluate the biofidelity of the Hybrid III and Q-series pediatric ATDs in low-speed far-side impacts, with and without shoulder belt pretightening. Low-speed (2 g) far-side oblique (60°) and lateral (90°) sled tests were conducted using the Hybrid III and Q-series 6- and 10-year-old ATDs. ATDs were restrained by a lap and shoulder belt equipped with a precrash belt pretightener. Photoreflective targets were attached to the head, spine, shoulders, and sternum. ATDs were exposed to 8 low-speed sled tests: 2 oblique nontightened, 2 oblique pretightened, 2 lateral nontightened, 2 lateral pretightened. ATDs were compared with previously collected 9- to 11-year-old (n=10) volunteer data and newly collected 6- to 8-year-old volunteer data (n=7) tested with similar methods. Kinematic data were collected from a 3D target tracking system. Metrics of comparison included excursion, seat belt and seat pan reaction loads, belt-to-torso angle, and shoulder belt slip-out. The ATDs exhibited increased lateral excursion of the head top, C4, and T1 as well as increased downward excursion of the head top compared to the volunteers. Volunteers exhibited greater forward excursion than the ATDs in oblique nontightened impacts. These kinematics correspond to increased shoulder belt slip-out for the ATDs in oblique tests (ATDs=90%; volunteers=36%). Contrarily, similar shoulder belt slip-out was observed between ATDs and volunteers in lateral impacts (ATDs=80%; volunteers=78%). In pretightened impacts, the ATDs exhibited reduced lateral excursion and torso roll-out angle compared to the volunteers. In general, the ATDs overestimated lateral excursion in both impact directions, while underestimating forward excursion of the head and neck in oblique impacts compared to the pediatric volunteers. This was primarily due to pendulum-like lateral bending of the entire ATD torso compared to translation of the thorax relative to the abdomen prior to the lateral bending of the upper torso in the volunteers, likely due to the multisegmented spinal column in the volunteers. Additionally, the effect of belt pretightening on occupant kinematics was greater for the ATDs than the volunteers.
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
Deep Space Spaceflight: The Challenge of Crew Performance in Autonomous Operations
NASA Astrophysics Data System (ADS)
Thaxton, S. S.; Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Antonsen, E. L.
2018-02-01
Distance from Earth and limited communications in future missions will increase the demands for crew autonomy and dependence on automation, and Deep Space Gateway presents an opportunity to study the impacts of these increased demands on human performance.
Wu, Liza C; Iteld, Lawrence; Song, David H
2008-06-01
Autologous breast reconstruction with the transverse rectus abdominis musculocutaneous (TRAM) flap is traditionally based on either the superior epigastric vessels (pedicled) or the deep inferior system (free). In the overweight and obese population, both techniques have been shown to have increased complications of the reconstructed breast. Another alternative is supercharging the flap by anastamosing the deep inferior epigastric vessels to either the internal mammary or thoracodorsal systems. We present a single surgeon's experience with unilateral TRAM reconstructions supercharged to either the thoracodorsal vessels, the internal mammary system, or in one case, perforator vessels in overweight and obese patients. Nineteen consecutive overweight or obese patients underwent delayed or immediate, unilateral autologous breast reconstruction with supercharged TRAM flaps between November 2000 and November 2004. The patients ranged in age from 28 to 66 years (average 49) and had an average body mass index (BMI) of 29.5 (24.9-38.3). Twelve patients had a BMI between 25 and 29.9 kg/m2; 7 patients had BMI > or =30 kg/m2. Left-sided reconstructions were 13; right-sided reconstructions were 6. Supercharging was performed by anastamosing the deep inferior epigastric artery and vein to the thoracodorsal vessels, internal mammary vessels, or perforator vessels. Follow-up ranged from 6 to 54 months. There was a qualitative increase in blood flow measured by audible Doppler signals in all patients after the arterial and venous anastamoses. There were no cases of partial or complete flap loss. One patient had a hematoma and subsequently developed minor fat necrosis. One patient had an infection of the reconstructed breast. There were no donor site complications. Supercharging the TRAM flap by means of microvascular augmentation of the deep inferior epigastric vessels provides a safe and effective breast reconstruction in the overweight and obese population with no additional morbidity.
Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review.
Vázquez-Bourgon, Javier; Martino, Juan; Sierra Peña, María; Infante Ceberio, Jon; Martínez Martínez, M Ángeles; Ocón, Roberto; Menchón, José Manuel; Crespo Facorro, Benedicto; Vázquez-Barquero, Alfonso
2017-07-01
At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona
2018-02-01
The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... [Docket No. NHTSA-2009-0194] RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety Administration (NHTSA), Department... adopted specifications and qualification requirements for a new crash test dummy called the ``ES- 2re...
Plasma response to the injection of an electron beam
NASA Technical Reports Server (NTRS)
Singh, N.; Schunk, R. W.
1984-01-01
The results of Vlasov-Poisson-solver numerical simulations of the detailed temporal response of a Maxwellian plasma to the sudden injection of an electron beam are presented in graphs and maps and discussed. Phenomena characterized include ion bursts, electron shocks and holes, plasma heating and expulsion, density gradients; cavitons, deep-density-front and solitary-pulse propagation down the density gradient, and Bunemann-mode excitation leading to formation of a virtual cathode and double layers which are at first monotonic or have low-potential-side dips or high-potential-side bumps and become strong as the electron-current density decreases. The strength of the double layer is found to be roughly proportional to the beam energy.
Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film
NASA Astrophysics Data System (ADS)
Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro
2017-10-01
A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.
2009-03-08
CAPE CANAVERAL, Fla. – A roseate spoonbill soars overhead against a deep blue sky covering NASA's Kennedy Space Center in Florida. Mature spoonbills feather the brilliant pink feathers with a white neck and beck and orange tails. Immature birds are white. The spoonbill is readily identified by the straight bill with a broad spatulate tip, which they use to obtain food by sweeping from side to side and scooping up whatever they encounter. They spend much of their time feeding on shrimps and fish in the shallow waters of the Florida Bay and Gulf of Mexico. Roseate spoonbills are a common sight throughout Kennedy, which shares a boundary with the Merritt Island National Wildlife Refuge. Photo credit: NASA/Kenny Allen
Toxicities of topical ophthalmic anesthetics.
McGee, Hall T; Fraunfelder, F W
2007-11-01
Topical ocular anesthesia has been part of ophthalmology for more than a century. The most commonly used drugs today are proparacaine, tetracaine, benoxinate (oxybuprocaine) cocaine and lidocaine. Although generally well tolerated, all these can be toxic, particularly when abused. The most common toxicities are to the ocular surface, but abuse can cause deep corneal infiltrates, ulceration and even perforation. Fortunately, systemic side effects are rare. Cocaine is unique for its higher incidence of systemic side effects and high abuse potential, both of which impede its clinical use. When used appropriately, all these drugs are remarkably safe. They are generally not prescribed for home use, as prolonged abuse of these drugs can be expected to result in serious complications.
Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.
Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J
2010-12-06
We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.
Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.
Choi, Hongyoon
2018-04-01
Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.
Haleem, Kirolos; Gan, Albert
2013-09-01
This study identifies geometric, traffic, environmental, vehicle-related, and driver-related predictors of crash injury severity on urban freeways. The study takes advantage of the mixed logit model's ability to account for unobserved effects that are difficult to quantify and may affect the model estimation, such as the driver's reaction at the time of crash. Crashes of 5 years occurring on 89 urban freeway segments throughout the state of Florida in the United States were used. Examples of severity predictors explored include traffic volume, distance of the crash to the nearest ramp, and detailed driver's age, vehicle types, and sides of impact. To show how the parameter estimates could vary, a binary logit model was compared with the mixed logit model. It was found that the at-fault driver's age, traffic volume, distance of the crash to the nearest ramp, vehicle type, side of impact, and percentage of trucks significantly influence severity on urban freeways. Additionally, young at-fault drivers were associated with a significant severity risk increase relative to other age groups. It was also observed that some variables in the binary logit model yielded illogic estimates due to ignoring the random variation of the estimation. Since the at-fault driver's age and side of impact were significant random parameters in the mixed logit model, an in-depth investigation was performed. It was noticed that back, left, and right impacts had the highest risk among middle-aged drivers, followed by young drivers, very young drivers, and finally, old and very old drivers. To reduce side impacts due to lane changing, two primary strategies can be recommended. The first strategy is to conduct campaigns to convey the hazardous effect of changing lanes at higher speeds. The second is to devise in-vehicle side crash avoidance systems to alert drivers of a potential crash risk. The study provided a promising approach to screening the predictors before fitting the mixed logit model using the random forest technique. Furthermore, potential countermeasures were proposed to reduce the severity of impacts. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoo, C. M.; Joo, J.; Hyeong, K.; Chi, S. B.
2016-12-01
Manganese nodule, also known as polymetallic nodule, contains precious elements in high contents and is regarded as one of the most important future mineral resources. It occurs throughout the world oceans, but economically feasible deposits show limited distribution only in several deepsea basins including Clarion-Clipperton Fracture Zone (CCFZ) in northeast equatorial Pacific. Estimation of resources potential is one of the key factors prerequisite for economic feasibility study. Nodule abundance is commonly estimated from direct nodule sampling, however it is difficult to obtain statistically robust data because of highly variable spatial distribution and high cost of direct sampling. Variogram analysis indicates 3.5×3.5km sampling resolution to obtain indicated category of resources data, which requires over 1,000 sampling operations to cover the potential exploitation area with mining life of 20-30 years. High-resolution acoustic survey, bathymetry and back-scattered intensity, can provide high-resolution resources data with the definition of obstacles, such as faults and scarps, for operation of nodule collecting robots. We operated 120 kHz deep-tow side scan sonar (DTSSS) with spatial resolution of 1×1m in a representative area. Sea floor images were also taken continuously by deep-tow camera from selected tracks, converted to nodule abundance using image analysis program and conversion equation, and compared with acoustic data. Back-scattering intensity values could be divided into several group and translated into nodule abundance with high confidence level. Our result indicates that high resolution acoustic survey is appropriate tool for reliable assessment of manganese nodule abundance and definition of minable area.
Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.
Liu, Wu; Zhang, Cheng; Ma, Huadong; Li, Shuangqun
2018-02-06
The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.
Design of an elastin-layered dermal regeneration template.
Mithieux, Suzanne M; Weiss, Anthony S
2017-04-01
We demonstrate a novel approach for the production of tunable quantities of elastic fibers. We also show that exogenous tropoelastin is rate-limiting for elastin synthesis regardless of the age of the dermal fibroblast donor. Additionally, we provide a strategy to further enhance synthesis by older cells through the application of conditioned media. We show that this approach delivers an elastin layer on one side of the leading dermal repair template for contact with the deep dermis in order to deliver prefabricated elastic fibers to a physiologically appropriate site during subsequent surgery. This system is attractive because it provides for the first time a viable path for sufficient, histologically detectable levels of patient elastin into full-thickness wound sites that have until now lacked this elastic underlayer. The scars of full thickness wounds typically lack elasticity. Elastin is essential for skin elasticity and is enriched in the deep dermis. This paper is significant because it shows that: (1) we can generate elastic fibers in tunable quantities, (2) tropoelastin is the rate-limiting component in elastin synthesis in vitro, (3) we can generate elastin fibers regardless of donor age, (4) we describe a novel approach to further increase the numbers and thickness of elastic fibers for older donors, (5) we improve on Integra Dermal Regeneration Template and generate a new hybrid biomaterial intended to subsequently surgically deliver these elastic fibers, (6) the elastic fiber layer is presented on the side of Integra that is intended for delivery into its physiologically appropriate site i.e. the deep dermis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Morphology and growth pattern of Amazon deep-sea fan: a computer-processed GLORIA side-scan mosaic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flood, R.D.; Damuth, J.E.
1984-04-01
Deep-sea fans have become increasingly important targets for exploration because of their favorable facies associations. A better understanding of deep-sea fans is needed to successfully exploit these complex sediment bodies. Recent studies of the Amazon fan, using long-range side-scan sonar (GLORIA) and single-channel seismic data, provide an overall view of channel patterns of this fan and demonstrate the relationship between successive channel/levee systems. The digitally collected GLORIA data have been computer processed to produce a mosaic of the fan. Computer processing has corrected the records for slant range and ship navigation, and targets have been enhanced. Many features of themore » modern fan system are readily apparent on the sonar mosaic. The 1.5 to 0.5-km (5000 to 1600-ft) wide channels meander intensely across the fan with sinuosities up to 2.5. Because of these meanders, the channel gradients decrease regularly across the fan despite changes in regional slope. Other channel-related targets include cutoff meanders, overbank deposits (especially small debris flows), and channel branchings. Other debris flows cover large areas of the fan and override channel/levee systems. Air-gun records show that this fan is built of a series of channel/levee systems that overlay one another. Channels from at least 6 of these systems are visible at the surface now, but apparently only one channel at a time has been active. The length of time needed to build a single channel/levee system is not known, but it appears to be rapid.« less
Zuo, Yanhai; Yu, Xiaoping; Lu, Shuliang
2016-11-01
In vitro studies of human dermal fibroblast (DF) heterogeneity have long been reported, yet in vivo studies and related research on animals are rare. The objectives of the study were to determine whether the DFs of pigs exhibit heterogeneity and to identify an animal model for the in vivo study of DF heterogeneity. The skin of three female red Duroc pigs (FRDPs) was separated into six layers, and the second and fifth layers (i.e., the superficial and deep dermis) were used in the establishment of wound models and cell cultures. To create the wound models, 54 tongue-shaped flaps were created on one side of the dorsum, and the underlying dermis was then fully replaced with the superficial or deep dermis (the superficial and deep groups, respectively). Skin samples were harvested at postoperative weeks 1, 2, and 3 for measurements of the normal and wounded skin thicknesses. Cells cultured from the superficial and deep dermis (i.e., superficial and deep DFs) were subjected to quantitative estimation of collagen and electron microscopy. The wounded skin thickness in the deep group was significantly greater than that in the superficial group. In contrast with the long deep DFs, the superficial DFs were short and exhibited microvilli-like cell surface projections. Compared with the superficial DFs, the deep DFs exhibited a greater density of rough endoplasmic reticulum and produced significantly more collagen. Similar to humans, FRDPs exhibit DF heterogeneity and should thus be a good animal model for in vivo studies of DF heterogeneity. Anat Rec, 299:1585-1599, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Utility Sector Impacts of Reduced Electricity Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Katie
2014-12-01
This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes tomore » capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.« less
NASA Astrophysics Data System (ADS)
Cheek, Kim A.
2013-07-01
Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.
Sonographically guided deep plantar fascia injections: where does the injectate go?
Maida, Eugene; Presley, James C; Murthy, Naveen; Pawlina, Wojciech; Smith, Jay
2013-08-01
To determine the distribution of sonographically guided deep plantar fascia injections in an unembalmed cadaveric model. A single experienced operator completed 10 sonographically guided deep plantar fascia injections in 10 unembalmed cadaveric specimens (5 right and 5 left) obtained from 6 donors (2 male and 4 female) aged 49 to 95 years (mean, 77.5 years) with a mean body mass index of 23.2 kg/m(2) (range, 18.4-26.3 kg/m(2)). A 12-3-MHz linear array transducer was used to direct a 22-gauge, 38-mm stainless steel needle deep to the plantar fascia at the anterior aspect of the calcaneus using an in-plane, medial-to-lateral approach. In each case, 1.5 mL of 50% diluted colored latex was injected deep to the plantar fascia. After a minimum of 72 hours, study coinvestigators dissected each specimen to assess injectate placement. All 10 injections accurately placed latex adjacent to the deep side of the plantar fascia at the anterior calcaneus. However, the flexor digitorum brevis (FDB) origin from the plantar fascia variably limited direct latex contact with the plantar fascia, and small amounts of latex interdigitated with the FDB origin in 90% (9 of 10). In all 10 specimens, latex also covered the traversing first branch of the lateral plantar nerve (FBLPN, ie, Baxter nerve) between the FDB and quadratus plantae muscles. No latex was found in the plantar fat pad or plantar fascia in any specimen. Sonographically guided deep plantar fascia injections reliably deliver latex deep to the plantar fascia while avoiding intrafascial injection. However, the extent of direct plantar fascia contact is variable due to the intervening FDB. On the contrary, the traversing FBLPN is reliably covered by the injection. Deep plantar fascia injections may have a role in the management of refractory plantar fasciitis, particularly following failed superficial perifascial or intrafascial injections, in cases of preferential deep plantar fascia involvement, or when entrapment/irritation of the distal FBLPN is suspected.
Deep Temporal Nerve Transfer for Facial Reanimation: Anatomic Dissections and Surgical Case Report.
Mahan, Mark A; Sivakumar, Walavan; Weingarten, David; Brown, Justin M
2017-09-08
Facial nerve palsy is a disabling condition that may arise from a variety of injuries or insults and may occur at any point along the nerve or its intracerebral origin. To examine the use of the deep temporal branches of the motor division of the trigeminal nerve for neural reconstruction of the temporal branches of the facial nerve for restoration of active blink and periorbital facial expression. Formalin-fixed human cadaver hemifaces were dissected to identify landmarks for the deep temporal branches and the tension-free coaptation lengths. This technique was then utilized in 1 patient with a history of facial palsy due to a brainstem cavernoma. Sixteen hemifaces were dissected. The middle deep temporal nerve could be consistently identified on the deep side of the temporalis, within 9 to 12 mm posterior to the jugal point of the zygoma. From a lateral approach through the temporalis, the middle deep temporal nerve could be directly coapted to facial temporal branches in all specimens. Our patient has recovered active and independent upper facial muscle contraction, providing the first case report of a distinct distal nerve transfer for upper facial function. The middle deep temporal branches can be readily identified and utilized for facial reanimation. This technique provided a successful reanimation of upper facial muscles with independent activation. Utilizing multiple sources for neurotization of the facial muscles, different potions of the face can be selectively reanimated to reduce the risk of synkinesis and improved control. Copyright © 2017 by the Congress of Neurological Surgeons
Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N
2013-11-01
The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.
Study of sleeper’s impact on the deep-water pipeline lateral global buckling
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Li, Bin
2017-08-01
Pipelines are the most important transportation way for offshore oil and gas, and the lateral buckling is the main global buckling form for deep-water pipelines. The sleeper is an economic and efficient device to trigger the lateral buckling in preset location. This paper analyzed the lateral buckling features for on-bottom pipeline and pipeline with sleeper. The stress and strain variation during buckling process is shown to reveal the impact of sleeper on buckling.
Impact face influence on low velocity impact performance of interply laminated plates
NASA Astrophysics Data System (ADS)
Manikandan, Periyasamy; Chai, Gin Boay
2015-03-01
Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.
Deep Impact: excavating comet Tempel 1.
A'Hearn, M F; Belton, M J S; Delamere, W A; Kissel, J; Klaasen, K P; McFadden, L A; Meech, K J; Melosh, H J; Schultz, P H; Sunshine, J M; Thomas, P C; Veverka, J; Yeomans, D K; Baca, M W; Busko, I; Crockett, C J; Collins, S M; Desnoyer, M; Eberhardy, C A; Ernst, C M; Farnham, T L; Feaga, L; Groussin, O; Hampton, D; Ipatov, S I; Li, J-Y; Lindler, D; Lisse, C M; Mastrodemos, N; Owen, W M; Richardson, J E; Wellnitz, D D; White, R L
2005-10-14
Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.
Martens, Kyle D.; Connolly, Patrick J.
2014-01-01
We examined the contribution of three types of side channels based on their hydrologic connectivity (seasonally disconnected, partially connected, and connected) to production of juvenile anadromous salmonids. Juvenile steelhead Oncorhynchus mykiss and Chinook Salmon O. tshawytscha were found in all three of these side channel types and in each year of the study. Upon connection with the main stem at high flows, the seasonally disconnected side channels experienced an emptying out of the previous year's fish while filling with young-of-year fish during the 2- to 4-month period of hydrologic connection. There were no differences between the densities of juvenile steelhead and Chinook Salmon and the rate of smolts produced among the three types of side channels. Recently reintroduced Coho Salmon O. kisutch had sporadic presence and abundance in partially and connected side channels, but the smolt production rate was over two times that of steelhead and Chinook Salmon in seasonally disconnected side channels. Within seasonally disconnected side channels, young-of-year salmonids in deep pools (≥100 cm) had greater survival than those in shallow pools (<100 cm). Densities of juvenile steelhead in all side channel types were similar to those in tributaries and were higher than in main-stem lateral margins. Juvenile Chinook Salmon densities were higher in side channels than in both tributary and main-stem lateral margins. Our results suggest that improving quality of pool habitat within seasonally disconnected side channels can result in improved survival for juvenile anadromous salmonids during the period of disconnection. Habitat improvement in these seasonally disconnected side channels should be recognized as a worthy restoration strategy, especially when full connectivity of side channels may not be a feasible target (e.g., through lack of water availability) or when full connectivity may present too high a risk (e.g., flooding, stream capture, bank destabilization).
Incorporating ecosystem services into environmental management of deep-seabed mining
NASA Astrophysics Data System (ADS)
Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.
2017-03-01
Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases. The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds. The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures. PMID:21050600
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases.The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds.The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurl, Brigitte, E-mail: brigitte.zurl@klinikum-graz.at; Stranzl, Heidi; Winkler, Peter
2013-02-01
Purpose: Whole breast irradiation with deep-inspiration breath-hold (DIBH) technique among left-sided breast cancer patients significantly reduces cardiac irradiation; however, a potential disadvantage is increased incidental irradiation of the contralateral breast. Methods and Materials: Contralateral breast dose (CBD) was calculated by comparing 400 treatment plans of 200 left-sided breast cancer patients whose tangential fields had been planned on gated and nongated CT data sets. Various anatomic and field parameters were analyzed for their impact on CBD. For a subgroup of patients (aged {<=}45 years) second cancer risk in the contralateral breast (CB) was modeled by applying the linear quadratic model, compoundmore » models, and compound models considering dose-volume information (DVH). Results: The mean CBD was significantly higher in DIBH with 0.69 Gy compared with 0.65 Gy in normal breathing (P=.01). The greatest impact on CBD was due to a shift of the inner field margin toward the CB in DIBH (mean 0.4 cm; range, 0-2), followed by field size in magnitude. Calculation with different risk models for CBC revealed values of excess relative risk/Gy ranging from 0.48-0.65 vs 0.46-0.61 for DIBH vs normal breathing, respectively. Conclusion: Contralateral breast dose, although within a low dose range, was mildly but significantly increased in 200 treatment plans generated under gated conditions, predominately due to a shift in the medial field margin. Risk modeling for CBC among women aged {<=}45 years also pointed to a higher risk when comparing DIBH with normal breathing. This risk, however, was substantially lower in the model considering DVH information. We think that clinical decisions should not be affected by this small increase in CBD with DIBH because DIBH is effective in reducing the dose to the heart in all patients.« less
Drug accumulation by means of noninvasive magnetic drug delivery system
NASA Astrophysics Data System (ADS)
Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.
2011-11-01
The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.
TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Elmegreen, Debra Meloy, E-mail: bge@watson.ibm.co, E-mail: elmegreen@vassar.ed
2010-10-20
Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages.more » The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.« less
Evaluation of an immunosuppressant side effect instrument.
Winsett, Rebecca P; Arheart, Kris; Stratta, Robert J; Alloway, Rita; Wicks, Mona N; Gaber, A Osama; Hathaway, Donna K
2004-09-01
Clinicians continue to be compelled to evaluate the impact of immunosuppressive medication side effects on the quality of life of transplant recipients. We Were asked to develop an instrument to measure side effects in immunosuppressed transplant recipients. To construct an instrument that measures the impact and severity of side effects of immunosuppressive medications used in transplantation and to assess the reliability and validity of the newly developed instrument called the Memphis Survey. The instrument was constructed by a panel of physicians, nurses, and pharmacists with experience in treating transplant recipients. A small group of kidney transplant recipients (n= 13) provided pilot data for refining and testing the instrument. A national sample of kidney, liver, and heart transplant recipients (n = 505) provided data that were used to further develop the instrument. Factor analysis was used to determine the psychological dimensions underlying the instrument and to guide the construction of scales from the survey items. The instrument scales were then computed from the dataset of 505 transplant recipients to quantify the impact of immunosuppressant side effects on the quality of life of transplant recipients. Analyses showed the final instrument scales to be valid and reliable. Exploratory analysis suggests the need for further testing of the instrument to determine gender differences.
Mass extinctions in the deep sea
NASA Technical Reports Server (NTRS)
Thomas, E.
1988-01-01
The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.
Deep Space 1 moves to CCAS for testing
NASA Technical Reports Server (NTRS)
1998-01-01
After covering the bulk of Deep Space 1 in thermal insulating blankets, workers in the Payload Hazardous Servicing Facility lift it from its work platform before moving it onto its transporter (behind workers at left). Deep Space 1 is being moved to the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station, for testing. At either side of the spacecraft are its solar wings, folded for launch. When fully extended, the winds measure 38.6 feet from tip to tip. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include a solar-powered ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches.
56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...
56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
Side and site of deep vein thrombosis in women using oral contraceptives.
Kierkegaard, A
1985-01-01
The anatomy of the thrombus in acute deep vein thrombosis (DVT) in women using oral contraceptives was studied in 277 reports on DVT received by the Swedish Adverse Drug Reaction Advisory Committee (SADRAC). The study revealed a similarity between the anatomy of DVT in women on oral contraceptives and that of DVT in pregnant women, suggesting a pharmacologic influence of the hormones in the pill on the pathogenesis of DVT in women on oral contraceptives. The anatomy of DVT in women on low-estrogen pills was identical with that of DVT in women on high-estrogen pills, suggesting an identical pharmacologic influence of the two types of pill on the pathogenesis of DVT in women on oral contraceptives.
Bergom, Carmen; Currey, Adam; Desai, Nina; Tai, An; Strauss, Jonathan B
2018-01-01
Historically, heart dose from left-sided breast radiotherapy has been associated with a risk of cardiac injury. Data suggests that there is not a threshold for the deleterious effects from radiation on the heart. Over the past several years, advances in radiation delivery techniques have reduced cardiac morbidity due to treatment. Deep inspiration breath hold (DIBH) is a technique that takes advantage of a more favorable position of the heart during inspiration to minimize heart doses over a course of radiation therapy. In the accompanying review article, we outline several methods used to deliver treatment with DIBH, quantify the benefits of DIBH treatment, discuss considerations for patient selection, and identify challenges associated with DIBH techniques.
NASA Astrophysics Data System (ADS)
Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.
2017-12-01
The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and manually installing a small assembly carrying 2 infrared mirrors and an objective lens. Using this system we have performed two pilot studies recording texture and lattice strain development during deformation of FeO up to 1300 K and 45 GPa and bridgmanite up to 1600 K and 80 GPa.
On the impact of approximate computation in an analog DeSTIN architecture.
Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar
2014-05-01
Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.
Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K; den Branden, Stef Van; Broeckaert, Bert
2011-01-01
Aim: We wanted to assess Indian palliative-care nurses and physicians’ attitudes toward pain control and palliative sedation. Materials and Methods: From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). Results: The interviewees did not consider administration of painkillers in large doses an ethical problem, provided the pain killers are properly titrated. Mild palliative sedation was considered acceptable. The interviewees disagreed whether palliative sedation can also be deep and continuous. Arguments mentioned against deep continuous palliative sedation were the conviction that it may cause unacceptable side effects, and impedes basic daily activities and social contacts. A few interviewees said that palliative sedation may hasten death. Conclusion: Due to fears and doubts regarding deep continuous palliative sedation, it may sometimes be too easily discarded as a treatment option for refractory symptoms. PMID:21633619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-03-01
This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, E; Yang, W; Burnison, M
2014-06-15
Purpose: Patients undergoing radiotherapy (RT) for left-sided breast cancer have increased risk of coronary artery disease. Deep Inhalation Breath Hold assisted RT (DIBH-RT) is shown to increase the geometric separation of the target area and heart, reducing cardiac radiation dose. The purposes of this study are to use Cine MV portal images to determine the stability of spirometer-guided DIBH-RT and examine the dosimetric cardiopulmonary impact of this technique. Methods: Twenty consecutive patients with left-sided breast cancer were recruited to the IRB-approved study. Free-breathing (FB) and DIBH-CT's were acquired at simulation. Rigid registration of the FB-CT and DIBH-CT was performed usingmore » primarily breast tissue. Treatment plans were created for each FB-CT and DIBH-CT using identical paired tangent fields with field-in-field or electronic compensation techniques. Dosimetric evaluation included mean and maximum (Dmax) doses for the left anterior descending artery (LAD), mean heart dose, and left lung V20. Cine MV portal images were acquired for medial and lateral fields during treatment. Analysis of Cine images involved chest wall segmentation using an algorithm developed in-house. Intra- and inter-fractional chest wall motion were determined through affine registration to the first frame of each Cine. Results: Dose to each cardiac structure evaluated was significantly (p<0.001) reduced with the DIBH plans. Mean heart dose decreased from 2.9(0.9–6.6) to 1.6(0.6–5.3) Gy; mean LAD dose from 16.6(3–43.6) to 7.4(1.7–32.7) Gy; and LAD Dmax from 35.4 (6.1–53) to 18.4(2.5–51.2) Gy. No statistically significant reduction was found for the left lung V20. Average AP and SI median chest wall motion (intrafractional) was 0.1 (SD=0.9) and 0.5 (SD=1.1) mm, respectively. Average AP inter-fractional chest wall motion was 2.0 (SD=1.4) mm. Conclusion: Spirometer-based DIBH treatments of the left breast are reproducible both inter- and intra-fractionally, and provide a statistically and potentially clinically useful dosimetric advantage to cardiac structures.« less
33 CFR 148.215 - What if a port has plans for a deep draft channel and harbor?
Code of Federal Regulations, 2012 CFR
2012-07-01
... that the port has an active study by the Secretary of the Army for the construction of a deep draft... in tax revenues; (vii) Environmental and social impacts of the project on the local and regional...
33 CFR 148.215 - What if a port has plans for a deep draft channel and harbor?
Code of Federal Regulations, 2011 CFR
2011-07-01
... that the port has an active study by the Secretary of the Army for the construction of a deep draft... in tax revenues; (vii) Environmental and social impacts of the project on the local and regional...
Angiolillo, Michela; Lorenzo, Bianca di; Farcomeni, Alessio; Bo, Marzia; Bavestrello, Giorgio; Santangelo, Giovanni; Cau, Angelo; Mastascusa, Vincenza; Cau, Alessandro; Sacco, Flavio; Canese, Simonepietro
2015-03-15
Marine debris is a recognized global ecological concern. Little is known about the extent of the problem in the Mediterranean Sea regarding litter distribution and its influence on deep rocky habitats. A quantitative assessment of debris present in the deep seafloor (30-300 m depth) was carried out in 26 areas off the coast of three Italian regions in the Tyrrhenian Sea, using a Remotely Operated Vehicle (ROV). The dominant type of debris (89%) was represented by fishing gears, mainly lines, while plastic objects were recorded only occasionally. Abundant quantities of gears were found on rocky banks in Sicily and Campania (0.09-0.12 debris m(-2)), proving intense fishing activity. Fifty-four percent of the recorded debris directly impacted benthic organisms, primarily gorgonians, followed by black corals and sponges. This work provides a first insight on the impact of marine debris in Mediterranean deep ecosystems and a valuable baseline for future comparisons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecklund, M M
1995-11-01
Critically ill patients have multiple risk factors for deep vein thrombosis and pulmonary embolism. The majority of patients with pulmonary embolism have a lower extremity deep vein thrombosis as a source of origin. Pulmonary embolism causes a high mortality rate in the hemodynamically compromised individual. Awareness of risk factors relative to the development of deep vein thrombosis and pulmonary embolism is important for the critical care nurse. Understanding the pathophysiology can help guide prophylaxis and treatment plans. The therapies, from invasive to mechanical, all carry risks and benefits, and are weighed for each patient. The advanced practice nurse, whether in the direct or indirect role, has an opportunity to impact the care of the high risk patient. Options range from teaching the nurse who is new to critical care, to teaching patients and families. Development of multidisciplinary protocols and clinical pathways are ways to impact the standard of care. Improved delivery of care methods can optimize the care rendered in an ever changing field of critical care.
Kathpal, Madeera; Tinnel, Brent; Sun, Kelly; Ninneman, Stephanie; Malmer, Cynthia; Wendt, Stacie; Buff, Sheena; Valentich, David; Gossweiler, Marisa; Macdonald, Dusten
2016-01-01
With most patients now living long after their breast cancer diagnosis, minimizing long-term side effects of breast cancer treatment, such as reducing late cardiac and pulmonary side effects of radiation therapy (RT), is particularly important. It is now possible to use an electromagnetic tracking system to allow real-time tracking of chest wall (CW) position during the delivery of RT. Here, we report our experience using electromagnetic surface transponders as an added measure of CW position during deep inspiration breath hold (DIBH). We conducted a single-institution institutional review board-approved retrospective review of 15 female left-sided breast cancer patients treated between July 2012 and June 2013 with conventional whole breast radiation. We compared daily port films with treatment planning digitally reconstructed radiographs to establish daily setup accuracy, then used Calypso tracings to compare the position of the CW during the daily port film with the position of the CW during that day's treatment to determine the reproducibility of the breath hold position. Finally, we created competing treatment plans not using DIBH and used a paired t test to compare mean heart (MH) and left anterior descending (LAD) coronary artery dose between the 2 techniques. Mean total error (inter- and intrafraction) was dominated by interfraction error and was greatest in the longitudinal direction with a mean of 2.13 mm and 2 standard deviations of 8.2 mm. DIBH significantly reduced MH and LAD dose versus free breathing plans (MH, 1.26 Gy vs 2.84 Gy, P ≤ .001; LAD, 5.49 Gy vs 18.15 Gy, P ≤ .001). This study demonstrates that DIBH with electromagnetic confirmation of CW position is feasible, and allows potential improvement in the accurate delivery of adjuvant RT therapy for breast cancer. Published by Elsevier Inc.
Tummaruk, P; Sumransap, P; Techakumphu, M; Kunavongkrit, A
2007-12-01
The present study was performed to investigate the number of either the spermatozoa or the embryos in the reproductive tracts of sows after unilateral, deep, intra uterine insemination (DIUI). Two experiments were conducted, 10 sows were used in experiment I and eight sows were used in experiment II. Transrectal ultrasonography was used to examine the time when ovulation took place in relation to oestrus behaviour. The sows were inseminated with a single dose of diluted fresh semen 6-8 h prior to expected ovulation, during the second oestrus after weaning. In experimental I, five sows were inseminated by a conventional artificial insemination (AI) technique using 100 ml of diluted fresh semen, containing 3000 x 10(6) motile spermatozoa and five sows were inseminated by the DIUI technique with 5 ml of diluted fresh semen, containing 150 x 10(6) motile spermatozoa. The sows were anesthetized and ovario-hysterectomized approximately 24 h after insemination. The oviducts and the uterine horns on each side of the reproductive tracts were divided into seven segments, namely ampulla, cranial isthmus, caudal isthmus, utero-tubal junction (UTJ), cranial uterine horn, middle uterine horn and caudal uterine horn. Each segment of the reproductive tracts was flushed with Beltsville thawing solution (BTS) through the lumen. The total number of spermatozoa in the flushing from each segment were determined. In experimental II, eight sows were inseminated by the DIUI technique using 5.0 ml diluted fresh semen containing 150 x 10(6) motile spermatozoa. The sows were anesthetized 61.1 +/- 12 h after insemination (48-72 h) and the embryos were flushed from the oviduct through the proximal part of the uterine horn. It was revealed that, in experimental I, the spermatozoa were recovered from both sides of the reproductive tract in the AI-group, and from unilateral side of the reproductive tract in the DIUI-group (three sows from the left and two sows from the right sides). The number of spermatozoa recovered from the reproductive tracts was higher in the AI- than the DIUI-group (p < 0.001). In experiment II, fertilization occurred in five of eight sows (62.5%) after DIUI. The number of ova that ovulated were 16.4 +/- 2.6 per sow and the embryos numbering 11.4 +/- 2.3 per sow were recovered from both sides of the reproductive tract. In conclusion, the spermatozoa given by DIUI could be recovered from only one side of the reproductive tract of sows at approximately 24 h after DIUI via the flushing technique. However, embryos were found in both sides of the oviducts and the proximal part of the uterine horns 48-72 h after insemination, indicating that the fertilization occurred in both sides of the oviducts.
NASA Technical Reports Server (NTRS)
Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.
1992-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing (wake), or west, side), 12 from tray B-12 (north side), 4 from tray D-6 (south side), 3 from tray H-11 (space end), and 6 from tray G-10 (earth end). Residue from manmade debris was identified in craters on all trays (aluminum oxide particle residues were not detectable on the Al/Si substrates). These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the west, space, and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the east, north, and south sides of the satellite, denoting passage through orbital debris clouds or rings.
Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.
Gjedde, Albert; Geday, Jacob
2009-12-07
We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.
NASA Astrophysics Data System (ADS)
Gottschalk, J.; Skinner, L. C.; Lippold, J. A.; Jaccard, S.; Vogel, H.; Frank, N.; Waelbroeck, C.
2014-12-01
The Southern Ocean is thought to have played a key role in atmospheric CO2 (CO2,atm) variations, both via its role in bringing carbon-rich deep-waters into contact with the atmosphere, and via its capacity for enhanced biologically mediated carbon export into the deep sea. The governing mechanisms of millennial scale rises in CO2,atm during the last deglacial and glacial periods have been linked controversially either with variations in biological export productivity, possibly driven by fluctuations in airborne dust supply, or to variations in southern high-latitude vertical mixing, possibly driven by changes in westerly wind stress or density stratification across the Southern Ocean water column. However, the impact of these processes on deep, southern high-latitude carbon sequestration and ocean-atmosphere CO2 exchange remain ambiguous. We present proxy evidence for the link between deep carbon storage in the sub-Antarctic Atlantic with changes in CO2,atm during the last 70 ka from sub-millennially resolved changes in bottom water oxygenation based on the uranium accumulation in authigenic coatings on foraminiferal shells and the δ13C offset between epibenthic and infaunal foraminifera (Δδ13C). We compare our results with reconstructed opal fluxes and sediment model output data to assess the impact of physical and biological processes on Southern Ocean carbon storage. While variations in sub-Antarctic Atlantic export production are intrinsically linked with changes in airborne dust supply supporting the major impact of dust on the biological soft-tissue pump, they cannot account for observed changes in pore water organic carbon respiration indicated by increasing Δδ13C and therefore, bottom water oxygen changes in the deep sub-Antarctic Atlantic. This is in strong support of millennial-scale fluctuations in deep Southern Ocean carbon storage primarily controlled by the ventilation of the deep ocean by southern-sourced water masses, which emphasize the strong control of vertical mixing and upwelling of CO2-rich water masses in the Southern Ocean on the ocean-atmosphere exchange of CO2 and variation in CO2,atm over both glacial-interglacial and millennial time scales.
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
Wang, Yong; Zhang, Guang J.
2016-09-29
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; Zhang, Guang J.
In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, S.W.; Lim, M.B.; Kim, T.H.
1993-12-31
The elastic-plastic fracture toughness J{sub IC} of SA508-3 forging steel was investigated by using CT-type specimens. The thickness of the smooth specimen is B{sub 0} = 25.4 mm and the side groove specimen is B{sub N} = 20.4 mm and the side groove deep is S{center_dot}G = [(B{sub 0} {minus} B{sub N})/B{sub 0}] {times} 100 = 19.7% and the groove angle is 90{degree}. The J{sub IC} tests estimated according to the method proposed in the ASTM E813-81 and JSME S001-81. The side-grooved specimen have the advantage of J{sub IC} estimation, it is much easier to determine the onset of ductilemore » tearing by the R-curve method and it improved accuracy and scatter of the toughness values thus determined, provided all the size-requirements for the specimen prescribed in the JSME method were satisfied. But it is difficult to find by the ASTM method. The critical stretched zone width (SZW{sub C}) of the side-grooved specimens found to be smaller than that previously determined for the standard CT specimens without side-grooves. This was attributed to higher triaxiality produced by the side-grooves. The stretched zone width method gave slightly larger J{sub IC} values than those by the R-curve method for SA508-3, as has been observed for the standard specimen without side-groove.« less
Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
Wilson, Robert J; Banas, Neil S; Heath, Michael R; Speirs, Douglas C
2016-10-01
Diapause plays a key role in the life cycle of high latitude zooplankton. During diapause, animals avoid starving in winter by living in deep waters where metabolism is lower and met by lipid reserves. Global warming is therefore expected to shorten the maximum potential diapause duration by increasing metabolic rates and by reducing body size and lipid reserves. This will alter the phenology of zooplankton, impact higher trophic levels and disrupt biological carbon pumps. Here, we project the impacts of climate change on the key North Atlantic copepod Calanus finmarchicus under IPCC RCP 8.5. Potential diapause duration is modelled in relation to body size and overwintering temperature. The projections show pronounced geographic variations. Potential diapause duration reduces by more than 30% in the Western Atlantic, whereas in the key overwintering centre of the Norwegian Sea it changes only marginally. Surface temperature rises, which reduce body size and lipid reserves, will have a similar impact to deep-water changes on diapause in many regions. Because deep-water warming lags that at the surface, animals in the Labrador Sea could offset warming impacts by diapausing in deeper waters. However, the ability to control diapause depth may be limited. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.
2017-11-01
A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.
Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano
2018-02-01
Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.
S-N profile of Receive function image across Qiangtang, Northern Tibet
NASA Astrophysics Data System (ADS)
He, R.; Gao, R.; Deng, G.; Li, W.; Hou, H.; Lu, Z.; Xiong, X.
2010-12-01
Huge thicken Triassic and Jurassic sediments widely outcorp within Qiangtang, tens of oilstones outcorped within Qiangtang showed that Qiangtang have a good advantage in exploring oil and gas. So, the basement beneath Qiangtang and its structures have become the key for us to look for oil and gas accumulations. Within tectonic settings of Qiangtang, the center uplift of Qiangtang (abbr. CUQT) and its developments have become the great barrier to understand the basement and its structures within the basin. Because of complicated structure relief and blueschist and ophiolite outcorps within the CUQT, there was the paradox for lots of geologist to understand how the CUQT developed. One was that it formed under the extension environment. On the contrary, CUQT was ever paleo-Tethys suture zone, because CUQT had the belt of blueschists and ophiolite. So, different opinions to CUQT resulted in the different viewpoints in the basin beneath Qiangtang terrane. Surveying deep structure beneath the CUQT was the key to understand the basement under Qiangtang. In past two years, we have deployed 40 portable broadband seismic stations along E88°to across the whole Qiangtang from Bangong-Nujiang Suture, southern side of Qiangtang terrane, to northern margin of Qiangtang terrane. The temporary network collected a lot of farm waveform data, which is helpful to know about the more finest deep structure beneath the CUQT and its two sides basin. We used P-to-S receiver functions methods to get deep structure image beneath the profile. The preliminary results showed: (1) Within the crust, the velocity structure beneath southern Qiangtang basin is higher than beneath northern Qiangtang basin. (2) Sedimental layer within southern Qiangtang basin is thichen than within northern Qiangtang basin. Combined with other geophysical information, CUQT is an important lithosphere-level boundary fault belts, and southern Qiangtang basin have great difference with northern Qiangtang basin, in velocity structure, basement depth, although during Qiangtang terrane had been strongly reconstructed laterly, especiall in Cenozoic uplift of the Tibetan plateau. The above-mentioned evidences showed that Qiangtang terrance in present-day tectonic study should be divided by CUQT into two parts which includes south Qiangtang terrane in sourthern side and north Qiangtang terrrane in northern side. Because CUQT and Qiangtang terrane were traditionally named, tectonic settings within the Tibetan plateau had to be remarked renewedly . This project was financially supported together by Natural Science Foundations of China (40774051, 40974060), the basic outlay of scientific research work from Ministry of Science and Technology, China in 2009 ( J0915 ), China National Probing Project (SinoProbe-02).
Space radioisotope power source requirements update and technology status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondt, J.F.
1998-07-01
The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decisionmore » will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime, compatibility and performance with the AMTEC beta prime Alumina, the TiN electrodes, the sodium and the molybdenum current collectors. AMTEC cell components and cells will be built with the baseline containment materials and brazes and tested to determine the performance as a function of temperature. These containment materials will be also be tested with all the other AMTEC components to determine acceleration factors needed to predict AMTEC performance degradation and failure as a function of operating time at temperature.« less
NASA Astrophysics Data System (ADS)
O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.
2017-02-01
Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.
NASA Technical Reports Server (NTRS)
Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.
1978-01-01
The data set obtained from the four-station Apollo seismic network including signals from approximately 11,800 events, is surveyed. Some refinement of the lunar model will result, but its gross features remain the same. Attention is given to the question of a small, molten lunar core, the answer to which remains dependent on analysis of signals from a far side impact. Seventy three sources of repeating, deep moonquakes have been identified, thirty nine of which have been accurately located. Concentrated at depths from 800 to 1000 km, the periodicities of these events have led to the hypothesis that they are generated by tidal stresses. Lunar seismic data has also indicated that the meteoroid population is ten times lower than originally determined from earth based observations. Lunar seismic activity is much lower and mountainous masses show no sign of sinking, in contrast to earth, as a result of the lunar crust being four times thicker. While much work remains to be done, significant correlation between terrestrial and lunar observations can be seen.
DBS Programming: An Evolving Approach for Patients with Parkinson's Disease.
Wagle Shukla, Aparna; Zeilman, Pam; Fernandez, Hubert; Bajwa, Jawad A; Mehanna, Raja
2017-01-01
Deep brain stimulation (DBS) surgery is a well-established therapy for control of motor symptoms in Parkinson's disease. Despite an appropriate targeting and an accurate placement of DBS lead, a thorough and efficient programming is critical for a successful clinical outcome. DBS programming is a time consuming and laborious manual process. The current approach involves use of general guidelines involving determination of the lead type, electrode configuration, impedance check, and battery check. However there are no validated and well-established programming protocols. In this review, we will discuss the current practice and the recent advances in DBS programming including the use of interleaving, fractionated current, directional steering of current, and the use of novel DBS pulses. These technological improvements are focused on achieving a more efficient control of clinical symptoms with the least possible side effects. Other promising advances include the introduction of computer guided programming which will likely impact the efficiency of programming for the clinicians and the possibility of remote Internet based programming which will improve access to DBS care for the patients.
DBS Programming: An Evolving Approach for Patients with Parkinson's Disease
Zeilman, Pam; Fernandez, Hubert; Bajwa, Jawad A.
2017-01-01
Deep brain stimulation (DBS) surgery is a well-established therapy for control of motor symptoms in Parkinson's disease. Despite an appropriate targeting and an accurate placement of DBS lead, a thorough and efficient programming is critical for a successful clinical outcome. DBS programming is a time consuming and laborious manual process. The current approach involves use of general guidelines involving determination of the lead type, electrode configuration, impedance check, and battery check. However there are no validated and well-established programming protocols. In this review, we will discuss the current practice and the recent advances in DBS programming including the use of interleaving, fractionated current, directional steering of current, and the use of novel DBS pulses. These technological improvements are focused on achieving a more efficient control of clinical symptoms with the least possible side effects. Other promising advances include the introduction of computer guided programming which will likely impact the efficiency of programming for the clinicians and the possibility of remote Internet based programming which will improve access to DBS care for the patients. PMID:29147598