The generation of side force by distributed suction
NASA Technical Reports Server (NTRS)
Roberts, Leonard; Hong, John
1993-01-01
This report provides an approximate analysis of the generation of side force on a cylinder placed horizontal to the flow direction by the application of distributed suction on the rearward side of the cylinder. Relationships are derived between the side force coefficients and the required suction coefficients necessary to maintain attached flow on one side of the cylinder, thereby inducing circulation around the cylinder and a corresponding side force.
Visualization analysis of tiger-striped flow mark generation phenomena in injection molding
NASA Astrophysics Data System (ADS)
Owada, Shigeru; Yokoi, Hidetoshi
2016-03-01
The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.
Shintani, Yoshiko; Iino, Kenji; Yamamoto, Yoshitaka; Kato, Hiroki; Takemura, Hirofumi; Kiwata, Takahiro
2017-12-25
Intimal hyperplasia (IH) is a major cause of graft failure. Hemodynamic factors such as stagnation and disturbed blood flow are involved in IH formation. The aim of this study is to perform a comparative analysis of distal-end side-to-side (deSTS) and end-to-side (ETS) anastomoses using computational fluid dynamics (CFD) after validating the results via particle image velocimetry (PIV).Methods and Results:We investigated the characteristics of our target flow fields using CFD under steady and pulsatile flows. CFD via PIV under steady flow in a 10-times-actual-size model was validated. The CFD analysis revealed a recirculation zone in the heel region in the deSTS and ETS anastomoses and at the distal end of the graft, and just distal to the toe of the host artery in the deSTS anastomoses. The recirculation zone sizes changed with the phase shift. We found regions of low wall shear stress and high oscillating shear index in the same areas. The PIV and CFD results were similar. It was demonstrated that the hemodynamic characteristics of CFD and PIV is the difference between the deSTS and ETS anastomoses; that is, the deSTS flow peripheral to the distal end of the graft, at the distal end and just distal to the toe of the host artery is involved in the IH formation.
Numerical analysis of the effect of side holes of a double J stent on flow rate and pattern.
Kim, Kyung-Wuk; Choi, Young Ho; Lee, Seung Bae; Baba, Yasutaka; Kim, Hyoung-Ho; Suh, Sang-Ho
2015-01-01
A double J stent has been used widely these days for patients with a ureteral stenosis or with renal stones and lithotripsy. The stent has multiple side holes in the shaft, which supply detours for urine flow. Even though medical companies produce various forms of double J stents that have different numbers and positions of side holes in the stent, the function of side holes in fluid dynamics has not been studied well. Here, the flow rate and pattern around the side holes of a double J stent were evaluated in curved models of a stented ureter based on the human anatomy and straight models for comparison. The total flow rate was higher in the stent with a greater number of side holes. The inflow and outflow to the stent through the side holes in the curved ureter was more active than in the straight ureter, which means the flow through side holes exists even in the ureter without ureteral stenosis or occlusion and even in the straight ureter. When the diameter of the ureter changed, the in-stent flow rate in the ureter did not change and the extraluminal flow rate was higher in the ureter with a greater diameter.
Numerical analysis of urine flow through the side holes of a double J stent in a ureteral stenosis.
Kim, Hyoung-Ho; Choi, Young Ho; Lee, Seung Bae; Baba, Yasutaka; Kim, Kyung-Wuk; Suh, Sang-Ho
2017-07-20
Ureteral stenosis presents with a narrowing in the ureter, due to an intrinsic or extrinsic ureteral disease, such as ureter cancer or retroperitoneal fibrosis. The placement of a double J stent in the upper urinary system is one of the most common treatments of ureteral stenosis, along with the insertion of a percutaneous nephrostomy tube into the renal pelvis. The effect that the side holes in a double J stent have on urine flow has been evaluated in a few studies using straight ureter models. In this study, urine flow through a double J stent's side holes was analyzed in curved ureter models, which were based on human anatomy. In ureteral stenosis, especially in severe ureteral stenosis, a stent with side holes had a positive effect on the luminal and total flow rates, compared with the rates for a stent without side holes. The more side holes a stent has, the greater the luminal and total flow rates. However, the angular positions of the side holes did not affect flow rate. In conclusion, the side holes in a double J stent had a positive effect on ureteral stenosis, and the effect became greater as the ureteral stenosis became more severe.
Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See
2010-01-01
This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.
The Need of Slanted Side Holes for Venous Cannulae
Park, Joong Yull
2012-01-01
Well-designed cannulae must allow good flow rate and minimize nonphysiologic load. Venous cannulae generally have side holes to prevent the rupture of blood vessel during perfusion. Optimizing side hole angle will yield more efficient and safe venous cannulae. A numerical modeling was used to study the effect of the angle (0°–45°) and number (0–12) of side holes on the performance of cannulae. By only slanting the side holes, it increases the flow rate up to 6% (in our models). In addition, it was found that increasing the number of side holes reduces the shear rate up to 12% (in our models). A new parameter called “penetration depth” was introduced to describe the interfering effect of stream jets from side holes, and the result showed that the 45°-slanted side holes caused minimum interfering for the flow in cannula. Our quantitative hemodynamic analysis study provides important guidelines for venous cannulae design. PMID:22291856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; Qu, Ming
This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less
On the stability analysis of sharply stratified shear flows
NASA Astrophysics Data System (ADS)
Churilov, Semyon
2018-05-01
When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
Cascade flow analysis by Navier-Stokes equation
NASA Astrophysics Data System (ADS)
Nozaki, Osamu
1987-06-01
As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.
Huh, S.; Dickey, D.A.; Meador, M.R.; Ruhl, K.E.
2005-01-01
A temporal analysis of the number and duration of exceedences of high- and low-flow thresholds was conducted to determine the number of years required to detect a level shift using data from Virginia, North Carolina, and South Carolina. Two methods were used - ordinary least squares assuming a known error variance and generalized least squares without a known error variance. Using ordinary least squares, the mean number of years required to detect a one standard deviation level shift in measures of low-flow variability was 57.2 (28.6 on either side of the break), compared to 40.0 years for measures of high-flow variability. These means become 57.6 and 41.6 when generalized least squares is used. No significant relations between years and elevation or drainage area were detected (P>0.05). Cluster analysis did not suggest geographic patterns in years related to physiography or major hydrologic regions. Referring to the number of observations required to detect a one standard deviation shift as 'characterizing' the variability, it appears that at least 20 years of record on either side of a shift may be necessary to adequately characterize high-flow variability. A longer streamflow record (about 30 years on either side) may be required to characterize low-flow variability. ?? 2005 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Holland, W.
1974-01-01
This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.
Numerical analysis of tangential slot blowing on a generic chined forebody
NASA Technical Reports Server (NTRS)
Agosta, Roxana M.
1994-01-01
A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Watson, Carolyn B.
1987-01-01
An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.
Numerical Analysis of Flow-Induced Vibrations in Closed Side Branches
NASA Astrophysics Data System (ADS)
KníŽat, Branislav; Troják, Michal
2011-12-01
Vibrations occuring in closed side branches connected to a main pipe are a frequent problem during pipeline system operation. At the design stage of pipeline systems, this problem is sometimes overlooked or underestimated which can later lead to the shortening of the systems life cycle or may even cause injury. The aim of this paper is a numerical analysis of the start of self-induced vibrations on the edge of a closed side branch. Calculation conditions and obtained results are presented within.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
An analysis of induced pressure fields in electroosmotic flows through microchannels.
Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R
2004-07-15
Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2010-01-01
Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.
Rarefaction Effects in Hypersonic Aerodynamics
NASA Astrophysics Data System (ADS)
Riabov, Vladimir V.
2011-05-01
The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.
Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2012-01-01
There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.
Kalachanis, Dimitrios; Manetas, Yiannis
2010-07-01
Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.
A Study on Water Surface Profiles of Rivers with Constriction
NASA Astrophysics Data System (ADS)
Qian, Chaochao; Yamada, Tadashi
2013-04-01
Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even in practice.
Nonlinear effects in time-dependent transonic flows: An analysis of analog black hole stability
NASA Astrophysics Data System (ADS)
Michel, Florent; Parentani, Renaud
2015-05-01
We study solutions of the one-dimensional Gross-Pitaevskii equation to better understand dynamical instabilities occurring in flowing atomic condensates. Whereas transonic stationary flows can be fully described in simple terms, time-dependent flows exhibit a wide variety of behaviors. When the sound speed is crossed once, we observe that flows analogous to black holes obey something similar to the so-called no hair theorem since their late time profile is stationary and uniquely fixed by parameters entering the Hamiltonian and conserved quantities. For flows analogous to white holes, at late time one finds a macroscopic undulation in the supersonic side which has either a fixed amplitude or a widely varying one, signaling a quasiperiodic emission of solitons on the subsonic side. When considering flows which cross the sound speed twice, we observe various scenarios which can be understood from the above behaviors and from the hierarchy of the growth rates of the dynamical instabilities characterizing such flows.
2014-01-01
Background End-to-side anastomoses to connect the distal end of the great saphenous vein (GSV) to small target coronary arteries are commonly performed in sequential coronary artery bypass grafting (CABG). However, the oversize diameter ratio between the GSV and small target vessels at end-to-side anastomoses might induce adverse hemodynamic condition. The purpose of this study was to describe a distal end side-to-side anastomosis technique and retrospectively compare the effect of distal end side-to-side versus end-to-side anastomosis on graft flow characteristics. Methods We performed side-to-side anastomoses to connect the distal end of the GSV to small target vessels on 30 patients undergoing off-pump sequential CABG in our hospital between October 2012 and July 2013. Among the 30 patients, end-to-side anastomoses at the distal end of the GSV were initially performed on 14 patients; however, due to poor graft flow, those anastomoses were revised into side-to-side anastomoses. We retrospectively compared the intraoperative graft flow characteristics of the end-to-side versus side-to-side anastomoses in the 14 patients. The patient outcomes were also evaluated. Results We found that the side-to-side anastomosis reconstruction improved intraoperative flow and reduced pulsatility index in all the 14 patients significantly. The 16 patients who had the distal end side-to-side anastomoses performed directly also exhibited satisfactory intraoperative graft flow. Three-month postoperative outcomes for all the patients were satisfactory. Conclusions Side-to-side anastomosis at the distal end of sequential vein grafts might be a promising strategy to connect small target coronary arteries to the GSV. PMID:24884776
Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space
NASA Astrophysics Data System (ADS)
Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian
2008-08-01
Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.
Across-canyon movement of earthquake-induced sediment gravity flow offshore southwestern Taiwan.
NASA Astrophysics Data System (ADS)
Chen, Yen-Ting; Su, Chih-Chieh; Lu, Yi-Wei; Cheng, Yiya
2017-04-01
Caused by the origin of oblique collision between the Eurasian and Philippine Sea Plate, Taiwan Island inevitably faces the destiny to be continuously influenced by frequent and severe earthquake activities. Thus, earthquake-induced sediment gravity flows are common marine geo-hazards in the submarine region of Taiwan. The Pingtung Doublet earthquakes occurred in Dec. 2006 offshore Fangliao Township and two submarine cables were broken at the Fangliao Submarine Canyon (FLSC) head, simultaneously. On the eastern side of the FLSC head, chirp sonar profiles and high-resolution bathymetry data revealed linear seafloor failures along the northwest direction and merged into the FLSC. Moreover, cores taken from the seafloor failure area and in the FLSC also observed thick debrite and turbidite layers at core tops. Nevertheless, in the western side of the FLSC head, local fishermen reported disturbed water just after the Pingtung Doublet earthquakes. Hence series of cores and chirp sonar data were collected at the western side of the FLSC, trying to figure out the linkage of Pingtung Doublet earthquakes induced gravity flow deposits on both sides of the FLSC. The analysis results suggest that the deposits of disturbed water at the western side of FLSC head was caused by the finer suspended sediments separated from the main body at the top of the gravity flow. Our results point out besides the traditional well-known downward transportation in the canyon, the across-canyon movement may also leave stratigraphic records and help us to establish a more complete transportation process of a sediment gravity flow.
The use of fluorescent indoline dyes for side population analysis.
Kohara, Hiroshi; Watanabe, Kohei; Shintou, Taichi; Nomoto, Tsuyoshi; Okano, Mie; Shirai, Tomoaki; Miyazaki, Takeshi; Tabata, Yasuhiko
2013-01-01
Dye efflux assay evaluated by flow cytometry is useful for stem cell studies. The side population (SP) cells, characterized by the capacity to efflux Hoechst 33342 dye, have been shown to be enriched for hematopoietic stem cells (HSCs) in bone marrow. In addition, SP cells are isolated from various tissues and cell lines, and are also potential candidates for cancer stem cells. However, ultra violet (UV) light, which is not common for every flow cytometer, is required to excite Hoechst 33342. Here we showed that a fluorescent indoline dye ZMB793 can be excited by 488-nm laser, equipped in almost all the modern flow cytometers, and ZMB793-excluding cells showed SP phenotype. HSCs were exclusively enriched in the ZMB793-excluding cells, while ZMB793 was localized in cytosol of bone marrow lineage cells. The efflux of ZMB793 dye was mediated by ATP binding cassette (ABC) transporter Abcg2. Moreover, staining properties were affected by the side-chain structure of the dyes. These data indicate that the fluorescent dye ZMB793 could be used for the SP cell analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lucas, Thabata Coaglio; Tessarolo, Francesco; Jakitsch, Victor; Caola, Iole; Brunori, Giuliano; Nollo, Giandomenico; Huebner, Rudolf
2014-07-01
Although catheters with side holes allow high flow rate during hemodialysis, they also induce flow disturbances and create a critical hemodynamic environment that can favor fibrin deposition and thrombus formation. This study compared the blood flow and analyzed the influence of shear stress and shear rate in fibrin deposition and thrombus formation in nontunneled hemodialysis catheters with unobstructed side holes (unobstructed device) or with some side holes obstructed by blood thrombi (obstructed device). Computational fluid dynamics (CFD) was performed to simulate realistic blood flow under laminar and turbulent conditions. The results from the numerical simulations were compared with the fibrin distribution and thrombus architecture data obtained from scanning electron microscopy (SEM) and two photons laser scanning microscopy (TPLSM) on human thrombus formed in catheters removed from patients. CFD showed that regions of flow eddies and separation were mainly found in the venous holes region. TPLSM characterization of thrombi and fibrin structure in patient samples showed fibrin formations in accordance with simulated flux dynamics. Under laminar flow conditions, the wall shear stress close to border holes increased from 87.3±0.2 Pa in the unobstructed device to 176.2±0.5 Pa in the obstructed one. Under turbulent flow conditions, the shear stress increased by 47% when comparing the obstructed to the unobstructed catheter. The shear rates were generally higher than 5000/s and therefore sufficient to induce fibrin deposition. This findings were supported by SEM data documenting a preferential fibrin arrangement on side hole walls. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Turbine blade tip flow discouragers
Bunker, Ronald Scott
2000-01-01
A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.
Numerical simulation of steady state three-dimensional groundwater flow near lakes
Winter, Thomas C.
1978-01-01
Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Piazza, Ivan; Buehler, Leo
2000-09-15
The buoyancy-driven magnetoconvection in the cross section of an infinitely long vertical square duct is investigated numerically using the CFX code package. The implementation of a magnetohydrodynamic (MHD) problem in CFX is discussed, with particular reference to the Lorentz forces and the electric potential boundary conditions for arbitrary electrical conductivity of the walls. The method proposed is general and applies to arbitrary geometries with an arbitrary orientation of the magnetic field. Results for fully developed flow under various thermal boundary conditions are compared with asymptotic analytical solutions. The comparison shows that the asymptotic analysis is confirmed for highly conducting wallsmore » as high velocity jets occur at the side walls. For weakly conducting walls, the side layers become more conducting than the side walls, and strong electric currents flow within these layers parallel to the magnetic field. As a consequence, the velocity jets are suppressed, and the core solution is only corrected by the viscous forces near the wall. The implementation of MHD in CFX is achieved.« less
Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis
Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor
2012-01-01
Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209
Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.
Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor
2012-10-01
To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.
NASA Astrophysics Data System (ADS)
Lindler, Jason; Wereley, Norman M.
2003-06-01
We present an improved experimental validation of our nonlinear quasi-steady electrorheological (ER) and magnetorheological damper analysis, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation with leakage effect. To validate the model, a double-acting ER valve or bypass damper was designed and fabricated. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille flow. The ER fluid damper contains a controlled amount of leakage around the piston head. The leakage allows ER fluid to flow from one side of the piston head to the opposite side without passing through the ER bypass. For this flow mode damper, the damping coefficient, defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the non-dimensional plug thickness only. The damper was tested for varying conditions of applied electric field and frequency using a mechanical damper dynamometer. In this analysis, the leakage damping coefficient with incorporated leakage effects, predict the amount of energy dissipated for a complete cycle of the piston rod. Measured force verses displacement cycles for multiple frequencies and electric fields validate the ability of the non-dimensional groups and the leakage damping coefficient to predict the damping levels for an ER bypass damper with leakage. Based on the experimental validation of the model using these data, the Bingham plastic analysis is shown to be an effective tool for the analysis-based design of double-acting ER bypass dampers.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2013-09-17
A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO
Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.
2016-01-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO
NASA Astrophysics Data System (ADS)
Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.
Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by using Anti-vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S..
2013-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6- DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John W.; West, Jeff S.
2017-01-01
An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.
2006-08-01
be developed. A common analysis model covering the aerodynamic-flow effector interaction, the compliant mechanism-SMA dynamics and the control...additional CFD analysis for the finless DRDC-B1AC2R between 15 deg. to 20 deg. to determine where the peak side force is situated. Compare pressure...Carry out CFD study on DRDC-B1AC2R with fins. Decide on analysis matrix. Coordinate with wind tunnel test matrix. Action: DRDC-nh Y0405-7. Decide
Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm
Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.
2014-08-26
An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller
NASA Technical Reports Server (NTRS)
Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.
1997-01-01
A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.
Applications of thermoelectric modules on heat flow detection.
Leephakpreeda, Thananchai
2012-03-01
This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
An application of the suction analog for the analysis of asymmetric flow situations
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1976-01-01
A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bemporad, G.A.; Rubin, H.
This manuscript concerns the onset of thermohaline convection in a solar pond subject to field conditions as well as a small scale laboratory test section simulating the solar pond performance. The onset of thermohaline convection is analyzed in this study by means of a linear stability analysis in which the flow field perturbations are expended in sets of complete orthonormal functions satisfying the boundary conditions of the flow field. The linear stability analysis is first performed with regard to an advanced solar pond (ASP) subject to field conditions in which thermohaline convection develops in planes perpendicular to the unperturbed flowmore » velocity vector. In the laboratory simulator of the ASP the width and depth are of the same order of magnitude. In this case it is found that the side walls delay the onset of convection in planes perpendicular to the unperturbed flow velocity vector. The presence of the side walls may cause the planes parallel to the flow velocity to be the most susceptible to the development on all three spatial variables, are predicted. They may develop in planes parallel or perpendicular to the unperturbed velocity vector according to the value of the Reynolds number of the unperturbed flow and the ratio between the width and depth of the ASP simulator.« less
Locating an imaging radar in Canada for identifying spaceborne objects
NASA Astrophysics Data System (ADS)
Schick, William G.
1992-12-01
This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.
Icebergs Melting in Uniform and Vertically Sheared Flows
NASA Astrophysics Data System (ADS)
Cenedese, Claudia; Fitzmaurice, Anna; Straneo, Fiammetta
2017-11-01
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing melt parameterizations. A series of novel laboratory experiments showed that side melting of icebergs subject to relative velocities is controlled by two distinct regimes, which depend on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow, the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the side-attached regime, improving agreement with observations of iceberg submarine melt rates. AF was supported by NA14OAR4320106, CC by NSF OCE-1434041 and OCE-1658079, and FS by NSF PLR-1332911 and OCE-1434041.
Flapping modes of three filaments placed side by side in a free stream
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun
2010-11-01
Flexible filaments flapping in a surrounding flow are useful models for understanding the flow-induced vibration and mimicking the schooling behavior of fish. In the present work, the coupled modes of three identical filaments in a side-by- side arrangement are studied using the linear stability analysis and also an immersed boundary--lattice Boltzmann method for low Reynolds numbers (Re on order of 100). The numerical simulations show that the system dynamics exhibits several patterns that depend on the spacing between the filaments. Among these patterns, three can be predicted by the linear analysis and have been reported before. These modes are: (1) the three filaments all flap in phase; (2) the two outer filaments are out of phase while the middle one is stable; (3) the two outer filaments are in phase while the middle one is out of phase. The simulations also identified two additional modes: (1) the outer two filaments are out of phase while the middle one flaps at a frequency reduced by half; (2) the outer two filaments are out of phase while the middle one flaps at a slightly different frequency. In addition to the vibratory modes, the drag force and the flapping amplitude are also computed, and the implication of the result will be discussed.
NASA Astrophysics Data System (ADS)
Aycock, Kenneth; Sastry, Shankar; Kim, Jibum; Shontz, Suzanne; Campbell, Robert; Manning, Keefe; Lynch, Frank; Craven, Brent
2013-11-01
A computational methodology for simulating inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and tested on two patient-specific IVC geometries: a left-sided IVC, and an IVC with a retroaortic left renal vein. Virtual IVC filter placement was performed with finite element analysis (FEA) using non-linear material models and contact modeling, yielding maximum vein displacements of approximately 10% of the IVC diameters. Blood flow was then simulated using computational fluid dynamics (CFD) with four cases for each patient IVC: 1) an IVC only, 2) an IVC with a placed filter, 3) an IVC with a placed filter and a model embolus, all at resting flow conditions, and 4) an IVC with a placed filter and a model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet (all cases) and a larger stagnation region (cases 3-4) in the left-sided IVC. These results support further investigation of the effects of IVC filter placement on a patient-specific basis.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
Jodko, Daniel; Obidowski, Damian; Reorowicz, Piotr; Jóźwik, Krzysztof
2016-01-01
The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis - the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.
NASA Technical Reports Server (NTRS)
Agarwal, R.; Rakich, J. V.
1978-01-01
Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.
Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun
2011-10-07
Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.
Streamflow and streambed scour in 2010 at bridge 339, Copper River, Alaska
Conaway, Jeffrey S.; Brabets, Timothy P.
2011-01-01
The distribution of the Copper River's discharge through the bridges was relatively stable until sometime between 1969-70 and 1982-85. The majority of the total Copper River discharge in 1969-70 passed through three bridges on the western side of the delta, but by 1982-1985, 25 to 62 percent of the flow passed through bridge 342 on the eastern side of the Copper River Delta. In 2004, only 8 percent of the flow passed through the western bridges, while 90 percent of the discharge flowed through two bridges on the eastern side of the delta. Migration of the river across the delta and redistribution of discharge has resulted in streambed scour at some bridges, overtopping of the road during high flows, prolonged highway closures, and formation of new channels through forests. Scour monitoring at the eastern bridges has recorded as much as 44 feet of fill at one pier and 33 feet of scour at another. In 2009, flow distribution began to shift from the larger bridge 342 to bridge 339. In 2010, flow in excess of four times the design discharge scoured the streambed at bridge 339 to a level such that constant on-site monitoring was required to evaluate the potential need for bridge closure. In 2010, instantaneous flow through bridge 339 was never less than 30 percent and was as high as 49 percent of the total Copper River discharge. The percentage of flow through bridge 339 decreased when the overall Copper River discharge increased. The increased discharge through bridge 339 is attributed to a shift in the approach channel 3,500 feet upstream. Bridge channel alignment and analysis of flow distribution as of October 2010 indicate these hydrologic hazards will persist in 2011.
Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing
NASA Astrophysics Data System (ADS)
Will, Björn-Christian; Benra, Friedrich-Karl; Dohmen, Hans-Josef
2012-06-01
The paper is concerned with the fluid flow in the impeller side clearances of a centrifugal pump with volute casing. The flow conditions in these small axial gaps are of significant importance for a number of effects such as disk friction, leakage losses or hydraulic axial thrust to name but a few. In the investigated single stage pump, the flow pattern in the volute turns out to be asymmetric even at design flow rate. To gain a detailed insight into the flow structure, numerical simulations of the complete pump including the impeller side clearances are accomplished. Additionally, the hydraulic head and the radial pressure distributions in the impeller side clearances are measured and compared with the numerical results. Two configurations of the impeller, either with or without balancing holes, are examined. Moreover, three different operating points, i.e.: design point, part load or overload conditions are considered. In addition, analytical calculations are accomplished to determine the pressure distributions in the impeller side clearances. If accurate boundary conditions are available, the 1D flow models used in this paper can provide reasonable results for the radial static pressure distribution in the impeller side clearances. Furthermore, a counter rotating wake region develops in the rear impeller side clearances in absence of balancing holes which severely affects the inflow and outflow conditions of the cavity in circumferential direction.
Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations
Minsley, Burke J.; Ikard, Scott
2010-01-01
Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and discussed in the context of, the geophysical work (Minsley and others, 2010) where appropriate.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
NASA Astrophysics Data System (ADS)
Mert, Suha Orçun; Reis, Alper
2016-06-01
Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.
Moffatt eddies at an interface
NASA Astrophysics Data System (ADS)
Shtern, Vladimir
2014-12-01
It is shown that an infinite set of eddies can develop near the interface-wall intersection in a two-fluid flow. A striking feature is that the eddy occurrence depends on from what side of the interface the flow is driven. In air-water flows where the viscosity ratio is 0.018, the eddies develop if a driving source is located on (i) the air side for , (ii) any side for , and (iii) the water side for , where is the upper interface-wall angle.
Communications: Mechanical Deformation of Dendrites by Fluid Flow
NASA Technical Reports Server (NTRS)
Pilling, J.; Hellawell, A.
1996-01-01
It is generally accepted that liquid agitation during alloy solidification assists in crystal multiplication, as in dendrite fragmentation and the detachment of side arms in the mushy region of a casting. Even without deliberate stirring by electromagnetic or mechanical means, there is often vigorous interdendritic fluid flow promoted by natural thermosolutal convection. In this analysis, we shall estimate the stress at the root of a secondary dendrite arm of aluminum arising from the action of a flow of molten metal past the dendrite arm.
Resonance spiking by periodic loss in the double-sided liquid cooling disk oscillator
NASA Astrophysics Data System (ADS)
Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo
2017-03-01
A double-sided liquid cooling Nd:YAG disk oscillator working at a pump repetition rate of 20 Hz is demonstrated. The output energy of 376 mJ is realized, corresponding to the optical-optical efficiency of 12.8% and the slope efficiency of 14%. The pump pulse width is 300 µs and the laser pulse width is 260 µs. Instead of being a damped signal, the output of laser comprises undamped spikes. A periodic intra-cavity loss was found by numerical analysis, which has a frequency component near the eigen frequency of the relaxation oscillation. Resonance effect will induce amplified spikes even though the loss fluctuates in a small range. The Shark-Hartmann sensor was used to investigate the wavefront aberration induced by turbulent flow and temperature gradient. According to the wavefront and fluid mechanics analysis, it is considered that the periodic intra-cavity loss can be attributed to turbulent flow and temperature gradient.
The Background to Current Theories of Scuffing
1973-01-01
attention because, by neglecting axial flow , it can be treated in two dimensions. This has resulted in a fairly complete theoretical analysis...the contact. This method was essentially one of measuring the volume rate of flow through the contact, which was directly related to the pad...exit constriction. The pressure and temperature were also measured in the axial direction (105) and the results indicated that side leakage was
A Laboratory Study of Slope Flows Dynamics
NASA Astrophysics Data System (ADS)
Capriati, Andrea; Cenedese, Antonio; Monti, Paolo
2003-11-01
Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.
Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena
2012-04-01
The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.
Nozzle Side Load Testing and Analysis at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2009-01-01
Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed
Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph
2015-01-01
Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658
Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo
2016-12-01
Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.
NASA Astrophysics Data System (ADS)
Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.
2014-12-01
Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.
Nonlinear Response of Iceberg Melting to Ocean Currents
NASA Astrophysics Data System (ADS)
Cenedese, C.; FitzMaurice, A.; Straneo, F.
2017-12-01
Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of side submarine melt rates on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the attached regime, improving agreement with observations of iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord.
Mücke, Thomas; Ritschl, Lucas M; Balasso, Andrea; Wolff, Klaus-Dietrich; Mitchell, David A; Liepsch, Dieter
2014-01-01
The end-to-side anastomosis is frequently used in microvascular free flap transfer, but detailed rheological analyses are not available. The purpose of this study was to introduce a new modified end-to-side (Opened End-to-Side, OES-) technique and compare the resulting flow pattern to a conventional technique. The new technique was based on a bi-triangulated preparation of the branching-vessel end, resulting in a "fish-mouthed" opening. We performed two different types of end-to-side anastomoses in forty pig coronary arteries and produced one elastic, true-to-scale silicone rubber model of each anastomosis. Then we installed the transparent models in a circulatory experimental setup that simulated the physiological human blood flow. Flow velocity was measured with the one-component Laser-Doppler-Anemometer system, recording flow axial and perpendicular to the model at four defined cross-sections for seven heart cycles in each model. Maximal and minimal axial velocities ranged in the conventional model between 0.269 and -0.122 m/s and in the experimental model between 0.313 and -0.153 m/s. A less disturbed flow velocity distribution was seen in the experimental model distal to the anastomosis. The OES-technique showed superior flow profiles distal to the anastomosis with minor tendencies of flow separation and represents a new alternative for end-to-side anastomosis. Copyright © 2013 Wiley Periodicals, Inc.
Koltun, G.F.
2001-01-01
This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.
Sokolenko, Stanislav; Nicastro, Jessica; Slavcev, Roderick; Aucoin, Marc G
2012-12-01
As native virus particles typically cannot be resolved using a flow cytometer, the general practice is to use fluorescent dyes to label the particles. In this work, an attempt was made to use a common commercial flow cytometer to characterize a phage display strategy that allows for controlled levels of protein display, in this case, eGFP. To achieve this characterization, a number of data processing steps were needed to ensure that the observed phenomena were indeed capturing differences in the phages produced. Phage display of eGFP resulted in altered side scatter and fluorescence profile, and sub-populations could be identified within what would otherwise be considered uniform populations. Surprisingly, this study has found that side scatter may be used in the future to characterize the display of nonfluorescent proteins. Copyright © 2012 International Society for Advancement of Cytometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwai, Yasunori; Yamanishi, Toshihiko; Hayashi, Takumi
2005-07-15
Addition of gas separation membrane process into the usual tritium removal process from an indoor atmosphere is attractive for a fusion plant, where a large amount of atmosphere should be processed. As a manner to improve the partial pressure difference between feed and permeated side, intended reflux of vapor and the hydrogen concentrated at permeated side is conceived to enlarge the partial pressure difference. Membrane separation with reflux flow has been proposed as an attractive process to enhance the recovery ratio of tritium component. Effect of reflux on the recovery ratio of tritium component was evaluated by numerical analysis. Themore » effect of reflux on separation performance becomes striking as the target species have higher permeability coefficients. Hence, the gas separation by membrane with reflux flow is favorable for tritium recovery.« less
Nuclear reactor downcomer flow deflector
Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA
2011-02-15
A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
Mixing in the shear superposition micromixer: three-dimensional analysis.
Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline
2004-05-15
In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.
Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.
2016-01-01
During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319
Theoretical prediction of airplane stability derivatives at subcritical speeds
NASA Technical Reports Server (NTRS)
Tulinius, J.; Clever, W.; Nieman, A.; Dunn, K.; Gaither, B.
1973-01-01
The theoretical development and application is described of an analysis for predicting the major static and rotary stability derivatives for a complete airplane. The analysis utilizes potential flow theory to compute the surface flow fields and pressures on any configuration that can be synthesized from arbitrary lifting bodies and nonplanar thick lifting panels. The pressures are integrated to obtain section and total configuration loads and moments due side slip, angle of attack, pitching motion, rolling motion, yawing motion, and control surface deflection. Subcritical compressibility is accounted for by means of the Gothert similarity rule.
NASA Astrophysics Data System (ADS)
Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi
2015-04-01
We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.
μPIV measurements of two-phase flows of an operated direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens
2013-05-01
In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.
Measurement and simulation of thermoelectric efficiency for single leg
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka
2015-04-01
Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin
1989-01-01
The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1983-01-01
Methods aimed at reduction of overexpansion and side load resulting from asymmetric flow separation for rocket nozzles with a high opening ratio are described. The methods employ additional measures for nozzles with a fixed opening ratio. The flow separation can be controlled by several types of nozzle inserts, the properties of which are discussed. Side loads and overexpansion can be reduced by adapting the shape of the nozzle and taking other additional measures for controlled separation of the boundary layer, such as trip wires.
Near wall cooling for a highly tapered turbine blade
Liang, George [Palm City, FL
2011-03-08
A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.
Thermal Creep Force: Analysis And Application
2016-06-01
University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1982-01-01
Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
NASA Astrophysics Data System (ADS)
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
Numerical study of heat transfer characteristics in BOG heat exchanger
NASA Astrophysics Data System (ADS)
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Lee side flow for slender delta wings of finite thickness
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.
NASA Astrophysics Data System (ADS)
Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal
2015-11-01
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.
Flow processes in electric discharge drivers
NASA Technical Reports Server (NTRS)
Baganoff, D.
1975-01-01
The performance of an electric discharge shock tube is discussed from the point of view that the conditions at the sonic station are the primary controlling variables (likewise in comparing designs), and that the analysis of the flow on either side of the sonic station should be done separately. The importance of considering mass-flow rate in matching a given driver design to the downstream flow required for a particular shock-wave speed is stressed. It is shown that a driver based on the principle of liquid injection (of H2) is superior to one based on the Ludwieg tube, because of the greater mass-flow rate and the absence of a massive diaphragm.
NASA Technical Reports Server (NTRS)
Marek, Lindsay C.
2011-01-01
Boundary layer stability was analyzed for the HIFiRE-1 flight vehicle geometry for ground tests conducted at the CUBRC LENS I hypersonic shock test facility and the Langley Research Center (LaRC) 20- inch Mach 6 Tunnel. Boundary layer stability results were compared to transition onset location obtained from discrete heat transfer measurements from thin film gauges during the CUBRC test and spatially continuous heat transfer measurements from thermal phosphor paint data during the LaRC test. The focus of this analysis was on conditions at non-zero angles of attack as stability analysis has already been performed at zero degrees angle of attack. Also, the transition onset data obtained during flight testing was at nonzero angles of attack, so this analysis could be expanded in the future to include the results of the flight test data. Stability analysis was performed using the 2D parabolized stability software suite STABL (Stability and Transition Analysis for Hypersonic Boundary Layers) developed at the University of Minnesota and the mean flow solutions were computed using the DPLR finite volume Navier-Stokes computational fluid dynamics (CFD) solver. A center line slice of the 3D mean flow solution was used for the stability analysis to incorporate the angle of attack effects while still taking advantage of the 2D STABL software suite. The N-factors at transition onset and the value of Re(sub theta)/M(sub e), commonly used to predict boundary layer transition onset, were compared for all conditions analyzed. Ground test data was analyzed at Mach 7.2 and Mach 6.0 and angles of attack of 1deg, 3deg and 5deg. At these conditions, the flow was found to be second mode dominant for the HIFiRE-1 slender cone geometry. On the leeward side of the vehicle, a strong trend of transition onset location with angle of attack was observed as the boundary layer on the leeward side of the vehicle developed inflection points at streamwise positions on the vehicle that correlated to angle of attack. Inflection points are a strong instability mechanism that lead to rapid breakdown and transition to turbulence. The transition onset location on the windward side of the vehicle displayed no trend with angle of attack or freestream Reynolds number and transition was observed farther down the vehicle than observed on the leeward side of the vehicle. In analysis of both windward and leeward sides of the vehicle, use of the N factor methodology to develop trends to predict boundary layer transition onset showed improvements over the Re(sub theta)/M(sub e) empirical correlation methodology. Stronger correlations and less scatter in the data were observed when using the N factor method for these cases.
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers.
Stonebridge, P A; Suttie, S A; Ross, R; Dick, J
2016-11-01
Spiral laminar flow was suggested as potentially the predominant arterial blood flow pattern many years ago. Computational fluid dynamics and flow rig testing have suggested there are advantages to spiral laminar flow. The aim of this study was to identify whether spiral laminar is the predominant flow pattern in a cohort of volunteers. This study included 42 volunteers (mean age 66.8 years). Eleven arterial sites were examined, comprising bilateral examination of the common carotid artery, internal carotid artery, external carotid artery, common femoral artery, superficial femoral artery, and the infra renal aorta. The presence or absence of spiral laminar flow, the peak systolic velocity, and the rotational velocity were assessed by colour Duplex scanning. The incidence of spiral laminar flow ranged from 81% in the internal carotid artery to 90% in the common carotid artery and the infra renal aorta. Overall, in 58% of all right-sided arteries the rotation was clockwise and 42% anticlockwise. In all left-sided arteries these numbers were reversed. Analysis on the basis of volunteer rather than examination site showed that 41/42 (97%) had more sites with spiral laminar flow than without. Only one volunteer had more sites exhibiting non-spiral laminar flow. Spiral laminar flow was the predominant flow pattern in the study population. This observation raises questions and suggests a need for further studies concerning the form and function of the left ventricle, the geometry of the arterial system, and the function of the arterial wall. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.
2007-01-01
Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
NASA Technical Reports Server (NTRS)
Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.
1947-01-01
Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
Hydrogeology of the vicinity of Homestake mine, South Dakota, USA
NASA Astrophysics Data System (ADS)
Murdoch, Larry C.; Germanovich, Leonid N.; Wang, Herb; Onstott, T. C.; Elsworth, Derek; Stetler, Larry; Boutt, David
2012-02-01
The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.
Numerical studies of incompressible flow around delta and double-delta wings
NASA Technical Reports Server (NTRS)
Krause, E.; Liu, C. H.
1989-01-01
The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.
Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders
NASA Astrophysics Data System (ADS)
Shao, J.; Zhang, C.
Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.
Bubble propagation on a rail: a concept for sorting bubbles by size
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery
NASA Astrophysics Data System (ADS)
Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard
2013-02-01
This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.
Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; ...
2015-12-17
Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO 4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO 4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less
Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.
Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J
2014-03-01
Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Flow analysis in a vane-type surface tension propellant tank
NASA Astrophysics Data System (ADS)
Yu, A.; Ji, B.; Zhuang, B. T.; Hu, Q.; Luo, X. W.; Y Xu, H.
2013-12-01
Vane-type surface tension tanks are widely used as the propellant management devices in spacecrafts. This paper treats the two-phase flow inside a vane-type surface tension tank. The study indicates that the present numerical methods such as time-dependent Navier-Stokes equations, VOF model can reasonably predict the flow inside a propellant tank. It is clear that the vane geometry has important effects on transmission performance of the liquid. for a vane type propellant tank, the vane having larger width, folding angle, height of folded side and clearance is preferable if possible.
Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill
2015-01-01
The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention/goal. The general understanding is that the current generation of compressor design/analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center. Detailed data-match analysis by GE identified an unexpected high loss generation in the pressure side of the stator passage. Higher total temperature and lower total pressure are measured near the pressure side of the stator. Various analyses based on the RANS and URANS of the compressor stage do not calculate the measured higher total temperature and lower total pressure on the pressure side of the stator. In the present paper, a Large Eddy Simulation (LES) is applied to find the fundamental mechanism of this unsteady loss generation in the stator due to the incoming rotor wake. The results from the LES were first compared with the NASA test results and the GE interpretation of the test data. LES calculates lower total pressure and higher total temperature on the pressure side of the stator, as the measured data showed, resulting in large loss generation on the pressure side of the stator. Detailed examination of the unsteady flow field from LES shows that the rotor wake, which has higher total temperature and higher total pressure relative to the free stream, interacts quite differently with the pressure side of the blade compared to the suction side of the blade. The higher temperature in the wake remains high as the wake passes through the pressure side of the blade. On the other hand, the total temperature diffuses as it passes through near the suction surface. For the presently investigated compressor, the classical intra-stator wake transport to the pressure side of the blade by the slip velocity in the wake seems to be minor. The main causes of this phenomenon are three-dimensional unsteady vortex interactions near the blade surface. The stabilizing effect of the concave curvature on the suction side keeps the rotor wake thin. On the other hand, the destabilizing effect of the convex curvature of the pressure side makes the rotor wake thicker, which results in a higher total temperature measurement at the stator exit. Additionally, wake stretching through the stator seems to contribute to the redistribution of the total temperature and the loss generation.
A Study of the Flow Structure of Tip Vortices on a Hydrofoil
1986-11-28
as measured from the flow visualization imager. . . 0 . . . 61 III.10 The vertical location of the tip vortex center as measured from the flow...pressure gra- dients of opposite sign exist on both sides of an airfoil . These gradients induce an inward lateral flow on the suc- tion side and an...And most recently, Cebeci et al. (1986) developed a viscous/inviscid interaction method to calculate the flow around airfoils , emphasizing the
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
NASA Technical Reports Server (NTRS)
Benson, J. L.
1974-01-01
Protons with energies ranging from about 500 eV to 3,500 eV were observed by the Suprathermal Ion Detector Experiment (SIDE) on both the dusk and dawn sides of the magnetosphere. On each lunation these particles appeared as a rather continuous phenomenon for 3 to 5 days after crossing from the dawn-side magnetosheath into the solar wind and for about 2 days prior to entering the dusk-side magnetosheath. Data from the SIDE and from the Explorer 35 lunar orbiting magnetometer were analyzed and these data indicated that the transverse ion flows observed by the SIDE in the pre and post bow shock crossing regions of the lunar orbit are due to these deviated solar wind particles. A computer model based on drift trajectories for particles leaving the shock was developed and synthetic particle data produced by this model are in good agreement with the observed data.
Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi
2010-06-01
Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.
Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction
1978-08-01
condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-11-07
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-01-01
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
NASA Astrophysics Data System (ADS)
Li, Y. H.; Wu, Z. H.; Xie, H. Q.; Xing, J. J.; Mao, J. H.; Wang, Y. Y.; Li, Z.
2018-01-01
Thermoelectric generation technology has attracted increasing attention because of its promising applications. In this work, the heat transfer characteristics and the performance of a thermoelectric generator (TEG) with different cold-side heat dissipation intensity has been studied. By fixing the hot-side temperature of TEG, the effects of various external conditions including the flow rate and the inlet temperature of the cooling water flowing through the cold-sided heat sink have been investigated detailedly. It was showed that the output power and the efficiency of TEG increased with temperature different enlarged, whereas the efficiency of TEG reduced with flow rate increased. It is proposed that more heat taken by the cooling water is attributed to the efficiency decrease when the flow rate of the cooling water is increased. This study would provide fundamental understanding for the design of more refined thermoelectric generation systems.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
NASA Technical Reports Server (NTRS)
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
NASA Astrophysics Data System (ADS)
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Kiyohito, E-mail: rad105@poh.osaka-med.ac.jp; Yamamoto, Kazuhiro, E-mail: rad043@poh.osaka-med.ac.jp; Nakai, Go, E-mail: rad091@poh.osaka-med.ac.jp
2016-06-15
PurposeApproximately 83 % of patients with bladder cancer have achieved a complete response after undergoing a novel bladder preservation therapy involving balloon-occluded intra-arterial infusion chemotherapy (BOAI) using a four-lumen double-balloon catheter, known as the Osaka Medical College regimen. This study aimed to show the quantitative difference in hemodynamics of the bladder arteries using syngo iFlow (Siemens Healthcare, Erlangen, Germany), which provides an automatic tool for quantitative blood flow analysis between double BOAI (D-BOAI) and conventional single BOAI (S-BOAI).Materials and MethodsFifty patients were included. The catheters were introduced into both posterior trunks of the internal iliac arteries via contralateral femoral artery access.more » A side hole between the distal and proximal balloons was placed at the origin of each bladder artery to allow clear visualization of angiographic flow of the injected agent into the urinary bladder. Digital subtraction angiography was used during analysis with the syngo iFlow to evaluate the hemodynamics of the contrast medium in the pelvic arteries during BOAI. The comparative change in the amount of contrast medium in the bladder arteries between D-BOAI and S-BOAI was assessed using syngo iFlow.ResultsOne-hundred pelvic sides were analyzed. The amount of contrast medium in the bladder arteries using D-BOAI was more than twice that using S-BOAI (right, 3.03-fold; left, 2.81-fold).ConclusionThe amount of contrast medium in the bladder arteries using D-BOAI was higher than that using conventional S-BOAI. This may increase the anticancer drug concentration in the affected bladder, leading to a good clinical response.« less
Deterministic blade row interactions in a centrifugal compressor stage
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.
1991-01-01
The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.
Effects of boundary-layer separation controllers on a desktop fume hood.
Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu
2016-10-02
A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).
Samson, M; Monnet, T; Bernard, A; Lacouture, P; David, L
2018-01-23
The propulsive forces generated by the hands and arms of swimmers have so far been determined essentially by quasi-steady approaches. This study aims to quantify the temporal dependence of the hydrodynamic forces for a simple translation movement: an impulsive start from rest. The study, carried out in unsteady numerical simulation, couples the calculation of the lift and the drag on an expert swimmer hand-forearm model with visualizations of the flow and flow vortex structure analysis. The results of these simulations show that the hand and forearm hydrodynamic forces should be studied from an unsteady approach because the quasi-steady model is inadequate. It also appears that the delayed stall effect generates higher circulatory forces during a short translation at high angle of attack than forces calculated under steady state conditions. During this phase the hand force coefficients are approximately twice as large as those of the forearm. The total force coefficients are highest for angles of attack between 40° and 60°. For the same angle of attack, the forces produced when the leading edge is the thumb side are slightly greater than those produced when the leading edge is the little finger side. Copyright © 2017 Elsevier Ltd. All rights reserved.
PIV Measurements on a Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.
2004-01-01
PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.
Method of controlling temperature of a thermoelectric generator in an exhaust system
Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D
2013-05-21
A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.
Flow Cytometry of Spinach Chloroplasts 1
Schröder, Wolfgang P.; Petit, Patrice X.
1992-01-01
Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes. Images Figure 1 Figure 1 Figure 1 PMID:16653090
Duct flow nonuniformities for Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
1988-01-01
Analytical capabilities for modeling hot gas flow on the fuel side of the Space Shuttle Main Engines are developed. Emphasis is placed on construction and documentation of a computational grid code for modeling an elliptical two-duct version of the fuel side hot gas manifold. Computational results for flow past a support strut in an annular channel are also presented.
Scaling Analysis of Alloy Solidification and Fluid Flow in a Rectangular Cavity
NASA Astrophysics Data System (ADS)
Plotkowski, A.; Fezi, K.; Krane, M. J. M.
A scaling analysis was performed to predict trends in alloy solidification in a side-cooled rectangular cavity. The governing equations for energy and momentum were scaled in order to determine the dependence of various aspects of solidification on the process parameters for a uniform initial temperature and an isothermal boundary condition. This work improved on previous analyses by adding considerations for the cooling bulk fluid flow. The analysis predicted the time required to extinguish the superheat, the maximum local solidification time, and the total solidification time. The results were compared to a numerical simulation for a Al-4.5 wt.% Cu alloy with various initial and boundary conditions. Good agreement was found between the simulation results and the trends predicted by the scaling analysis.
Adeeb A. Rahman; Thomas J. Urbanik; Mustafa Mahamid
2006-01-01
This paper presents a model using finite element method to study the response of a typical commercial corrugated fiberboard due to an induced moisture function at one side of the fiberboard. The model predicts how the moisture diffusion will permeate through the fiberboardâs layers(medium and liners) providing information on moisture content at any given point...
Structure of hydrogen-rich transverse jets in a vitiated turbulent flow
Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; ...
2014-11-24
Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less
NASA Technical Reports Server (NTRS)
Klunker, E. B.; South, J. C., Jr.; Davis, R. M.
1972-01-01
A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.
Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.
Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M
2017-01-01
Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.
Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.
2010-01-01
Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify potential seepage in that area. This report is primarily a summary of the field geophysical data acquisition, with some preliminary results and interpretation. Further work will involve a more rigorous analysis of the geophysical datasets and an examination of a large dataset of historical observations of water levels in a number of observation wells and piezometers compared with reservoir elevation. In addition, a partially saturated flow model will be developed to better understand seepage patterns given the available information about dam construction, geophysical results, and data from installed observation wells and piezometers.
Wavelet analysis of near-inertial currents at the East Flower Garden Bank
NASA Astrophysics Data System (ADS)
Teague, W. J.; Wijesekera, H. W.; Jarosz, E.; Lugo-Fernández, A.; Hallock, Z. R.
2014-10-01
Near-inertial currents (NICs) often dominate the mean circulation at the East Flower Garden Bank (EFGB), part of the Flower Garden Banks National Marine Sanctuary. The EFGB, one of several submerged coral reefs, is located in the northwestern Gulf of Mexico, about 190 km southeast of Galveston, Texas. The bank is about 6 km wide in the east-west direction and rises to within about 20 m from the surface. NICs near the EFGB are described using current data from 5 acoustic Doppler current profilers that were moored at the edges of the bank and on top of the bank for about a year. A wavelet analysis was used in order to better describe the nonstationarity of the NICs. NICs were strongest during spring and summer due to their near resonant response with sea breeze and the shallowness of the mixed layer, and exhibited a first-baroclinic-mode vertical structure. NICS were generally larger near the surface and extended to the bottom on the west side of the EFGB but only to within about 20 m of the bottom on the eastern side of the bank. NIC ellipses were nearly circular and rotated clockwise above the top of the EFGB but became flatter and aligned with the bathymetry with increasing depth; occasionally, on the eastern side of the bank, the NIC vectors rotated counterclockwise due to probable effects of lee vortices arising from the mean flow interacting with the bank. Most energy input by the wind at the surface was likely transferred downward through divergence of the meridional flow against the coastal boundary. The inertial currents were at times more energetic than the mean flow, and often accounted for more than 50% of the total current energy.
DISCHARGE VALVE FOR GRANULAR MATERIAL
Stoughton, L.D.; Robinson, S.T.
1962-05-15
A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)
Hypersonic Navier-Stokes Comparisons to Orbiter Flight Data
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Campbell, Charles H.
2010-01-01
During the STS-119 flight of Space Shuttle Discovery, two sets of surface temperature measurements were made. Under the HYTHIRM program3 quantitative thermal images of the windward side of the Orbiter with a were taken. In addition, the Boundary Layer Transition Flight Experiment 4 made thermocouple measurements at discrete locations on the Orbiter wind side. Most of these measurements were made downstream of a surface protuberance designed to trip the boundary layer to turbulent flow. In this paper, we use the US3D computational fluid dynamics code to simulate the Orbiter flow field at conditions corresponding to the STS-119 re-entry. We employ a standard two-temperature, five-species finite-rate model for high-temperature air, and the surface catalysis model of Stewart.1 This work is similar to the analysis of Wood et al . 2 except that we use a different approach for modeling turbulent flow. We use the one-equation Spalart-Allmaras turbulence model8 with compressibility corrections 9 and an approach for tripping the boundary layer at discrete locations. In general, the comparison between the simulations and flight data is remarkably good
NASA Astrophysics Data System (ADS)
Bílek, Petr; Hrůza, Jakub
2018-06-01
This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.
NASA Astrophysics Data System (ADS)
Naik, S. V.; Laurendeau, N. M.
2004-11-01
We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
Calculation of flow about posts and powerhead model
NASA Technical Reports Server (NTRS)
1988-01-01
A large number of computational fluid mechanics (CFD) problems were investigated. The primary studies include: the analysis of the turnaround duct/hot gas manifold/transfer tubes (fuel side) of the Space Shuttle Main Engine (SSME); the analysis of the LOX-T manifold (oxidizer side) of the SSME; the analysis of hydrogen accumulation in the Vandeburg flame trench; and modification of the Intel/VT241 systems to accommodate the EADS and PLOT 3D. Some of the analyses were exploratory in nature, using the CONTINUSYS code to provide preliminary information to enhance understanding of the problem, while in other the primary thrust was to acquire design information. In all cases the ability to predict information rapidly in these very complex analyses is seen to be an important demonstration of the power and utility of this mature predictive capability.
NASA Technical Reports Server (NTRS)
Lin, S. J.; Yang, R. J.; Chang, James L. C.; Kwak, D.
1987-01-01
The purpose of this study is to examine in detail incompressible laminar and turbulent flows inside the oxidizer side Hot Gas Manifold of the Space Shuttle Main Engine. To perform this study, an implicit finite difference code cast in general curvilinear coordinates is further developed. The code is based on the method of pseudo-compressibility and utilize ADI or implicit approximate factorization algorithm to achieve computational efficiency. A multiple-zone method is developed to overcome the complexity of the geometry. In the present study, the laminar and turbulent flows in the oxidizer side Hot Gas Manifold have been computed. The study reveals that: (1) there exists large recirculation zones inside the bowl if no vanes are present; (2) strong secondary flows are observed in the transfer tube; and (3) properly shaped and positioned guide vanes are effective in eliminating flow separation.
Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites
NASA Astrophysics Data System (ADS)
Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.
2014-01-01
In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.
NASA Astrophysics Data System (ADS)
Zhu, Chen-Xi; Wang, Chi-Chuan
2018-01-01
This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.
The impact of traffic-flow patterns on air quality in urban street canyons.
Thaker, Prashant; Gokhale, Sharad
2016-01-01
We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Finite Element Analysis of MEMS Devices
NASA Technical Reports Server (NTRS)
Corrigan, Jennifer
2004-01-01
A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the optimization of the coupled electrostatic and fluid flow parameters. It was found that Nickel is the best material to use for the diaphragm because it has a higher yield strength and allows for a larger stress, deflection and applied pressure. The parameters that were optimized were the wavelength and thickness of the diaphragm.
NASA Astrophysics Data System (ADS)
Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.
2016-08-01
The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.
NASA Astrophysics Data System (ADS)
Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G.
2018-03-01
We present here numerical modelling of granular flows with the μ (I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ (I) rheology through an asymptotic analysis; under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fernández-Nieto et al. (2016) [20]. In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well-balanced property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i.e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ (I) but not with a constant friction coefficient.
2015-01-01
Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Johansson, E.B.
1988-06-07
A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less
Benchmark of Client and Server-Side Catchment Delineation Approaches on Web-Based Systems
NASA Astrophysics Data System (ADS)
Demir, I.; Sermet, M. Y.; Sit, M. A.
2016-12-01
Recent advances in internet and cyberinfrastructure technologies have provided the capability to acquire large scale spatial data from various gauges and sensor networks. The collection of environmental data increased demand for applications which are capable of managing and processing large-scale and high-resolution data sets. With the amount and resolution of data sets provided, one of the challenging tasks for organizing and customizing hydrological data sets is delineation of watersheds on demand. Watershed delineation is a process for creating a boundary that represents the contributing area for a specific control point or water outlet, with intent of characterization and analysis of portions of a study area. Although many GIS tools and software for watershed analysis are available on desktop systems, there is a need for web-based and client-side techniques for creating a dynamic and interactive environment for exploring hydrological data. In this project, we demonstrated several watershed delineation techniques on the web with various techniques implemented on the client-side using JavaScript and WebGL, and on the server-side using Python and C++. We also developed a client-side GPGPU (General Purpose Graphical Processing Unit) algorithm to analyze high-resolution terrain data for watershed delineation which allows parallelization using GPU. The web-based real-time analysis of watershed segmentation can be helpful for decision-makers and interested stakeholders while eliminating the need of installing complex software packages and dealing with large-scale data sets. Utilization of the client-side hardware resources also eliminates the need of servers due its crowdsourcing nature. Our goal for future work is to improve other hydrologic analysis methods such as rain flow tracking by adapting presented approaches.
Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux
Gangavarapu, Kalyan J.; Huss, Wendy J.
2011-01-01
This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as “side population” cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686
NASA Astrophysics Data System (ADS)
Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun
2018-02-01
Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.
Warren, Jamie M; Pawliszyn, Janusz
2011-12-16
For air/headspace analysis, needle trap devices (NTDs) are applicable for sampling a wide range of volatiles such as benzene, alkanes, and semi-volatile particulate bound compounds such as pyrene. This paper describes a new NTD that is simpler to produce and improves performance relative to previous NTD designs. A NTD utilizing a side-hole needle used a modified tip, which removed the need to use epoxy glue to hold sorbent particles inside the NTD. This design also improved the seal between the NTD and narrow neck liner of the GC injector; therefore, improving the desorption efficiency. A new packing method has been developed and evaluated using solvent to pack the device, and is compared to NTDs prepared using the previous vacuum aspiration method. The slurry packing method reduced preparation time and improved reproducibility between NTDs. To evaluate the NTDs, automated headspace extraction was completed using benzene, toluene, ethylbenzene, p-xylene (BTEX), anthracene, and pyrene (PAH). NTD geometries evaluated include: blunt tip with side-hole needle, tapered tip with side-hole needle, slider tip with side-hole, dome tapered tip with side-hole and blunt with no side-hole needle (expanded desorptive flow). Results demonstrate that the tapered and slider tip NTDs performed with improved desorption efficiency. Copyright © 2011 Elsevier B.V. All rights reserved.
Methanol sensor operated in a passive mode
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.
Boesen, Morten Ilum; Boesen, Anders; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren
2006-12-01
The most frequent injuries in badminton players are in the lower extremities, especially in the Achilles tendon. The game of badminton may be related to abnormal intratendinous flow in the Achilles tendon as detected by color Doppler ultrasound. To a certain extent, this blood flow might be physiological, especially when examined after match. Cohort study (prevalence); Level of evidence, 3. Seventy-two elite badminton players were interviewed regarding Achilles tendon pain (achillodynia) in the preceding 3 years. Color Doppler was used to examine the tendons of 64 players before their matches and 46 players after their matches. Intratendinous color Doppler flow was graded from 0 to 4. The Achilles tendon was divided into dominant (eg, right side for right-handed players and vice versa) and nondominant side and classified as midtendon, preinsertional, and calcaneal areas. Of 72 players, 26 had experienced achillodynia in 34 tendons, 18 on the dominant side and 16 on the nondominant side. In 62% of the players with achillodynia, the problems had begun slowly, and the median duration of symptoms was 4 months (range, 0-36 months). Thirty-five percent had ongoing pain in their tendons for a median duration of 12 months (range, 0-12 months). Achillodynia was not associated with the self-reported training load or with sex, age, weight, singles or doubles players, or racket side. Forty-six players were scanned before and after match. At baseline, color Doppler flow was present in the majority of players, and only 7 (16%) players had no color Doppler flow in either tendon. After match, all players had some color Doppler flow in 1 or both tendons. Achillodynia and color Doppler flow were related in the nondominant Achilles tendon (chi-square, P = .008). The grades of Doppler flow also increased significantly after match in the preinsertional area in both the nondominant (P = .0002) and dominant (P = .005) side tendons. A large proportion of the players had experienced achillodynia and habitually played with a degree of pain that demanded medication. The self-reported pain was associated with increased intratendinous color Doppler flow in the nondominant Achilles tendon. Doppler flow was found in most players before and in all players after the match and therefore may in part be a physiological response to activity.
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.
2015-08-21
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less
Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A
2013-01-01
The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration changemore » on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.« less
NASA Astrophysics Data System (ADS)
Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo
2018-03-01
Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.
Local time asymmetry of Saturn's magnetosheath flows
NASA Astrophysics Data System (ADS)
Burkholder, B.; Delamere, P. A.; Ma, X.; Thomsen, M. F.; Wilson, R. J.; Bagenal, F.
2017-06-01
Using gross averages of the azimuthal component of flow in Saturn's magnetosheath, we find that flows in the prenoon sector reach a maximum value of roughly half that of the postnoon side. Corotational magnetodisc plasma creates a much larger flow shear with solar wind plasma prenoon than postnoon. Maxwell stress tensor analysis shows that momentum can be transferred out of the magnetosphere along tangential field lines if a normal component to the boundary is present, i.e., field lines which pierce the magnetopause. A Kelvin-Helmholtz unstable flow gives rise to precisely this situation, as intermittent reconnection allows the magnetic field to thread the boundary. We interpret the Kelvin-Helmholtz instability acting along the magnetopause as a tangetial drag, facilitating two-way transport of momentum through the boundary. We use reduced magnetosheath flows in the dawn sector as evidence of the importance of this interaction in Saturn's magnetosphere.
Can Ureteral Jet Flow Measurement Predict Spontaneous Passage of Distal Ureteral Stones?
Ongun, Sakir; Teken, Abdurrazak; Yılmaz, Orkun; Süleyman, Sakir
2018-06-27
The study aimed to investigate the relationship between the spontaneous passage of distal ureteral stones and ureteral jet flow measurement. The study included 74 patients with acute renal colic between June 2015 and June 2016, and distal ureteral stones of 10 mm or less in a non-contrast CT were comprised in a prospective study. The ureteral jet was measured by Doppler ultrasonography. At the fourth week follow-up, kidney-ureter-bladder radiography was taken and the patients who no longer had a stone were considered to have spontaneously passed it. The average stone size of the patients was 5.6 ± 2.0 mm. After 4 weeks of follow-up, 55 patients (74.3%) had passed the stone spontaneously whereas 19 (25.6%) had not. The patients in the former group were found to have a higher peak flow velocity of ureteral jet on the stone side than those in the latter group. In regression analysis ureteral jet on the stone side was independently associated with spontaneous passage (p = 0.027). For the spontaneous passage, a ureteral jet flow peak velocity above 15.25 cm/s had an 85.4% sensitivity and 63.1% specificity. Measurement of the ureteral jet flow peak velocity can be beneficial in predicting the potential spontaneous passage of distal ureteral stones. © 2018 S. Karger AG, Basel.
Calculating terrain indices along streams: A new method for separating stream sides
T. J. Grabs; K. G. Jencso; B. L. McGlynn; J. Seibert
2010-01-01
There is increasing interest in assessing riparian zones and their hydrological and biogeochemical buffering capacity with indices derived from hydrologic landscape analysis of digital elevation data. Upslope contributing area is a common surrogate for lateral water flows and can be used to assess the variability of local water inflows to riparian zones and streams....
Experimental investigation of high-incidence delta-wing flow control
NASA Astrophysics Data System (ADS)
Buzica, Andrei; Bartasevicius, Julius; Breitsamter, Christian
2017-09-01
The possibility of extending the flight envelope for configurations with slender delta-shaped wings is investigated in this study by means of active flow control through pulsating jets from slot pairs distributed along the leading edge. The experiments comprise stereoscopic particle image velocimetry as well as force and moment measurements on a half-delta wing model. The analysis focuses on three high-incidence regimes: pre-stall, stall, and post-stall. This study also compares different perturbation methods: blowing with spatially constant and variable parameters, frequency and phase. At an incidence of 45°, the unison pulsed blowing facilitates the most significant flow transformation. Here, the separated shear layer reattaches on the wing's suction side, thus increasing the lift. Phase-averaged flow field measurements describe, in this particular case, the underlying physics of the flow-disturbance interaction.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
Separation system with a sheath-flow supported electrochemical detector
Mathies, Richard A [Moraga, CA; Emrich, Charles A [Berkeley, CA; Singhal, Pankaj [Pasadena, CA; Ertl, Peter [Styria, AT
2008-10-21
An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.
Berg, Philipp; Iosif, Christina; Ponsonnard, Sebastien; Yardin, Catherine; Janiga, Gábor; Mounayer, Charbel
2016-01-04
Although flow-diverting devices are promising treatment options for intracranial aneurysms, jailed side branches might occlude leading to insufficient blood supply. Especially differences in the local stent strut compression may have a drastic influence on subsequent endothelialization. To investigate the outcome of different treatment scenarios, over- and undersized stent deployments were realized experimentally and computationally. Two Pipeline Embolization Devices were placed in the right common carotid artery of large white swine, crossing the right ascending pharyngeal artery. DSA and PC-MRI measurements were acquired pre- and post-stenting and after three months. To evaluate the stent strut endothelialization and the corresponding ostium patency, the swine were sacrificed and scanning electron microscopy measurements were carried out. A more detailed analysis of the near-stent hemodynamics was enabled by a realistic virtual stenting in combination with highly resolved Computational Fluid Dynamics simulations using case-specific boundary conditions. The oversizing resulted in an elongated stent deployment with more open stent pores, while for the undersized case a shorter deployment with more condensed pores was present. In consequence, the side branch of the first case remained patent after three months and the latter almost fully occluded. The virtual investigation confirmed the experimental findings by identifying differences between the individual velocities as well as stent shear stresses at the distal part of the ostia. The choice of flow-diverting device and the subsequent deployment strategy strongly influences the patency of jailed side branches. Therefore, careful treatment planning is required, to guarantee sufficient blood supply in the brain territories supplied those branches. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Turknett, Jerry C.
1989-01-01
The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.
Convection flow structure in the central polar cap
NASA Astrophysics Data System (ADS)
Bristow, W. A.
2017-12-01
A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.
On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics
NASA Technical Reports Server (NTRS)
Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.
2015-01-01
The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O.
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
NASA Astrophysics Data System (ADS)
Xie, Chengyu; Jia, Nan; Shi, Dongping; Lu, Hao
2017-10-01
In order to study the slurry diffusion law during grouting, Richards unsaturated-saturated model was introduced, the definition of the grouting model is clear, the Richards model control equation was established, And the BP neural network was introduced, the improved fluid-solid coupling model was constructed, Through the use of saturated - unsaturated seepage flow model, As well as the overflow boundary iterative solution of the mixed boundary conditions, the free surface is calculated. Engineering practice for an example, with the aid of multi - field coupling analysis software, the diffusion law of slurry was simulated numerically. The results show that the slurry diffusion rule is affected by grouting material, initial pressure and other factors. When the slurry starts, it flows in the cracks along the upper side of the grouting hole, when the pressure gradient is reduced to the critical pressure, that is, to the lower side of the flow, when the slurry diffusion stability, and ultimately its shape like an 8. The slurry is spread evenly from the overall point of view, from the grouting mouth toward the surrounding evenly spread, it gradually reaches saturation by non-saturation, and it is not a purely saturated flow, when the slurry spread and reach a saturated state, the diffusion time is the engineering grouting time.
Prediction of aerodynamic noise in a ring fan based on wake characteristics
NASA Astrophysics Data System (ADS)
Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro
2011-06-01
A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
NASA Astrophysics Data System (ADS)
Lin, Yinwei
2018-06-01
A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.
Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile
NASA Astrophysics Data System (ADS)
Piotrowicz, M.; Flaszyński, P.
2016-10-01
The investigation of shockwave boundary layer interaction on suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on suction side of a profile, a design of generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results of flow structure on a suction side of the compressor profile investigations are presented. The numerical simulations are carried out for EARSM (Explicit Algebraic Reynolds Stress Model) turbulence model with transition model. The result are compared with oil flow visualisation, schlieren pictures, Pressure Sensitive Paint (PSP) and static pressure.
Bandwidth and Detection of Packet Length Covert Channels
2011-03-01
Shared Resource Matrix ( SRM ): Develop a matrix of all resources on one side and on the other all the processes. Then, determine which process uses which...system calls. This method is similar to that of the SRM . Covert channels have also been created by modulating packet timing, data and headers of net- work...analysis, noninterference analysis, SRM method, and the covert flow tree method [4]. These methods can be used during the design phase of a system. Less
Method for pressure modulation of turbine sidewall cavities
Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.
2002-01-01
A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.
System for pressure modulation of turbine sidewall cavities
Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.
2002-01-01
A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.
Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter
2007-01-01
The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.
Hydrological control over stream nitrate loss in an aggrading New Hampshire forest
NASA Astrophysics Data System (ADS)
Daley, R.; Goodale, C. L.; Buso, D.; Driscoll, C. T.; Fuss, C.; Likens, G. E.
2008-12-01
Stream chemistry of a small watershed in the Hubbard Brook Experimental Forest (Watershed 4) displays higher nitrate export than expected for an early successional forest in this region. Within Watershed 4, a small tributary (300 m in length) has a chemical signature far different from the main channel (1000 m in length). Previous monitoring has shown that the pH of the side tributary was significantly higher than that of the main channel and contains detectable levels of nitrate whereas the main channel had no detectable nitrate, and it is suspected that this side tributary significantly contributes to watershed export under base flow conditions. We expected that watershed's dominant water and chemical sources would vary with flow conditions, especially during summer thunderstorms. We hypothesized that the side tributary is the dominant source area under the normal base flow conditions of the summer (usually under 1 L/s) and that the main stem exerts dominance under the high flow conditions brought on by events. Daily water samples were taken throughout summer 2008 with three ISCO automated samplers: One ISCO was placed at the main stem of the stream, a second at the small internal tributary, and a third was placed at the weir. The samples were analyzed for pH, specific conductivity, and ANC, DOC, DON, and major anions and cations. The chemical data was compared to precipitation and rate of watershed flow calculated at each sampling hour to detect associations between chemical dominance and hydrological conditions. Under the base flow conditions of the summer, the chemistry of watershed outflow was dominated by that of the short side tributary, with lower acidity and higher nitrate levels than the longer main channel, but with notable contributions from the main channel. During each of the three high flow events that occurred over the summer, flow in the main channel increased dramatically and flow at the weir corresponded to temporarily increased acidity and decreased ANC. Preliminary nitrate data shows that a dilution response was associated with these events since there were significant declines in the nitrate levels of both the side tributary and watershed export during high flow conditions.
NASA Astrophysics Data System (ADS)
Cheng, Wai Chi; Liu, Chun-Ho
2010-05-01
To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant
Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding
NASA Technical Reports Server (NTRS)
Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.
1995-01-01
Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.
This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...
NASA Technical Reports Server (NTRS)
Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.
1988-01-01
A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.
Equivalent model and power flow model for electric railway traction network
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-05-01
An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.
NASA Astrophysics Data System (ADS)
Bellot Rubio, L. R.; Schlichenmaier, R.; Tritschler, A.
2006-07-01
We investigate the thermal and kinematic configuration of a sunspot penumbra using high spectral and spatial resolution intensity profiles of the non-magnetic Fe I 557.6 nm line. The data set was acquired with the 2D solar spectrometer TESOS. The profiles are inverted using a one-component model atmosphere with gradients of the physical quantities. From this inversion we obtain the stratification with depth of temperature, line-of-sight velocity, and microturbulence across the penumbra. Our results suggest that the physical mechanism(s) responsible for the penumbral filaments operate preferentially in the lower photosphere. The spot, located at an heliocentric angle of 23°, exhibits larger continuum intensities in the center-side penumbra as compared with the limb side, which translates into an average temperature difference of 100-150 K at log τ500 = 0. We investigate the nature of the bright ring that appears in the inner penumbra when sunspots are observed in the wing of spectral lines. It is suggested that the bright ring does not reflect a temperature enhancement in the mid photospheric layers. The line-of-sight velocities retrieved from the inversion are used to determine the flow geometry at different heights in the photosphere. Both the flow speed and flow angle increase with optical depth and radial distance. Downflows are detected in the mid and outer penumbra, but only in deep layers (log τ500 ≥ -1.4). We demonstrate that the velocity stratifications retrieved from the inversion are consistent with the idea of penumbral flux tubes channeling the Evershed flow. Finally, we show that larger Evershed flows are associated with brighter continuum intensities in the inner center-side penumbra. Dark structures, however, are also associated with significant Evershed flows. This leads us to suggest that the bright and dark filaments seen at 0.5 arcsec resolution are not individual flow channels, but a collection of them. Our analysis highlights the importance of very high spatial resolution spectroscopic and spectropolarimetric measurements for a better understanding of sunspot penumbrae.
Computational Study of Porous Treatment for Altering Flap Side-Edge Flowfield
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Khorrami, Mehdi R.
2003-01-01
Reynolds-averaged Navier-Stokes calculations are used to investigate porous side-edge treatment as a passive means for flap noise reduction. Steady-state simulations are used to infer effects of the treatment on acoustically relevant features of the mean flow near the flap side edge. Application of the porous treatment over a miniscule fraction of the wetted flap area (scaling with the flap thickness) results in significantly weaker side-edge vortex structures via modification of the vortex initiation and roll-up processes. At high flap deflections, the region of axial flow reversal associated with the breakdown of the side-edge vortex is also eliminated, indicating an absence of vortex bursting in the presence of the treatment. Potential ramifications of the mean-flow modifications for flap-noise reduction are examined in the light of lessons learned from recent studies on flap noise. Computations confirm that any noise reduction benefit via the porous treatment would be achieved without compromising the aerodynamic effectiveness of the flap. Results of the parameter study contribute additional insight into the measured data from the 7x10 wind tunnel at NASA Ames and provide preliminary guidance for specifying optimal treatment characteristics in terms of treatment location, spatial extent, and flow resistance of the porous skin.
Computational Fluid Dynamics Analysis for the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.
2005-01-01
In phase II, additional inducer rotations are simulated in order to understand the root cause of the flowliner crack problem. CFD results confirmed that there is a strong unsteady interaction between the backflow regions caused by the LPFTP inducer and secondary flow regions in the bellows cavity through the flowliner slots. It is observed that the swirl on the duct side of the downstream flowliner is stronger than on the duct side of the upstream flowliner. Due to this swirl, there are more significant unsteady flow interactions through the downstream slots than those observed in the upstream slots. Averaged values of the local velocity at the slots were provided to the NESC-ITA flow physics acoustics team to guide them in designing the acoustics experiment. A parametric study was performed to compare the flow field in the flowliner area when one upstream slot and one corresponding downstream slot were enlarged. No significant differences were observed between the flow field obtained from the enlarged slot configuration when compared with the original configuration. More cases must be analyzed with various enlarged slot configurations to generalize this observation. The flow through the A1 test stand and the flow through the orbiter fuel feedline manifold were simulated without the LPFTP. It was observed that incoming flow to the flowliner and inducer was more uniform in the A1 test stand then in the orbiter manifold. Additionally, each engine LPFTP in the orbiter receives significantly different velocity distributions. Because of the differences observed in the computed results, it is not possible for the A1 test stand to represent the three different engine feedlines simultaneously.
Ding, Z; Wang, K; Li, J; Cong, X
2001-12-01
The oscillatory shear index (OSI) was developed based on the hypothesis that intimal hyperplasia was correlated with oscillatory shear stresses. However, the validity of the OSI was in question since the correlation between intimal thickness and the OSI at the side walls of the sinus in the Y-shaped model of the average human carotid bifurcation (Y-AHCB) was weak. The objectives of this paper are to examine whether the reason for the weak correlation lies in the deviation in geometry of Y-AHCB from real human carotid bifurcation, and whether this correlation is clearly improved in the tuning-fork-shaped model of the average human carotid bifurcation (TF-AHCB). The geometry of the TF-AHCB model was based on observation and statistical analysis of specimens from 74 cadavers. The flow fields in both models were studied and compared by using flow visualization methods under steady flow conditions and by using laser Doppler anemometer (LDA) under pulsatile flow conditions. The TF-shaped geometry leads to a more complex flow field than the Y-shaped geometry. This added complexity includes strengthened helical movements in the sinus, new flow separation zone, and directional changes in the secondary flow patterns. The results show that the OSI-values at the side walls of the sinus in the TF-shaped model were more than two times as large as those in the Y-shaped model. This study confirmed the stronger correlation between the OSI and intimal thickness in the tuning-fork geometry of human carotid bifurcation, and the TF-AHCB model is a significant improvement over the traditional Y-shaped model.
Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing
Chiu, Yun-Yen; Huang, Chen-Kang
2016-01-01
A microfluidic chip is proposed to separate microparticles using cross-flow filtration enhanced with hydrodynamic focusing. By exploiting a buffer flow from the side, the microparticles in the sample flow are pushed on one side of the microchannels, lining up to pass through the filters. Meanwhile a larger pressure gradient in the filters is obtained to enhance separation efficiency. Compared with the traditional cross-flow filtration, our proposed mechanism has the buffer flow to create a moving virtual boundary for the sample flow to actively push all the particles to reach the filters for separation. It further allows higher flow rates. The device only requires soft lithograph fabrication to create microchannels and a novel pressurized bonding technique to make high-aspect-ratio filtration structures. A mixture of polystyrene microparticles with 2.7 μm and 10.6 μm diameters are successfully separated. 96.2 ± 2.8% of the large particle are recovered with a purity of 97.9 ± 0.5%, while 97.5 ± 0.4% of the small particle are depleted with a purity of 99.2 ± 0.4% at a sample throughput of 10 μl/min. The experiment is also conducted to show the feasibility of this mechanism to separate biological cells with the sample solutions of spiked PC3 cells in whole blood. By virtue of its high separation efficiency, our device offers a label-free separation technique and potential integration with other components, thereby serving as a promising tool for continuous cell filtration and analysis applications. PMID:26858812
NASA Astrophysics Data System (ADS)
Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng
2016-06-01
The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.
NASA Astrophysics Data System (ADS)
Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi
2018-04-01
Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.
Non-uniform overland flow-infiltration model for roadside swales
NASA Astrophysics Data System (ADS)
García-Serrana, María; Gulliver, John S.; Nieber, John L.
2017-09-01
There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.
The treatment of pseudoaneurysms with flow diverters after malignant otitis externa.
Németh, Tamás; Szakács, László; Bella, Zsolt; Majoros, Valéria; Barzó, Pál; Vörös, Erika
2017-12-01
Background We report a case of bilateral malignant otitis externa complicated with bilateral petrous internal carotid artery pseudoaneurysms and their successful treatment with a flow diverter. Case report A 68-year-old woman with serious complications of type II diabetes mellitus had malignant otitis externa on the right side. She was treated with combined antibiotic therapy and underwent mastoidectomy for mastoiditis. She presented at our hospital with acute hemorrhage from the right external auditory canal. The emergency computed tomography (CT) angiography revealed a multiobulated pseudoaneurysm at the petrous segment of the right internal carotid artery. The pseudoaneurysm was treated with a 5 × 40-mm Surpass flow diverter. Three months later, she developed a malignant external otitis on the left side. As the infection progressed, a left-sided mastoiditis, a brain abscess, and a pseudoaneurysm at the petrous segment of the left internal carotid artery developed. The pseudoaneurysm caused bleeding from the left ear, and was treated with a 5 × 50-mm Surpass flow diverter. No recurrent bleeding was observed. Four months later, a follow-up angiography showed complete occlusion of the pseudoaneurysm on the left side, but a residual aneurysm could be detected on the right side. One year after the first intervention, the follow-up CT and magnetic resonance angiography revealed the complete occlusion of the aneurysms bilaterally. Conclusion The use of a flow diverter appears to be an efficient and safe method to occlude carotid pseudoaneurysms even in an inflammatory milieu.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Investigation of Flow in a Centrifugal Pump
NASA Technical Reports Server (NTRS)
Fischer, Karl
1946-01-01
The investigation of the flow in a centrifugal pump indicated that the flow patterns in frictional fluid are fundamentally different from those in frictionless fluid. In particular, the dead air space adhering to the section side undoubtedly causes a reduction of the theoretically possible delivery head. The velocity distribution over a parallel circle is also subjected to a noticeable change as a result of the incomplete filling of the passages. The relative velocity on the pressure side of the vane, which for passages completely filled with active flow would differ little from zero even at comparatively lower than normal delivery volume, is increased, so that no rapid reverse flow occurs on the pressure side of the vane even for smaller delivery volume. It was established, further, that the flow ceases to be stationary for very small quantities of water. The inflow to the impeller can be regarded as radial for the operating range an question. The velocity triangles at the exit are subjected to a significant alteration in shape ae a result of the increased peripheral velocity, which may be of particular importance in the determination of the guide vane entrance angle.
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Luckring, J. M.
1978-01-01
A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.
Water resources of southeastern Oahu, Hawaii
Takasaki, K.J.; Mink, John F.
1982-01-01
Southeastern Oahu comprises the eastern end of the Koolau Range and is divided into two roughly equal parts by the crest of the range. The northside of the crest is commonly called the windward side and the southside, the leeward. Precipitous cliffs aproned by a gently sloping landscape are the main topographic features on the windward side. The leeward side is a gentle lava-flow slope incised by steep narrow valleys. The main Koolau fissure zone, including the caldera, lies on the windward side. The leeward side includes minor rift zones that are perpendicular to and intersect the main fissure zone. Dikes in the main fissure zone strike from nearly east-west in the eastern end to about N. 55? W. in the western part. Dikes in the minor rift zones strike from north-south to slightly northeasterly. Water use is about 18 Mgal/d (million gallons per day) of which only 4 Mgal/d is obtained locally from ground-water sources. About a third of the 14 Mgal/d deficit is imported from sources northwest of the study area on the windward side and the remainder from sources in the Honolulu and Pearl Harbor areas on the leeward side. The 4 Mgal/d being developed represents only about 3 percent of the area's rainfall compared to a development-rainfall ratio of 20 percent for the rest of the island. Streams are short and flashy. Perennial streamflow to the sea occurs only in Maunawili Valley and in the Waimanalo area. Mean annual discharge is estimated at 20 Mgal/d in the windward side and at 15 Mgal/d on the leeward side. Low flow, expressed as the flow that is equaled or exceeded 90 percent of the time, is 5 Mgal/d windward of the crest and zero leeward of it. Most fresh ground water occurs in lava flows of the Koolau Volcanics. It is impounded by dikes in the rift zones and floats on saline ground water as lenses outside the rift zones. Small but important bodies of freshwater are perched in volcanic rocks of the Honolulu Group in Maunawili Valley. Fresh ground water occurs in near-shore calcareous sands that overlie a clay horizon in the Waimanalo area. Deeply buried talus and alluvium also carry fresh ground water in the Waimanalo area. Wells tapping saline ground water in fresh lava flows of the Honolulu Group provide water for a sea-life park in the Makapuu area. The same aquifer is tapped by wells for disposal of the saline waste water. The current development scheme in the windward side that utilizes only the free-flow equilibrium discharge of dike-impounded water is inefficient and does not cope with the annual weather cycle. The flow available for development under this scheme is greatest in the rainy winter months when demand is the lowest and least in the summer months when demand is the highest. A more optimal scheme would be to change this natural flow pattern by depleting storage by pumping to increase flow in the high-demand summer months and allowing the depleted storage to recover naturally in the low-demand winter months. Depleting storage would lower water levels which would provide more room for infiltration and provide less opportunity for evapotranspiration. The basal-water reservoir in the leeward side is isolated hydrologically from abutting reservoirs outside the area and can and should be fully exploited. The existing development of the basal-water reservoir is small compared to the natural ground-water flow and that part not being developed is wasting to the sea. Because the area is hydrologically isolated, development will not be detrimental to or reduce the ground-water supply outside the area.
NASA Astrophysics Data System (ADS)
Kuo, Tang-Wei; Chang, Shengming
Results of three-dimensional steady flow calculations are compared with existing pressure and velocity measurements of two manifold-type junctions. The junctions consist of a main duct and a side branch, both with the same rectangular cross section, with the side branch joining the main duct at an angle of either 90 or 45 degrees. Both combining and dividing flow configurations are considered for different total mass flow rates and different side-branch-to-main-duct mass flow ratios. One objective of this investigation was to assess the effects of numerical differencing scheme and mesh refinement on solution accuracy, and both parameters showed strong influences on the computed results. It is shown that calculations should be made with the highest possible level of numerical accuracy and grid resolution in regions of flow recirculation. Comparisons of computed and measured velocities, static pressures, and flow loss coefficients are presented in this paper. For most cases considered, the model predictions are in good agreement with the measurements. Results can be used as input loss coefficients to an engine-simulation code, in addition to being used to evaluate a specific junction design.
Lee-side flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Miller, D. S.; Wood, R. M.
1985-01-01
An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.
Separated Flow over Wind Turbines
NASA Astrophysics Data System (ADS)
Brown, David; Lewalle, Jacques
2015-11-01
The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.
Research on unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Revell, J. D.
1973-01-01
A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.
Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W
2018-04-24
Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.
Three-phase flow? Consider helical-coil heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1995-07-01
In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less
Pleated metal bipolar assembly
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.
Apparatus and method for continuous production of materials
Chang, Chih-hung; Jin, Hyungdae
2014-08-12
Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.
Observation of Noise Correlated by the Hawking Effect in a Water Tank.
Euvé, L-P; Michel, F; Parentani, R; Philbin, T G; Rousseaux, G
2016-09-16
We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number F_{max}≈0.85 reached above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.
A test of a vortex method for the computation of flap side edge noise
NASA Technical Reports Server (NTRS)
Martin, James E.
1995-01-01
Upon approach to landing, a major source location of airframe noise occurs at the side edges of the part span, trailing edge flaps. In the vicinity of these flaps, a complex arrangement of spanwise flow with primary and secondary tip vortices may form. Each of these vortices is observed to become fully three-dimensional. In the present study, a numerical model is developed to investigate the noise radiated from the side edge of a flap. The inherent three-dimensionality of this flow forces us to carefully consider a numerical scheme which will be both accurate in its prediction of the flow acoustics and also computationally efficient. Vortex methods have offered a fast and efficient means of simulating many two and three-dimensional, vortex dominated flows. In vortex methods, the time development of the flow is tracked by following exclusively the vorticity containing regions. Through the Biot-Savart law, knowledge of the vorticity field enables one to obtain flow quantities at any desired location during the flow evolution. In the present study, a numerical procedure has been developed which incorporates the Lagrangian approach of vortex methods into a calculation for the noise radiated by a flow-surface interaction. In particular, the noise generated by a vortex in the presence of a flat half plane is considered. This problem serves as a basic model of flap edge flow. It also permits the direct comparison between our computed results and previous acoustic analyses performed for this problem. In our numerical simulations, the mean flow is represented by the complex potential W(z) = Aiz(exp l/2), which is obtained through conformal mapping techniques. The magnitude of the mean flow is controlled by the parameter A. This mean flow has been used in the acoustic analysis by Hardin and is considered a reasonable model of the flow field in the vicinity of the edge and away from the leading and trailing edges of the flap. To represent the primary vortex which occurs near the flap, a point vortex is introduced just below the flat half plane. Using a technique from panel methods, boundary conditions on the flap surface are satisfied by the introduction of a row of stationary point vortices along the extent of the flap. At each time step in the calculation, the strength of these vortices is chosen to eliminate the normal velocity at intermediary collocation points. The time development of the overall flow field is then tracked using standard techniques from vortex methods. Vortex trajectories obtained through this computation are in good agreement with those predicted by the analytical solution given by Hardin, thus verifying the viability of this procedure for more complex flow arrangements. For the flow acoustics, the Ffowcs Williams-Hawkings equation is numerically integrated. This equation supplies the far field acoustic pressure based upon pressures occurring along the flap surface. With our vortex method solution, surface pressures may be obtained with exceptional resolution. The Ffowcs Williams-Hawkings equation is integrated using a spatially fourth order accurate Simpson's rule. Rational function interpolation is used to obtain the surface pressures at the appropriate retarded times. Comparisons between our numerical results for the acoustic pressure and those predicted by the Hardin analysis have been made. Preliminary results indicate the need for an improved integration technique. In the future, the numerical procedure developed in this study will be applied to the case of a rectangular flap of finite thickness and ultimately modified for application to the fully three-dimensional problem.
NASA Astrophysics Data System (ADS)
Zordan, M. D.; Leary, James F.
2011-02-01
The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.
Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment
Burdgick, Steven Sebastian
2002-01-01
A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.
Subsurface Zonal and Meridional Flows from SDO/HMI
NASA Astrophysics Data System (ADS)
Komm, Rudolf; Howe, Rachel; Hill, Frank
2016-10-01
We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.
NASA Astrophysics Data System (ADS)
Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.
2017-10-01
This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.
Experimental clean combustor program; noise measurement addendum, Phase 2
NASA Technical Reports Server (NTRS)
Emmerling, J. J.; Bekofske, K. L.
1976-01-01
Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.
Drummond, Peter D
2012-08-16
To investigate parasympathetic influences on the forehead microvasculature, blood flow was monitored bilaterally in seven participants with a unilateral facial nerve lesion during conjunctival irritation with Schirmer's strips and while breathing at 0.15 Hz. Blood flow and slow-wave frequency increased on the intact side of the forehead during Schirmer's test but did not change on the denervated side. However, a 0.15 Hz vascular wave strengthened during paced breathing, particularly on the denervated side. These findings indicate that parasympathetic activity in the facial nerve increases forehead blood flow during minor conjunctival irritation, but may interfere with the 0.15 Hz vascular wave. Copyright © 2012 Elsevier B.V. All rights reserved.
Numerical Investigations of Active Flow Control for Low-Pressure Turbine Blades
2008-03-01
points were clustered near the wall, in the separated flow region on the suction side of the 7 blade , and in the wake . Table 1 summarizes the block...Perspective view of blade (computational domain was repeated once in spanwise direction), side view of wake , and top down view of wake . Distributions...to the wake region. A second observation is that the wake turbulence appears to be concentrated in "lumps". In analogy to other wake flows, the blade
Flow-synchronous field motion refrigeration
Hassen, Charles N.
2017-08-22
An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.
Fluidic Oscillator Array for Synchronized Oscillating Jet Generation
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2017-01-01
A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.
Fluidic Oscillator Array for Synchronized Oscillating Jet Generation
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2016-01-01
A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.
NASA Astrophysics Data System (ADS)
Sam, Ashish Alex; Ghosh, Parthasarathi
2017-03-01
Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used in helium refrigeration and liquefaction cycles.
Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2014-01-01
A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.
Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.
1985-01-01
The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations.
On the Numerical Study of Heavy Rainfall in Taiwan
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)
2001-01-01
Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Analysis of Motorcycle Weave Mode by using Energy Flow Method
NASA Astrophysics Data System (ADS)
Marumo, Yoshitaka; Katayama, Tsuyoshi
The activation mechanism of motorcycle weave mode is clarified within the framework of the energy flow method, which calculates energy flow of mechanical forces in each motion. It is demonstrated that only a few mechanical forces affect the stability of the weave mode from among a total of about 40 mechanical forces. The activation of the lateral, yawing and rolling motions destabilize the weave mode, while activation of the steering motion stabilizes the weave mode. A detailed investigation of the energy flow of the steering motion reveals that the steering motion plays an important role in clarifying the characteristics of the weave mode. As activation of the steering motion progresses the phase of the front tire side force, and the weave mode is consequently stabilized. This paper provides a design guide for stabilizing the weave mode and the wobble mode compatibility.
Development of a spinning wave heat engine
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Powell, E. A.; Hubbartt, J. E.
1982-01-01
A theoretical analysis and an experimental investigation were conducted to assess the feasibility of developing a spinning wave heat engine. Such as engine would utilize a large amplitude traveling acoustic wave rotating around a cylindrica chamber, and it should not suffer from the inefficiency, noise, and intermittent thrust which characterizes pulse jet engines. The objective of this investigation was to determine whether an artificially driven large amplitude spinning transverse wave could induce a steady flow of air through the combustion chamber under cold flow conditions. In the theoretical analysis the Maslen and Moore perturbation technique was extended to study flat cylinders (pancake geometry) with completely open side walls and a central opening. In the parallel experimental study, a test moel was used to determine resonant frequencies and radial pressure distributions, as well as oscillatory and steady flow velocities at the inner and outer peripheries. The experimental frequency was nearly the same as the theoretical acoustic value for a model of the same outer diameter but without a central hole. Although the theoretical analysis did not predict a steady velocity component, simulaneous measurements of hotwire and microphone responses have shown that the spinning wave pumps a mean flow radially outward through the cavity.
Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder
NASA Astrophysics Data System (ADS)
Subbotin, Stanislav; Dyakova, Veronika
2018-05-01
The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.
Effective prevention of sorafenib-induced hand-foot syndrome by dried-bonito broth.
Kamimura, Kenya; Shinagawa-Kobayashi, Yoko; Goto, Ryo; Ogawa, Kohei; Yokoo, Takeshi; Sakamaki, Akira; Abe, Satoshi; Kamimura, Hiroteru; Suda, Takeshi; Baba, Hiroshi; Tanaka, Takayuki; Nozawa, Yoshizu; Koyama, Naoto; Takamura, Masaaki; Kawai, Hirokazu; Yamagiwa, Satoshi; Aoyagi, Yutaka; Terai, Shuji
2018-01-01
Sorafenib (SOR) is a molecular medicine that prolongs the survival of patients with hepatocellular carcinoma (HCC). Therefore, the management of side effects is essential for the longer period of continuous medication. Among the various side effects, hand-foot syndrome (HFS) is the most common, occurring in 30%-50% of patients, and often results in discontinuation of the SOR medication. However, its mechanism has not been clarified, and no effective prevention method has been reported for the symptoms. Therefore, this study aimed to analyze its mechanism and to develop an effective prevention regimen for the symptoms. To assess the mechanism of SOR-induced HFS, the peripheral blood flow in the hand and foot was carefully monitored by Doppler ultrasound, thermography, and laser speckle flowgraphy in the cases treated with SOR and its contribution was assessed. Then, the effect of dried-bonito broth (DBB), which was reported to improve peripheral blood flow, on the prevention of the symptom was examined by monitoring its occurrence and the peripheral blood flow. A total of 25 patients were enrolled in this study. In all, eight patients developed HFS, and all cases showed a significant decrease in the peripheral blood flow. DBB contributed to an increase in the flow ( p = 0.009) and significantly decreased occurrence of HFS ( p = 0.005) than control. Multivariable analysis showed that the ingestion of DBB is a significant independent contributor to HFS-free survival period ( p = 0.035). The mechanism of SOR-induced HFS involves a decrease in the peripheral blood flow, and the ingestion of DBB effectively prevents the development of the syndrome by maintaining the flow.
Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip
2014-01-01
Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p < 0.0001). Distance of the insertion of side branches from the ligature significantly determines thrombus weight (r2 = 0.5597, p < 0.0001) and length (r2 = 0.5441, p < 0.0001) in the IVC, regardless of the flow measured by pw-Doppler with distances <1.5 mm drastically impairing thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.
Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M
2014-01-01
Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.
Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.
2015-12-22
Groundwater flow from southern Spring Valley continues through the western side of Hamlin Valley before being directed northeast toward the south end of Snake Valley. This flow is constrained by southward-flowing groundwater from Big Spring Wash and northward-flowing groundwater beneath central Hamlin Valley. The redirection to the northeast corresponds to a narrowing of the width of flow in southern Snake Valley caused by a constriction formed by a steeply dipping middle Paleozoic siliciclastic confining unit exposed in the flanks of the mountains and hills on the east side of southern Snake Valley and shallowly buried beneath basin fill in the valley. The narrowing of groundwater flow could be responsible for the large area where groundwater flows to springs or is lost to evapotranspiration between Big Springs in Nevada and Pruess Lake in Utah.
Coupling between premixed flame propagation and swirl flow during boundary layer flashback
NASA Astrophysics Data System (ADS)
Ebi, Dominik; Ranjan, Rakesh; Clemens, Noel T.
2018-07-01
Flashback of premixed methane-air flames in the turbulent boundary layer of swirling flows is investigated experimentally. The premix section of the atmospheric model swirl combustor features an axial swirler with an attached center-body. Our previous work with this same configuration investigated the flame propagation during flashback using particle image velocimetry (PIV) with liquid droplets as seed particles that precluded making measurements in the burnt gases. The present study investigates the transient velocity field in the unburnt and burnt gas region by means of solid-particle seeding and high-speed stereoscopic PIV. The global axial and circumferential lab-frame flame propagation speed is obtained simultaneously based on high-speed chemiluminescence movies. By combining the PIV data with the global flame propagation speed, the quasi-instantaneous swirling motion of the velocity field is constructed on annular shells, which provides a more intuitive view on the complex three-dimensional flow-flame interaction. Previous works showed that flashback is led by flame tongues. We find that the important flow-flame interaction occurs on the far side of these flame tongues relative to the approach flow, which we henceforth refer to as the leading side. The leading side is found to propagate as a classical premixed flame front relative to the strongly modified approach flow field. The blockage imposed by flame tongues is not limited to the immediate vicinity of the flame base, but occurs along the entire leading side.
Józwa, Wojciech; Czaczyk, Katarzyna
2012-04-02
Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.
Transient groundwater-lake interactions in a continental rift: Sea of Galilee, Israel
Hurwitz, S.; Stanislavsky, E.; Lyakhovsky, V.; Gvirtzman, H.
2000-01-01
The Sea of Galilee, located in the northern part of the Dead Sea rift, is currently an intermediate fresh-water lake. It is postulated that during a short highstand phase of former Lake Lisan in the late Pleistocene, saline water percolated into the subsurface. Since its recession from the Kinarot basin and the instantaneous formation of the fresh-water lake (the Sea of Galilee), the previously intruded brine has been flushed backward toward the lake. Numerical simulations solving the coupled equations of fluid flow and of solute and heat transport are applied to examine the feasibility of this hypothesis. A sensitivity analysis shows that the major parameters controlling basin hydrodynamics are lake-water salinity, aquifer permeability, and aquifer anisotropy. Results show that a highstand period of 3000 yr in Lake Lisan was sufficient for saline water to percolate deep into the subsurface. Because of different aquifer permeabilities on both sides of the rift, brine percolated into a aquifers on the western margin, whereas percolation was negligible on the eastern side. In the simulation, after the occupation of the basin by the Sea of Galilee, the invading saline water was leached backward by a topography-driven flow. It is suggested that the percolating brine on the western side reacted with limestone at depth to form epigenetic dolomite at elevated temperatures. Therefore, groundwater discharging along the western shores of the Sea of Galilee has a higher calcium to magnesium ratio than groundwater on the eastern side.
Nakanishi, Koki; Homma, Shunichi; Han, Jiho; Takayama, Hiroo; Colombo, Paolo C; Yuzefpolskaya, Melana; Garan, Arthur R; Farr, Maryjane A; Kurlansky, Paul; Di Tullio, Marco R; Naka, Yoshifumi; Takeda, Koji
2018-07-01
Although late-onset right-sided heart failure is recognized as a clinical problem in the treatment of patients with left ventricular assist devices (LVADs), the mechanism and predictors are unknown. Tricuspid valve (TV) deformation leads to the restriction of the leaflet motion and decreased coaptation, resulting in a functional tricuspid regurgitation that may act as a surrogate marker of late right-sided heart failure. This study aimed to investigate the association of preoperative TV deformation (annulus dilatation and leaflet tethering) with late right-sided heart failure development after continuous-flow LVAD implantation. The study cohort consisted of 274 patients who underwent 2-dimensional echocardiography before LVAD implantation. TV annulus diameter and tethering distance were measured in an apical 4-chamber view. Late right-sided heart failure was defined as right-sided heart failure requiring readmission and medical and/or surgical treatment after initial LVAD implantation. During a mean follow-up of 25.1 ± 19.0 months after LVAD implantation, late right-sided heart failure occurred in 33 patients (12.0%). Multivariate Cox proportional hazard analysis demonstrated that TV annulus diameter (hazard ratio 1.221 per 1 mm, p <0.001) was significantly associated with late right-sided heart failure development, whereas leaflet tethering distance was not. The best cut-off value of the TV annular diameter was 41 mm (area under the curve 0.787). Kaplan-Meier analysis showed that patients with dilated TV annulus (TV annular diameter ≥41 mm) exhibited a significantly higher late right-sided heart failure occurrence than those without TV annular enlargement (log-rank p <0.001). In conclusion, preoperative TV annulus diameter, but not leaflet tethering distance, predicted the occurrence of late right-sided heart failure after LVAD implantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.
2018-01-01
Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.
NASA Astrophysics Data System (ADS)
Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.
2017-03-01
A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.
Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass
Chen, S. H.; Chan, K. C.; Wang, G.; ...
2016-02-25
The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less
Simulation of swimming strings immersed in a viscous fluid flow
NASA Astrophysics Data System (ADS)
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2016-11-01
Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.
Side scatter versus CD45 flow cytometric plot can distinguish acute leukaemia subtypes.
Saksena, Annapurna; Gautam, Parul; Desai, Parth; Gupta, Naresh; Dubey, A P; Singh, Tejinder
2016-05-01
Flow cytometry is an important tool to diagnose acute leukaemia. Attempts are being made to find the minimal number of antibodies for correctly diagnosing acute leukaemia subtypes. The present study was designed to evaluate the analysis of side scatter (SSC) versus CD45 flow dot plot to distinguish acute myeloid leukaemia (AML) from acute lymphoblastic leukaemia (ALL), with minimal immunological markers. One hundred consecutive cases of acute leukaemia were evaluated for blast cluster on SSC versus CD45 plots. The parameters studied included visual shape, CD45 and side scatter expression, continuity with residual granulocytes/lymphocytes/monocytes and ratio of maximum width to maximum height (w/h). The final diagnosis of ALL and AML and their subtypes was made by morphology, cytochemistry and immunophenotyping. Two sample Wilcoxon rank-sum (Mann Whitney) test and Kruskal-Wallis equality-of-populations rank tests were applied to elucidate the significance of the above ratios of blast cluster for diagnosis of ALL, AML and their subtypes. Receiver operating characteristic (ROC) curves were generated and the optimal cut-offs of the w/h ratio to distinguish between ALL and AML determined. Of the 100 cases, 57 of ALL and 43 cases of AML were diagnosed. The median w/h ratio of blast population was 3.8 for ALL and 1 for AML (P<0.001). ROC had area under curve of 0.9772.The optimal cut-off of the w/h ratio for distinction of ALL from AML was found to be 1.6. Our findings suggest that if w/h ratio on SSC versus CD45 plot is less than 1.6, AML may be considered, and if it is more than 1.6, ALL may be diagnosed. Using morphometric analysis of the blast cluster on SSC versus CD45, it was possible to distinguish between ALL and AML, and their subtypes.
Experimental analysis of the flow pattern of a pump turbine model in pump mode
NASA Astrophysics Data System (ADS)
Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian
2016-11-01
Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.
Sealing properties of mechanical seals for an axial flow blood pump.
Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H
1999-08-01
A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.
Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Ruf, Joseph
2015-01-01
Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and with four different versions of the TIC nozzle model geometry, each of which was created with a different simplification to the test article geometry.
Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators
NASA Technical Reports Server (NTRS)
Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.
2015-01-01
This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.
Numerical modelling of strain in lava tubes
NASA Astrophysics Data System (ADS)
Merle, Olivier
The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.
Detached Eddy Simulation of Flap Side-Edge Flow
NASA Technical Reports Server (NTRS)
Balakrishnan, Shankar K.; Shariff, Karim R.
2016-01-01
Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.
Inertio-elastic mixing in a straight microchannel with side wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Sun Ok; Cooper-White, Justin J.; School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD
Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flowmore » rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.« less
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Johansson, E.B.; Matzner, B.
1988-06-07
A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.
1992-02-11
This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
NASA Technical Reports Server (NTRS)
1991-01-01
This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.
Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.
1995-01-01
An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.
Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System
NASA Astrophysics Data System (ADS)
Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.
2017-05-01
A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Liou, Meng-Sing; Povinelli, Louis A.; Arnone, Andrea
1993-01-01
This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry.
Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali
NASA Astrophysics Data System (ADS)
Harifa, A. C.; Sholichin, M.; Othman, F. B.
2013-12-01
The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the probable maximum flood was 476.88 m3/s. Hydraulic analysis of spillway used USBR method for spillway, Hind's equation for the side channel, energy equation with standard step method for the transition and chuteway channel. Local scouring depth was calculated using the Schotlisch and Veronise equation. Total head on crest spillway for Q2 = 0.92 m, Q1000 = 1.68 m and for QPMF = 1.92 m. The highest measurement error is 3.16% according to the total head on crest spillway. Cavitation was observed in chuteway. Flow is subcritical (Froude < 1) in the side channel and supercritical in the transition channel. The final design for the spillway and chuteway were safe from impact of cavitation, pulsating flow, and local scouring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The technical and economic studies were performed to examine the possible installation of a small, integral pressurized water reactor as an industrial energy source in the Duval Corporation's Frasch Process sulfur mining operation located in Culberson County, Texas. Since this is the first industrial application study attempted for this type of reactor, it has been a learning process on the nuclear plant side as well as the industrial side, particularly in the area of economic analysis. The importance of considering inflationary effects, the significance of plant financing form, and the annualized, after-tax cash flow and incremental rate-of-return methods of comparisonmore » in determing energy costs have all been recognized during the course of the study.« less
Stability and performance tradeoffs in bi-lateral telemanipulation
NASA Technical Reports Server (NTRS)
Hannaford, Blake
1989-01-01
Kinesthetic force feedback provides measurable increase in remote manipulation system performance. Intensive computation time requirements or operation under conditions of time delay can cause serious stability problems in control-system design. Here, a simplified linear analysis of this stability problem is presented for the forward-flow generalized architecture, applying the hybrid two-port representation to express the loop gain of the traditional master-slave architecture, which can be subjected to similar analysis. The hybrid two-port representation is also used to express the effects on the fidelity of manipulation or feel of one design approach used to stabilize the forward-flow architecture. The results suggest that, when local force feedback at the slave side is used to reduce manipulator stability problems, a price is paid in terms of telemanipulation fidelity.
NASA Astrophysics Data System (ADS)
Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.
2018-01-01
In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.
Safety drain system for fluid reservoir
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2012-01-01
A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences
NASA Astrophysics Data System (ADS)
Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki
The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.
Brooker, Robert Paul; Mohajeri, Nahid
2016-01-05
A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Steinthorsson, E.; Rigby, David L.
1998-01-01
Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E 3 first stage turbine, which represents a modem gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.
Yan, Cheing-Tong; Chien, Hai-Ying
2012-07-13
In this study, a simple and novel one-step hollow-fiber supported liquid-phase sampling (HF-LPS) technique was developed for enriched sampling of gaseous toxic species prior to chemical analysis for workplace air monitoring. A lab-made apparatus designed with a gaseous sample generator and a microdialysis sampling cavity (for HF-LPS) was utilized and evaluated to simulate gaseous contaminant air for occupational workplace analysis. Gaseous phenol was selected as the model toxic species. A polyethersulfone hollow fiber dialysis module filled with ethylene glycol in the shell-side was applied as the absorption solvent to collect phenol from a gas flow through the tube-side, based on the concentration distribution of phenol between the absorption solvent and the gas flow. After sampling, 20 μL of the extractant was analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Factors that influence the generation of gaseous standards and the HF-LPS were studied thoroughly. Results indicated that at 25 °C the phenol (2000 μg/mL) standard solution injected at 15-μL/min can be vaporized into sampling cavity under nitrogen flow at 780 mL/min, to generate gaseous phenol with concentration approximate to twice the permissible exposure limit. Sampling at 37.3 mL/min for 30 min can meet the requirement of the workplace air monitoring. The phenol in air ranged between 0.7 and 10 cm³/m³ (shows excellent linearity) with recovery between 98.1 and 104.1%. The proposed method was identified as a one-step sampling for workplace monitoring with advantages of convenience, rapidity, sensitivity, and usage of less-toxic solvent. Copyright © 2012 Elsevier B.V. All rights reserved.
Hosokawa, Kazuya; Abe, Kohtaro; Horimoto, Koshin; Yamasaki, Yuzo; Nagao, Michinobu; Tsutsui, Hiroyuki
2018-04-20
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterised by organised thrombotic obliteration of major vessels and small-vessel arteriopathy in the non-thrombosed vessels. The aim of this study was to investigate the impact of balloon pulmonary angioplasty (BPA) on the non-BPA-side pulmonary vasculature in patients with CTEPH. This study explored the outcomes of 20 unilateral BPA sessions in 13 CTEPH patients. We measured the pulmonary vascular resistance (PVR), pulmonary artery (PA) flow in the BPA-side and non-BPA-side lungs, respectively, using phase contrast MRI and cardiac catheterisation. The interval from BPA to the follow-up evaluation was 92.8±52.0 days. A single session of BPA decreased mean PA pressure from 37.4±6.2 to 30.9±6.5 mmHg (p<0.001). In the BPA side, BPA increased the PA flow from 1.58±0.65 to 1.95±0.62 L/min (p=0.001) and decreased the PVR from 27.3±27.4 to 14.4±9.0 Wood units (p=0.004). In contrast, it decreased both the non-BPA-side PA flow from 2.25±0.64 to 1.90±0.23 L/min (p=0.008) and the non-BPA-side PVR from 14.8±6.6 to 12.8±3.9 Wood units (p=0.01). BPA could relieve haemodynamic stress towards the non-BPA-side vasculature and decrease its PVR in patients with CTEPH, suggesting that it can suppress or regress the progression of the small-vessel arteriopathy in non-BPA-side vasculature, presumably due to haemodynamic unloading.
Geyer, Antonia; Taschauer, Alexander; Alioglu, Fatih; Anton, Martina; Maier, Julia; Drothler, Elisabeth; Simlinger, Manuela; Yavuz, Sümeyye; Sami, Haider; Ogris, Manfred
2017-12-01
Local delivery of anticancer agents or gene therapeutics to lung tumors can circumvent side effects or accumulation in non-target organs, but accessibility via the alveolar side of the blood-air barrier remains challenging. Polyplexes based on plasmid and linear polyethylenimine (LPEI) transfect healthy lung tissue when applied intravenously (i.v.) in the mouse, but direct delivery into the lungs results in low transfection of lung tissue. Nevertheless, LPEI could offer the potential to transfect lung tumors selectively, if accessible from the alveolar side. This study combined near infrared fluorescent protein 720 (iRFP720) and firefly luciferase as reporter genes for detection of tumor lesions and transfection efficiency of LPEI polyplexes, after intratracheal microspraying in mice bearing 4T1 triple negative breast cancer lung metastases. Simultaneous flow cytometric analysis of iRFP720 and enhanced green fluorescent protein expression in vitro demonstrated the potential to combine these reporter genes within transfection studies. Polyplex biophysics was characterized by single nanoparticle tracking analysis (NTA) to monitor physical integrity after microspraying in vitro. 4T1 cells were transduced with iRFP720-encoding lentivirus and evaluated by flow cytometry for stable iRFP720 expression. Growth of 4T1-iRFP720 cells was monitored in Balb/c mice by tomographic near infrared imaging, tissue and tumor morphology by computed tomography and magnetic resonance imaging. In 4T1-iRFP720 tumor-bearing mice, intratracheal administration of luciferase-encoding plasmid DNA by LPEI polyplexes resulted in successful tumor transfection, as revealed by bioluminescence imaging.
AOFA- THREE-DIMENSIONAL SUPERSONIC VISCOUS FLOW
NASA Technical Reports Server (NTRS)
Rakich, J. V.
1994-01-01
This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2015-04-01
Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.
NASA Astrophysics Data System (ADS)
Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi
2006-08-01
Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.
Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo
2017-01-01
Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720
Physics of forebody flow control
NASA Technical Reports Server (NTRS)
Font, Gabriel I.
1993-01-01
Performance in the high angle of attack regime is required by many different types of aircraft. Military aircraft, such as fighters, utilize flight in this regime to improve maneuverability. Civilian aircraft, such as supersonic or hypersonic transports, will also need to operate in this regime during take off and landing, due to their small highly swept wings. Flight at high angles of attack is problematic due to the vortices being created on the nose of the aircraft. The vortices tend to become asymmetric and produce side forces. At the same time, the rudders are less effective because they are becoming immersed in the flow separating from the wings and fuselage. Consequently, the side force produced by the vortices on the nose tend to destabilize the aircraft. This situation may be corrected through the use of a forebody flow control system such as tangential slot blowing. In this concept, a jet is blown from the nose in an effort to alter the flow field around the nose and diminish the destabilizing side force. Alternately, the jet may be used to create a side force which could be used to augment the rudders. This would allow the size of the rudders to be decreased which would, in turn, diminish the cruise drag. Therefore, the use of a tangential slot blowing system has the potential for improving both the maneuver performance and the cruise performance of an aircraft. The present study was conducted to explore the physics of forebody flow control. The study consisted of two major thrusts: (1) exploration of forebody flow control with tangential slot blowing; (2) investigation of flow and field response to a general perturbation.
Complementary velocity and heat transfer measurements in a rotating turbine cooling passage
NASA Astrophysics Data System (ADS)
Bons, Jeffrey Peter
An experimental investigation was conducted on the internal flowfield of a simulated turbine blade cooling passage. The passage is of a square cross-section and was manufactured from quartz for optical accessibility. Velocity measurements were taken using Particle Image Velocimetry for both heated and non-heated cases. Thin film resistive heaters on the four passage walls allow heat to be added to the coolant flow without obstructing laser access. Under the same conditions, an infrared detector with associated optics collected wall temperature data for use in calculating local Nusselt number. The test section was operated with radial outward flow and at values of Reynolds number, Rotation number, and density ratio typical of applications. Velocity data for the non-heated case document the evolution of the Coriolis-induced double vortex. The vortex has the effect of increasing the leading side boundary layer thickness while decreasing the trailing side boundary layer thickness. Also, the streamwise component of the Coriolis acceleration creates a thinned side wall boundary layer. These data reveal an unsteady, turbulent flowfield in the cooling passage. Velocity data for the heated case show a strongly distorted streamwise profile indicative of a buoyancy effect on the leading side. The Coriolis vortex is the mechanism for the accumulation of stagnant flow on the leading side of the passage. Heat transfer data show a maximum factor of two difference in the Nusselt number from trailing side to leading side. An estimate of this heat transfer disparity based on the measured boundary layer edge velocity yields approximately the same factor of two. A momentum integral model was developed for data interpretation which accounts for Coriolis and buoyancy effects. Calculated streamwise profiles and secondary flows match the experimental data well. The model, the velocity data, and the heat transfer data combine to suggest the presence of separated flow on the leading wall starting at about five passage widths for the conditions studied. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
SEPARATION OF GASES BY DIFFUSIION
Peierls, R.E.; Simon, F.E.; Arms, H.S.
1960-12-13
A method and apparatus are given for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase with the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction within the chamber. By these means a concentration gradient along the chamber is established.
Separation of gases by diffusion
Peieris, R. E.; Simon, F. E.; Arms, H. S.
1960-12-13
An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.
1989-01-01
A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.
Hot gas path component trailing edge having near wall cooling features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less
Enhancement of Electrokinetically-Driven Flow Mixing in Microchannel with Added Side Channels
NASA Astrophysics Data System (ADS)
Yang, Ruey-Jen; Wu, Chien-Hsien; Tseng, Tzu-I; Huang, Sung-Bin; Lee, Gwo-Bin
2005-10-01
Electroosmotic flow (EOF) in microchannels is restricted to low Reynolds number regimes. Since the inertial forces are extremely weak in such regimes, turbulent conditions do not readily develop. Therefore, species mixing occurs primarily via diffusion, with the result that extended mixing channels are generally required. The present study considers a T-shaped microchannel configuration with a mixing channel of width W=280 μm. Computational fluid dynamics simulations and experiments were performed to investigate the influence on the mixing efficiency of various geometrical parameters, including the side-channel width, the side-channel separation, and the number of side-channel pairs. The influence of different applied voltages is also considered. The numerical results reveal that the mixing efficiency can be enhanced to yield a fourfold improvement by incorporating two pairs of side channels into the mixing channel. It was also found that the mixing performance depends significantly upon the magnitudes of the applied voltages.
High Speed Gear Sized and Configured to Reduce Windage Loss
NASA Technical Reports Server (NTRS)
Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)
2013-01-01
A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.
NASA Astrophysics Data System (ADS)
Cho, S.-J.; Jung, C.-K.; Bae, I.-S.; Song, Y.-H.; Boo, J.-H.
2011-06-01
We have deposited TiOxNy thin films on Si(100) substrates at 500 °C using RF PECVD system. Titanium iso-propoxide was used as precursor with different nitrogen flow rate to control oxygen and nitrogen contents in the films. Changes of chemical states of constituent elements in the deposited films were examined by XPS analysis. The data showed that with increasing nitrogen flow rate, the total amounts of nitrogen and titanium were increased while that of oxygen was decreased, resulting in a binding energy shift toward high energy side. The characteristics of film growth orientation and structure as well as morphology change behavior were also analyzed by XRD, TED, FT-IR, TEM, and SEM. Deposition at higher nitrogen flow rate results in finer clusters with a nanograin size and more effective photocatalytic TiOxNy thin films with hydrophilic surface.
Lagrangian chaos in three- dimensional steady buoyancy-driven flows
NASA Astrophysics Data System (ADS)
Contreras, Sebastian; Speetjens, Michel; Clercx, Herman
2016-11-01
Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).
Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
2014-12-22
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Measurement of turbulent flow upstream and downstream of a circular pipe bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakibara, Jun; Machida, Nobuteru
2012-04-15
We measured velocity distribution in cross sections of a fully developed turbulent pipe flow upstream and downstream of a 90 degree sign bend by synchronizing two sets of a particle image velocimetry (PIV) system. Unsteady undulation of Dean vortices formed downstream from the bend was characterized by the azimuthal position of the stagnation point found on the inner and outer sides of the bend. Linear stochastic estimation was applied to capture the upstream flow field conditioned by the azimuthal location of the stagnation point downstream from the bend. When the inner-side stagnation point stayed below (above) the symmetry plane, themore » conditional streamwise velocity upstream from the bend exhibited high-speed streaks extended in a quasi-streamwise direction on the outer side of the curvature above (below) the symmetry plane.« less
Alam, Monzurul; Ahmed, Ghazanfar; Ling, Yan To; Zheng, Yong-Ping
2018-05-25
Event-related desynchronization (ERD) is a relative power decrease of electroencephalogram (EEG) signals in a specific frequency band during physical motor execution, while transcranial Doppler (TCD) measures cerebral blood flow velocity. The objective of this study was to investigate the neurovascular coupling in the motor cortex by using an integrated EEG and TCD system, and to find any difference in hemodynamic responses in healthy young male and female adults. Approach: 30 healthy volunteers, aged 20-30 years were recruited for this study. The subjects were asked to perform a motor task for the duration of a provided visual cue. Simultaneous EEG and TCD recording was carried out using a new integrated system to detect the ERD arising from the EEG signals, and to measure the mean blood flow velocity of the left and right middle cerebral arteries from bilateral TCD signals. Main Results: The results showed a significant decrease in EEG power in mu band (7.5-12.5 Hz) during the motor task compared to the resting phase. It showed significant increase in desynchronization on the contralateral side of the motor task compared to the ipsilateral side. Mean blood flow velocity during the task phase was significantly higher in comparison with the resting phase at the contralateral side. The results also showed a significantly higher increase in the percentage of mean blood flow velocity in the contralateral side of motor task compared to the ipsilateral side. However, no significant difference in desynchronization, or change of mean blood flow velocity was found between males and females. Significance: A combined TCD-EEG system successfully detects ERD and blood flow velocity in cerebral arteries, and can be used as a useful tool to study neurovascular coupling in the brain. There is no significant difference in the hemodynamic responses in healthy young males and females. © 2018 Institute of Physics and Engineering in Medicine.
Fiber optic liquid mass flow sensor and method
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)
2010-01-01
A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E.
1991-08-01
Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in themore » area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.« less
Influence of Magnetic Topology on Mars' Ionospheric Structure
NASA Astrophysics Data System (ADS)
Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.
2017-12-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.
NASA Astrophysics Data System (ADS)
Comte, J.-C.; Wilson, C.; Ofterdinger, U.; González-Quirós, A.
2017-03-01
Volcanic dykes are common discrete heterogeneities in aquifers; however, there is a lack of field examples of, and methodologies for, comprehensive in situ characterization of their properties with respect to groundwater flow and solute transport. We have applied an integrated multiphysics approach to quantify the effect of dolerite dykes on saltwater intrusion in a coastal sandstone aquifer. The approach involved ground geophysical imaging (passive magnetics and electrical resistivity tomography), well hydraulic testing, and tidal propagation analysis, which provided constraints on the geometry of the dyke network, the subsurface saltwater distribution, and the sandstone hydrodynamic properties and connectivity. A three-dimensional variable-density groundwater model coupled with a resistivity model was further calibrated using groundwater and geophysical observations. A good agreement of model simulations with tide-induced head fluctuations, geophysically derived pore water salinities, and measured apparent resistivities was obtained when dykes' hydraulic conductivity, storativity, and effective porosity are respectively about 3, 1, and 1 orders of magnitude lower than the host aquifer. The presence of the dykes results in barrier-like alterations of groundwater flow and saltwater intrusion. Preferential flow paths occur parallel to observed dyke orientations. Freshwater inflows from upland recharge areas concentrate on the land-facing side of the dykes and saltwater penetration is higher on their sea-facing side. This has major implications for managing groundwater resources in dyke-intruded aquifers, including in coastal and island regions and provides wider insights on preferential pathways of groundwater flow and transport in highly heterogeneous aquifer systems.
Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system
NASA Technical Reports Server (NTRS)
Hess, W. G.
1979-01-01
A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.
Microtube strip heat exchanger
NASA Astrophysics Data System (ADS)
Doty, F. D.
1991-07-01
During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. The DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. The DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling.
2016-10-01
platysma muscle (top red) and trapezius muscle (bottom blue). Bottom Clamshell Side View Cooled water flows through tubing Rubber Tubing Plastic...Enclosure Top View Top Clamshell Top View Side View Top View Cooled water flows through tubing Rubber Tubing Plastic Enclosure Figure 3. Descriptive...typical of the uptake of implanted neuromodulation devices [e.g. cochlear implants, bladder implants, hand neuroprosthesis]. This approach maximizes
Electrolytic cell. [For separating anolyte and catholyte
Bullock, J.S.; Hale, B.D.
1984-09-14
An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.
Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Jung, Hyunwook; Shin, Sehyun
2012-04-07
Pure separation and sorting of microparticles from complex fluids are essential for biochemical analyses and clinical diagnostics. However, conventional techniques require highly complex and expensive labeling processes for high purity separation. In this study, we present a simple and label-free method for separating microparticles with high purity using the elasto-inertial characteristic of a non-Newtonian fluid in microchannel flow. At the inlet, particle-containing sample flow was pushed toward the side walls by introducing sheath fluid from the center inlet. Particles of 1 μm and 5 μm in diameter, which were suspended in viscoelastic fluid, were successfully separated in the outlet channels: larger particles were notably focused on the centerline of the channel at the outlet, while smaller particles continued flowing along the side walls with minimal lateral migration towards the centerline. The same technique was further applied to separate platelets from diluted whole blood. Through cytometric analysis, we obtained a purity of collected platelets of close to 99.9%. Conclusively, our microparticle separation technique using elasto-inertial forces in non-Newtonian fluid is an effective method for separating and collecting microparticles on the basis of size differences with high purity. This journal is © The Royal Society of Chemistry 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, T.Q.; Walker, J.S.; Picologlou, B.F.
1988-07-01
Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions formore » flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs.« less
NASA Astrophysics Data System (ADS)
Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco
2018-01-01
Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.
Gas block mechanism for water removal in fuel cells
Issacci, Farrokh; Rehg, Timothy J.
2004-02-03
The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Gloss, B. B.
1975-01-01
Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming
2015-01-01
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.
The flow around circular cylinders partially coated with porous media
NASA Astrophysics Data System (ADS)
Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias
2012-05-01
There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.
Water-tunnel study results of a TF/A-18 and F/A-18 canopy flow visualization
NASA Technical Reports Server (NTRS)
Johnson, Steven A.; Fisher, David F.
1990-01-01
A water tunnel study examining the influence of canopy shape on canopy and leading edge extension flow patterns was initiated. The F/A-18 single-place canopy model and the TF/A-18 two place canopy model were the study subjects. Plan view and side view photographs showing the flow patterns created by injected colored dye are presented for 0 deg and 5 deg sideslip angles. Photographs taken at angle of attack and sideslip conditions correspond to test departure points found in flight test. Flight experience has shown that the TF/A-18 airplane departs in regions where the F/A-18 airplane is departure-resistant. The study results provide insight into the differences in flow patterns which may influence the resulting aerodynamics of the TF/A-18 and F/A-18 aircraft. It was found that at 0 deg sideslip, the TF/A-18 model has more downward flow on the sides of the canopy than the F/A-18 model. This could be indicative of flow from the leading edge extension (LEX) vortexes impinging on the sides of the wider TF/A-18 canopy. In addition, the TF/A-18 model has larger areas of asymmetric separated and unsteady flow on the LEXs and fuselage, possibly indicating a lateral and directional destabilizing effect at the conditions studied.
Convective Array Cooling for a Solar Powered Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Dolce, James (Technical Monitor)
2003-01-01
A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Three-Dimensional Effects on Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.
2002-01-01
In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.
NASA Astrophysics Data System (ADS)
Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.
2017-03-01
A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.
Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation
NASA Astrophysics Data System (ADS)
Wang, Weiling; Wang, Zhaohui; Luo, Sen; Ji, Cheng; Zhu, Miaoyong
2017-12-01
A 3D parallel cellular automaton-finite volume method (CA-FVM) model was used to simulate the equiaxed dendritic growth of an Fe-0.82 wt pct C alloy with xy- in- out and xyz- in- out type forced flows and the columnar dendritic growth with y- in- out type forced flow. In addition, the similarities and differences between the results of the 3D and 2D models are discussed and summarized in detail. The capabilities of the 3D and 2D CA-FVM models to predict the dendritic growth of the alloy with forced flow are validated through comparison with the boundary layer correction and Oseen-Ivanstov models, respectively. Because the forced flow can pass around perpendicular arms of the dendrites, the secondary arms at the sides upstream from the perpendicular arms are more developed than those on the upstream side of the upstream arms, especially at higher inlet velocities. In addition, compared to the xy- in- out case, the growth of the downstream arms is less inhibited and the secondary arms are more developed in the xyz- in- out case because of the greater lateral flow around their tips. Compared to the 3D case, the 2D equiaxed dendrites are more asymmetrical and lack secondary arms because of the thicker solute envelope. In the 3D case, the columnar dendrites on the upstream side (left one) are promoted, while the middle and downstream dendrites are inhibited in sequence. However, the sequential inhibition starts on the upstream side in the 2D case. This is mainly because the melt can pass around the upstream branch in 3D space. However, it can only climb over the upstream tip in 2D space. Additionally, the secondary arms show upstream development, which is more significant with increasing inlet velocity. The level of development of the secondary arms is also affected by the decay of the forced flow in the flow direction.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
1996-11-20
This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472
Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1997-01-01
A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.
Relationship between vertebral artery blood flow in different head positions and vertigo.
Araz Server, Ela; Edizer, Deniz Tuna; Yiğit, Özgür; Yasak, Ahmet Görkem; Erdim, Çağrı
2018-01-01
To identify the vertebral artery blood flow in different head positions in patients with positional vertigo with no specific diagnosis. Patients with history of vestibular symptoms associated with changes in head position were enrolled into the study. Healthy volunteers were evaluated as control group. Doppler ultrasonography examination of the cervical segment of the vertebral arteries was performed under three different head positions: (i) supine position, (ii) head hyperextended and rotated to the right side and (iii) head hyperextended and rotated to the left side. In the study group, right and left vertebral artery blood flow was significantly lower in the ipsilateral hyperextended position compared to standard supine position (respectively p = .014; p = .001), but did not differ significantly when compared between the standard supine and contralateral hyperextended positions (respectively = .959; p = .669). In the control group, left and right vertebral artery blood flow did not differ significantly when the head was hyperextended to the right or left sides compared to standard supine position (p > .05). Our data demonstrated that the etiology of vestibular complaints in patients with undiagnosed positional vertigo might be related to impairment in vertebral artery blood flow according to head positions.
Vertical flow chemical detection portal
Linker, K.L.; Hannum, D.W.; Conrad, F.J.
1999-06-22
A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.
Vertical flow chemical detection portal
Linker, Kevin L.; Hannum, David W.; Conrad, Frank James
1999-01-01
A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
NASA Technical Reports Server (NTRS)
Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.
1984-01-01
A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.
Lee, Jeffrey D; Anderson, Kathryn V
2008-12-01
Establishment of left-right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia reside. Here, we provide an overview of the current understanding and unresolved questions about the regulation of ciliary motility and node structure. Analysis of mouse mutants has shown that the motile cilia must have a specific structure and length, and that they must point posteriorly to generate the necessary leftward fluid flow. However, the precise structure of the motile cilia is not clear and the mechanisms that position cilia on node cells have not been defined. The mouse node is a teardrop-shaped pit at the distal tip of the early embryo, but the morphogenetic events that create the mature node from cells derived from the primitive streak are only beginning to be characterized. Recent live imaging experiments support earlier scanning electron microscopy (SEM) studies and show that node assembly is a multi-step process in which clusters of node precursors appear on the embryo surface as overlying endoderm cells are removed. We present additional SEM and confocal microscopy studies that help define the transition stages during node morphogenesis. After the initiation of left-sided signaling, the notochordal plate, which is contiguous with the node, generates a barrier at the embryonic midline that restricts the cascade of gene expression to the left side of the embryo. The field is now poised to dissect the genetic and cellular mechanisms that create and organize the specialized cells of the node and midline that are essential for left-right asymmetry. (c) 2008 Wiley-Liss, Inc.
Depth discrimination in acousto-optic cerebral blood flow measurement simulation
NASA Astrophysics Data System (ADS)
Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.
2016-03-01
Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.
Hu, Rui; Yu, Yiqi
2016-09-08
For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less
Arterial supply, venous drainage and collateral circulation in the nose of the anaesthetized dog.
Lung, M A; Wang, J C
1987-01-01
1. In pentobarbitone-anaesthetized dogs, nasal blood flows were measured with electromagnetic flow sensors. 2. The terminal internal maxillary artery was found to supply 22 +/- 2.2 ml min-1 (one side) to the nasal mucosa via the sphenopalatine and major palatine branches; the artery was found to receive multiple supply routes from common carotid, vertebral and subclavian arteries. 3. Nasal mucosa was found to receive collateral flow from contralateral terminal internal maxillary artery (about 5 to 10% of normal flow) and branches of subclavian arteries (about 36% of normal flow). 4. Nasal mucosa was found to have two venous systems: the low-flow (12 +/- 1.0 ml min-1; both sides) and low-pressure (7 +/- 0.6 mmHg) sphenopalatine veins draining the posterior nasal cavity and the high-flow (30 +/- 1.4 ml min-1; both sides) and high-pressure (17 +/- 1.0 mmHg) dorsal nasal veins draining the anterior nasal cavity. 5. PO2 of nasal venous blood was found to range from 62 +/- 2.9 mmHg to 65 +/- 3.4 mmHg. During nitrogen challenge to the nose, the sphenopalatine venous PO2 dropped to 35 +/- 3.0 mmHg while the dorsal nasal venous PO2 remained unchanged, suggesting that the sphenopalatine veins were responsible for draining capillary flow and dorsal nasal veins arteriovenous anastomotic flow as well. 6. Microscopic examination of the vascular casts confirmed that arteriovenous anastomoses were located only in the anterior nasal cavity. Images Fig. 5 Plate 1 Plate 2 PMID:3443958
Relationship Between Ureteral Jet Flow, Visual Analogue Scale, and Ureteral Stone Size.
Ongun, Sakir; Teken, Abdurrazak; Yılmaz, Orkun; Süleyman, Sakir
2017-06-01
To contribute to the diagnosis and treatment of ureteral stones by investigating the relationship between the ureteral jet flow measurements of patients with ureteral stones and the size of the stones and the patients' pain scores. The sample consisted of patients who presented acute renal colic between December 2014 and 2015 and from a noncontrast computed tomography were found to have a urinary stone. The ureteral jet flow velocities were determined using Doppler ultrasonography. The patients were all assessed in terms of stone size, localization and area, anteroposterior pelvis (AP) diameter, and visual analogue scale (VAS) scores. A total of 102 patients were included in the study. As the VAS score decreased, the peak jet flow velocity on the stone side increased, whereas the flow velocity on the other side, AP diameter, and stone area were reduced (P < .05). As the stone size increased, the peak jet flow velocity was reduced and the AP diameter increased significantly (P < .05). Ureteral jet flow was not observed in 17 patients on the stone side. A statistically significant difference was found between these patients and the remaining patients in terms of all parameters (P < .05). For patients, in whom the peak flow velocity of ureteral jet is low and with a severe level of pain or the peak flow velocity of ureteral jet cannot be measured, there is a low possibility of spontaneous passage and a high possibility of a large stone, and therefore the treatment should be started immediately. Copyright © 2017 Elsevier Inc. All rights reserved.
Component having cooling channel with hourglass cross section
Campbell, Christian X; Lee, Ching-Pang
2015-04-28
A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Fuel cell with interdigitated porous flow-field
Wilson, M.S.
1997-06-24
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.
Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows
NASA Astrophysics Data System (ADS)
Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria
2017-04-01
The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to the wall friction. Different kinds of side-wall velocity profiles are observed. As regards the smooth basal surface, a slip velocity at the bed is observed. The profiles are Bagnold-type near the free surface and become linear as the depth increases. On the glued-grain basal surface the flow velocity at the bed is null and all the velocity profiles show a rheological stratification with a lower exponential tail and an upper linear profile. Grain rolling is observed at the sandpaper bed, instead. With the increase of flow depths, the velocity profiles gradually shift from the ones observed on the smooth bed to the ones observed on the glued-grain bed. In order to further understand the constitutive behaviour of granular mixtures, it is useful to perform simultaneous measurements of flow velocity and volume fraction. In this perspective, a new series of experiments is actually undergoing for the measurement of the volume fraction.
Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load
NASA Astrophysics Data System (ADS)
Prunières, R.; Inoue, Y.; Nagahara, T.
2016-11-01
Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-12-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Volcano-ice interactions in the Arsia Mons tropical mountain glacier deposits
NASA Astrophysics Data System (ADS)
Scanlon, Kathleen E.; Head, James W.; Wilson, Lionel; Marchant, David R.
2014-07-01
Fan-shaped deposits (FSD) superposed on the sides of the Tharsis Montes volcanic edifices are widely interpreted to have been formed by cold-based glaciation during the Late Amazonian, a period when the Tharsis Montes were volcanically active. We survey the ∼166,000 km2 Arsia Mons FSD using new, high-resolution image and topography data and describe numerous landforms indicative of volcano-ice interactions. These include (1) steep-sided mounds, morphologically similar to terrestrial tindar that form by subglacial eruptions under low confining pressure; (2) steep-sided, leveed flow-like landforms with depressed centers, interpreted to be subglacial lava flows with chilled margins; (3) digitate flows that we interpret as having resulted from lava flow interaction with glacial ice at the upslope margin of the glacier; (4) a plateau with the steep sides and smooth capping flow of a basaltic tuya, a class of feature formed when subglacial eruptions persist long enough to melt through the overlying ice; and (5) low, areally extensive mounds that we interpret as effusions of pillow lava, formed by subglacial eruptions under high confining pressure. Together, these eruptions involved hundreds of cubic kilometers of subglacially erupted lava; thermodynamic relationships indicate that this amount of lava would have produced a similar volume of subglacial liquid meltwater, some of which carved fluvial features in the FSD. Landforms in the FSD also suggest that glaciovolcanic heat transfer induced local wet-based flow in some parts of the glacier. Glaciovolcanic environments are important microbial habitats on Earth, and the evidence for widespread liquid water in the Amazonian-aged Arsia Mons FSD makes it one of the most recent potentially habitable environments on Mars. Such environments could have provided refugia for any life that developed on Mars and survived on its surface until the Amazonian.
Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.
2013-01-01
α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911
Comparative use of side and main channels by small-bodied fish in a large, unimpounded river
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.
2016-01-01
Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.
Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins
NASA Technical Reports Server (NTRS)
Siegel, R.; Graham, R. W.
1977-01-01
The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
NASA Technical Reports Server (NTRS)
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
ATP mediates flow-induced NO production in thick ascending limbs
Hong, Nancy J.; Garvin, Jeffrey L.
2012-01-01
Mechanical stimulation caused by increasing flow induces nucleotide release from many cells. Luminal flow and extracellular ATP stimulate production of nitric oxide (NO) in thick ascending limbs. However, the factors that mediate flow-induced NO production are unknown. We hypothesized that luminal flow stimulates thick ascending limb NO production via ATP. We measured NO in isolated, perfused rat thick ascending limbs using the fluorescent dye DAF FM. The rate of increase in dye fluorescence reflects NO accumulation. Increasing luminal flow from 0 to 20 nl/min stimulated NO production from 17 ± 16 to 130 ± 37 arbitrary units (AU)/min (P < 0.02). Increasing flow from 0 to 20 nl/min raised ATP release from 4 ± 1 to 21 ± 6 AU/min (P < 0.04). Hexokinase (10 U/ml) plus glucose, which consumes ATP, completely prevented the measured increase in ATP. Luminal flow did not increase NO production in the presence of luminal and basolateral hexokinase (10 U/ml). When flow was increased with the ATPase apyrase in both luminal and basolateral solutions (5 U/ml), NO levels did not change significantly. The P2 receptor antagonist suramin (300 μmol/l) reduced flow-induced NO production by 83 ± 25% (P < 0.03) when added to both and basolateral sides. Luminal hexokinase decreased flow-induced NO production from 205.6 ± 85.6 to 36.6 ± 118.6 AU/min (P < 0.02). Basolateral hexokinase also reduced flow-induced NO production. The P2X receptor-selective antagonist NF023 (200 μmol/l) prevented flow-induced NO production when added to the basolateral side but not the luminal side. We conclude that ATP mediates flow-induced NO production in the thick ascending limb likely via activation of P2Y receptors in the luminal and P2X receptors in the basolateral membrane. PMID:22496412
Active magnetic regenerator method and apparatus
DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.
1993-01-01
In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P
2014-02-01
Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Investigation of Flow Separation in a Transonic-fan Linear Cascade Using Visualization Methods
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Chima, Rodrick V.; Jett, Thomas A.; Bencic, Timothy J.; Weiland, Kenneth E.
2000-01-01
An extensive study into the nature of the separated flows on the suction side of modem transonic fan airfoils at high incidence is described in the paper. Suction surface.flow separation is an important flow characteristic that may significantly contribute to stall flutter in transonic fans. Flutter in axial turbomachines is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high cycle fatigue blade failure. The study basically focused on two visualization techniques: surface flow visualization using dye oils, and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction side of the blade is separated over a large portion of the blade, and the separated area increases with increasing inlet Mach number. For the supersonic inlet flow condition, the flow is attached from the leading edge up to the point where a bow shock from the upper neighboring blade hits the blade surface. Low cascade solidity, for the subsonic inlet flow, results in an increased area of separated flow. For supersonic flow conditions, a low solidity results in an improvement in flow over the suction surface. Finally, computational results modeling the transonic cascade flowfield illustrate our ability to simulate these flows numerically.
Swancar, Amy; Lee, T.M.; O'Hare, T. M.
2000-01-01
Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage
Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding
NASA Technical Reports Server (NTRS)
McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)
2002-01-01
It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.
RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.
Ishikawa, H; Iwasaki, H; Tsukada, H; Chu, S; Nakamura, S; Yamamoto, K
1999-09-01
This report presents two cases of isolated cleft palate with asymmetric distribution of postsurgical scar tissue determined by laser Doppler flowmetry. To determine the effect of mucoperiosteal denudation of the bone on maxillary alveolar growth, the analysis of dentoalveolar structures compared the affected side to the unaffected side of each case. Two Japanese girls with isolated cleft palates were examined. Both subjects had undergone pushback operations (a modified version of the procedure of Wardill) for palatal repair at 18 months of age. Palatal blood flow was examined by laser Doppler flowmetry when the girls were 12 years old to determine the extent of postsurgical scar tissue over the denuded bone. To analyze the maxillary dentoalveolar structures three dimensionally, the whole surface of the upper dental cast was measured and recorded by an optical measuring device when the girls were 7 years old. Analysis via flowmetry showed that the palatal scar tissue area was limited to the anterior tooth region on the right (unaffected) side but extended posteriorly to the premolar region on the left (affected) side in both subjects. The two girls had similar dentoalveolar structures, with the dental and alveolar arches deflected lingually at the deciduous molar area on the affected side. There were no differences in the buccolingual inclination of deciduous molars or in the vertical growth of the alveolar processes between the affected and unaffected sides. In both girls, bone denudation in the premolar region appeared to result in less than 3 mm of displacement of the teeth palatally, with no change in lingual inclination. Any effects of scar tissue on the vertical development of the alveolus were not substantiated.
NASA Astrophysics Data System (ADS)
Mandour Eldeeb, Mohamed
The backward facing steps nozzle (BFSN) is a new developed flow adjustable exit area nozzle. It consists of two parts, the first is a base nozzle with small area ratio and the second part is a nozzle extension with surface consists of backward facing steps. The steps number and heights are carefully chosen to produce controlled flow separation at steps edges that adjust the nozzle exit area at all altitudes (pressure ratios). The BFSN performance parameters are assessed numerically in terms of thrust and side loads against the dual-bell nozzle with the same pressure ratios and cross sectional areas. Cold flow inside the planar BFSN and planar DBN are simulated using three-dimensional turbulent Navier-Stoke equations solver at different pressure ratios. The pressure distribution over the upper and the lower nozzles walls show symmetrical flow separation location inside the BFSN and an asymmetrical flow separation location inside the DBN at same vertical plane. The side loads are calculated by integrate the pressure over the nozzles walls at different pressure ratios for both nozzles. Time dependent solution for the DBN and the BFSN are obtained by solving two-dimensional turbulent flow. The side loads over the upper and lower nozzles walls are plotted against the flow time. The BFSN side loads history shows a small values of fluctuated side loads compared with the DBN which shows a high values with high fluctuations. Hot flow 3-D numerical solutions inside the axi-symmetric BFSN and DBN are obtained at different pressure ratios and compared to assess the BFSN performance against the DBN. Pressure distributions over the nozzles walls at different circumferential angels are plotted for both nozzles. The results show that the flow separation location is axi-symmetric inside the BFSN with symmetrical pressure distributions over the nozzle circumference at different pressure ratios. While the DBN results show an asymmetrical flow separation locations over the nozzle circumference at all pressure ratios.The results show that the side loads in the BFSN is 0.01%-0.6% of its value in the DBN for same pressure ratio. For further confirmation of the axi-symmetric nature of the flow in the BFSN, 2-D axi-symmetric solutions are obtained at same pressure ratios and boundary conditions. The flow parameters at the nozzle exit are calculated the 3-D and the 2-D solutions and compared to each other. The maximum difference between the 3-D and the 2-D solutions is less than 1%. Parametric studies are carried out with number of the backward facing steps varied from two to forty. The results show that as the number of backward facing steps increase, the nozzle performance in terms of thrust approach the DBN performance. The BFSN with two and six steps are simulated for pressure ratios range from 148 to 1500 and compared with the DBN and a conventional bell nozzle. Expandable BFSN study is carried out on the BFSN with two steps where the nozzle operation is divided into three modes related to the operating altitude (PR). Backward facing steps concept is applied to a full scale conventional bell nozzle by adding two backward facing steps at the end of the nozzle increasing its expansion area results in 1.8% increasing in its performance in terms of thrust coefficient at high altitudes.
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
Calamur, Narasimhan; Carrera, Martin E.; Devlin, David J.; Archuleta, Tom
2000-01-01
The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.
Spiral blood flow in aorta-renal bifurcation models.
Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie
2016-01-01
The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.
NASA Astrophysics Data System (ADS)
Chen, X.; Qin, G.; Ai, Z.; Ji, Y.
2017-08-01
As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.
Finite-time barriers to reaction front propagation
NASA Astrophysics Data System (ADS)
Locke, Rory; Mahoney, John; Mitchell, Kevin
2015-11-01
Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.
NASA Astrophysics Data System (ADS)
Zhang, J.; Li, M.; Li, W. H.; Alici, G.
2013-08-01
The focusing of particles has a variety of applications in industry and biomedicine, including wastewater purification, fermentation filtration, and pathogen detection in flow cytometry, etc. In this paper a novel inertial microfluidic device using two secondary flows to focus particles is presented. The geometry of the proposed microfluidic channel is a simple straight channel with asymmetrically patterned triangular expansion-contraction cavity arrays. Three different focusing patterns were observed under different flow conditions: (1) a single focusing streak on the cavity side; (2) double focusing streaks on both sides; (3) half of the particles were focused on the opposite side of the cavity, while the other particles were trapped by a horizontal vortex in the cavity. The focusing performance was studied comprehensively up to flow rates of 700 µl min-1. The focusing mechanism was investigated by analysing the balance of forces between the inertial lift forces and secondary flow drag in the cross section. The influence of particle size and cavity geometry on the focusing performance was also studied. The experimental results showed that more precise focusing could be obtained with large particles, some of which even showed a single-particle focusing streak in the horizontal plane. Meanwhile, the focusing patterns and their working conditions could be adjusted by the geometry of the cavity. This novel inertial microfluidic device could offer a continuous, sheathless, and high-throughput performance, which can be potentially applied to high-speed flow cytometry or the extraction of blood cells.
Sea-floor observations in the tongue of the ocean, Bahamas: An Argo/SeaMARC survey
Schwab, W.C.; Uchupi, E.; Ballard, Richard D.; Dettweiler, T.K.
1989-01-01
SeaMARC side-scan sonographs and Argo video and photographic data suggest that the recent sedimentary environment of the floor of the Tongue of the Ocean is controlled by an interplay of turbidity current flow from the south, sediment spill-over from the carbonate platform to the east (windward side), and rock falls from the west carbonate escarpment (lee side). The spill-over forms a sandy sedimentary deposit that acts as a topographic obstruction to the turbidity current flow from the south. This obstruction is expressed by the westward migration of a northwest-southeast oriented turbidity-current-cut channel. ?? 1989 Springer-Verlag New York Inc.
Efficient gas-separation process to upgrade dilute methane stream for use as fuel
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Lin, Haiqing [Mountain View, CA; Thompson, Scott [Brecksville, OH; Daniels, Ramin [San Jose, CA
2012-03-06
A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
The effect of acid concentration on the performance of the iron-titanium redox flow cell was studied. When the acidity was increased, open-circuit voltages decreased on the titanium side but load voltages increased due to decreased polarization. The best load voltage occurs when there is high acidity on the titanium side coupled with low acidity on the iron side, but such cells show voltage losses with repeated cycling because of the diffusion of acid through the membrane. No membrane tested has been found capable of maintaining the differences in acidity. Chelating agents show some promise in reducing polarization at the Ti electrode and thus improving energy efficiency.
Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck
2018-04-01
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.
Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake
Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj
2013-01-01
The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422
Study of the Pressure and Velocity Across the Aortic Valve
NASA Astrophysics Data System (ADS)
Kyung, Seo Young; Chung, Erica Soyun; Lee, Joo Hee; Kyung, Hayoung; Choi, Si Young
Biomechanics of the heart, requiring an extensive understanding of the complexity of the heart, have become the interests of many biomedical engineers in cardiology today. In order to study aortic valve disease, engineers have focused on the data obtained through bio-fluid flow analysis. To further this study, physical and computational analysis on the biomechanical determinants of blood flow in the stenosed aortic valve have been examined. These observations, along with the principles of cardiovascular physiology, confirm that when blood flows through the valve opening, pressure gradient across the valve is produced as a result of stenosis of the aortic valve. The aortic valve gradient is used to interpret the increase and decrease on each side of the defective valve. To compute different pressure gradients across the aortic valve, this paper analyzes Aortic Valve Areas (AVA) using simulations based on the continuity equation and Gorlin equation. The data obtained from such analysis consist of patients in the AS category that display mild Aortic Valve Velocity (AVV) and pressure gradient. Such correlation results in the construction of a dependent relationship between severe AS causing LV systolic dysfunction and the transaortic velocity.
NASA Astrophysics Data System (ADS)
Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen
2018-03-01
Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.
NASA Technical Reports Server (NTRS)
Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.
2016-01-01
Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber
NASA Technical Reports Server (NTRS)
Wadel, Mary F.; Meyer, Michael L.
1996-01-01
In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.
Yoshida, Kazumichi; Kurosaki, Yoshitaka; Funaki, Takeshi; Kikuchi, Takayuki; Ishii, Akira; Takahashi, Jun C; Takagi, Yasushi; Yamagata, Sen; Miyamoto, Susumu
2014-01-01
To evaluate the efficacy of flow control of the internal carotid artery (ICA) by the clamping of the common carotid artery, external carotid artery, and superior thyroid artery during surgical ICA dissection to reduce ischemic complications after carotid endarterectomy (CEA). Sixty-seven patients (59 men; age, 70.5 ± 6.2 years) who underwent CEA by the same surgeon were retrospectively studied. Both conventional CEA (n = 29) and flow-control CEA (n = 38) were performed with the patient under general anesthesia and with the use of somatosensory-evoked potential and near-infrared spectroscopy monitoring as a guide for selective shunting. The number of new postoperative infarcts was assessed with preoperative and postoperative diffusion-weighted images (DWIs) obtained within 3 days of surgery. In addition to surgical technique, the effects of the following factors on new infarcts also were examined: age, side of ICA stenosis, high-grade stenosis, symptoms, and application of shunting. New postoperative DWI lesions were observed in 7 of 67 patients (10.4%), and none of them was symptomatic. With respect to operative technique, the incidence rate of DWI spots was significantly lower in the flow-control group (2.6%) than in the conventional group (20.7%), odds ratio: 0.069; 95% confidence interval: 0.006-0.779; P = 0.031). On multiple logistic regression analysis, age, side of ICA stenosis, high-grade stenosis, symptoms, and the use of internal shunting did not have significant effects on new postoperative DWI lesions, whereas technique did have an effect. The proximal flow-control technique for CEA helps avoid embolic complications during surgical ICA dissection. Copyright © 2014 Elsevier Inc. All rights reserved.
Flow over a membrane-covered, fluid-filled cavity.
Thomson, Scott L; Mongeau, Luc; Frankel, Steven H
2007-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.
Plasma flow in peripheral region of detached plasma in linear plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.
2016-01-15
A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less
Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling
NASA Technical Reports Server (NTRS)
Braman, K. E.; Ruf, J. H.
2015-01-01
Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.
Flow distribution in parallel microfluidic networks and its effect on concentration gradient
Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.
2015-01-01
The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905
Power Generation Evaluated on a Bismuth Telluride Unicouple Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi
2015-06-01
The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.
15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...
15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H
2014-05-01
The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence
NASA Astrophysics Data System (ADS)
Ferko, Kevin; Lachendro, David; Chiappazzi, Nick; Danesh-Yazdi, Amir H.
2018-03-01
While the vast majority of the literature in energy harvesting is dedicated to resonant harvesters, non-resonant harvesters, especially those that use turbulence-induced vibration to generate energy, have not been studied in as much detail. This is especially true for grid-generated turbulence. In this paper, the interaction of two side-by-side fluidic harvesters from a passive fractal grid-generated turbulent flow is considered. The fractal grid has been shown to significantly increase the turbulence generated in the flow which is the source of the vibration of the piezoelectric beams. In this experimental study, the influence of four parameters has been investigated: Beam lengths and configurations, mean flow velocity, distance from the grid and gap between the two beams. Experimental results show that the piezoelectric harvesters in fractal grid turbulence are capable of producing at least the same amount of power as those placed in passive rectangular grids with a larger pressure loss, allowing for a potentially significant increase in the efficiency of the energy conversion process, even though more experiments are required to study the behavior of the beams in homogeneous, fractal grid-generated turbulence.
Experimental performance of the regenerator for the Chrysler upgraded automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Winter, J. M.; Nussle, R. C.
1982-01-01
Automobile gas turbine engine regenerator performance was studied in a regenerator test facility that provided a satisfactory simulation of the actual engine operating environment but with independent control of airflow and gas flow. Velocity and temperature distributions were measured immediately downstream of both the core high-pressure-side outlet and the core low-pressure-side outlet. For the original engine housing, the regenerator temperature effectiveness was 1 to 2 percent higher than the design value, and the heat transfer effectiveness was 2 to 4 percent lower than the design value over the range of test conditions simulating 50 to 100 percent of gas generator speed. Recalculating the design values to account for seal leakage decreased the design heat transfer effectiveness to values consistent with those measured herein. A baffle installed in the engine housing high-pressure-side inlet provided more uniform velocities out of the regenerator but did not improve the effectiveness. A housing designed to provide more uniform axial flow to the regenerator was also tested. Although temperature uniformity was improved, the effectiveness values were not improved. Neither did 50-percent flow blockage (90 degree segment) applied to the high-pressure-side inlet change the effectiveness significantly.
Virtual atmospheric mercury emission network in China.
Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong
2014-01-01
Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.; Chupakhin, A. P.
2016-06-01
This article considers method of describing the behaviour of hemodynamic parameters near vascular pathologies. We study the influence of arterial aneurysms and arteriovenous malformations on the vascular system. The proposed method involves using generalized model of Van der Pol-Duffing to find out the characteristic behaviour of blood flow parameters. These parameters are blood velocity and pressure in the vessel. The velocity and pressure are obtained during the neurosurgery measurements. It is noted that substituting velocity on the right side of the equation gives good pressure approximation. Thus, the model reproduces clinical data well enough. In regard to the right side of the equation, it means external impact on the system. The harmonic functions with various frequencies and amplitudes are substituted on the right side of the equation to investigate its properties. Besides, variation of the right side parameters provides additional information about pressure. Non-linear analogue of Nyquist diagrams is used to find out how the properties of solution depend on the parameter values. We have analysed 60 cases with aneurysms and 14 cases with arteriovenous malformations. It is shown that the diagrams are divided into classes. Also, the classes are replaced by another one in the definite order with increasing of the right side amplitude.
The artificial water cycle: emergy analysis of waste water treatment.
Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco
2003-04-01
The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.
Coggins, Marie A; Healy, Catherine B; Lee, Taekhee; Harper, Martin
2014-01-01
Restoration stone work regularly involves work with high-silica-content materials (e.g., sandstone), but low-silica-content materials (<2 % quartz) such as limestone and lime mortar are also used. A combination of short sample duration and low silica content makes the quantification of worker exposure to respirable crystalline silica (RCS) difficult. This problem will be further compounded by the introduction of lower occupational exposure standards for RCS. The objective of this work was to determine whether higher-flow samplers might be an effective tool in characterizing lower RCS concentrations. A short study was performed to evaluate the performance of three high-flow samplers (FSP10, CIP10-R, and GK2.69) using side-by-side sampling with low-flow samplers (SIMPEDS and 10-mm nylon cyclones) for RCS exposure measurement at a restoration stonemasonry field site. A total of 19 side-by-side sample replicates for each high-flow and low-flow sampler pair were collected from work tasks involving limestone and sandstone. Most of the RCS (quartz) masses collected with the high-flow-rate samplers were above the limit of detection (62 % to 84 %) relative to the low-flow-rate samplers (58 % to 78 %). The average of the respirable mass concentration ratios for CIP10-R/SIMPEDS, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs and the range of the quartz concentration ratios for the CIP10-R/SIMPEDS, CIP10-R/10-mm nylon, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs included unity with an average close to unity, indicating no likely difference between the reported values for each sampler. Workers reported problems related to the weight of the sampling pumps for the high-flow-rate samplers. Respirable mass concentration data suggest that the high-flow-rate samplers evaluated would be appropriate for sampling respirable dust concentrations during restoration stone work. Results from the comparison of average quartz concentration ratios between high-and low-flow samplers suggest that the higher mass collected by the high-flow-rate samplers did not interfere with the quartz measurement. A sig-nificant portion of the data collected with the high-flow-rate samplers (>82 %) were greater than the limit of detection, which indicates that these samplers are suitable for quantifying exposures, even with low-quartz materials.
A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
Salari, A; Navi, M; Dalton, C
2015-01-01
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.
NASA Astrophysics Data System (ADS)
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, Paul A.
1996-01-01
A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, P.A.
1996-03-05
A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.
Zero side force volute development
NASA Technical Reports Server (NTRS)
Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.
1995-01-01
Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.
Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct.
Shi, Dongbo; Komatsu, Kouji; Uemura, Tadashi; Fujimori, Toshihiko
2011-03-01
The oviduct is important in reproduction where fertilization occurs, and the fertilized eggs are conveyed to the uterus. Multi-ciliated cells of the oviductal epithelium and muscle contractions are believed to generate this unidirectional flow. Although there are many studies in human oviducts, there are few reports on mouse oviductal ciliary movements where we can dissect underlying genetic programs. To study ciliary movements in the mouse oviduct, we exposed the ovary-side of the oviduct (infundibulum) longitudinally and recorded the ciliary beatings in a hanging drop preparation. We calculated the ciliary beat frequency (CBF) by automated image analysis and found that the average CBF was 10.9 ± 3.3 and 8.5 ± 2.5 Hz (±standard deviation) during the diestrus and estrus stages, respectively. Mapping of the CBF to multiple locations in the epithelium showed that the cilia beat regularly at a local level, but have a range of frequencies within the entire plane. We also observed ova with cumulus cells were transported to the uterus side by the opened oviduct at the diestrus and estrus stages. These results suggest that the ciliated cells of the infundibulum can generate unidirectional flows and are able to deliver ova by their ciliary activities despite their discordance in beating periodicity. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
1980-12-01
is current during normal river stage. The graduations in this category are wide- spread, ranging frcm fast flowing watercourses with high banks to...channel category on the other. They may be former side channels that have been cut off, or that have only intermittent flows in them. They may be...navigation project certainly is a contributor by providing a deep channel and an abundance of beaches. Karaki and Van Hoften noted that small, fast
Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser
1990-12-01
in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in
Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.
2012-08-21
A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
NASA Technical Reports Server (NTRS)
Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi
1988-01-01
Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.
Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model
NASA Astrophysics Data System (ADS)
Ruettgers, Mario; Park, Junshin; You, Donghyun
2017-11-01
In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).
Hajati, Omid; Zarrabi, Khalil; Karimi, Reza; Hajati, Azadeh
2012-01-01
There is still controversy over the differences in the patency rates of the sequential and individual coronary artery bypass grafting (CABG) techniques. The purpose of this paper was to non-invasively evaluate hemodynamic parameters using complete 3D computational fluid dynamics (CFD) simulations of the sequential and the individual methods based on the patient-specific data extracted from computed tomography (CT) angiography. For CFD analysis, the geometric model of coronary arteries was reconstructed using an ECG-gated 64-detector row CT. Modeling the sequential and individual bypass grafting, this study simulates the flow from the aorta to the occluded posterior descending artery (PDA) and the posterior left ventricle (PLV) vessel with six coronary branches based on the physiologically measured inlet flow as the boundary condition. The maximum calculated wall shear stress (WSS) in the sequential and the individual models were estimated to be 35.1 N/m(2) and 36.5 N/m(2), respectively. Compared to the individual bypass method, the sequential graft has shown a higher velocity at the proximal segment and lower spatial wall shear stress gradient (SWSSG) due to the flow splitting caused by the side-to-side anastomosis. Simulated results combined with its surgical benefits including the requirement of shorter vein length and fewer anastomoses advocate the sequential method as a more favorable CABG method.
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos A.
2014-05-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.
Flow field predictions for a slab delta wing at incidence
NASA Technical Reports Server (NTRS)
Conti, R. J.; Thomas, P. D.; Chou, Y. S.
1972-01-01
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.
NASA Astrophysics Data System (ADS)
Hu, R.; Liu, Q.
2016-12-01
For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical simulation could provide guidance in this AGF project in the future. ReferenceJeffrey M. McKenzie, et. al. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources 30 966-983 (2007).
DESIGN ANALYSIS OF RADIAL INFLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.
Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar
2017-01-01
Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.
Novak, Vera; Hu, Kun; Desrochers, Laura; Novak, Peter; Caplan, Louis; Lipsitz, Lewis; Selim, Magdy
2010-01-01
Background Target blood pressure (BP) values for optimal cerebral perfusion after an ischemic stroke are still debated. We sought to examine the relationship between BP and cerebral blood flow velocities (BFV) during daily activities. Methods We studied 43 patients with chronic large vessel ischemic infarctions in middle cerebral artery (MCA) territory (aged 64.2±8.94 years; at 6.1±4.9 years after stroke), and 67 age-matched controls. BFV in MCAs were measured during supine baseline, sitting, standing and tilt. A regression analysis and a dynamic phase analysis were used to quantify BP-BFV relationship. Results The mean arterial pressure was similar between the groups (89±15 mmHg). Baseline BFV were lower by ~ 30% in the stroke patients compared to the controls (p=0.0001). BFV declined further with postural changes, and remained lower in the stroke group during sitting (p=0.003), standing (p=0.003) and tilt (p=0.002) as compared to the control group. Average BFV on the stroke side were positively correlated with BP during baseline (R=0.54, p=0.0022, the slope 0.46 cm/s/mm Hg) and tilt (R=0.52, p=0.0028, the slope 0.40 cm/s/mm Hg). Regression analysis suggested that BFV may increase ~ 30-50% at mean BP > 100 mmHg. Orthostatic hypotension during the first minute of tilt or standing was independently associated with lower BFV on the stroke side (p=0.0008). Baseline BP-BFV phase shift derived from the phase analysis was smaller on the stroke-side (p=0.0006). Conclusion We found that BFV are lower in stroke patients and daily activities such as standing could induce hypoperfusion. BFV increase with mean arterial pressure > 100 mmHg. Dependency of BFV on arterial pressure may have implications for BP management after stroke. Further prospective investigations are needed to determine the impact of these findings on functional recovery and strategies to improve perfusion pressure during daily activities after ischemic stroke. PMID:19959536
Novak, Vera; Hu, Kun; Desrochers, Laura; Novak, Peter; Caplan, Louis; Lipsitz, Lewis; Selim, Magdy
2010-01-01
Target blood pressure (BP) values for optimal cerebral perfusion after an ischemic stroke are still debated. We sought to examine the relationship between BP and cerebral blood flow velocities (BFVs) during daily activities. We studied 43 patients with chronic large vessel ischemic infarctions in the middle cerebral artery territory (aged 64.2+/-8.94 years; at 6.1+/-4.9 years after stroke) and 67 age-matched control subjects. BFVs in middle cerebral arteries were measured during supine baseline, sitting, standing, and tilt. A regression analysis and a dynamic phase analysis were used to quantify the BP-BFV relationship. The mean arterial pressure was similar between the groups (89+/-15 mm Hg). Baseline BFVs were lower by approximately 30% in the patients with stroke compared with the control subjects (P=0.0001). BFV declined further with postural changes and remained lower in the stroke group during sitting (P=0.003), standing (P=0.003), and tilt (P=0.002) as compared with the control group. Average BFVs on the stroke side were positively correlated with BP during baseline (R=0.54, P=0.0022, the slope 0.46 cm/s/mm Hg) and tilt (R=0.52, P=0.0028, the slope 0.40 cm/s/mm Hg). Regression analysis suggested that BFV may increase approximately 30% to 50% at mean BP >100 mm Hg. Orthostatic hypotension during the first minute of tilt or standing was independently associated with lower BFV on the stroke side (P=0.0008). Baseline BP-BFV phase shift derived from the phase analysis was smaller on the stroke side (P=0.0006). We found that BFVs are lower in patients with stroke and daily activities such as standing could induce hypoperfusion. BFVs increase with mean arterial pressure >100 mm Hg. Dependency of BFV on arterial pressure may have implications for BP management after stroke. Further prospective investigations are needed to determine the impact of these findings on functional recovery and strategies to improve perfusion pressure during daily activities after ischemic stroke.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Yahya, S M; Anwer, S F; Sanghi, S
2013-10-01
In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; Glišović, Petar; Moucha, Robert; Grand, Stephen P.; Simmons, Nathan A.
2016-01-01
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region. PMID:28028535
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.
Rowley, David B; Forte, Alessandro M; Rowan, Christopher J; Glišović, Petar; Moucha, Robert; Grand, Stephen P; Simmons, Nathan A
2016-12-01
Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.
Numerical simulation on the cavitation of waterjet propulsion pump
NASA Astrophysics Data System (ADS)
Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.
2016-05-01
Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.
Integral manifolding structure for fuel cell core having parallel gas flow
Herceg, Joseph E.
1984-01-01
Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.
Integral manifolding structure for fuel cell core having parallel gas flow
Herceg, J.E.
1983-10-12
Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.
Constant pressure high throughput membrane permeation testing system
Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.
2014-09-02
The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.
NASA Astrophysics Data System (ADS)
Waerenborgh, J. C.; Tsipis, E. V.; Yaremchenko, A. A.; Kharton, V. V.
2011-09-01
Conversion-electron Mössbauer spectroscopy analysis of iron surface states in the dense ceramic membranes made of 57Fe-enriched SrFe 0.7Al 0.3O 3- δ perovskite, shows no traces of reductive decomposition or carbide formation in the interfacial layers after operation under air/CH 4 gradient at 1173 K, within the limits of experimental uncertainty. The predominant trivalent state of iron cations at the membrane permeate-side surface exposed to flowing dry methane provides evidence of the kinetic stabilization mechanism, which is only possible due to slow oxygen-exchange kinetics and enables long-term operation of the ferrite-based ceramic reactors for natural gas conversion. At the membrane feed-side surface exposed to air, the fractions of Fe 4+ and Fe 3+ are close to those in the powder equilibrated at atmospheric oxygen pressure, suggesting that the exchange limitations to oxygen transport are essentially localized at the partially reduced surface.
The Effect of Spanwise System Rotation on Turbulent Poiseuille Flow at Very-Low-Reynolds Number
NASA Astrophysics Data System (ADS)
Iida, Oaki; Fukudome, K.; Iwata, T.; Nagano, Y.
Direct numerical simulations (DNSs) with a spectral method are performed with large and small computational domains to study the effects of spanwise rotation on a turbulent Poiseuille flow at the very low-Reynolds numbers. In the case without system rotation, quasi-laminar and turbulent states appear side by side in the same computational domain, which is coined as laminar-turbulence pattern. However, in the case with system rotation, the pattern disappears and flow is dominated by quasi-laminar region including very long low-speed streaks coiled by chain-like vortical structures. Increasing the Reynolds number can not generate the laminar-turbulence pattern as long as system rotation is imposed.
Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.
Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen
2013-01-01
The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.
NASA Technical Reports Server (NTRS)
Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.
1998-01-01
Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.
Experiments in free shear flows: Status and needs for the future
NASA Technical Reports Server (NTRS)
Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.
1973-01-01
Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.
NASA Astrophysics Data System (ADS)
Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman
2017-01-01
Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.
Sheet Membrane Spacesuit Water Membrane Evaporator
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis
2013-01-01
A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.
The influence of non-planar geometry on the flow within a distal end-to-side anastomosis
NASA Astrophysics Data System (ADS)
Sherwin, S. J.; Doorly, D. J.; Peiro, J.; Caro, C. G.
1998-11-01
The pattern of the flow in arteries is strongly influenced by the three-dimensional shape of the geometry. Curvature and torsion of the wall geometry alters the axial velocity distribution, and introduces cross flow velocity components. In this investigation we have considered flow in a model geometry of a fully occluded 45^o distal end-to-side anastomosis. Previous investigations have typically focused on planar end-to-side anastomoses where the bypass and host vessels have a plane of symmetry. We have increased the complexity of the model by considering a non-planar geometry produced by deforming the bypass vessel out of the plane of symmetry. The flows have been numerically and experimentally investigated using a spectral/hp element algorithm and magnetic resonance imaging. The significant effect of the non-planar geometry is to introduce a bulk rotation of the two secondary flow cells present in flow within a planar geometry. A reduction in wall shear stress is observed at the bed of the anastomosis and a larger absolute flux of velocity is seen within the occluded region proximal to the anastomosis. Current investigations have considered the role of pulsatility in the form of a non-reversing sinusoidal oscillation. In this case a separation bubble, not present in the steady case, is seen at the toe of the anastomosis during the systolic part of the cycle. The role of geometry and pulsatility on particle motion has also been addressed with a view to determining the shear exposure on particle within these types of flows.
Evolution of convection vortices associated with sudden impulses observed by SuperDARN
NASA Astrophysics Data System (ADS)
Hori, T.; Shinbori, A.; Nishitani, N.; Fujita, S.
2014-12-01
Spatial evolution of transient ionospheric convection induced by sudden impulses (SIs) recorded by ground magnetometers is studied statistically by using SuperDARN (SD) data. An advantage of using SD data instead of ground magnetic fields is that ionospheric flows measured by the radars are not virtually biased by the spatially-varying ionospheric conductance or the magnetospheric currents. First we surveyed the Sym-H index for Jan., 2007 to Dec., 2012 to identify SI events with a peak amplitude |dSym-H| greater than 10 nT. Next we searched all SD data over the northern hemisphere during the SI events for ionospheric backscatters which give us the light-of-sight velocity of horizontal ionospheric flows. For each SI event, the collected ionospheric flow data were sorted into the four periods: the pre-SI period, the pre-Main Impulse (MI), middle-MI, and post-MI periods. In the present study, we examine the differences in flow velocity between the pre-SI period and the three MI periods to clarify how ionospheric flows change in association with SIs. As a result, the ionospheric flow shifts eastward on the dusk side and westward on the dawn side at the higher latitudes during positive SIs (SI+), while it shows a roughly westward/eastward shift on the dusk/dawn side, respectively, during negative SIs (SI-). These polarities of flow shifts are basically consistent with the higher latitude portions of the DP current for the MI phase as shown by Araki [1994] and Araki and Nagano [1988]. In terms of temporal evolution, the SI-induced transient flows remain slightly longer for SI- than for SI+. These findings suggest that the compression and expansion of the magnetosphere affect in different manners the magnetosphere-ionosphere coupled convection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Borkowski, C.A.; Huang, C.
1998-01-01
AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less
2012-06-13
This image from NASA 2001 Mars Odyssey spacecraft of Daedalia Planum shows the termination or end of a single flow. In this case it is the end of the brighter/rougher flow on the right side of the image.
2012-10-22
This image from NASA 2001 Mars Odyssey spacecraft of Daedalia Planum shows the termination or end of a single flow. In this case it is the end of the brighter/rougher flow on the right side of the image.
Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle
2014-08-01
We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.
2012-01-01
Background Pulsed wave (PW) Doppler echocardiography has become a routine non invasive cardiac diagnostic tool in most species. However, evaluation of intracardiac blood flow requires reference values, which are poorly documented in goats. The aim of this study was to test the repeatability, the variability, and to establish the reference values of PW measurements in healthy adult Saanen goats. Using a standardised PW Doppler echocardiographic protocol, 10 healthy adult unsedated female Saanen goats were investigated three times at one day intervals by the same observer. Mitral, tricuspid, aortic and pulmonary flows were measured from a right parasternal view, and mitral and aortic flows were also measured from a left parasternal view. The difference between left and right side measurements and the intra-observer inter-day repeatability were tested and then the reference values of PW Doppler echocardiographic parameters in healthy adult female Saanen goats were established. Results As documented in other species, all caprine PW Doppler parameters demonstrated a poor inter-day repeatability and a moderate variability. Tricuspid and pulmonary flows were best evaluated on the right side whereas mitral and aortic flows were best obtained on the left side, and reference values are reported for healthy adult Saanen goats. Conclusions PW Doppler echocardiography allows the measurement of intracardiac blood flow indices in goats. The reference values establishment will help interpreting these indices of cardiac function in clinical cardiac cases and developing animal models for human cardiology research. PMID:23067875
Determining the Side Channel Area in the Ciliwung Watershed for Decreasing the Hydrograph Flood
NASA Astrophysics Data System (ADS)
Yayuk Supomo, Fani; Saleh Pallu, Muh.; Arsyad Thaha, Muh.; Tahir Lopa, Rita
2018-04-01
The condition of Jakarta with high population density and green open space switch function, causing the condition of flooding to be one of the risks that occur when the rainy season. Ciliwung River that flows from Katulampa into Jakarta bay, is considered as the largest contributor to flood discharge. This study will analyze the flood discharge plan on the side channel area to lower the flood hydrograph peaks and extend the detention time. The area to be side channel is Ciparigi with an area of 608.7 hectare and the slope of 8-10%. The result of flood discharge planning analysis at Ciparigi region (Sub watershed of Middle Ciliwung), obtained the amount of flood discharge for return period 2 yearly equal to 10.10 m3/sec, 5 yearly equal to 12.77 m3/sec, 10 yearly equal to 14.17 m3/sec, 25 yearly equal to 15.32 m3/sec, 50 yearly equal to 16.63 m3/sec and 100 yearly equal to 17.52 m3/sec. The percentage of flood discharge plans that will be reduced by 10% of the total flood discharge plan in sub watershed observation is 1.28 m3/sec with reservoir volume of 4.608 m3 which will be fully charged for 1 hour. This will extend the flow time from the control point in Depok to the Manggarai waterway to approximately 5 hours.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
WATER QUALITY CHANGES IN HYPORHEIC FLOW AT THE AQUATIC-TERRESTRIAL INTERFACE OF A LARGER RIVER
Exchange between river water and groundwater in hyporheic flow at the aquatic-terrestrial interface can importantly affect water quality and aquatic habitat in the main channel of large rivers and at off-channel sites that include flowing and stagnant side channels. With tracer ...
NASA Astrophysics Data System (ADS)
Fan, Yifan; Hunt, Julian; Yin, Shi; Li, Yuguo
2018-03-01
The mean and random components of the velocity field at very low wind speeds in a convective boundary layer (CBL) over a wide urban area are dominated by large eddy structures—either turbulent plumes or puffs. In the mixed layer at either side of the edges of urban areas, local mean recirculating flows are generated by sharp horizontal temperature gradients. These recirculation regions also control the mean shear profile and the bent-over plumes across the mixed layer, extending from the edge to the center of the urban area. A simplified physical model was proposed to calculate the mean flow speed at the edges of urban areas. Water tank experiments were carried out to study the mean recirculating flow and turbulent plume structures. The mean speed at urban edges was measured by the particle image velocimetry (PIV), and the plume structures were visualized by the thermalchromic liquid crystal (TLC) sheets. The horizontal velocity calculated by the physical model at the urban edge agrees well with that measured in the water tank experiments, with a root mean square of 0.03. The experiments also show that the pattern of the mean flow over the urban area changes significantly if the shape of the heated area changes or if the form of the heated urban area becomes sub-divided, for example by the creation of nearby but separated "satellite cities." The convective flow over the square urban area is characterized as the diagonal inflow at the lower level and the side outflow at the upper level. The outflow of the small city can be drawn into the inflow region of the large city in the "satellite city" case. A conceptual analysis shows how these changes significantly affect the patterns of dispersion of pollutants in different types of urban areas.
Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis
NASA Astrophysics Data System (ADS)
Rathan, Swetha; Ankeny, Casey J.; Arjunon, Sivakkumar; Ferdous, Zannatul; Kumar, Sandeep; Fernandez Esmerats, Joan; Heath, Jack M.; Nerem, Robert M.; Yoganathan, Ajit P.; Jo, Hanjoong
2016-05-01
Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.
2016-07-01
considered. That is, it may be necessary to renew side channels according to a schedule to prevent them from filling with sediment and becoming terrestrial...maintain side channels as a restoration feature or to control their succession (i.e., prevent their loss through sedimentation ) have not been developed...features for maximum benefit? • How could advantage be taken of the existing sediment transport regime and flow pattern to maintain side channels or
Effects of remedial grouting on the ground-water flow system at Red Rock Dam near Pella, Iowa
Linhart, S. Mike; Schaap, Bryan D.
2001-01-01
Hydrographs, statistical analysis of waterlevel data, and water-chemistry data suggest that underseepage on the northeast side of the dam has been reduced but not completely eliminated. Some areas appear to have been affected to a greater degree and for a longer period of time than other areas. Future monitoring of water levels, water chemistry, and stable isotopes can aid in the evaluation of the long-term effectiveness of remedial grouting.
Lo, Men-Tzung; Peng, C.K.; Novak, Vera; Schmidt, Eric A.; Kumar, Ajay; Czosnyka, Marek
2009-01-01
Abstract Reliable and noninvasive assessment of cerebral blood flow regulation is a major challenge in acute care monitoring. This study assessed dynamics of flow regulation and its relationship to asymmetry of initial computed tomography (CT) scan using multimodal pressure flow (MMPF) analysis. Data of 27 patients (38 ± 15 years old) with traumatic brain injury (TBI) were analyzed. Patients were selected from bigger cohort according to criteria of having midline shift on initial CT scan and intact skull (no craniotomy or bone flap). The MMPF analysis was used to extract the oscillations in cerebral perfusion pressure (CPP) and blood flow velocity (BFV) signals at frequency of artificial ventilation, and to calculate the instantaneous phase difference between CPP and BFV oscillations. Mean CPP-BFV phase difference was used to quantify pressure and flow relationship. The TBI subjects had smaller mean BP-BFV phase shifts (left, 8.7 ± 9.6; right 10.2 ± 8.3 MCAs, mean ± SD) than values previously obtained in healthy subjects (left, 37.3 ± 7.6 degrees; right, 38.0 ± 8.9 degrees; p < 0.0001), suggesting impaired blood flow regulation after TBI. The difference in phase shift between CPP and BFV in the left and right side was strongly correlated to the midline shift (R = 0.78; p < 0.0001). These findings indicate that the MMPF method allows reliable assessment of alterations in pressure and flow relationship after TBI. Moreover, mean pressure-flow phase shift is sensitive to the displacement of midline of the brain, and may potentially serve as a marker of asymmetry of cerebral autoregulation. PMID:19196074
Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik
2015-02-17
Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Braun, M. Jack
1994-01-01
The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.
NASA Astrophysics Data System (ADS)
Evangelidis, C. P.
2017-12-01
The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.
Cil, Ahmet Said; Bozkurt, Murat; Kara Bozkurt, Duygu; Gok, Mustafa
2015-01-01
The aim of this study was to investigate the presence of persistent reflux flow on the first postoperative day using color Doppler sonography (CDS) in patients who had undergone sub-inguinal varicocelectomy, and to research the relationship between persistent reflux flow and recurrent varicocele. A total of 54 patients were included in the study. Ages of the patients were between 21 and 38 years (mean 27.3 ± 7.6). All patients were evaluated four times with CDS: preoperatively, first postoperative day, 3 months postoperative, and finally 6 months after the operation. Preoperative venous diameters were measured between 3 and 5.5 mm; mean vein diameters were 3.8 ± 0.7 mm for the left side and 3.4 ± 0.4 mm for the right side. Mean duration of reflux was 3.5 ± 0.3 seconds on the left side and 2.9 ± 0.7 seconds on the right side. First postoperative day persistent Valsalva-induced reflux flow was seen in 10 patients (18%). Mean venous diameter was measured 1.8 ± 0.9 mm. Three months after the operation, Valsalva-induced reflux flow was seen in two patients (3%) in whom reflux was not seen on the first postoperative day. After 6 months, venous diameters larger than 2 mm at rest and the occurrence of reflux during the Valsalva maneuver were considered to be a recurrence. Six months after the operation, 12 patients had recurrent varicocele. Detecting persistent reflux with CDS on the first postoperative day was found to be 85% sensitive and 100% specific for showing recurrence. Valsalva-induced persistent reflux flow investigated with CDS on the first postoperative day can be used to show success of the surgery and is also an indicator of recurrence in varicocelectomy patients.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
A SYSTEM FOR CONTINUOUS MEASUREMENT OF RADIOACTIVITY IN FLOWING STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapkin, E.; Gibbs, J.A.
1962-10-31
An apparatus for the determination of alpha or BETA radioactivity in either circulating liquid or gas streams was developed. Solid anthracene crystals are used. The detector consists of a Lucite light pipe coated with titanium dioxide and coupled to two photomultipliers which are in turn fed to appropriate coincidence type circuitry. The detection cell, which consists of a 9-mm OD glass tube with appropriate fittings on either end, was packed with anthracene crystals. A glass frit, or glass wool, was incorporated in the cell on the downstream side to contain the anthracene and a pledget of glass wool was placedmore » above the anthracene on the upstream side. Carbon-14 counting efficiency was found to be of the order of 50% with a coincident background from 100 divisions to infinity of less than 40 cpm at 900 v. Tritium counting efficiency was in the range of 7% and the integral background from 100 divisions to infinity was about 90 cpm at 1130 v. Discussion is also given on the electronics of the detector and the performance in closed flowing systems and gas analysis. (P.C.H.)« less
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanlon, Edward; Capece, John
Hendry County Sustainable Bio-Fuels Center (HCSBC) is introduced and its main components are explained. These primarily include (1) farming systems, (2) sustainability analysis, (3) economic analysis and (4) educational components. Each of these components is discussed in further details, main researchers and their responsibility areas and introduced. The main focus of this presentation is a new farming concept. The proposed new farming concept is an alternative to the current "two sides of the ditch" model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs tryingmore » to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture corporations during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Various pros and cons of the proposed agricultural eco-services are discussed - the advantages include flexibility for participating farmers to achieve environmental outcomes with reduced costs and using innovative incentives; the minuses include the fact that the potential markets are not developed yet or that existing regulations may prevent agricultural producers from selling their services.« less
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.
1993-01-01
Water tunnel tests were conducted on a NASP-type configuration to evaluate different pneumatic Forebody Vortex Control (FVC) methods. Flow visualization and yawing moment measurements were performed at angles of attack from 0 deg to 30 deg. The pneumatic techniques tested included jet and slot blowing. In general, blowing can be used efficiently to manipulate the forebody vortices at angles of attack greater than 20 deg. These vortices are naturally symmetric up to alpha = 25 deg and asymmetric between 25 deg and 30 deg angle of attack. Results indicate that tangential aft jet blowing is the most promising method for this configuration. Aft jet blowing produces a yawing moment towards the blowing side and the trends with blowing rate are well behaved. The size of the nozzle is not the dominant factor in the blowing process; the change in the blowing 'momentum,' i.e., the product of the mass flow rate and the velocity of the jet, appears to be the important parameter in the water tunnel (incompressible and unchoked flow at the nozzle exit). Forward jet blowing is very unpredictable and sensitive to mass flow rate changes. Slot blowing (with the exception of very low blowing rates) acts as a flow 'separator'; it promotes early separation on the blow side, producing a yawing moment toward the non-blowing side for the C(sub mu) range investigated.
2012-11-13
This image from NASA 2001 Mars Odyssey spacecraft of Daedalia Planum shows the termination or end of a single flow. In this case it is the end of the brighter/rougher flow on the right side of the image.
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2012-05-15
A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities
NASA Astrophysics Data System (ADS)
Khojah, Reem; di Carlo, Dino
2017-11-01
New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.
Wang, Jian; Wang, Weici; Jin, Bi; Zhang, Yanrong; Xu, Ping; Xiang, Feixiang; Zheng, Yi; Chen, Juan; Sheng, Shi; Ouyang, Chenxi; Li, Yiqing
2016-01-01
Purpose. To investigate the alternation in cerebral and ocular blood flow velocity (BFV) in patients of carotid stenosis (CS) with or without contralateral carotid occlusion (CO) early after carotid endarterectomy (CEA). Patients and Methods. Nineteen patients underwent CEA for ≥50% CS. Fourteen patients had the unilateral CS, and five patients had the ipsilateral CS and the contralateral CO. Transcranial Doppler (TCD) and Color Doppler Imaging (CDI) were performed before and early after CEA. Results. In patients with unilateral CS, significant improvements in BFV were observed in anterior cerebral artery (ACA) and middle cerebral artery (MCA) on the ipsilateral side after CEA. In patients of ipsilateral CS and contralateral CO, significant improvements in BFV were observed in the ACA and MCA not only on the ipsilateral side but also on the contralateral side postoperatively. The ipsilateral ophthalmic artery (OA) retrograde flows in two patients were recovered to anterograde direction following CEA. The BFV in short posterior ciliary artery (SPCA) of the ipsilateral side significantly increased postoperatively irrespective of the presence of contralateral CO. Conclusions. CEA improved cerebral anterior circulation hemodynamics especially in patients of unilateral CS and contralateral CO, normalized the OA reverse flow, and increased the blood perfusion of SPCA.
Brown, Larry R.; Panshin, Sandra Y.; Kratzer, Charles R.; Zamora, Celia; Gronberg, JoAnn M.
2004-01-01
Water samples were collected from 22 drainage basins for analysis of 48 dissolved pesticides during summer flow conditions in 1994 and 2001. Of the 48 pesticides, 31 were reported applied in the basin in the 28 days preceding the June 1994 sampling, 25 in the 28 days preceding the June 2001 sampling, and 24 in the 28 days preceding the August 2001 sampling. The number of dissolved pesticides detected was similar among sampling periods: 26 were detected in June 1994, 28 in June 2001, and 27 in August 2001. Concentrations of chlorpyrifos exceeded the California criterion for the protection of aquatic life from acute exposure at six sites in June 1994 and at five sites in June 2001. There was a single exceedance of the criterion for diazinon in June 1994. The number of pesticides applied in tributary basins was highly correlated with basin area during each sampling period (Spearman's r = 0.85, 0.70, and 0.84 in June 1994, June 2001, and August 2001, respectively, and p < 0.01 in all cases). Larger areas likely include a wider variety of crops, resulting in more varied pesticide use. Jaccard's similarities, cluster analysis, principal components analysis, and instantaneous load calculations generally indicate that west-side tributary basins were different from east-side tributary basins. In general, west-side basins had higher concentrations, instantaneous loads, and instantaneous yields of dissolved pesticides than east-side basins, although there were a number of exceptions. These differences may be related to a number of factors, including differences in basin size, soil texture, land use, irrigation practices, and stream discharge.
Weininger, Ulrich; Respondek, Michal; Akke, Mikael
2012-09-01
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.
Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012)
NASA Astrophysics Data System (ADS)
Lee, Jung-Tae; Ko, Kyeong-Yeon; Lee, Dong-In; You, Cheol-Hwan; Liou, Yu-Chieng
2018-03-01
Typhoon Khanun caused over 226 mm of accumulated rainfall for 6 h (0700 to 1300 UTC), localized around the summit of Mt. Halla (height 1950 m), with a slanted rainfall pattern to the northeast. In this study, we investigated the enhancement mechanism for precipitation near the mountains as the typhoon passed over Jeju Island via dual-Doppler radar analysis and simple trajectory of passive tracers using a retrieved wind field. The analysis of vertical profiles of the mountain region show marked features matching the geophysical conditions. In the central mountain region, a strong wind (≥ 7 m s- 1) helps to lift low-level air up the mountain. The time taken for lifting is longer than the theoretical time required for raindrop growth via condensation. The falling particles (seeder) from the upper cloud were also one of the reasons for an increase in rainfall via the accretion process from uplifted cloud water (feeder). The lifted air and falling particles both contributed to the heavy rainfall in the central region. In contrast, on the leeward side, the seeder-feeder mechanism was important in the formation of strong radar reflectivity. The snow particles (above 5 km) were accelerated by strong downward winds (≤-6 m s- 1). Meanwhile, the nonlinear jumping flow (hydraulic jump) raised feeders (shifted from the windward side) to the upper level where particles fall. To support these development processes, a numerical simulation using cloud-resolving model theoretically carried out. The accreting of hydrometeors may be one of the key reasons why the lee side has strong radar reflectivity, and a lee side weighted rainfall pattern even though lee side includes no strong upward air motion.
Wind Tunnel Results of Pneumatic Forebody Vortex Control Using Rectangular Slots a Chined Forebody
NASA Technical Reports Server (NTRS)
Alexander, Michael; Meyn, Larry A.
1994-01-01
A subsonic wind tunnel investigation of pneumatic vortex flow control on a chined forebody using slots was accomplished at a dynamic pressure of 50 psf resulting in a R(n)/ft of 1.3 x 10(exp 6). Data were acquired from angles of attack ranging from -4deg to +34deg at side slips of +0.4deg and +10.4deg. The test article used in this study was the 10% scale Fighter Lift and Control (FLAC) advanced diamond winged, vee-tailed fighter configuration. Three different slot blowing concepts were evaluated; outward, downward, and tangential with ail blowing accomplished asymmetrically. The results of three different mass flows (0.067, 0.13, and 0.26 lbm/s; C(sub mu)'s of less than or equal to 0.006, 0.011. and 0.022 respectively) were analyzed and reported. Test data are presented on the effects of mass flows, slot lengths and positions and blowing concepts on yawing moment and side force generation. Results from this study indicate that the outward and downward blowing slots developed yawing moment and side force increments in the direction opposite of the blowing side while the tangential blowing slots generated yawing moment and side force increments in the direction towards the blowing side. The outward and downward blowing slots typically produced positive pitching moment increments while the tangential blowing slots typically generated negative pitching moment increments. The slot blowing nearest the forebody apex was most effective at generating the largest increments and as the slot was moved aft or increased in length, its effectiveness at generating forces and moments diminished.
Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon
2013-01-01
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040
Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2017-11-01
In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.
NASA Astrophysics Data System (ADS)
Mekanik, Abolghasem; Soleimani, Mohsen
2007-11-01
Wind effect on natural draught cooling towers has a very complex physics. The fluid flow and temperature distribution around and in a single and two adjacent (tandem and side by side) dry-cooling towers under cross wind are studied numerically in the present work. Cross-wind can significantly reduce cooling efficiency of natural-draft dry-cooling towers, and the adjacent towers can affect the cooling efficiency of both. In this paper we will present a complex computational model involving more than 750,000 finite volume cells under precisely defined boundary condition. Since the flow is turbulent, the standard k-ɛ turbulence model is used. The numerical results are used to estimate the heat transfer between radiators of the tower and air surrounding it. The numerical simulation explained the main reason for decline of the thermo-dynamical performance of dry-cooling tower under cross wind. In this paper, the incompressible fluid flow is simulated, and the flow is assumed steady and three-dimensional.
Research on the Stress and Material Flow with Single Particle—Simulations and Experiments
NASA Astrophysics Data System (ADS)
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-04-01
The scratching process of particle is a complex material removal process involving cutting, plowing, and rubbing. In this study, scratch experiments under different loads are performed on a multifunctional tester for material surface. Natural diamond and Fe-Cr-Ni stainless steel are chosen as indenter and workpiece material, respectively. The cutting depth and side flow height of scratch are measured using a white light interferometer. The finite element model is developed, and the numerical simulation of scratching is conducted using AdvantEdgeTM. The simulated forces and side flow height under different cutting depths correspond well with experimental results, validating the accuracy of the scratching simulation. The mises stress distribution of the particle is presented, with the maximum stress occurring inside the particle rather than on the surface. The pressure distribution of the particle is also given, and results show that the maximum pressure occurs on the contact surface of particle and workpiece. The material flow contour is presented, and material flow direction and velocity magnitude are analyzed.
Numerical Simulation of Dual-Mode Scramjet Combustors
NASA Technical Reports Server (NTRS)
Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.
2000-01-01
Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
Staub, F.W.; Willett, F.T.
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.
System and method for measuring permeability of materials
Hallman, Jr., Russell Louis; Renner, Michael John
2013-07-09
Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Material permeance measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN
2012-05-08
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Staub, Fred Wolf; Willett, Fred Thomas
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
Staub, Fred Wolf; Willett, Fred Thomas
2000-01-01
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.
2001-01-01
A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.
Shaking video stabilization with content completion
NASA Astrophysics Data System (ADS)
Peng, Yi; Ye, Qixiang; Liu, Yanmei; Jiao, Jianbin
2009-01-01
A new stabilization algorithm to counterbalance the shaking motion in a video based on classical Kandade-Lucas- Tomasi (KLT) method is presented in this paper. Feature points are evaluated with law of large numbers and clustering algorithm to reduce the side effect of moving foreground. Analysis on the change of motion direction is also carried out to detect the existence of shaking. For video clips with detected shaking, an affine transformation is performed to warp the current frame to the reference one. In addition, the missing content of a frame during the stabilization is completed with optical flow analysis and mosaicking operation. Experiments on video clips demonstrate the effectiveness of the proposed algorithm.
Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP
NASA Astrophysics Data System (ADS)
Thind, Harwinder
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.
Turbine blades and systems with forward blowing slots
Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul
2015-09-15
A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.
40 CFR 1065.345 - Vacuum-side leak verification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...
40 CFR 1065.345 - Vacuum-side leak verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...
40 CFR 1065.345 - Vacuum-side leak verification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...
40 CFR 1065.345 - Vacuum-side leak verification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...
40 CFR 1065.345 - Vacuum-side leak verification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... zero flow, or by detecting the dilution of a known concentration of span gas when it flows through the.... Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature... pressure and optionally temperature. (4) Calculate the leak flow rate based on an assumed value of zero for...
KANNO, Nobuyuki; HORI, Yasutomo; HIDAKA, Yuichi; CHIKAZAWA, Seishiro; KANAI, Kazutaka; HOSHI, Fumio; ITOH, Naoyuki
2015-01-01
The clinical utility of plasma natriuretic peptide concentrations in dogs with right-sided congestive heart failure (CHF) remains unclear. We investigated whether plasma levels of atrial natriuretic peptide (ANP) and N-terminal pro B-type natriuretic peptide (NT-proBNP) are useful for assessing the congestive signs of right-sided heart failure in dogs. This retrospective study enrolled 16 healthy dogs and 51 untreated dogs with presence (n=28) or absence (n=23) of right-sided CHF. Medical records of physical examinations, thoracic radiography and echocardiography were reviewed. The plasma concentration of canine ANP was measured with a chemiluminescent enzyme immunoassay. Plasma NT-proBNP concentrations were determined using an enzyme immunoassay. Plasma ANP and NT-proBNP concentrations in dogs with right-sided CHF were significantly higher than in healthy controls and those without right-sided CHF. The plasma NT-proBNP concentration >3,003 pmol/l used to identify right-sided CHF had a sensitivity of 88.5% and specificity of 90.3%. An area under the ROC curve (AUC) was 0.93. The AUC for NT-proBNP was significantly higher than the AUCs for the cardiothoracic ratio, vertebral heart score, ratio of right ventricular end-diastolic internal diameter to body surface area, tricuspid late diastolic flow and ratio of the velocities of tricuspid early to late diastolic flow. These results suggest that plasma ANP and NT-proBNP concentrations increase markedly in dogs with right-sided CHF. Particularly, NT-proBNP is simple and helpful biomarkers to assess the right-sided CHF. PMID:26607133
Pitot-pressure distributions of the flow field of a delta-wing orbiter
NASA Technical Reports Server (NTRS)
Cleary, J. W.
1972-01-01
Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.
Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation
Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.
2012-01-01
An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189
Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.
Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G
2012-11-02
An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.
Integrated fountain effect pump device for fluid management at low gravity
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frank, D. J.
1988-01-01
A new device for fluid management at low gravity is described. The system is basically the same as the enclosed capillary device using screens, in which the screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping of He II; in this device, no downstream pump is needed. The plugs in contact with liquid He on both sides act as a fountain-effect pumps (FEPs), while plugs exposed to vapor on one side behave as vapor-liquid phase separators (VLPSs). The total net rate of He II transfer into the receiving tank equals the mass flow rate through the FEP plugs minus the liquid loss from the VLPS plugs. The results of the performance analysis of this integrated FEP device are presented together with its schematic diagram.
NASA Technical Reports Server (NTRS)
Luidens, Roger W; Simon, Paul C
1950-01-01
Experimental investigation of flow about a slender body of revolution (NACA RM-10 missile) aligned and inclined to a supersonic stream was conducted at Mach numbers from 1.49 to 1.98 at a Reynolds number of approximately 30,000,000. Boundary-layer measurements at zero angle of attack are correlated with subsonic formulations for predicting boundary-layer thickness and profile. Comparison of pressure coefficients predicted by theory with experimental values showed close agreement at zero angle of attack and angle of attack except over the aft leeward side of body. At angle of attack, pitot pressure measurements in plane of model base indicated a pair of symmetrically disposed vortices on leeward side of body.
The Janus-Faced Role of Gambling Flow in Addiction Issues.
Trivedi, Rohit H; Teichert, Thorsten
2017-03-01
Flow experience has been widely investigated in experiential activities such as sports, the performing arts, gaming, and Internet usage. Most studies focus on the positive aspects of flow experience and its effect on performance. In stark contrast, gambling research focusing on the negative side of addiction lacks an in-depth investigation of gamblers' (positive) flow encounters. This separation of research lines seems out of place given that recent research indicates connections between flow and addiction. Joining both constructs in a causal-effects model helps one gain a better understanding of their relationship and its contingencies. This article empirically investigates whether and how it is possible to observe a "Janus face" of flow with its various sub-dimensions in online gambling. Empirical data were collected from 500 online gamblers by applying a structured questionnaire with established scales. The data were analyzed with a confirmatory factor analysis and a double-hurdle model to separate casual gamblers who are unsusceptible to any addiction issues from gamblers affected by initiatory addiction issues. The findings indicate that online gambling addiction is negatively influenced by two sub-dimensions of flow experience, namely a sense of control and concentration on the task at hand, whereas it is enhanced by a transformation of time and autotelic experience.
Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders
2016-01-01
Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605
NASA Astrophysics Data System (ADS)
Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon
2017-06-01
In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.
Design and Experimental Performance of a Two Stage Partial Admission Turbine, Task B.1/B.4
NASA Technical Reports Server (NTRS)
Sutton, R. F.; Boynton, J. L.; Akian, R. A.; Shea, Dan; Roschak, Edmund; Rojas, Lou; Orr, Linsey; Davis, Linda; King, Brad; Bubel, Bill
1992-01-01
A three-inch mean diameter, two-stage turbine with partial admission in each stage was experimentally investigated over a range of admissions and angular orientations of admission arcs. Three configurations were tested in which first stage admission varied from 37.4 percent (10 of 29 passages open, 5 per side) to 6.9 percent (2 open, 1 per side). Corresponding second stage admissions were 45.2 percent (14 of 31 passages open, 7 per side) and 12.9 percent (4 open, 2 per side). Angular positions of the second stage admission arcs with respect to the first stage varied over a range of 70 degrees. Design and off-design efficiency and flow characteristics for the three configurations are presented. The results indicated that peak efficiency and the corresponding isentropic velocity ratio decreased as the arcs of admission were decreased. Both efficiency and flow characteristics were sensitive to the second stage nozzle orientation angles.
Hydraulic actuator for an electric circuit breaker
Imam, I.
1983-05-17
This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston. 3 figs.
Hydraulic actuator for an electric circuit breaker
Imam, Imdad [Colonie, NY
1983-01-01
This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston.
Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
NASA Astrophysics Data System (ADS)
Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders
2016-12-01
Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.
Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders
2016-12-14
Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.
Oscillating side-branch enhancements of thermoacoustic heat exchangers
Swift, Gregory W.
2003-05-13
A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.
Unsteady jet flow computation towards noise prediction
NASA Technical Reports Server (NTRS)
Soh, Woo-Yung
1994-01-01
An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.
Overexpanded viscous supersonic jet interacting with a unilateral barrier
NASA Astrophysics Data System (ADS)
Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.
1986-07-01
The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.
Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M
2017-10-13
Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.