Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
ng, Ten-See
2005-01-01
Nozzle side loads are potentially detrimental to the integrity and life of almost all launch vehicles. the lack of a detailed prediction capability results in reducing life and increased weight for reusable nozzle systems. A clear understanding of the mechanism that contribute to side loads during engine startup, shutdown, and steady-state operations must be established. A CFD based predictive tool must be developed to aid the understanding of side load physics and development of future reusable engine.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
NASA Astrophysics Data System (ADS)
Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda
2014-05-01
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.
2007-11-01
accelerated healing patterns in the loaded specimens. Periosteal callus formation appears more robust with more chondrocytes present in loaded... periosteal callus formation on one side of the fracture gap. It is hypothesized that callus development may occur first on the medial side of the femoral...Figure 10: Comparison of periosteal callus formation (trichrome stain) between a loaded limb at section levels 1 (a), 3 (b), and 5 (c), and
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.
Physical load handling and listening comprehension effects on balance control.
Qu, Xingda
2010-12-01
The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.
Optimising technical skills and physical loading in small-sided basketball games.
Klusemann, Markus J; Pyne, David B; Foster, Carl; Drinkwater, Eric J
2012-01-01
Differences in physiological, physical, and technical demands of small-sided basketball games related to the number of players, court size, and work-to-rest ratios are not well characterised. A controlled trial was conducted to compare the influence of number of players (2v2/4v4), court size (half/full court) and work-to-rest ratios (4x2.5 min/2x5 min) on the demands of small-sided games. Sixteen elite male and female junior players (aged 15-19 years) completed eight variations of a small-sided game in randomised order over a six-week period. Heart rate responses and rating of perceived exertion (RPE) were measured to assess the physiological load. Movement patterns and technical elements were assessed by video analysis. There were ∼60% more technical elements in 2v2 and ∼20% more in half court games. Heart rate (86 ± 4% & 83 ± 5% of maximum; mean ± SD) and RPE (8 ± 2 & 6 ± 2; scale 1-10) were moderately higher in 2v2 than 4v4 small-sided games, respectively. The 2v2 format elicited substantially more sprints (36 ±12%; mean ±90% confidence limits) and high intensity shuffling (75 ±17%) than 4v4. Full court games required substantially more jogging (9 ±6%) compared to half court games. Fewer players in small-sided basketball games substantially increases the technical, physiological and physical demands.
A methodology to model physical contact between structural components in NASTRAN
NASA Technical Reports Server (NTRS)
Prabhu, Annappa A.
1993-01-01
Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
The impact of working technique on physical loads - an exposure profile among newspaper editors.
Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E
2003-05-15
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Castellano, Julen; Casamichana, David; Dellal, Alexandre
2013-05-01
The aim of the study was to examine the extent to which changing the game format (possession play vs. regulation goals and goalkeepers vs. small goals only) and the number of players (3 vs. 3, 5 vs. 5 and 7 vs. 7) influenced the physiological and physical demands of small-sided games (SSGs) in soccer in semiprofessional players. Fourteen semiprofessional male soccer players were monitored with global positioning system and heart rate devices. Heart rate, player load, distance covered, running speed, and the number of accelerations were recorded for 9 different SSGs. The results show that changes both in game format and the number of players affect the players' physiological and physical demands. Possession play places greater physiological and physical demands on players, although reducing the number of players only increases the physiological load. In the 7 vs. 7 games, changing the game format did not alter the heart rate responses. Finally, in the possession play format, changing the number of players did not produce significant differences in heart rate responses, although physical demands did decrease in line with a reduction in the number of players. These results should help coaches to understand how modifying different aspects of SSGs has a differential effect on the players' physiological and physical demands. Moreover, coaches in semiprofessional and amateur teams have now consistent information to design and optimize their training time in mixing the technical, tactical, and physical aspects.
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1984-01-01
Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.
14 CFR 23.363 - Side load on engine mount.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...
14 CFR 23.363 - Side load on engine mount.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...
14 CFR 23.363 - Side load on engine mount.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...
14 CFR 23.363 - Side load on engine mount.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...
14 CFR 23.363 - Side load on engine mount.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...
Biomechanical evaluation of various suture configurations in side-to-side tenorrhaphy.
Wagner, Emilio; Ortiz, Cristian; Wagner, Pablo; Guzman, Rodrigo; Ahumada, Ximena; Maffulli, Nicola
2014-02-05
Side-to-side tenorrhaphy is increasingly used, but its mechanical performance has not been studied. Two porcine flexor digitorum tendon segments of equal length (8 cm) and thickness (1 cm) were placed side by side. Eight tenorrhaphies (involving sixteen tendons) were performed with each of four suture techniques (running locked, simple eight, vertical mattress, and pulley suture). The resulting constructs underwent cyclic loading on a tensile testing machine, followed by monotonically increasing tensile load if failure during cyclic loading did not occur. Clamps secured the tendons on each side of the repair, and specimens were mounted vertically. Cyclic loading varied between 15 N and 35 N, with a distension rate of 1 mm/sec. Cyclic loading strength was determined by applying a force of 70 N. The cause of failure and tendon distension during loading were recorded. All failures occurred in the monotonic loading phase and resulted from tendon stripping. No suture or knot failure was observed. The mean loads resisted by the configurations ranged from 138 to 398 N. The mean load to failure, maximum load resisted prior to 1 cm of distension, and load resisted at 1 cm of distension were significantly lower for the vertical mattress suture group than for any of the other three groups (p < 0.031). All four groups sustained loads well above the physiologic loads expected to occur in tendons in the foot and ankle (e.g., in tendon transfer for tibialis posterior tendon insufficiency). None of the four side-to-side configurations distended appreciably during the cyclic loading phase. The vertical mattress suture configuration appeared to be weaker than the other configurations. For surgeons who advocate immediate loading or motion of a side-to-side tendon repair, a pulley, running locked, or simple eight suture technique appears to provide a larger safety margin compared with a vertical mattress suture technique.
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...
Youssef, Yassar; Lee, Gyusung; Godinez, Carlos; Sutton, Erica; Klein, Rosemary V; George, Ivan M; Seagull, F Jacob; Park, Adrian
2011-07-01
This study compares surgical techniques and surgeon's standing position during laparoscopic cholecystectomy (LC), investigating each with respect to surgeons' learning, performance, and ergonomics. Little homogeneity exists in LC performance and training. Variations in standing position (side-standing technique vs. between-standing technique) and hand technique (one-handed vs. two-handed) exist. Thirty-two LC procedures performed on a virtual reality simulator were video-recorded and analyzed. Each subject performed four different procedures: one-handed/side-standing, one-handed/between-standing, two-handed/side-standing, and two-handed/between-standing. Physical ergonomics were evaluated using Rapid Upper Limb Assessment (RULA). Mental workload assessment was acquired with the National Aeronautics and Space Administration-Task Load Index (NASA-TLX). Virtual reality (VR) simulator-generated performance evaluation and a subjective survey were analyzed. RULA scores were consistently lower (indicating better ergonomics) for the between-standing technique and higher (indicating worse ergonomics) for the side-standing technique, regardless of whether one- or two-handed. Anatomical scores overall showed side-standing to have a detrimental effect on the upper arms and trunk. The NASA-TLX showed significant association between the side-standing position and high physical demand, effort, and frustration (p<0.05). The two-handed technique in the side-standing position required more effort than the one-handed (p<0.05). No difference in operative time or complication rate was demonstrated among the four procedures. The two-handed/between-standing method was chosen as the best procedure to teach and standardize. Laparoscopic cholecystectomy poses a risk of physical injury to the surgeon. As LC is currently commonly performed in the United States, the left side-standing position may lead to increased physical demand and effort, resulting in ergonomically unsound conditions for the surgeon. Though further investigations should be conducted, adopting the between-standing position deserves serious consideration as it may be the best short-term ergonomic alternative.
Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene
2015-11-01
Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.
Nozzle Side Load Testing and Analysis at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2009-01-01
Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.
2014-01-31
Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generatormore » and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.« less
14 CFR 29.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...
14 CFR 29.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...
14 CFR 25.485 - Side load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...
14 CFR 27.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...
14 CFR 27.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...
Sea level side loads in high-area-ratio rocket engines
NASA Technical Reports Server (NTRS)
Nave, L. H.; Coffey, G. A.
1973-01-01
An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.
NASA Technical Reports Server (NTRS)
Holland, W.
1974-01-01
This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2010-01-01
Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.
14 CFR 29.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
14 CFR 29.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
14 CFR 27.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
14 CFR 27.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
14 CFR 27.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
14 CFR 29.485 - Lateral drift landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...
Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling
NASA Technical Reports Server (NTRS)
Braman, K. E.; Ruf, J. H.
2015-01-01
Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.
Ammunition Loading and Firing Test Pretest Physical Conditioning of Female Soldier Participants
1978-10-01
appear to be a significant improvement considering that Cooper’s values are based upon women running it, shorts and tennis shoes as opposed to the Ss who...machine. of the other, facing machine between handles. 2. Grasp lift handles. 2. Squat down, bending at knees and hips, and 3. "Pin" elbows to your side
Resistance of equine tibiae and radii to side impact loads.
Piskoty, G; Jäggin, S; Michel, S A; Weisse, B; Terrasi, G P; Fürst, A
2012-11-01
There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≈ 0.926 · v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Thapa, Mahendra Bahadur
Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.
Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers
NASA Astrophysics Data System (ADS)
Shrestha, Binita; Kühn, Martin
2016-09-01
The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.
Dynamic Response of the Hybrid III 3 Year Old Dummy Head and Neck During Side Air Bag Loading
Duma, Stefan M.; Crandall, Jeff R.; Pilkey, Walter D.; Seki, Kazuhiro; Aoki, Takashi
1998-01-01
This paper presents the results from fourteen (n = 14) tests designed to evaluate the response and injury potential of a Hybrid III 3 year old dummy subject to loading by a deploying seat mounted side air bag. An instrumented Hybrid III 3 year old dummy was used for tests in two different occupant positions chosen to maximize head and neck loading. Four seat mounted thoracic side air bags were used that varied only in the level of inflator output. NHTSA’s neck injury criteria for complex loading, referred to as Nij, was modified to include moment values for both anterioposterior and lateral directions. The results of this testing indicate that side air bag loading can result in forces and moments approaching injury threshold values. While there is considerable uncertainty as to the validity of published injury criteria due to the lack of child biomechanical data, this study demonstrates the sensitivity of child response to initial position which may provide insight into placement and geometry of side airbag systems. Furthermore, the data indicates a relationship between airbag inflator properties and child dummy response for a given airbag geometry. Recently, automobile manufacturers have begun implementing side air bags as a safety feature to mitigate injuries resulting from side impact collisions. Unlike the case for the passenger side air bag, the injury potential to an out-of-position child in side airbag loading has not been presented in the literature. The purpose of this research is to evaluate the response of a Hybrid III 3 year old dummy subject to loading by a deploying side air bag.
The relationship between independent transfer skills and upper limb kinetics in wheelchair users.
Tsai, Chung-Ying; Hogaboom, Nathan S; Boninger, Michael L; Koontz, Alicia M
2014-01-01
Transfers are one of the most physically demanding wheelchair activities. The purpose of this study was to determine if using proper transfer skills as measured by the Transfer Assessment Instrument (TAI) is associated with reduced loading on the upper extremities. Twenty-three wheelchair users performed transfers to a level-height bench while a series of forces plates, load cells, and a motion capture system recorded the biomechanics of their natural transferring techniques. Their transfer skills were simultaneously evaluated by two study clinicians using the TAI. Logistic regression and multiple linear regression models were used to determine the relationships between TAI scores and the kinetic variables on both arms across all joints. The results showed that the TAI measured transfer skills were closely associated with the magnitude and timing of joint moments (P < .02, model R(2) values ranged from 0.27 to 0.79). Proper completion of the skills which targeted the trailing arm was associated with lower average resultant moments and rates of rise of resultant moments at the trailing shoulder and/or elbow. Some skills involving the leading side had the effect of increasing the magnitude or rate loading on the leading side. Knowledge of the kinetic outcomes associated with each skill may help users to achieve the best load-relieving effects for their upper extremities.
T-Craft Seabase Ramp Loads Model Test Data Report
2010-12-01
INTRODUCTION 1 TEST CONDITION MATRIX 2 MODEL DESCRIPTIONS 9 LMSR Model 15 Ramp Models 17 MODEL TEST SETUP 18 Side-by-Side Hull Configuration 19... INTRODUCTION The Office of Naval Research (ONR) sponsored a multiple bodied seakeeping model test designed to investigate vessel motions and loads on the hinge...C. 3. Side-by-Side configuration 137 Ramp Load cell 1.88 27.49 -CG ft I ^ -Hinged Connection 3.00 from CL to jauge • oad ce LMSR
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
14 CFR 27.505 - Ski landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...
Changing ecosystem response to nitrogen load into Buzzards Bay, MA
NASA Astrophysics Data System (ADS)
Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.
2016-02-01
Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).
Topological mechanical metamaterials have perfectly directional bulk response
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb
The elastic response of typical materials to a local load is stress and strain in all directions. Here, we show contrariwise that mechanical frames with balanced numbers of constraints and degrees of freedom (the ''Maxwell'' condition) can experience stress and/or strain on only one side of a load. Kane and Lubensky showed, in a recent, seminal work, that such systems possess a topologically nontrivial phonon band structure corresponding to the electronic modes of topological insulators. Applying bulk-boundary correspondence, they demonstrated a signature physical consequence: the shifting of zero modes resultant from missing bonds from one edge to another. We now show that the same topological invariant governs such a system's bulk response: when bonds are swollen at one point the lattice does not distort evenly around it but instead only on one side dictated by the topological polarization. Similarly, when general forces are applied to a polarized lattice tension is induced in bonds only on one side of the applied force. Hence, topological polarization represents a sharp and robust way to direct force and motion and the response (Green's) function is a fundamental bulk signature of topological polarization. Bethe/KIC Fellowship, and the National Science Foundation Grant No. NSF DMR- 1308089.
16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER ...
16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER BARS AND ORIGINAL SHIPLAP SIDING - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba
2017-12-01
The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.
A Hierarchical Framework for Demand-Side Frequency Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moya, Christian; Zhang, Wei; Lian, Jianming
2014-06-02
With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines themore » optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.« less
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis.
Alfredson, H; Pietilä, T; Jonsson, P; Lorentzon, R
1998-01-01
We prospectively studied the effect of heavy-load eccentric calf muscle training in 15 recreational athletes (12 men and 3 women; mean age, 44.3 +/- 7.0 years) who had the diagnosis of chronic Achilles tendinosis (degenerative changes) with a long duration of symptoms despite conventional nonsurgical treatment. Calf muscle strength and the amount of pain during activity (recorded on a visual analog scale) were measured before onset of training and after 12 weeks of eccentric training. At week 0, all patients had Achilles tendon pain not allowing running activity, and there was significantly lower eccentric and concentric calf muscle strength on the injured compared with the noninjured side. After the 12-week training period, all 15 patients were back at their preinjury levels with full running activity. There was a significant decrease in pain during activity, and the calf muscle strength on the injured side had increased significantly and did not differ significantly from that of the noninjured side. A comparison group of 15 recreational athletes with the same diagnosis and a long duration of symptoms had been treated conventionally, i.e., rest, nonsteroidal antiinflammatory drugs, changes of shoes or orthoses, physical therapy, and in all cases also with ordinary training programs. In no case was the conventional treatment successful, and all patients were ultimately treated surgically. Our treatment model with heavy-load eccentric calf muscle training has a very good short-term effect on athletes in their early forties.
The effect of linear spring number at side load of McPherson suspension in electric city car
NASA Astrophysics Data System (ADS)
Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.
2017-01-01
The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.
The Relationship between Independent Transfer Skills and Upper Limb Kinetics in Wheelchair Users
Boninger, Michael L.; Koontz, Alicia M.
2014-01-01
Transfers are one of the most physically demanding wheelchair activities. The purpose of this study was to determine if using proper transfer skills as measured by the Transfer Assessment Instrument (TAI) is associated with reduced loading on the upper extremities. Twenty-three wheelchair users performed transfers to a level-height bench while a series of forces plates, load cells, and a motion capture system recorded the biomechanics of their natural transferring techniques. Their transfer skills were simultaneously evaluated by two study clinicians using the TAI. Logistic regression and multiple linear regression models were used to determine the relationships between TAI scores and the kinetic variables on both arms across all joints. The results showed that the TAI measured transfer skills were closely associated with the magnitude and timing of joint moments (P < .02, model R2 values ranged from 0.27 to 0.79). Proper completion of the skills which targeted the trailing arm was associated with lower average resultant moments and rates of rise of resultant moments at the trailing shoulder and/or elbow. Some skills involving the leading side had the effect of increasing the magnitude or rate loading on the leading side. Knowledge of the kinetic outcomes associated with each skill may help users to achieve the best load-relieving effects for their upper extremities. PMID:25162039
Finite element solution of torsion and other 2-D Poisson equations
NASA Technical Reports Server (NTRS)
Everstine, G. C.
1982-01-01
The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.
Iturricastillo, Aitor; Granados, Cristina; Los Arcos, Asier; Yanci, Javier
2017-04-01
The aim of the present study was to analyse the training load in wheelchair basketball small-sided games and determine the relationship between heart rate (HR)-based training load and perceived exertion (RPE)-based training load methods among small-sided games bouts. HR-based measurements of training load included Edwards' training load and Stagno's training impulses (TRIMP MOD ) while RPE-based training load measurements included cardiopulmonary (session RPEres) and muscular (session RPEmus) values. Data were collected from 12 wheelchair basketball players during five consecutive weeks. The total load for the small-sided games sessions was 67.5 ± 6.7 and 55.3 ± 12.5 AU in HR-based training load (Edwards' training load and TRIMP MOD ), while the RPE-based training loads were 99.3 ± 26.9 (session RPEres) and 100.8 ± 31.2 AU (session RPEmus). Bout-to-bout analysis identified greater session RPEmus in the third [P < 0.05; effect size (ES) = 0.66, moderate] and fourth bouts (P < 0.05; ES = 0.64, moderate) than in the first bout, but other measures did not differ. Mean correlations indicated a trivial and small relationship among HR-based and RPE-based training loads. It is suggested that HR-based and RPE-based training loads provide different information, but these two methods could be complementary because one method could help us to understand the limitations of the other.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Nagornev, S N; Kalinkin, S V; Bobrovnitskiĭ, I P; Sytnik, S I; Petrova, T V; Orlova, T A
2000-01-01
The model of static physical loading (SPL) was used to study the biochemical effects of graded static tension and potentiality for pharmacological mobilization of physical endurance with participation of male volunteers. A close pathogenetic linkage between the established metabolic effects of the model and their adaptive adequacy to the stressing factor show that there is every reason to arrange the observed shifts in a SPL syndrome. The SPL syndrome is primarily manifested by exaggerated tone of the adrenoactive structures, inhibition of insulin production by the pancreas, activation of the neuropeptide anti-stress mechanisms, predominant utilization of the lipid substrate in energy production, intensification of protein catabolism, and increase in myocyte membrane permeability due to energy deficit. The investigation demonstrated that improvement of static physical endurance can be attained with a mobilizing stimulator (sidnocarb) and a combination of sidnocarb with a nonmediatory preparation (bemytil). This pharmacological combination levels side-effects of exorbitant activation of the adrenal system. On the contrary, a metabolic vitamin-microelements complex ("cocktail C") perceivably enhances SPL endurance (sidnocarb dose was lowered in three times), possesses the stress-protective effect, the ability to moderate the intensity of free (uninvolved in phosphorylation) oxidation and to optimize energy-plastic processes with predominant utilization of the lipid substrate.
Effect of same-sided and cross-body load carriage on 3D back shape in young adults.
O'Shea, C; Bettany-Saltikov, J A; Warren, J G
2006-01-01
Regular carriage of heavy loads such as backpacks, satchels and mailbags results in a variety of acute medical problems and increased potential for back injury. There is a paucity of information about the specific changes in back posture that occur in response to asymmetrical loading. The purpose of this study was to examine the changes in back shape that occurred in response to asymmetrical load carriage, either on one shoulder (same-side) or across the body (cross-body), in healthy young adults. A convenience sample of 21 physiotherapy students randomly performed three trials (unloaded, same-side loaded, cross-body loaded) in standing with a 15% body load. The Microscribe 3DX digitiser (Immersion Group Ltd) recorded the three dimensional coordinates of 15 Key anatomical landmarks on the back in the three conditions. A one-way ANOVA with repeated measures and post-hoc tests was implemented to highlight statistical differences in the data collected (p<0.05). Significant differences were found in the x, y and z coordinates of the anatomical landmarks in the upper back between unloaded and loaded conditions. Results demonstrated significantly less impact on spinal posture from cross-body loading as compared to same-sided loading. This study confirms that there are significant three-dimensional changes in back shape in response to asymmetrical loading. Further work is needed to evaluate the optimal carriage type and maximal body load that results in the least spinal impact and injury potential in young adults.
Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2012-01-01
There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.
8. DETAIL OF COVERED LOADING DOCK ON NORTH SIDE. VIEW ...
8. DETAIL OF COVERED LOADING DOCK ON NORTH SIDE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
Unoki, H; Fan, J; Watanabe, T
1999-01-01
We investigated the structural and functional properties of human umbilical vein endothelial cells (HUVECs) cultured on a two-chamber culture model system using an amnion membrane. Compared to HUVECs cultured on a plastic dish, HUVECs cultured on the model system exhibited several features similar to those of in vivo vessels, including formation of the intercellular junctional devices and expression of tight junction-associated protein ZO-1 and adherence junction-associated protein alpha-catenin. Furthermore, we found that HUVECs had a property of polar secretion of endothelin-1 (ET-1). About 90% of the total amount of synthesized ET-1 was found in the lower well, designated as the basal side. When HUVECs were incubated with either native low-density lipoproteins (nLDLs) or oxidized LDLs (oxLDLs) at a concentration of 100 microgram/ml, ET-1 secretion was significantly increased, dependent on the cell side (apical vs basal) on which the nLDLs or oxLDLs were loaded. When the LDLs were loaded on the apical side, the secretion of ET-1 from HUVECs on the apical side was increased by 48% (nLDL) and 61% (oxLDL), whereas it was accompanied by a concomitant decrease of ET-1 on the basal side (45% by nLDLs and 38% by oxLDLs). When loaded on the basal side, however, ET-1 was increased by 23% (nLDLs) and 53% (oxLDLs) on the basal side, with a 26% simultaneous decrease of ET-1 on the opposite side for both nLDLs and oxLDLs. On the contrary, high-density lipoproteins (HDLs) inhibited ET-1 secretion from HUVECs on the opposite side of the well on which HDLs were loaded; there was a 57% decrease on the basal side when HDLs were loaded on the apical side, and a 46% decrease on the apical side when loaded on the basal side. These results indicate that modulation of ET-1 secretion from ECs by lipoproteins is virtually dependent on the place (apical vs basal) where these proteins are present. The finding that nLDLs and oxLDLs enhance ET-1 secretion by ECs in a polarized pattern suggests that ET-1 may be involved in pathophysiological processes such as atherogenesis.
Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi
2018-05-10
Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.
11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. ...
11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets
NASA Astrophysics Data System (ADS)
Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.
2015-04-01
This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.
Alfredson, H; Nordström, P; Pietilä, T; Lorentzon, R
1999-05-01
In an ongoing prospective study of 14 recreational athletes (12 males and 2 females, mean age 44.2 +/- 7.1 years) with unilateral chronic Achilles tendinosis, we investigated the effect of treatment with heavy-loaded eccentric calf-muscle training. Pain during activity (recorded on a VAS scale) and isokinetic concentric and eccentric calf-muscle strength (peak torque at 90 degrees /second and 225 degrees /second) on the injured and noninjured side were evaluated. In this group of patients, we examined areal bone mineral density (BMD) of the calcaneus after 9 months (range 6-14 months) of training. BMD of the injured side (subjected to heavy-loaded eccentric training) was compared with BMD of the noninjured side. Before onset of heavy-loaded eccentric training, all patients had Achilles tendon pain which prohibited running activity, and significantly lower concentric and eccentric plantar flexion peak torque on the injured compared with the noninjured side. The training program consisted of 12 weeks of daily, heavy-loaded, eccentric calf-muscle training; thereafter the training was continued for 2-3 days/week. The clinical results were excellent-all 14 patients were back at their preinjury level with full running activity at the 3 month follow-up. The concentric and eccentric plantar flexion peak torque had increased significantly and did not significantly differ from the noninjured side at the 3 and 9 month follow-up. There were no significant side-to-side differences in BMD of the calcaneus. There was no significant relationship between BMD of the calcaneus and calf-muscle strength. As a comparison group, we used 10 recreational athletes (5 males and 5 females) mean age 40.9 years (range 26-55 years), who were selected for surgical treatment of chronic Achilles tendinosis localized at the 2-6 cm level. Their duration of symptoms and severity of disease were the same as in the experimental group. There were no significant side-to-side differences in BMD of the calcaneus preoperatively, but 12 months postoperatively BMD of the calcaneus was 16.4% lower at the injured side compared with the noninjured side. Heavy-loaded eccentric calf-muscle training resulted in a fast recovery in all patients, equaled the side-to-side differences in muscle strength, and was not associated with side-to-side differences in BMD of the calcaneus. In this group of middle-aged recreational athletes, BMD of the calcaneus was not related to calf-muscle strength.
2016-06-01
zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel
4. DETAIL OF NORTH SIDE OF OFFICE/SHOWROOM, SHOWING COVERED LOADING ...
4. DETAIL OF NORTH SIDE OF OFFICE/SHOWROOM, SHOWING COVERED LOADING DOCK. VIEW TO SOUTH. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1983-01-01
Methods aimed at reduction of overexpansion and side load resulting from asymmetric flow separation for rocket nozzles with a high opening ratio are described. The methods employ additional measures for nozzles with a fixed opening ratio. The flow separation can be controlled by several types of nozzle inserts, the properties of which are discussed. Side loads and overexpansion can be reduced by adapting the shape of the nozzle and taking other additional measures for controlled separation of the boundary layer, such as trip wires.
Physical properties of conventional and Super Slick elastomeric ligatures after intraoral use.
Crawford, Nicola Louise; McCarthy, Caroline; Murphy, Tanya C; Benson, Philip Edward
2010-01-01
To investigate the change in the physical properties of conventional and Super Slick elastomeric ligatures after they have been in the mouth. Nine healthy volunteers took part. One orthodontic bracket was bonded to a premolar tooth in each of the four quadrants of the mouth. Two conventional and two Super Slick elastomeric ligatures were placed at random locations on either side of the mouth. The ligatures were collected after various time intervals and tested using an Instron Universal testing machine. The two outcome measures were failure load and the static frictional resistance. The failure load for conventional ligatures was reduced to 67% of the original value after 6 weeks in situ. Super Slick elastomeric ligatures showed a comparable reduction after 6 weeks in situ (63% of original value). There were no statistical differences in the static friction between conventional and Super Slick elastomerics that had been in situ for either 24 hours (P = .686) or 6 weeks (P = .416). There was a good correlation between failure load and static friction (r = .49). There were statistically significant differences in the failure loads of elastomerics that had not be placed in the mouth and those that had been in the mouth for 6 weeks. There were no differences in the static frictional forces produced by conventional and Super Slick ligatures either before or after they had been placed in the mouth. There appears to be a direct proportional relationship between failure load and static friction of elastomeric ligatures.
Comparative study on the muscular load of the arms using hair driers.
Harada, H; Katsuura, T; Kikuchi, Y
1995-12-01
The purpose of the present study was to evaluate the muscular load of the arm when combing the hair using different "kuru-kuru" type of hair driers. Ten female students (20-24 years old) volunteered as subjects. Five combing patterns were conducted as follows: 1) comb outer layer of right side of hair using right hand, 2) comb outer layer of left side of hair using right hand, 3) comb inner layer of left side of hair using right hand, 4) comb outer layer of back hair using right hand, and 5) comb inner layer of right side of hair using left hand. Surface EMGs were recorded from M. flexor carpi ulnaris, M. brachioradialis, M. biceps brachii, M. triceps brachii, M. deltoideus and M. trapezius of both sides of body. Integrated EMGs (iEMGs) were used to evaluate muscular load for each of the seven different types of hair driers used. The relationship between iEMGs and weight, center of gravity, diameter, length, and circumference of each hair drier were examined. The weight of hair driers tended to be the effective factor on the muscular load. Muscular load also had a tendency to be affected by the shape of the grips. With regard to the hand size, the longer the thumb length, the smaller is the muscular load. It was suggested that a relatively large diameter of the bulb-shaped grip of the drier gave a smaller muscular load among the hair driers examined in the present experiment.
Sunnevång, Cecilia; Pipkorn, Bengt; Boström, Ola
2015-01-01
This study aims, by means of the WorldSID 50th percentile male, to evaluate thoracic loading and injury risk to the near-side occupant due to occupant-to-occupant interaction in combination with loading from an intruding structure. Nine vehicle crash tests were performed with a 50th percentile WorldSID male dummy in the near-side (adjacent to the intruding structure) seat and a THOR or ES2 dummy in the far-side (opposite the intruding structure) seat. The near-side seated WorldSID was equipped with 6 + 6 IR-Traccs (LH and RH) in the thorax/abdomen enabling measurement of bilateral deflection. To differentiate deflection caused by the intrusion, and the deflection caused by the neighboring occupant, time history curves were analyzed. The crash tests were performed with different modern vehicles, equipped with thorax side airbags and inflatable curtains, ranging from a compact car to a large sedan, and in different loading conditions such as car-to-car, barrier, and pole tests. Lateral delta V based on vehicle tunnel acceleration and maximum residual intrusion at occupant position were used as a measurement of crash severity to compare injury measurements. In the 9 vehicle crash tests, thoracic loading, induced by the intruding structure as well as from the far-side occupant, varied due to the size and structural performance of the car as well as the severity of the crash. Peak deflection on the thoracic outboard side occurred during the first 50 ms of the event. Between 70 to 150 ms loading induced by the neighboring occupant occurred and resulted in an inboard-side peak deflection and viscous criterion. In the tests where the target vehicle lateral delta V was below 30 km/h and intrusion less than 200 mm, deflections were low on both the outboard (20-40 mm) and inboard side (10-15 mm). At higher crash severities, delta V 35 km/h and above as well as intrusions larger than 350 mm, the inboard deflections (caused by interaction to the far-side occupant) were of the same magnitude or even higher (30-70 mm) than the outboard deflections (30-50 mm). A WorldSID 50th percentile male equipped with bilateral IR-Traccs can detect loading to the thorax from a neighboring occupant making injury risk assessment feasible for this type of loading. At crash severities resulting in a delta V above 35 km/h and intrusions larger than 350 mm, both the inboard deflection and VC resulted in high risks of Abbreviated Injury Scale (AIS) 3+ injury, especially for a senior occupant.
Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management
NASA Astrophysics Data System (ADS)
Berardino, Jonathan
In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.
The skeletons in our closet: E-learning tools and what happens when one side does not fit all.
Van Nuland, Sonya E; Rogers, Kem A
2017-11-01
In the anatomical sciences, e-learning tools have become a critical component of teaching anatomy when physical space and cadaveric resources are limited. However, studies that use empirical evidence to compare their efficacy to visual-kinesthetic learning modalities are scarce. The study examined how a visual-kinesthetic experience, involving a physical skeleton, impacts learning when compared with virtual manipulation of a simple two-dimensional (2D) e-learning tool, A.D.A.M. Interactive Anatomy. Students from The University of Western Ontario, Canada (n = 77) participated in a dual-task study to: (1) investigate if a dual-task paradigm is an effective tool for measuring cognitive load across these different learning modalities; and (2) to assess the impact of knowledge recall and spatial ability when using them. Students were assessed using knowledge scores, Stroop task reaction times, and mental rotation test scores. Results demonstrated that the dual-task paradigm was not an effective tool for measuring cognitive load across different learning modalities with respect to kinesthetic learning. However, our study highlighted that handing physical specimens yielded major, positive impacts on performance that a simple commercial e-learning tool failed to deliver (P < 0.001). Furthermore, students with low spatial ability were significantly disadvantaged when they studied the bony joint and were tested on contralateral images (P = 0.046, R = 0.326). This suggests that, despite limbs being mirror images, students should be taught the anatomy of, as well as procedures on, both sides of the human body, enhancing the ability of all students, regardless of spatial ability, to take anatomical knowledge into the clinic and perform successfully. Anat Sci Educ 10: 570-588. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Novel thermosensitive polymeric micelles for docetaxel delivery.
Yang, Mi; Ding, Yitao; Zhang, Leyang; Qian, Xiaoping; Jiang, Xiqun; Liu, Baorui
2007-06-15
Targeted delivery of antitumor drugs triggered by hyperthermia has significant advantages in clinical applications, since it is easy to implement and side effects are reduced. To release drugs site-specifically upon local heating often requires the drugs to be loaded into a thermosensitive polymer matrix with a low critical solution temperature (LCST) between 37 and 42 degrees C. However, the LCSTs of most thermosensitive materials were below 37 degrees C, which limits their application in clinic because they would precipitate once injected into human body and lost thermal targeting function. Herein, we prepared a novel thermosensitive copolymer (poly(N-isopropylacrylamide-co-acrylamide)-b-poly (DL-lactide)) that exhibits no obvious physical change up to 41 degrees C when heated. Docetaxel loaded micelles made of such thermosensitive polymer were prepared by dialysis method and the maximum loading content was found to be up to 27%. The physical properties, such as structure, morphology, and size distribution of the micelles with and without docetaxel were investigated by NMR, X-ray diffraction, dynamic light scattering, atomic force microscopy, etc. The efficacy of this drug delivery system was also evaluated by examining the proliferation inhibiting activity against different cell lines in vitro. After hyperthermia, the cytotoxicity of docetaxel-loaded micelles increased prominently. Our results demonstrated that this copolymer could be an ideal candidate for thermal targeted antitumor drug delivery. (c) 2007 Wiley Periodicals, Inc.
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... positions. (b) The limit vertical load factor must be 1.33, with the vertical ground reaction divided... reaction divided between the main wheels so that— (1) 0.5 (W) is acting inboard on one side; and (2) 0.33...
SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...
SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA
3. BUILDING 0503, NORTH FRONT AND WEST SIDE, WITH LOADING ...
3. BUILDING 0503, NORTH FRONT AND WEST SIDE, WITH LOADING DOCK AND GABLE ROOFED SHED. - Edwards Air Force Base, South Base Sled Track, Earth Covered Bunker Types, North of Sled Track, Lancaster, Los Angeles County, CA
Harenberg, P S; Langer, M F; Sproedt, J; Grünert, J G
2018-02-01
Osteoarthritis of the first carpometacarpal joint (CMCJ1) is a common, painful condition with positive radiological findings in up to 32% of people over 50 years of age and up to 91% of people over 80 years of age. Currently, there is insufficient evidence to recommend one surgical treatment option over the others. We conducted a retrospective review of 77 patients treated for CMCJ1 osteoarthritis with plate arthrodesis between 1979 and 1996. The review included physical examination, including range of motion (ROM) of the thumb interphalangeal joint, metacarpophalangeal joint and CMCJ1, pinch grip, key grip and power grip strength, and a questionnaire on subjective outcomes (appearance, dexterity, load bearing, pain, strength, subjective overall result and if patients would choose the procedure again). The complication rate was 26%. However, the general patient satisfaction was high with 88% of patients saying they would choose to have the procedure done again. There was a significant decrease (side-to-side difference) in the ROM for palmar and radial abduction as well as opposition when compared to the opposite hand. Furthermore, there was a significant reduction (side-to-side difference) in pinch, key grip and power grip strength. ROM did not seem to have any influence on pain (and vice versa), load bearing, and the subjective overall result. No gender differences were noted. Despite the high complication rate, CMCJ1 arthrodesis remains a viable option for the treatment of CMCJ1 osteoarthritis in select patients requiring good thumb stability. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate
NASA Astrophysics Data System (ADS)
Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.
2001-07-01
A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.
Cornering characteristics of the main-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.
1988-01-01
An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.
Potential of a precrash lateral occupant movement in side collisions of (electric) minicars.
Hierlinger, T; Lienkamp, M; Unger, J; Unselt, T
2015-01-01
In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact. The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP). The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads. The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.
14 CFR 25.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... stern landings, the limit water reaction load factors are those computed under § 25.527. In addition— (1... upward component and a side component equal, respectively, to 0.75 and 0.25 tan β times the resultant... upward load at the step of each float of 0.75 and a side load of 0.25 tan β at one float times the step...
14 CFR 25.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stern landings, the limit water reaction load factors are those computed under § 25.527. In addition— (1... upward component and a side component equal, respectively, to 0.75 and 0.25 tan β times the resultant... upward load at the step of each float of 0.75 and a side load of 0.25 tan β at one float times the step...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reaction divided between the main wheels so that— (1) 0.5 (W) is acting inboard on one side; and (2) 0.33... section are assumed to be applied at the ground contact point and the drag loads may be assumed to be zero...
NASA Astrophysics Data System (ADS)
Zhang, Ting; Xiong, Hui; Zohra Dahmani, Fatima; Sun, Li; Li, Yuanke; Yao, Li; Zhou, Jianping; Yao, Jing
2015-04-01
Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.
Does Man Marking Influence Running Outputs and Intensity During Small-Sided Soccer Games?
Aasgaard, Mats; Kilding, Andrew E
2018-06-20
Aasgaard, M and Kilding, AE. Does man marking influence running outputs and intensity during small-sided soccer games? J Strength Cond Res XX(X): 000-000, 2018-Small-sided games (SSGs) are considered an effective training tool for physical development in soccer. Small-sided games can be modified in several ways to manipulate the physical demands to best match the game demands, player characteristics, and session objectives. The aim of this study was to compare the physiological, perceptual, and Global Positioning System (GPS)-derived time-motion characteristics of man marking (MM) vs. non-man marking (NMM) in 2v2, 3v3, and 4v4 SSGs. In an acute crossover design, 8 amateur soccer players (mean age ± SD: 23.6 ± 3.3 years) played 2v2, 3v3, and 4v4 SSGs consisting of 4 × 4-minute bouts, with 2-minute passive recovery. During all SSGs, players wore a heart rate (HR) monitor and GPS unit and reported their rating of perceived exertion (RPE). Average percent HR (%HRave) induced small to moderate effects with MM compared with NMM (%Δ = 1-2.7%; effect size [ES] = 0.22-0.65). Comparisons between MM formats indicated a decrease in %HRave with increased player numbers (%Δ = 1.6-3.5%; ES = 0.39-0.86). Perceptual load increased with MM compared with NMM (%Δ = 6.7-17.6%; ES = 0.66-2.09), whereas increases in player numbers (MM only) reduced RPE output (%Δ = 9.4-24.3%; ES = 1.14-3.61). Time-motion characteristics revealed substantially greater total distance covered in MM irrespective of player number (%Δ = 6.8-14.7%; ES = 1.34-2.82). There were very likely increases in distances covered at striding (13.1-17.8 km·h) (%Δ: 23.4-33.2; ES = 2.42-4.35) and high-intensity running (HIR) (17.9-21 km·h) (%Δ: 47.3-104; ES = 0.91-1.68) for MM compared with NMM irrespective of player number. In conclusion, MM substantially elevated perceptual load and distances from striding to HIR regardless of player number, whereas differences between NMM and MM for internal load remain unclear. Use of MM may allow coaches to condition for particularly demanding phases of the game and prescription of larger SSG formats to increase distance covered at higher velocities.
Optimal Load-Side Control for Frequency Regulation in Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Mallada, Enrique; Low, Steven
Frequency control rebalances supply and demand while maintaining the network state within operational margins. It is implemented using fast ramping reserves that are expensive and wasteful, and which are expected to become increasingly necessary with the current acceleration of renewable penetration. The most promising solution to this problem is the use of demand response, i.e., load participation in frequency control. Yet it is still unclear how to efficiently integrate load participation without introducing instabilities and violating operational constraints. In this paper, we present a comprehensive load-side frequency control mechanism that can maintain the grid within operational constraints. In particular, ourmore » controllers can rebalance supply and demand after disturbances, restore the frequency to its nominal value, and preserve interarea power flows. Furthermore, our controllers are distributed (unlike the currently implemented frequency control), can allocate load updates optimally, and can maintain line flows within thermal limits. We prove that such a distributed load-side control is globally asymptotically stable and robust to unknown load parameters. We illustrate its effectiveness through simulations.« less
Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie
2017-05-01
To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Jalani, Ghulam; Jung, Chan Woo; Lee, Jae Sang; Lim, Dong Woo
2014-01-01
Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli. PMID:24872702
Control and Coordination of Frequency Responsive Residential Water Heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.
2016-07-31
Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC).more » The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.« less
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.
DeVoria, Adam C.
2017-01-01
This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139
7. OBLIQUE VIEW OF NORTH PORTAL AND DOWNSTREAM SIDE OF ...
7. OBLIQUE VIEW OF NORTH PORTAL AND DOWNSTREAM SIDE OF BRIDGE, LOOKING WEST. Lights and illuminated sign on portal bracing were elements of an overheight load warning system designed to eliminate accidents of the type which damaged the bridge. However, the system was in place only on the north side of the bridge, controlling trucks approaching from Oregon. In theory, trucks with overheight, overwidth, or overweight loads from California would be controlled by the State's permit system. In fact, it was a 'permit' load originating in California, being hauled without the requisite permit which struck and damaged the bridge. - Smith River Bridge, CA State Highway 199 Spanning Smith River, Crescent City, Del Norte County, CA
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
Gebauer, Matthias; Stark, Olaf; Vettorazzi, Eik; Grifka, Joachim; Püschel, Klaus; Amling, Michael; Beckmann, Johannes
2014-01-01
The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Unloading shoes for osteoarthritis of the knee: protocol for the SHARK randomised controlled trial
2014-01-01
Background Knee osteoarthritis (OA) is a common and disabling condition. Abnormalities in knee loading play an important role in disease pathogenesis, yet there are few non-surgical treatments for knee OA capable of reducing knee load. This two-arm randomised controlled trial is investigating the efficacy of specially-designed unloading shoes for the treatment of symptoms in people with knee OA. Methods/Design 164 people with symptomatic medial tibiofemoral joint OA will be recruited from the community and randomly allocated to receive either unloading shoes or control shoes. Unloading shoes have a specially-designed triple-density midsole where the medial side is softer than normal and the lateral side harder as well as a lateral wedge between the sole and sock-liner. Control shoes are standard athletic shoes and do not contain these features. Participants will be blinded to shoe allocation and will be instructed to wear the shoes as much as possible every day for 6 months, for a minimum of 4 hours per day. The primary outcomes are knee pain (numerical rating scale) and self-reported physical function (Western Ontario and McMaster Universities Osteoarthritis Index) measured at baseline and 6 months. Secondary outcomes include additional measures of knee pain, knee stiffness, participant global ratings of change in symptoms, quality-of-life and physical activity. Conclusions The findings from this study will help determine whether specially-designed unloading shoes are efficacious in the management of knee OA. Trial registration Australian New Zealand Clinical Trials Registry reference: ACTRN12613000851763. PMID:24555418
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
Research on the Operation Mode of Intelligent-town Energy Internet Based on Source-Load Interaction
NASA Astrophysics Data System (ADS)
Li, Hao; Li, Wen; Miao, Bo; Li, Bin; Liu, Chang; Lv, Zhipeng
2018-01-01
On the background of the rise of intelligence and the increasing deepening of “Internet +”application, the energy internet has become the focus of the energy research field. This paper, based on the fundamental understanding on the energy internet of the intelligent town, discusses the mode of energy supply in the source-load interactive region, and gives an in-depth study on the output characteristics of the energy supply side and the load characteristics of the demand side, so as to derive the law of energy-load interaction of the intelligent-town energy internet.
Moreira, Alexandre; Saldanha Aoki, Marcelo; Carling, Chris; Alan Rodrigues Lopes, Rafael; Felipe Schultz de Arruda, Ademir; Lima, Marcelo; Cesar Correa, Umberto; Bradley, Paul S
2016-01-01
Background There have been claims that small-sided games (SSG) may generate an appropriate environment to develop youth players’ technical performance associated to game-related problem solving. However, the temporal change in technical performance parameters of youth players during SSG is still unknown. Objectives The aim of this study was to examine temporal changes in technical and physical performances during a small-sided game (SSG) in elite soccer players. Methods Sixty elite youth players (age 14.8 ± 0.2 yr; stature 177 ± 5 cm; body mass 66.2 ± 4.7 kg) completed a 5 v 5 SSG using two repetitions of 8 minutes interspersed by 3 minutes of passive recovery. To evaluate temporal changes in performance, the data were analysed across 4 minutes quarters. Physical performance parameters included the total distance covered (TDC), the frequency of sprints (>18 km•h-1), accelerations and decelerations (> 2.0 m•s-2 and - 2.0 m•s-2), metabolic power (W•kg-1), training impulse (TRIMP), TDC: TRIMP, number of impacts, and body load. Technical performance parameters included goal attempts, total number of tackles, tackles and interceptions, total number of passes, and passes effectiveness. Results All physical performance parameters decreased from the first to the last quarter with notable declines in TDC, metabolic power and the frequency of sprints, accelerations and decelerations (P < 0.05; moderate to very large ES: 1.08 - 3.30). However, technical performance parameters did not vary across quarters (P > 0.05; trivial ES for 1st v 4th quarters: 0.15 - 0.33). Conclusions The data demonstrate that technical performance is maintained despite substantial declines in physical performance during a SSG in elite youth players. This finding may have implications for designing SSG’s for elite youth players to ensure physical, technical and tactical capabilities are optimized. Modifications in player number, pitch dimensions, rules, coach encouragement, for instance, should be included taking into account the main aim of a given session and then focused on overloading physical or technical elements. PMID:28144411
Moreira, Alexandre; Saldanha Aoki, Marcelo; Carling, Chris; Alan Rodrigues Lopes, Rafael; Felipe Schultz de Arruda, Ademir; Lima, Marcelo; Cesar Correa, Umberto; Bradley, Paul S
2016-12-01
There have been claims that small-sided games (SSG) may generate an appropriate environment to develop youth players' technical performance associated to game-related problem solving. However, the temporal change in technical performance parameters of youth players during SSG is still unknown. The aim of this study was to examine temporal changes in technical and physical performances during a small-sided game (SSG) in elite soccer players. Sixty elite youth players (age 14.8 ± 0.2 yr; stature 177 ± 5 cm; body mass 66.2 ± 4.7 kg) completed a 5 v 5 SSG using two repetitions of 8 minutes interspersed by 3 minutes of passive recovery. To evaluate temporal changes in performance, the data were analysed across 4 minutes quarters. Physical performance parameters included the total distance covered (TDC), the frequency of sprints (>18 km•h -1 ), accelerations and decelerations (> 2.0 m•s -2 and - 2.0 m•s -2 ), metabolic power (W•kg -1 ), training impulse (TRIMP), TDC: TRIMP, number of impacts, and body load. Technical performance parameters included goal attempts, total number of tackles, tackles and interceptions, total number of passes, and passes effectiveness. All physical performance parameters decreased from the first to the last quarter with notable declines in TDC, metabolic power and the frequency of sprints, accelerations and decelerations (P < 0.05; moderate to very large ES: 1.08 - 3.30). However, technical performance parameters did not vary across quarters (P > 0.05; trivial ES for 1st v 4th quarters: 0.15 - 0.33). The data demonstrate that technical performance is maintained despite substantial declines in physical performance during a SSG in elite youth players. This finding may have implications for designing SSG's for elite youth players to ensure physical, technical and tactical capabilities are optimized. Modifications in player number, pitch dimensions, rules, coach encouragement, for instance, should be included taking into account the main aim of a given session and then focused on overloading physical or technical elements.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
Demand Side Management: An approach to peak load smoothing
NASA Astrophysics Data System (ADS)
Gupta, Prachi
A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the need for additional production capacity by the means of demand response measures, but the success is limited to only a few regions. The rate of progress in the future will depend on a wide range of improved technologies and a continuous government monitoring for successful adoption of demand response programs to manage growing energy demand.
Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.
2016-11-28
In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration.
46 CFR 161.002-10 - Automatic fire detecting system control unit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that part of the supply circuit on the load side of the battery transfer switch and fuses. On a system supplied by a branch circuit the “normal source” shall be construed to mean the load side of any... fire alarm shall be electrically supervised. (d) Power failure alarms—(1) Loss of potential. The loss...
The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing
Stalder, Lukas; Heusermann, Wolf; Sokol, Lena; Trojer, Dominic; Wirz, Joel; Hean, Justin; Fritzsche, Anja; Aeschimann, Florian; Pfanzagl, Vera; Basselet, Pascal; Weiler, Jan; Hintersteiner, Martin; Morrissey, David V; Meisner-Kober, Nicole C
2013-01-01
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing. PMID:23511973
2016-08-01
load. The 1 and 10 s-1 rate tests were run on a hydraulic high-rate Instron MTS (8821S), placed in a custom- designed tension fixture (Fig. 8...lateral compression prior to shear testing . The sides of the coupon rest on blocks at the bottom of the vice jaw to allow for travel of the center post ...mode of failure based on the lap shear testing . However, since the pretest spine survived all hits at the BRC speeds, it was decided to proceed with
NASA Astrophysics Data System (ADS)
El Gohary, Mohammed I.; El Hady, Bothaina M. Abd; Saeed, Aziza A. Al; Tolba, Emad; El Rashedi, Ahlam M. I.; Saleh, Safaa
2018-06-01
Loading of anticancer drugs into electrospun fiber matrices is a portentous approach for clinical treatment of diseased tissues or organs. In this study, doxorubicin hydrochloride (DOX) is added to silica nanoparticles () during the formation of via the sol-gel approach. The obtained nanoparticles are then added to poly(-caprolactone) (PCL) and poly(ethylene oxide) (PEO) blend before electrospinning process via different methods. The effects of DOX addition as a free form or as nanoparticles on physical and chemical properties of obtained PCL-PEO fibers, as well as release profiles are evaluated to give a continual DOX release for several days. The morphology observed with scanning electron microscope (FESEM) revealed significant changes in the average diameter of obtained fibers ranging from 2164 nm to 659 nm and distribution of drug-loaded nanoparticles in the final mats according to the mode of additions. With the same manner, the releasing performances of obtained mats are quite different. Therefore, fabrication of drug loaded mats would offer a powerful approach to minimize serious side effects for clinical patients and allows us to control the drug concentration in the bloodstream.
Brackenbush, L.W.; Hoenes, G.R.
A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...
46 CFR 170.255 - Class 1 doors; permissible locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... point at side, is at least 7 feet (2.14 meters) above the deepest load line. (b) Class 1 doors are..., the door is in a location where it will be closed at all times except when actually in use; and (2... lowest point at side is less than 7 feet (2.14 meters) above the deepest load line, an indicator light...
49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?
Code of Federal Regulations, 2011 CFR
2011-10-01
... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...
49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?
Code of Federal Regulations, 2010 CFR
2010-10-01
... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...
49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?
Code of Federal Regulations, 2012 CFR
2012-10-01
... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...
49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?
Code of Federal Regulations, 2014 CFR
2014-10-01
... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...
49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?
Code of Federal Regulations, 2013 CFR
2013-10-01
... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...
NASA Astrophysics Data System (ADS)
Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A.
2017-11-01
The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract ( Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet-visible (UV-Vis) spectrophotometry. Anticancer activity of Ag-NPs (5-20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant ( P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy.
NASA Technical Reports Server (NTRS)
Knolle, Ernst G.
1994-01-01
This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.
Lead-Lag Control for Helicopter Vibration and Noise Reduction
NASA Technical Reports Server (NTRS)
Gandhi, Farhan
1995-01-01
As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators. Both schemes cause an increase in pitch link loads. Trailing Edge Flap (TEF) deployment can also used to generate unsteady aerodynamic forces and moments that counter the original vibratory loads, and thereby reduce rotor vibrations. While the vibrations absorbers, HHC, IBC, and TEF concepts discussed above attempt to reduce the vibratory loads, they do not specifically address the phenomena causing the vibrations at high advance ratios. One passive method that attempts to directly alleviate compressibility and stall, instead of reducing the ensuing vibrations, is the use of advanced tip designs. Taper, sweep, anhedral, and the manipulation of other geometric properties of the blade tips can reduce the severity of stall and compressibility effects , as well as reduce rotor power. A completely different approach to solve these problems is the tiltrotor configuration. As the forward velocity of the aircraft increases, the rotors, in this case, are tilted forward until they are perpendicular to the flow and act as propellers. This eliminates the edgewise flow encountered by conventional rotors and circumvents all the problems associated with flow asymmetry. However, the success involves a tremendous increase in cost and complexity of the aircraft. Another possible approach that has been proposed for the alleviation of vibratory loads at high forward flight speeds involves the use of controlled lead-lag motions to reduce the asymmetry in flow. A correctly phased 1/rev controlled lag motion could be introduced such that it produces a backward velocity on the advancing side and a forward velocity on the retreating side, to delay compressibility effects and stall to a higher advance ratio. Using a large enough lead-lag amplitude, the tip velocities could be reduced to levels encountered in hover. This concept was examined by two groups in the 1950's and early 1960's. In the United States, the Research Labs Division of United Aircraft developed a large lead-lag motion rotor, meant to achieve lag motion amplitudes up to 45 degrees. In order to reduce the required actuation force, the blade hinges were moved to 40% of the blade radius to increase the rotating lag frequency to approximately 1/rev. The blade hinges were redesigned to produce a flap-lag coupling so the large flapwise aerodynamic loads could be exploited to actuate the blades in the lag direction. A wind tunnel test of this rotor concept revealed actuation and blade motion scheduling problems. The project was eventually discontinued due to these problems and high blade stresses. Around the same time, at Boelkow in Germany, a similar lead-lag rotor program was conducted under the leadership of Hans Derschmidt. Here, too, the blade hinges were moved outboard to 34% radius to reduce the actuation loads. The main difference between this and the United Aircraft program was the use of a mechanical actuation scheme with maximum lead-lag motions of 400. This program was also discontinued for unclear reasons. The present study is directed toward conducting a comprehensive analytical examination to evaluate the effectiveness of controlled lead-lag motions in reducing vibratory hub loads and increasing maximum flight speed. Since both previous studies on this subject were purely experimental, only a limited data set and physical understanding of the problem was obtained. With the currently available analytical models and computational resources, the present effort is geared toward developing an in-depth physical understanding of the precise underlying mechanisms by which vibration reduction may be achieved. Additionally, in recognition of the fact that large amplitude lead-lag motions would - (i) be difficult to implement, and (ii) produce very large blade stresses; the present study examines the potential of only moderate-to-small lead-lag motions for reduction of vibratory hub loads. Using such an approach, the emphasis is not on eliminating the periodic variations in tangential velocity at the blade tip, but at best reducing these variations slightly so that compressibility and stall are delayed to slightly higher advance ratios. This study was conducted in two steps. In the first step, a hingeless helicopter rotor was modeled using rigid blades undergoing flap-lag-torsion rotations about spring restrained hinges and bearings. This model was then modified by separating the lead-lag degree of freedom into two components, a free and a prescribed motion. Using this model, a parametric study of the effect of phase and amplitude of a prescribed lead-lag motion on hub vibration was conducted. The data gathered was analyzed to obtain an understanding of the basic physics of the problem and show the capability of this method to reduce vibration and expand the flight envelope. In the second half of the study, the similar analysis was conducted using an elastic blade model to confirm the effects predicted by the simpler model.
NASA Astrophysics Data System (ADS)
Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan
2017-04-01
The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15.-17. November 2016 [2] Kleinhans, D.: Towards a systematic characterization of the potential of demand side management, arXiv preprint arXiv:1401.4121, 2014 [3] Kies, A., Schyska, B. U., von Bremen, L., The Demand Side Management Potential to Balance a Highly Renewable European Power System. Energies, 9(11), 955, 2016
Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka
2002-12-01
Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and DXA. The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The used pQCT variables were bone mineral content (BMC), total cross-sectional area (TotA) of bone, cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index (BSIt) for the shaft, and compressional bone strength index (BSIc) for the bone end. These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater BMC (an average 19% side-to-side difference in young starters and 9% in old starters) was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites) leading to 26% and 11% side-to-side BSIt difference in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' BMC, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' BMC, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7% greater in young starters compared with that of the old starters and 14% compared with that in controls, whereas the difference between old starters and controls was 6%, in favor of the former. All these between-group differences were statistically significant. At the distal radius, the player groups differed significantly from controls in the side-to-side BMC, TrD, and aBMD differences only; the young starters' BMC difference was 9% greater, TrD and aBMD differences were 5% greater than those in the controls, and the old starters' TrD and aBMD differences were both 7% greater than those in the controls. In summary, in both of the female player groups the structural adaptation of the humeral shaft to long-term loading seemed to be achievedthrough periosteal enlargement of the bone cortex although this adaptation was clearly better in the young starters. Exercise-induced cortical enlargement was not so clear at the distal radius (a trabecular bone site), and the study suggested that at long bone ends also the TrD could be a modifiable factor to build a stronger bone structure. The conventional DXA-based aBMD measurement detected the intergroup differences in the exercise-induced bone gains, although, measuring two dimensions of bone only, it seemed to underestimate the effect of exercise on the apparent bone strength, especially if the playing had been started during the growing years.
Planning Training Workload in Football Using Small-Sided Games' Density.
Sangnier, Sebastien; Cotte, Thierry; Brachet, Olivier; Coquart, Jeremy; Tourny, Claire
2018-05-08
Sangnier, S, Cotte, T, Brachet, O, Coquart, J, and Tourny, C. Planning training workload in football using small-sided games density. J Strength Cond Res XX(X): 000-000, 2018-To develop the physical qualities, the small-sided games' (SSGs) density may be essential in soccer. Small-sided games are games in which the pitch size, players' number, and rules are different to those for traditional soccer matches. The purpose was to assess the relation between training workload and SSGs' density. The 33 densities data (41 practice games and 3 full games) were analyzed through global positioning system (GPS) data collected from 25 professional soccer players (80.7 ± 7.0 kg; 1.83 ± 0.05 m; 26.4 ± 4.9 years). From total distance, distance metabolic power, sprint distance, and acceleration distance, the data GPS were divided into 4 categories: endurance, power, speed, and strength. Statistical analysis compared the relation between GPS values and SSGs' densities, and 3 methods were applied to assess models (R-squared, root-mean-square error, and Akaike information criterion). The results suggest that all the GPS data match the player's essential athletic skills. They were all correlated with the game's density. Acceleration distance, deceleration distance, metabolic power, and total distance followed a logarithmic regression model, whereas distance and number of sprints follow a linear regression model. The research reveals options to monitor the training workload. Coaches could anticipate the load resulting from the SSGs and adjust the field size to the players' number. Taking into account the field size during SSGs enables coaches to target the most favorable density for developing expected physical qualities. Calibrating intensity during SSGs would allow coaches to assess each athletic skill in the same conditions of intensity as in the competition.
Wireless acoustic-electric feed-through for power and signal transmission
NASA Technical Reports Server (NTRS)
Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Chang, Zensheu (Inventor)
2011-01-01
An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
46 CFR 45.121 - Freeing port area: Changes for trunks and side coamings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Freeing port area: Changes for trunks and side coamings... GREAT LAKES LOAD LINES Conditions of Assignment § 45.121 Freeing port area: Changes for trunks and side... substantially continuous hatchway side coamings between detached superstructures, the minimum area of the...
46 CFR 45.121 - Freeing port area: Changes for trunks and side coamings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Freeing port area: Changes for trunks and side coamings... GREAT LAKES LOAD LINES Conditions of Assignment § 45.121 Freeing port area: Changes for trunks and side... substantially continuous hatchway side coamings between detached superstructures, the minimum area of the...
46 CFR 45.121 - Freeing port area: Changes for trunks and side coamings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Freeing port area: Changes for trunks and side coamings... GREAT LAKES LOAD LINES Conditions of Assignment § 45.121 Freeing port area: Changes for trunks and side... substantially continuous hatchway side coamings between detached superstructures, the minimum area of the...
46 CFR 45.121 - Freeing port area: Changes for trunks and side coamings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Freeing port area: Changes for trunks and side coamings... GREAT LAKES LOAD LINES Conditions of Assignment § 45.121 Freeing port area: Changes for trunks and side... substantially continuous hatchway side coamings between detached superstructures, the minimum area of the...
46 CFR 45.121 - Freeing port area: Changes for trunks and side coamings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Freeing port area: Changes for trunks and side coamings... GREAT LAKES LOAD LINES Conditions of Assignment § 45.121 Freeing port area: Changes for trunks and side... substantially continuous hatchway side coamings between detached superstructures, the minimum area of the...
Brackenbush, Larry W.; Hoenes, Glenn R.
1981-01-01
According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
Dynamic balance abilities of collegiate men for the bench press.
Piper, Timothy J; Radlo, Steven J; Smith, Thomas J; Woodward, Ryan W
2012-12-01
This study investigated the dynamic balance detection ability of college men for the bench press exercise. Thirty-five college men (mean ± SD: age = 22.4 ± 2.76 years, bench press experience = 8.3 ± 2.79 years, and estimated 1RM = 120.1 ± 21.8 kg) completed 1 repetition of the bench press repetitions for each of 3 bar loading arrangements. In a randomized fashion, subjects performed the bench press with a 20-kg barbell loaded with one of the following: a balanced load, one 20-kg plate on each side; an imbalanced asymmetrical load, one 20-kg plate on one side and a 20-kg plate plus a 1.25-kg plate on the other side; or an imbalanced asymmetrical center of mass, 20-kg plate on one side and sixteen 1.25-kg plates on the other side. Subjects were blindfolded and wore ear protection throughout all testing to decrease the ability to otherwise detect loads. Binomial data analysis indicated that subjects correctly detected the imbalance of the imbalanced asymmetrical center of mass condition (p[correct detection] = 0.89, p < 0.01) but did not correctly detect the balanced condition (p[correct detection] = 0.46, p = 0.74) or the imbalanced asymmetrical condition (p[correct detection] = 0.60, p = 0.31). Although it appears that a substantial shift in the center of mass of plates leads to the detection of barbell imbalance, minor changes of the addition of 1.25 kg (2.5 lb) to the asymmetrical condition did not result in consistent detection. Our data indicate that the establishment of a biofeedback loop capable of determining balance detection was only realized under a high degree of imbalance. Although balance detection was not present in either the even or the slightly uneven loading condition, the inclusion of balance training for upper body may be futile if exercises are unable to establish such a feedback loop and thus eliciting an improvement of balance performance.
1994-06-03
transport , the effects of technology, terrain and weather, and physical conditioning. Load, Soidier’s Load, Rucksack, Physical Conditioning, Combat Load...Fighting Load, Sustainment Load, Approach March Load, Fear, Fatigue, Risk, Training, Transport , Techn-logy UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED I .1 THE...standards, myths of peacetime training, the nature of the soldier, lack of transport , the effects of technology, terrain and weather, and physical
Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S
2007-11-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.
Cochran, John E.; King, Dottie; Burke, Donald S.
2007-01-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975
Zhang, Yuan; Wang, Mei-qing; Ling, Wei
2005-10-01
To evaluate the resultant differences of stress distribution in bilateral condyle when occlusal loads were changed with teeth rotation. A three-dimensional FEA model containing human TMJ and left lower second premolar was developed using commercial FEA software ANSYS. Lower second premolar was applied with ICO occlusal loading in the load case 1. According to the same upper dentition in the load case 2, lower premolar was applied with occlusal loading when it was rotated 30 degree counter-clockwise in Frankfort horizontal plane level. In this two load cases,the different stress distributions of the condyle was investigated. The stress distribution of loading side condyle had changed abnormally when premolar rotation was performed. It had showed more disorderly than ICO loading in load case 1. In load case 1 the maximum main stress and Von Mises stress values increased from medial pole to lateral pole. In load case 2,the stress values mainly decreased from medial pole to lateral pole, but along the path there were some parts with values-increasing. The stress values of bilateral condyle in load case 2 were lower than that in load case 1, especially for the stress values of the opposite condyle. The stress distribution of loading side condyle got in disorder resulting from rotation of unilateral lower premolar.
14 CFR 25.535 - Auxiliary float loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads...=coefficient of drag force, equal to 0.133; C y=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 25.535 - Auxiliary float loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads...=coefficient of drag force, equal to 0.133; C y=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 25.535 - Auxiliary float loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads...=coefficient of drag force, equal to 0.133; C y=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 25.535 - Auxiliary float loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads...=coefficient of drag force, equal to 0.133; C y=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 25.535 - Auxiliary float loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads...=coefficient of drag force, equal to 0.133; C y=coefficient of side force, equal to 0.106; K=0.8, except that...
Effect of yaw angle on steering forces for the lunar roving vehicle wheel
NASA Technical Reports Server (NTRS)
Green, A. J.
1974-01-01
A series of tests was conducted with a Lunar Roving Vehicle (LRV) wheel operating at yaw angles ranging from -5 to +90 deg. The load was varied from 42 to 82 lb (187 to 365 N), and the speed was varied from 3.5 to 10.0 ft/sec (1.07 to 3.05 m/sec). It was noted that speed had an effect on side thrust and rut depth. Side thrust, rut depth, and skid generally increased as the yaw angle increased. For the range of loads used, the effect of load on performance was not significant.
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.
Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.
Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.
Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine
Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375
NASA Astrophysics Data System (ADS)
Furusawa, Ken; Sugihara, Hideharu; Tsuji, Kiichiro
Opened wholesale electric power market in April 2005, deregulation of electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (: IPP), Power Producer and Supplier (: PPS), Load Service Entity (: LSE) and electric utility can trade electric energy through both bilateral contracts and single-price auction at the electricity market. In general, the market clearing price (: MCP) is largely changed by amount of total load demand in the market. The influence may cause price spike, and consequently the volatility of MCP will make LSEs and their customers to face a risk of revenue and cost. DSM is attracted as a means of load leveling, and has effect on decreasing MCP at peak load period. Introducing Energy Storage systems (: ES) is one of DSM in order to change demand profile at customer-side. In case that customers decrease their own demand at jumped MCP, a bidding strategy of generating companies may be changed their strategy. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi-agent. It is considered that customer-side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer-side ES corresponding to variation of MCP.
Marciano, Hadas; Yeshurun, Yaffa
2012-01-01
A broadened version of the perceptual load model was utilized to explore systematically the influence of four variables on driver's behavior: a. levels of load on the road; b. levels of load at the sides of the road; c. event's initial location (on the road vs. at the sides of the road); and d. the presence and size of advertizing billboards. 18 participants participated in two experimental sessions in a driving simulator. One of the sessions contained advertizing billboards and the other session did not. The results indicated that billboards can have a considerable effect on various aspects of driving like the time required responding to a potentially dangerous event or simply the number of accidents occurring during driving, but importantly the effect of billboards on driving was modulated by the levels of perceptual load.
14 CFR 23.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 23.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... landing. For symmetrical step, bow, and stern landings, the limit water reaction load factors are those....25 tan β times the resultant load in the corresponding symmetrical landing condition; and (2) The... at one float times the step landing load reached under § 23.527. The side load is directed inboard...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
14 CFR 27.521 - Float landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... water reaction passes vertically through the center of gravity; and (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component. (b) A side-load condition in which— (1) A vertical load of 0.75 times the total vertical load...
Gooyers, Chad E; Frost, David M; McGill, Stuart M; Callaghan, Jack P
2013-04-01
In this case report an incumbent firefighter partially ruptured his right Achilles tendon during a study of the physical demands of firefighting. Kinematics and kinetics of the lower limbs and trunk were collected while the firefighter performed two simulated fire ground tasks. From this unexpected event, two insights were obtained that should be considered in all future injury prevention and reporting efforts. (i) Consider the full anatomical linkage--the right ankle and knee kinematics leading up to the onset of injury trial were comparable to all preceding repetitions. However, there was a notable difference in the left knee starting position before the initiation of movement of the 37th hose-advance trial. (ii) Consider the cumulative load--the task in question comprised forward and backward phases. A marked difference was observed in the frontal-plane ankle moment during the return phase of the trial preceding the injury. Additionally, the magnitude of the left side vertical ground reaction force was comparable across all trials, suggesting that loads experienced by the right limb were also similar. This would indicate that the tolerance of the Achilles tendon and not the magnitude of the loading was altered. The unfortunate injury captured in this work provides insight into the complexity of characterizing the pathways of injury. It is recommended that future injury prevention and reporting efforts consider individuals' physical demands (at work and in life) and document the nature of loading (i.e., frequency, duration, magnitude, type) when considering the mechanism for injury. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Lei, Yang; Nosoudi, Nasim; Vyavahare, Naren
2014-01-01
Background and aims Elastin-specific medial arterial calcification (MAC) is an arterial disease commonly referred as Monckeberg’s sclerosis. It causes significant arterial stiffness, and as yet, no clinical therapy exists to prevent or reverse it. We developed albumin nanoparticles (NPs) loaded with disodium ethylene diaminetetraacetic acid (EDTA) that were designed to target calcified elastic lamina when administrated by intravenous injection. Methods and Results We optimized NP size, charge, and EDTA-loading efficiency (150~200 nm, zeta potential of − 22.89 ~ − 31.72 mV, loading efficiency for EDTA ~20 %) for in vivo targeting in rats. These NPs released EDTA slowly for up to 5 days. In both ex-vivo study and in vivo study with injury-induced local abdominal aortic calcification, we showed that elastin antibody-coated and EDTA-loaded albumin NPs targeted the damaged elastic lamina while sparing healthy artery. Intravenous NP injections reversed elastin-specific MAC in rats after four injections over a 2-week period. EDTA-loaded albumin NPs did not cause the side effects observed in EDTA injection alone, such as decrease in serum calcium (Ca), increase in urine Ca, or toxicity to kidney. There was no bone loss in any treated groups. Conclusion We demonstrate that elastin antibody-coated and EDTA-loaded albumin NPs might be a promising nanoparticle therapy to reverse elastin-specific MAC and circumvent side effects associated with systemic EDTA chelation therapy. PMID:25285609
Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung
2015-12-01
Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
Model for Analysis of Power Quality Index and Determination of Its Causes and Effects
NASA Astrophysics Data System (ADS)
Ballal, Makarand Sudhakar; Suryawanshi, Hiralal Murlidhar; Koshy, Subin Earecheril
2018-05-01
The Power Quality (PQ) gets affected not only because of the load but also because of the source as power electronics devices applications are widely spread in both sides. The renewable energy sources used power electronics converters and the nonlinear loads connected at consumer premises are the main causes of PQ distortions. This hampered PQ supply, when fed to equipments (or loads), affect the performance of them by increasing the energy lose, increasing the electricity bill and reducing their life expectancy. This article proposed a model for the analysis of different PQ events by means of Wavelet Transforms (WT) and Artificial Neural Network (ANN) composition. The different types of PQ events are generated in the laboratory under the source and load distortion conditions. The supply side voltage waveforms under linear load condition and load side current waveforms under normal supply conditions are considered for analysis. These waveforms are processed by WT and the scaling coefficients are determined for various PQ events. These coefficients are used to train ANNs for decision making. The proposed model is developed in MATLAB for offline and online applications. The results obtained by both the methods are compared and found satisfactory. At the end, the losses incurred in the transformer considered for performance, its efficiency and life expectancy are presented for different PQ conditions.
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-01-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-12-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.
45. BUILDING NO. 462, CHEMISTRY LAB (FORMERLY TRACER LOADING BUILDING), ...
45. BUILDING NO. 462, CHEMISTRY LAB (FORMERLY TRACER LOADING BUILDING), VIEW LOOKING SOUTHEAST AT WEST SIDE. BUILDING NO. 462-B, GENERAL PURPOSE MAGAZINE, AT LEFT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Stein, Melissa R.; Soloway, Irene J.; Jefferson, Karen S.; Roose, Robert J.; Arnsten, Julia H.; Litwin, Alain H.
2012-01-01
Chronic hepatitis C virus (HCV) infection is highly prevalent among current and former drug users. However, the minority of patients enrolled in drug treatment programs have initiated HCV treatment. New models are needed to overcome barriers to care. In this retrospective study, we describe the implementation and outcomes of 42 patients treated in a Concurrent Group Treatment (CGT) program. Patients participated in weekly provider-led group treatment sessions which included review of side effects; discussion of adherence and side effect management; administration of interferon injections; brief physical exam; and ended with brief meditation. Of the first 27 patients who initiated CGT, 42% achieved a sustained viral response. Additionally, 87% (13/15) of genotype-1 infected patients treated with direct acting antiviral agent achieved an undetectable viral load at 24 weeks. The CGT model may be effective in overcoming barriers to treatment and improving adherence and outcomes among patients enrolled in drug treatment programs. PMID:23036920
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Endosseous titanium implants as anchors for mesiodistal tooth movement in the beagle dog.
Saito, S; Sugimoto, N; Morohashi, T; Ozeki, M; Kurabayashi, H; Shimizu, H; Yamasaki, K; Shiba, A; Yamada, S; Shibasaki, Y
2000-12-01
The purpose of this study was to determine the anchorage potential of titanium implants (Branemark; 3.75 x 7 mm) with the use of a sectional arch wire technique for orthodontic mesiodistal tooth movement, as assessed by the osseointegration of implants and tooth movement. Two implants were surgically placed in healed mandibular extraction sites of the second and third premolars on each side in 4 adult male beagle dogs. The implants were surgically uncovered 18 weeks later, and second-stage abutments with soldered edgewise tubes were attached. Segmented edgewise rectangular archwires (0.017 x 0. 025 inch) with a T-loop or an L-loop were placed between the implants and the fourth premolars on both sides as the anchorage unit. One segment in each dog served as a loaded side, and the archwire was calibrated to produce 200 g of lateral force on the fourth premolar. The contralateral segment served as an unloaded side and was not subjected to orthodontic force. Sectional wires were activated biweekly 24, 28, 28, and 32 weeks, respectively, depending on the magnitude and the appearance of mesial tipping movement of the fourth premolar. After mandibular impressions were taken to measure the distance between the first molar and the fourth premolar, the animals were euthanized and dissected mandibles were prepared. The specimens were then embedded in polyester resin and cut to take backscattered electron images. On the basis of these images, the percentage of peri-implant bone volume was calculated and defined as an index of osseointegration. The differences between the initial and final fourth premolar to first molar distances varied (7.40, 8.85, 10.50, and 3.30 mm) on the loaded side, whereas the unloaded side showed no movement. Not only was there no statistical difference in the percent of peri-implant bone volume between the loaded and unloaded sides, but there was also no statistical difference between the compression and tension sides in both loaded and unloaded implants, which suggests that the implants maintained rigid osseointegration. In conclusion, the present study demonstrated that endosseous titanium implants can function as anchors for long-term orthodontic mesiodistal movement.
Beimers, Lijkele; Lam, Patrick H; Murrell, George A C
2014-10-01
This study investigated the biomechanical effects of expanded polytetrafluoroethylene (ePTFE) suture augmentation patches in rotator cuff repair constructs. The infraspinatus tendon in 24 cadaveric ovine shoulders was repaired using an inverted horizontal mattress suture with 2 knotless bone anchors (ArthroCare, Austin, TX, USA) in a lateral-row configuration. Four different repair groups (6 per group) were created: (1) standard repair using inverted horizontal mattress sutures, (2) repair with ePTFE suture augmentations on the bursal side of the tendon, (3) repair with ePTFE suture augmentations on the articular side, and, (4) repair with ePTFE suture augmentations on both sides of the tendon. Footprint contact pressure, stiffness, and the load to failure of the repair constructs were measured. Repairs with ePTFE suture augmentations on the bursal side exerted significantly more footprint contact pressure (0.40 ± 0.01 MPa) than those on the articular side (0.34 ± 0.02 MPa, P = .04) and those on both sides (0.33 ± 0.02 MPa, P = .01). At 15 degrees of abduction, ePTFE-augmented repairs on the bursal side had higher footprint contact pressure (0.26 ± 0.03 MPa) compared with standard repairs (0.15 ± 0.02 MPa, P = .01) and with ePTFE-augmented repairs on the articular side (0.18 ± 0.02 MPa, P = .03). The ePTFE-augmented repairs on the bursal side demonstrated significantly higher failure loads (178 ± 18 N) than standard repairs (120 ± 17 N, P = .04). Inverted horizontal mattress sutures augmented with ePTFE patches on the bursal side of the tendon enhanced footprint contact pressures and the ultimate load to failure of lateral-row rotator cuff repairs in an ovine model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Cho, Nakwon
1980-01-01
A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.
NASA Technical Reports Server (NTRS)
Guy, Lawrence D; Hadaway, William M
1955-01-01
Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.
Frontal Plane Knee Moments in Golf: Effect of Target Side Foot Position at Address
Lynn, Scott K.; Noffal, Guillermo J.
2010-01-01
Golf has the potential to keep people active well into their later years. Injuries to the target side knee have been reported in golfers, yet no mechanisms for these injuries have been proposed. The loads on the knee during the golf swing may be insufficient to cause acute injury, yet they may be a factor in the progression of overuse/degenerative conditions; therefore, research developing swing modifications that may alter loading of the knee is warranted. It has been suggested that the proper golf set-up position has the target-side foot externally rotated but no reasoning for this modification has been provided. Frontal plane knee moments have been implicated in many knee pathologies. Therefore, this study used a 3-dimensional link segment model to quantify the frontal plane knee moments during the golf swing in a straight (STR) and externally rotated (EXT) target-side foot position. Subjects were 7 collegiate golfers and knee moments were compared between conditions using repeated measures T-tests. The golf swing knee moment magnitudes were also descriptively compared to those reported for two athletic maneuvers (drop jump landing, side-step cutting) and activities of daily living (gait, stair ascent). The EXT condition decreased the peak knee adduction moment as compared to the STR condition; however, foot position had no effect on the peak knee abduction moment. Also, the magnitude of the knee adduction moments during the two activities of daily living were 9-33% smaller than those experienced during the two different golfing conditions. The drop jump landing and golf swing knee moments were of similar magnitude (STR= - 5%, EXT= + 8%); however, the moments associated with side- step cutting were 50-71% larger than those on the target side knee during the golf swing. The loading of the target side knee during the golf swing may be a factor in the development and progression of knee pathologies and further research should examine ways of attenuating these loads through exercise and swing modifications. Key points An externally rotated front foot position at address would be recommended for those with medial knee pathology in the target side limb. There is a large valgus moment on the target side knee during the golf swing that is not decreased with external rotation of the foot at address. The potential of the knee moments on the target side limb to lead to knee pathologies in golfers needs to be further investigated. PMID:24149696
Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka
2003-02-01
Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and dual energy X-ray absorptiometry (DXA). The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The following pQCT variables were used: bone mineral content, total cross-sectional area of bone (TotA), cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index for the shaft (BSIt) and compressional bone strength index for the bone end (BSIc). These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater bone mineral content (an average 19% side-to-side difference in young starters and 9% in old starters), was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites), leading to 26% and 11% side-to-side BSIt differences in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' bone mineral content, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' bone mineral content, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7% greater in young starters compared with that of the old starters and 14% compared with that in controls, whereas the difference between old starters and controls was 6%, in favor of the former. All these between-group differences were statistically significant. At the distal radius, the player groups differed significantly from controls in the side-to-side bone mineral content, TrD, and aBMD differences only: the young starters' bone mineral content difference was 9% greater, TrD and aBMD differences were 5% greater than those in the controls, and the old starters' TrD and aBMD differences were both 7% greater than those in the controls. In summary, in both of the female player groups, the structural adaptation of the humeral shaft to long-term loading seemed to be achieved through periosteal enlargement of the bone cortex, although this adaptation was clearly better in the young starters. Exercise-induced cortical enlargement was not so clear at the distal radius (a trabecular bone site), and the study suggested that at long bone ends, the trabecular density could be a modifiable factor to built a stronger bone structure. Conventional DXA-based aBMD measurement detected the intergroup differences in the exercise-induced bone gains, although, because it measured two dimensions of bone only, it seemed to underestimate the effect of exercise on the apparent bone strength, especially if the playing had been started during the growing years.
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
Westerdale, S.; Xu, J.; Shields, E.; ...
2017-08-03
We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Silva, Adny H.; Conte, Aline; Chiaradia-Delatorre, Louise D.; Nunes, Ricardo J.; Yunes, Rosendo A.; Creckzynski-Pasa, Tânia B.
2014-01-01
Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties. Chalcones are flavonoid precursors, and have been studied as cytotoxic drugs for leukemia cells that induce cell death by different apoptosis pathways. In this study, we encapsulated chalcones in a nanoemulsion and compared their effect with the respective free compounds in leukemia and in non-tumoral cell lines, as well as in an in vivo model. Free and loaded-nanoemulsion chalcones induced a similar anti-leukemic effect. Free chalcones induced higher toxicity in VERO cells than chalcones-loaded nanoemulsions. Similar results were observed in vivo. Free chalcones induced a reduction in weight gain and liver injuries, evidenced by oxidative stress, as well as an inflammatory response. Considering the high toxicity and the side effects induced generally by all cancer chemotherapies, nanotechnology provides some options for improving patients’ life quality and/or increasing survival rates. PMID:25264679
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Quenching measurements and modeling of a boron-loaded organic liquid scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerdale, S.; Xu, J.; Shields, E.
Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less
Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill
2015-01-01
The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention/goal. The general understanding is that the current generation of compressor design/analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center. Detailed data-match analysis by GE identified an unexpected high loss generation in the pressure side of the stator passage. Higher total temperature and lower total pressure are measured near the pressure side of the stator. Various analyses based on the RANS and URANS of the compressor stage do not calculate the measured higher total temperature and lower total pressure on the pressure side of the stator. In the present paper, a Large Eddy Simulation (LES) is applied to find the fundamental mechanism of this unsteady loss generation in the stator due to the incoming rotor wake. The results from the LES were first compared with the NASA test results and the GE interpretation of the test data. LES calculates lower total pressure and higher total temperature on the pressure side of the stator, as the measured data showed, resulting in large loss generation on the pressure side of the stator. Detailed examination of the unsteady flow field from LES shows that the rotor wake, which has higher total temperature and higher total pressure relative to the free stream, interacts quite differently with the pressure side of the blade compared to the suction side of the blade. The higher temperature in the wake remains high as the wake passes through the pressure side of the blade. On the other hand, the total temperature diffuses as it passes through near the suction surface. For the presently investigated compressor, the classical intra-stator wake transport to the pressure side of the blade by the slip velocity in the wake seems to be minor. The main causes of this phenomenon are three-dimensional unsteady vortex interactions near the blade surface. The stabilizing effect of the concave curvature on the suction side keeps the rotor wake thin. On the other hand, the destabilizing effect of the convex curvature of the pressure side makes the rotor wake thicker, which results in a higher total temperature measurement at the stator exit. Additionally, wake stretching through the stator seems to contribute to the redistribution of the total temperature and the loss generation.
NASA Astrophysics Data System (ADS)
Chistyakov, V. A.; Zolotukhin, P. V.; Prazdnova, E. V.; Alperovich, I.; Soldatov, A. V.
2015-06-01
Experiments by F. Zhou and coworkers (2010) [16] showed that mitochondria are the main target of the cellular accumulation of single-walled carbon nanotubes (SWCNTs). Our in silico experiments, based on geometrical optimization of the system consisting of SWCNT+proton within Density Functional Theory, revealed that protons can bind to the outer side of SWCNT so generating a positive charge. Calculation results allow one to propose the following mechanism of SWCNTs mitochondrial targeting. SWCNTs enter the space between inner and outer membranes of mitochondria, where the excess of protons has been formed by diffusion. In this compartment SWCNTs are loaded with protons and acquire positive charges distributed over their surface. Protonation of hydrophobic SWCNTs can also be carried out within the mitochondrial membrane through interaction with the protonated ubiquinone. Such "charge loaded" particles can be transferred as "Sculachev ions" through the inner membrane of the mitochondria due to the potential difference generated by the inner membrane. Physiological consequences of the described mechanism are discussed.
Psychosocial and Physical Effects of Adjuvant Chemotherapy
Hislop, Thomas Gregory; Elwood, J. Mark; Waxler-Morrison, Nancy; Ragaz, Joseph; Skippen, Diane Hazel; Turner, I.D.
1991-01-01
Breast cancer patients younger than 55 completed a questionnaire on psychosocial factors and physical side effects shortly after diagnosis and 9 to 15 months after diagnosis. Those who had used adjuvant chemotherapy were more likely than those who had not to report physical side effects; there was little difference in psychosocial factors. Recent users were more likely than ex-users to report physical side effects, difficulties with domestic chores, and improvement in psychosocial factors. PMID:21229020
NASA Technical Reports Server (NTRS)
Reid, M. A.; Gahn, R. F.
1977-01-01
The effect of acid concentration on the performance of the iron-titanium redox flow cell was studied. When the acidity was increased, open-circuit voltages decreased on the titanium side but load voltages increased due to decreased polarization. The best load voltage occurs when there is high acidity on the titanium side coupled with low acidity on the iron side, but such cells show voltage losses with repeated cycling because of the diffusion of acid through the membrane. No membrane tested has been found capable of maintaining the differences in acidity. Chelating agents show some promise in reducing polarization at the Ti electrode and thus improving energy efficiency.
46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Load Line Certificates-Model Forms § 42.50-15 Coastwise load... sides of Form C1 certificate in paragraph (c) of this section except for the identification of model... the identification of model form, description of the “Freeboard from deck line,” the “Load Line,” and...
46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Load Line Certificates-Model Forms § 42.50-15 Coastwise load... sides of Form C1 certificate in paragraph (c) of this section except for the identification of model... the identification of model form, description of the “Freeboard from deck line,” the “Load Line,” and...
46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Load Line Certificates-Model Forms § 42.50-15 Coastwise load... sides of Form C1 certificate in paragraph (c) of this section except for the identification of model... the identification of model form, description of the “Freeboard from deck line,” the “Load Line,” and...
46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Load Line Certificates-Model Forms § 42.50-15 Coastwise load... sides of Form C1 certificate in paragraph (c) of this section except for the identification of model... the identification of model form, description of the “Freeboard from deck line,” the “Load Line,” and...
14 CFR 25.499 - Nose-wheel yaw and steering.
Code of Federal Regulations, 2012 CFR
2012-01-01
... steering. (a) A vertical load factor of 1.0 at the airplane center of gravity, and a side component at the... structure forward of the center of gravity must be designed for the following loads: (1) A vertical load factor at the center of gravity of 1.0. (2) A forward acting load at the airplane center of gravity of 0...
14 CFR 25.499 - Nose-wheel yaw and steering.
Code of Federal Regulations, 2013 CFR
2013-01-01
... steering. (a) A vertical load factor of 1.0 at the airplane center of gravity, and a side component at the... structure forward of the center of gravity must be designed for the following loads: (1) A vertical load factor at the center of gravity of 1.0. (2) A forward acting load at the airplane center of gravity of 0...
Russo, Stefania; Cinausero, Marika; Gerratana, Lorenzo; Bozza, Claudia; Iacono, Donatella; Driol, Pamela; Deroma, Laura; Sottile, Roberta; Fasola, Gianpiero; Puglisi, Fabio
2014-02-01
Analysis of relative importance of side effects of anticancer therapy is extremely useful in the process of clinical decision making. There is evidence that patients' perception of the side effects of anticancer treatments changes over time. Aim of this study was to evaluate the cancer patients' perceptions of physical and non-physical side effects of contemporary anticancer therapy. Four hundred and sixty-four patients entered the study (153 men and 311 women). Participants were asked to rank their side effects in order of distress by using two sets of cards naming physical and non-physical effects, respectively. Influencing factors, including treatment and patient characteristics, were also analysed. Patients ranked the non-physical side effect 'Affects my family or partner' first. 'Constantly tired' and 'Loss of hair' were ranked second and third, respectively. Significant differences from previous studies on this topic emerged. In particular, 'Vomiting', a predominant concern in previous studies, almost disappeared, whereas 'Nausea' and 'Loss of hair' remained important side effects in the patients' perception. Interestingly, marital status was predominant in driving patients' perception, being associated with several side effects ('Constantly tired', 'Loss of appetite', 'Affects my work/Home duties', 'Affects my social activities', 'Infertility'). Other significant factors influencing patient's perception of side effects included age, disease characteristics and ongoing anticancer therapy. This study provided information on current status of patients' perceptions of side effects of anticancer treatment. These results could be used in pre-treatment patient education and counselling.
Device for testing closure disks at high rates of change of pressure
Merten, Jr., Charles W.
1993-11-09
A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.
Method and apparatus for rapid stopping and starting of a thermoacoustic engine
Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.
2003-11-11
A thermoacoustic engine-driven system with a hot heat exchanger, a regenerator or stack, and an ambient heat exchanger includes a side branch load for rapid stopping and starting, the side branch load being attached to a location in the thermoacoustic system having a nonzero oscillating pressure and comprising a valve, a flow resistor, and a tank connected in series. The system is rapidly stopped simply by opening the valve and rapidly started by closing the valve.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.
1. General oblique view of north and east sides, view ...
1. General oblique view of north and east sides, view to southwest, showing main loading docks - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX
Castellano, Julen; Puente, Asier; Echeazarra, Ibon; Casamichana, David
2015-06-01
The aim of this study was to analyze the influence of different large-sided games on the physical and physiological variables in under-13 soccer players. The effects on heart rate (HR) and physical demands of different number of players (NP) (7, 9, and 11) together with the relative pitch area (RPA) (100, 200, and 300 m) during two 12-minute repetitions were analyzed in this study. The variables analyzed were mean, maximum and different intensity zones of HR; total distance (TD); work:rest ratio (W:R); player load (PL); 5 absolute and 3 relative speed categories. The results support the hypothesis that a change in pitch dimensions affects locomotor activity more than the NP does but also refute the hypothesis that the change in the NP has a greater effect on HR. To be more specific, an increase in the RPA per player (300/200/100 m2) was associated with higher values of the following variables: TD (2,250-2,314/2,003-2,148/1,766-1,845 m), W:R (0.5-0.6/0.4-0.5/0.3 arbitrary unit [AU]), PL (271-306/246-285/229-267 AU), %HRmean (85-88/85-89/81-83%), %HRmax (95-100/97-100/95-98%), and affected the percentage of time spent in both absolute (above 8 km·h(-1)) and relative speed (above 40% Vmax) categories (p ≤ 0.05, effect size: 0.31-0.85). These results may help youth soccer coaches to plan the progressive introduction of large-sided games so that task demands are adapted to the physiological and physical development of participants.
Gender differences in plantar loading during three soccer-specific tasks.
Sims, E L; Hardaker, W M; Queen, R M
2008-04-01
Examine the effect of gender on plantar loading during three football-specific tasks. Thirty-four athletes (17 men, 17 women) ran an agility course five times while wearing the Nike Vitoria hard ground cleat. Plantar loading data were recorded during a side cut, a cross-over cut and a forward acceleration task using Pedar-X insoles. Controlled laboratory study. No history of lower extremity injury in the past 6 months, no previous foot or ankle surgery, not currently wearing foot orthotics and play a cleated sport at least two times per week. Contact area, maximum force and the force-time integral (FTI) in the medial and lateral midfoot, medial, middle and lateral forefoot as well as the hallux. A univariate ANCOVA (alpha = 0.05) was performed on each dependent variable (covariate was course speed). Significant gender differences existed in the force and force-time integral beneath the lateral midfoot and forefoot during the cross-over cut task as well as in the middle forefoot during the side cut task with the men demonstrating an increased force. No significant differences existed in the loading on the medial side of the foot during any tasks. The results of this study indicate that the increase in plantar loading on the lateral portion of the midfoot and forefoot in men could be one possible explanation for the increased incidence of fifth metatarsal stress fractures in men. Gender differences in loading patterns need to be considered when comparing different movements as well as different footwear conditions.
Perceptual load in different regions of the visual scene and its relevance for driving.
Marciano, Hadas; Yeshurun, Yaffa
2015-06-01
The aim of this study was to better understand the role played by perceptual load, at both central and peripheral regions of the visual scene, in driving safety. Attention is a crucial factor in driving safety, and previous laboratory studies suggest that perceptual load is an important factor determining the efficiency of attentional selectivity. Yet, the effects of perceptual load on driving were never studied systematically. Using a driving simulator, we orthogonally manipulated the load levels at the road (central load) and its sides (peripheral load), while occasionally introducing critical events at one of these regions. Perceptual load affected driving performance at both regions of the visual scene. Critically, the effect was different for central versus peripheral load: Whereas load levels on the road mainly affected driving speed, load levels on its sides mainly affected the ability to detect critical events initiating from the roadsides. Moreover, higher levels of peripheral load impaired performance but mainly with low levels of central load, replicating findings with simple letter stimuli. Perceptual load has a considerable effect on driving, but the nature of this effect depends on the region of the visual scene at which the load is introduced. Given the observed importance of perceptual load, authors of future studies of driving safety should take it into account. Specifically, these findings suggest that our understanding of factors that may be relevant for driving safety would benefit from studying these factors under different levels of load at different regions of the visual scene. © 2014, Human Factors and Ergonomics Society.
Design of micro bending deformer for optical fiber weight sensor
NASA Astrophysics Data System (ADS)
Ula, R. K.; Hanto, D.; Waluyo, T. B.; Adinanta, H.; Widiyatmoko, B.
2017-04-01
The road damage due to excessive load is one of the causes of accidents on the road. A device to measure weight of the passing vehicles needs to be planted in the road structure. Thus, a weight sensor for the passing vehicles is required. In this study, we designed a weight sensor for a static load based on a power loss due to a micro bending on the optical fiber flanked on a board. The following main components are used i.e. LED 1310 nm as a light source, a multimode fiber optic as a transmission media and a power meter for measuring power loss. This works focuses on obtaining a suitable deformer design for weight sensor. Experimental results show that deformer design with 1.5 mm single side has level of accuracy as 4.32% while the design with 1.5 mm double side has level of accuracy as 98.77%. Increasing deformer length to 2.5 mm gives 71.18% level of accuracy for single side, and 76.94% level of accuracy for double side. Micro bending design with 1.5 mm double side has a high sensitivity and it is also capable of measuring load up to 100 kg. The sensor designed has been tested for measuring the weight of motor cycle, and it can be upgraded for measuring heavy vehicles.
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
NASA Astrophysics Data System (ADS)
Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.
2015-06-01
The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
6. GENERAL WIDE VIEW SHOWING EAST (SOUTHEAST) SIDE, LOOKING WEST ...
6. GENERAL WIDE VIEW SHOWING EAST (SOUTHEAST) SIDE, LOOKING WEST ACROSS TURNING BASIN; FREIGHTER LOADING IN FOREGROUND - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
7. VIEW SOUTHEAST, SHOWING WEST SIDE FROM LAND, WITH WASTE ...
7. VIEW SOUTHEAST, SHOWING WEST SIDE FROM LAND, WITH WASTE PAPER BUNDLED ON DOCK, AWAITING LOADING ONTO ODIGITRIA B - Connecticut State Pier, State Pier Road at Thames River, New London, New London County, CT
ERIC Educational Resources Information Center
Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred
2014-01-01
Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…
Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A
2018-06-01
Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations resulted in reduced sagittal plane knee and subsequent ACL loading. Therefore, adequate hip and knee control is important during unanticipated side-cutting maneuvers.
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
14 CFR 29.521 - Float landing conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... level attitude, the resultant water reaction passes vertically through the center of gravity; and (2... component of 0.25 times the vertical component (b) A side load condition in which— (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally...
30 CFR 77.1600 - Loading and haulage; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... permitted on haulage roads and at loading or dumping locations. (b) Traffic rules, signals, and warning signs shall be standardized at each mine and posted. (c) Where side or overhead clearances on any haulage road or at any loading or dumping location at the mine are hazardous to mine workers, such areas...
30 CFR 77.1600 - Loading and haulage; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... permitted on haulage roads and at loading or dumping locations. (b) Traffic rules, signals, and warning signs shall be standardized at each mine and posted. (c) Where side or overhead clearances on any haulage road or at any loading or dumping location at the mine are hazardous to mine workers, such areas...
30 CFR 77.1600 - Loading and haulage; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... permitted on haulage roads and at loading or dumping locations. (b) Traffic rules, signals, and warning signs shall be standardized at each mine and posted. (c) Where side or overhead clearances on any haulage road or at any loading or dumping location at the mine are hazardous to mine workers, such areas...
30 CFR 77.1600 - Loading and haulage; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted on haulage roads and at loading or dumping locations. (b) Traffic rules, signals, and warning signs shall be standardized at each mine and posted. (c) Where side or overhead clearances on any haulage road or at any loading or dumping location at the mine are hazardous to mine workers, such areas...
30 CFR 77.1600 - Loading and haulage; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... permitted on haulage roads and at loading or dumping locations. (b) Traffic rules, signals, and warning signs shall be standardized at each mine and posted. (c) Where side or overhead clearances on any haulage road or at any loading or dumping location at the mine are hazardous to mine workers, such areas...
Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors
NASA Astrophysics Data System (ADS)
Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.
2014-12-01
This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.
Nasrollahi, Saman Ahmad; Hassanzade, Hurnaz; Moradi, Azadeh; Sabouri, Mahsa; Samadi, Aniseh; Kashani, Mansour Nassiri; Firooz, Alireza
2017-01-01
Topical application of tretinoin (TRE) is followed by a high incidence of side effects. One method to overcome the problem is loading TRE into lipid nanoparticles. The potential safety of the nanoparticle materials has been always considered as a major concern. In this in vivo study, changes in human skin biophysical parameters including hydration, TEWL, erythema, and pH have been used to determine the safety of tretinoin loaded nano emulsion (NE) and nanostructured lipid carriers (NLC). TRE loaded NE and NLC were prepared using a high pressure homogenizer. Skin biophysical parameters were measured on the volar forearms of twenty healthy volunteers, before and after applying TRE-NE and TRE-NLC lotions. All the measurements were done using respective probes of MPA 580Cutometer®. We obtained particles of nanometric size (<130 nm) with narrow distribution and optimal physical stability. None of the formulations made any statistically significant change in any of the measured skin properties. P-values were 0.646, 0.139, 0.386, 0.169 after applying TRE-NE and 0.508, 0.051, 0.139, 0.333 after applying TRE-NLC, respectively. Both formulations are reasonably safe to apply on human skin and topical application of TRE-NE and TRE-NLC had almost similar effects on skin biophysical parameters. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Two examples of industrial applications of shock physics research
NASA Astrophysics Data System (ADS)
Sanai, Mohsen
1996-05-01
An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.
7. GENERAL VIEW OF SOUTHEAST SIDE OF SHED, SHOWING ALL ...
7. GENERAL VIEW OF SOUTHEAST SIDE OF SHED, SHOWING ALL EIGHTEEN LOADING BAYS, LOOKING WEST FROM ACROSS TURNING BASIN - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA
Roads & loads : finding a balance.
DOT National Transportation Integrated Search
2006-01-01
Striking a balance between the needs of commerce to carry heavy loads on roads and the need to preserve the significant investment in our transportation infrastructure is a challenging process. There are compelling needs from both sides of the pictur...
14 CFR 23.535 - Auxiliary float loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... bottom to avoid excessive local loads, using bottom pressures not less than those prescribed in paragraph...=coefficient of drag force, equal to 0.133; Cy=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 23.535 - Auxiliary float loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... bottom to avoid excessive local loads, using bottom pressures not less than those prescribed in paragraph...=coefficient of drag force, equal to 0.133; Cy=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 23.535 - Auxiliary float loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... bottom to avoid excessive local loads, using bottom pressures not less than those prescribed in paragraph...=coefficient of drag force, equal to 0.133; Cy=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 23.535 - Auxiliary float loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... bottom to avoid excessive local loads, using bottom pressures not less than those prescribed in paragraph...=coefficient of drag force, equal to 0.133; Cy=coefficient of side force, equal to 0.106; K=0.8, except that...
14 CFR 23.535 - Auxiliary float loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... bottom to avoid excessive local loads, using bottom pressures not less than those prescribed in paragraph...=coefficient of drag force, equal to 0.133; Cy=coefficient of side force, equal to 0.106; K=0.8, except that...
Freiberg, Anna T. S.; Tucker, Michael C.; Weber, Adam Z.
2017-04-12
The reduction of platinum-loading on the cathode side of polymer-electrolyte fuel cells leads to a poorly understood increase in mass-transport resistance (MTR) at high current densities. This local resistance was measured using a facile hydrogen-pump technique with dilute active gases for membrane-electrode assemblies with catalyst layers of varying platinum-loading (0.03-0.40 mgPt/cm²). Furthermore, polarization curves in H 2/air were measured and corrected for the overpotential caused by the increased MTR for low loadings on the air side due to the reduced concentration of reactant gas at the catalyst surface. The difference in performance after correction for all resistances including the MTRmore » is minor, suggesting its origin to be diffusive in nature, and proving the meaningfulness of the facile hydrogen-pump technique for the characterization of the cathode catalyst layer under defined operation conditions.« less
Spark-safe low-voltage detonator
Lieberman, Morton L.
1989-01-01
A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.
Spark-safe low-voltage detonator
Lieberman, M.L.
1988-07-01
A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.
Load application for the contact mechanics analysis and wear prediction of total knee replacement.
Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin
2017-05-01
Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.
Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.
Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis
2013-01-01
This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Ambur, Damodar R.; Bodine, Jerry; Dopker, Bernhard
1997-01-01
The results from an experimental and analytical study of a composite sandwich fuselage side panel for a transport aircraft are presented. The panel has two window cutouts and three frames, and has been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on the graphite-epoxy sandwich panel with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. The two-frame panel was damaged by cutting a notch that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. The two panel configurations successfully satisfied all design load requirements in the experimental part of the study, and the three-frame and two-frame panel responses are fully explained by the analysis results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in.-wide frame spacing to further reduce aircraft fuselage structural weight.
Evaluation of Limb Load Asymmetry Using Two New Mathematical Models
Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.
2015-01-01
Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372
Device for testing closure disks at high rates of change of pressure
Merten, C.W. Jr.
1993-11-09
A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.
Research Update from EPA Permeable Parking Lot in Edison, NJ
Communities are increasingly installing green infrastructure stormwater control measures (SCMs) to reduce pollutant loads associated with stormwater runoff. Permeable pavement is a SCM that has limited research on working-scale, side-by-side performance of different pavement sur...
A lift-cancellation technique in linearized supersonic-wing theory
NASA Technical Reports Server (NTRS)
Mirels, Harold
1951-01-01
A lift-cancellation technique is presented for determining load distributions on thin wings at supersonic speeds. The loading on a wing having a prescribed plan form is expressed as the loading of a known related wing (such as a two-dimensional or triangular wing) minus the loading of an appropriate cancellation wing. The lift-cancellation technique can be used to find the loading on a large variety of wings. Applications to swept wings having curvilinear plan forms and to wings having reentrant side edges are indicated.
Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C
2015-01-01
The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.
Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.
1994-01-01
Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.
The impact of physical and mental tasks on pilot mental workoad
NASA Technical Reports Server (NTRS)
Berg, S. L.; Sheridan, T. B.
1986-01-01
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.
31. DETAIL VIEW OF ELECTRIC WINCH AND CABLE SYSTEM, SOUTH ...
31. DETAIL VIEW OF ELECTRIC WINCH AND CABLE SYSTEM, SOUTH SIDE OF MILL HOUSE, USED TO WINCH RAIL CARS INTO LOADING POSITION, LOOKING NORTHEAST - Sperry Corn Elevator Complex, Weber Avenue (North side), West of Edison Street, Stockton, San Joaquin County, CA
A 10 Gb/s laser driver in 130 nm CMOS technology for high energy physics applications
Zhang, T.; Tavernier, F.; Moreira, P.; ...
2015-02-19
The GigaBit Laser Driver (GBLD) is a key on-detector component of the GigaBit Transceiver (GBT) system at the transmitter side. We have developed a 10 Gb/s GBLD (GBLD10) in a 130 nm CMOS technology, as part of the design efforts towards the upgrade of the electrical components of the LHC experiments. The GBLD10 is based on the distributed-amplifier (DA) architecture and achieves data rates up to 10 Gb/s. It is capable of driving VCSELs with modulation currents up to 12 mA. Furthermore, a pre-emphasis function has been included in the proposed laser driver in order to compensate for the capacitivemore » load and channel losses.« less
Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper
NASA Astrophysics Data System (ADS)
Sun, C.; Jahangiri, V.
2018-05-01
Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.
Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima
2015-07-16
Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.
Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads
NASA Astrophysics Data System (ADS)
Chen, Lei; Lian, Youyun; Liu, Xiang
2014-03-01
In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.
Yahya, N; Kamarudin, S K; Karim, N A; Masdar, M S; Loh, K S
2017-11-25
This study presents a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell. The reaction conditions are critical issues affecting the glycerol electro-oxidation performance. This study presents the effects of catalyst loading, temperature, and electrolyte concentration. The glycerol oxidation performance of the PdAu/VGCNF catalyst on the anode side is tested via cyclic voltammetry with a 3 mm 2 active area. The morphology and physical properties of the catalyst are examined using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Then, optimization is carried out using the response surface method with central composite experimental design. The current density is experimentally obtained as a response variable from a set of experimental laboratory tests. The catalyst loading, temperature, and NaOH concentration are taken as independent parameters, which were evaluated previously in the screening experiments. The highest current density of 158.34 mAcm -2 is obtained under the optimal conditions of 3.0 M NaOH concentration, 60 °C temperature and 12 wt.% catalyst loading. These results prove that PdAu-VGCNF is a potential anodic catalyst for glycerol fuel cells.
Argenziano, Monica; Banche, Giuliana; Luganini, Anna; Finesso, Nicole; Allizond, Valeria; Gulino, Giulia Rossana; Khadjavi, Amina; Spagnolo, Rita; Tullio, Vivian; Giribaldi, Giuliana; Guiot, Caterina; Cuffini, Anna Maria; Prato, Mauro; Cavalli, Roberta
2017-05-15
Vancomycin (Vm) currently represents the gold standard against methicillin-resistant Staphylococcus aureus (MRSA) infections. However, it is associated with low oral bioavailability, formulation stability issues, and severe side effects upon systemic administration. These drawbacks could be overcome by Vm topical administration if properly encapsulated in a nanocarrier. Intriguingly, nanobubbles (NBs) are responsive to physical external stimuli such as ultrasound (US), promoting drug delivery. In this work, perfluoropentane (PFP)-cored NBs were loaded with Vm by coupling to the outer dextran sulfate shell. Vm-loaded NBs (VmLNBs) displayed ∼300nm sizes, anionic surfaces and good drug encapsulation efficiency. In vitro, VmLNBs showed prolonged drug release kinetics, not accompanied by cytotoxicity on human keratinocytes. Interestingly, VmLNBs were generally more effective than Vm alone in MRSA killing, with VmLNB antibacterial activity being more sustained over time as a result of prolonged drug release profile. Besides, VmLNBs were not internalized by staphylococci, opposite to Vm solution. Further US association promoted drug delivery from VmLNBs through an in vitro model of porcine skin. Taken together, these results support the hypothesis that proper Vm encapsulation in US-responsive NBs might be a promising strategy for the topical treatment of MRSA wound infections. Copyright © 2017 Elsevier B.V. All rights reserved.
Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.
Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G
2017-01-01
Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
DOT National Transportation Integrated Search
2013-08-01
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of perf...
On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.
2011-01-01
The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.
University Engineering Design Challenge
2015-01-02
strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase
Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus
2004-01-01
F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, FOURTH LEVEL. POWDER HOPPER AT TOP OF ELEVATOR SHAFT. POWDER DISTRIBUTED FROM HERE TO LOADING ROOMS BY TUBES. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Two Crowd Control Case Studies
2007-08-01
Soldiers shine powerful lights into the detox center from 110-foot towers. The army steadily pushes its side of the barriers forward, tightening their...for Mo- hawks. Water fight - not effective for either side. Army locks and loads - effective for Army 26 Sep 90 At the local detox center in
Monitoring Wind Turbine Loading Using Power Converter Signals
NASA Astrophysics Data System (ADS)
Rieg, C. A.; Smith, C. J.; Crabtree, C. J.
2016-09-01
The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.
Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean
2015-01-01
To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.
2017-08-01
Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.
2017-10-01
Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.
Effects of modified short-leg walkers on ground reaction force characteristics.
Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning
2008-11-01
Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.
Taking side effects into account for HIV medication.
Costanza, Vicente; Rivadeneira, Pablo S; Biafore, Federico L; D'Attellis, Carlos E
2010-09-01
A control-theoretic approach to the problem of designing "low-side-effects" therapies for HIV patients based on highly active drugs is substantiated here. The evolution of side effects during treatment is modeled by an extra differential equation coupled to the dynamics of virions, healthy T-cells, and infected ones. The new equation reflects the dependence of collateral damages on the amount of each dose administered to the patient and on the evolution of the viral load detected by periodical blood analysis. The cost objective accounts for recommended bounds on healthy cells and virions, and also penalizes the appearance of collateral morbidities caused by the medication. The optimization problem is solved by a hybrid dynamic programming scheme that adhere to discrete-time observation and control actions, but by maintaining the continuous-time setup for predicting states and side effects. The resulting optimal strategies employ less drugs than those prescribed by previous optimization studies, but maintaining high doses at the beginning and the end of each period of six months. If an inverse discount rate is applied to favor early actions, and under a mild penalization of the final viral load, then the optimal doses are found to be high at the beginning and decrease afterward, thus causing an apparent stabilization of the main variables. But in this case, the final viral load turns higher than acceptable.
Mechanics of evolutionary digit reduction in fossil horses (Equidae).
McHorse, Brianna K; Biewener, Andrew A; Pierce, Stephanie E
2017-08-30
Digit reduction is a major trend that characterizes horse evolution, but its causes and consequences have rarely been quantitatively tested. Using beam analysis on fossilized centre metapodials, we tested how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage. Internal bone geometry was captured from 13 fossil horse genera that covered the breadth of the equid phylogeny and the spectrum of digit reduction and body sizes, from Hyracotherium to Equus To account for the load-bearing role of side digits, a novel, continuous measure of digit reduction was also established-toe reduction index (TRI). Our results show that without accounting for side digits, three-toed horses as late as Parahippus would have experienced physiologically untenable bone stresses. Conversely, when side digits are modelled as load-bearing, species at the base of the horse radiation through Equus probably maintained a similar safety factor to fracture stress. We conclude that the centre metapodial compensated for evolutionary digit reduction and body mass increases by becoming more resistant to bending through substantial positive allometry in internal geometry. These results lend support to two historical hypotheses: that increasing body mass selected for a single, robust metapodial rather than several smaller ones; and that, as horse limbs became elongated, the cost of inertia from the side toes outweighed their utility for stabilization or load-bearing. © 2017 The Author(s).
Ostman, Pär-Olov; Hellman, Mats; Sennerby, Lars; Wennerberg, Ann
2008-05-01
During the last years, focus has been paid to implant treatment using immediate function protocols, and different approaches to provide patients with temporary constructions have been presented. Most of these techniques involve dental technicians producing the temporary construction, for example, rebuilding existing dentures, acrylic bridges, etc. The purpose of this prospective clinical study was to evaluate the clinical outcome of a chair-side technique of a cost-effective temporary prosthesis. Fixture survival rate and risk of temporary bridge failure were analyzed. Thirty-seven partially or totally edentate patients (18 female and 19 male; mean age: 66.7 years) treated with chair-side manufactured temporary restorations (QuickBridge, BIOMET 3i, Palm Beach, Fl, USA) for immediate loading have been evaluated. The prostheses extended from two unit bridges supported by two implants to full-arch construction supported by six implants. The temporary prostheses were monitored from the day of surgery and delivery to the time of replacement with a permanent prosthetic construction 3 to 6 months later. No implants were lost during the observation time. One (3%) temporary prosthesis fractured and additional two (6%) loosened during the follow-up time. The study indicated that the tested chair-side concept for manufacturing of temporary prosthesis for immediate loading of dental implants is a viable approach.
Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan
2014-02-01
Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.
International Society of Sports Nutrition position stand: energy drinks
2013-01-01
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician. PMID:23281794
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), VIEW NORTH AT SOUTH END OF BUILDING. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
1979-07-01
44 a. One-sided level ................................. 44 b. Two-sided level .......................................... 44 H. Testing...successively higher levels of severity must be used until failure is obtained, as in the applications of successively greater loads until failure is...severe than that applied at comparable levels of severity in the laboratory. Further- _ . more, interactions among environments and among components
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Kelley, Henry L.
2000-01-01
Two large-scale, two-dimensional helicopter tail boom models were used to determine the effects of passive venting on boom down loads and side forces in hovering crosswind conditions. The models were oval shaped and trapezoidal shaped. Completely porous and solid configurations, partial venting in various symmetric and asymmetric configurations, and strakes were tested. Calculations were made to evaluate the trends of venting and strakes on power required when applied to a UH-60 class helicopter. Compared with the UH-60 baseline, passive venting reduced side force but increased down load at flow conditions representing right sideward flight. Selective asymmetric venting resulted in side force benefits close to the fully porous case. Calculated trends on the effects of venting on power required indicated that the high asymmetric oval configuration was the most effective venting configuration for side force reduction, and the high asymmetric with a single strake was the most effective for overall power reduction. Also, curves of side force versus flow angle were noticeable smoother for the vented configurations compared with the solid baseline configuration; this indicated a potential for smoother flight in low-speed crosswind conditions.
Rotor blade assembly having internal loading features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloway, Daniel David
Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movementmore » of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.« less
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-11-01
The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed
Single electrode triboelectric generator
Wang, Zhong Lin; Yang, Ya; Zhang, Hulin; Zhu, Guang
2017-11-07
A triboelectric generator includes a first contact charging member, a second contact charging member and an electrical load. The first contact charging member has a contact side and an opposite back side. The first contact charging member includes a material that has a first rating on a triboelectric series and also has a conductive aspect. The second contact charging member has a second rating on the triboelectric series, different from the first rating, and is configured to come into contact with the first contact layer and go out of contact with the first contact layer. The electrical load electrically is coupled to the first contact charging member and to a common voltage so that current will flow through the load after the second contact charging member comes into contact with the first contact charging member and then goes out of contact with the first contact charging member.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying
2015-05-01
A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.
Conversion efficiency of skutterudite-based thermoelectric modules.
Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A
2014-06-28
Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.
Code of Federal Regulations, 2010 CFR
2010-10-01
... not later than 120 days prior to the date new services are required to commence an existing contract..., and the cost of providing or obtaining necessary backup and other ancillary services. (c) For new...., demand side management, load or energy management, peak shaving, on site generation, load shaping), and...
30 CFR 57.9330 - Clearance for surface equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and... the farthest projection of moving railroad equipment shall be provided on at least one side of the...
Compensation for Adolescents' School Mental Load by Physical Activity on Weekend Days.
Kudláček, Michal; Frömel, Karel; Jakubec, Lukáš; Groffik, Dorota
2016-03-09
Increasing mental load and inadequate stress management significantly affect the efficiency, success and safety of the educational/working process in adolescents. The objective of this study is to determine the extent that adolescents compensate for their school mental load by physical activity (PA) on weekend days and, thus, to contribute to the objective measurement of mental load in natural working conditions. A cross-sectional study was conducted between September 2013 and April 2014. A set of different methods was employed-self-administered questionnaire (IPAQ-long questionnaire), objective measurements-pedometers, and accelerometers (ActiTrainers). They was distributed to 548 students from 17 high schools. Participants' mental load was assessed based on the difference between PA intensity and/or physical inactivity and heart rate range. The participants with the highest mental load during school lessons do not compensate for this load by PA on weekend days. Adolescents need to be encouraged to be aware of their subjective mental load and to intentionally compensate for this load by PA on weekend days. It is necessary to support the process of adopting habits by sufficient physical literacy of students, as well as teachers, and by changes in the school program.
Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel
Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong
2014-01-01
For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel. PMID:24980734
Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel
NASA Astrophysics Data System (ADS)
Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong
2014-07-01
For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel.
Occupant seating anthropometry: body ellipses and contact zones for side-impact protection research
NASA Astrophysics Data System (ADS)
Culver, Clyde C.; Viano, David C.
The study has developed an anthropometric description of seated occupants and determined body regions representing major paths in side-impact crashes. The study has identified five major body ellipses defining the head, shoulder, chest, abdomen and pelvis of seated occupants of various sizes, including the six-year-old child. Body contact zones have been determined for front-seated occupants. These templates provide information for the design of side interiors to improve occupant protection in side-impact crashes by load-transfer and energy-absorption characteristics of biocompatible interiors.
Upchurch, Dawn M; Rainisch, Bethany Wexler; Chyu, Laura
2015-01-01
Allostatic load is a useful construct to understand how social and environmental conditions get under the skin to affect health. To date, few studies have examined health-enhancing lifestyle behaviors and their potential benefits in reducing allostatic load. The purpose of this study was to investigate the contributions of leisure time physical activity on level of allostatic load among White, Black, and Mexican American midlife women. Data were from the National Health and Nutrition Examination Survey, 1999 through 2004 (n = 1,680, women ages 40-59). All analyses were weighted. Negative binomial regression was used to model a summative count measure of allostatic load (M = 2.30). Models were also computed to estimate adjusted predicted allostatic load for given levels of physical activity, and by race/ethnicity for each age category (40-44, 45-49, 50-54, 55-59), controlling for other demographics and medication use. Higher levels of physical activity were associated significantly with lower levels of allostatic load, independent of demographics. Compared with White women ages 40 to 44, all other racial/ethnic-by-age groups had significantly higher allostatic load. Higher socioeconomic status was associated with a lower allostatic load. Adjusted prediction models demonstrated associations between greater levels of physical activity and lower allostatic load for all ages and racial/ethnic groups. Our findings suggest physical activity may ameliorate some of the effects of cumulative physiological dysregulation and subsequent disease burden in midlife women. Programs and policies that encourage and promote healthy aging and provide opportunities for a diversity of women to engage in health-enhancing lifestyle practices such as physical activity are recommended. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Ropponen, Annina; Svedberg, Pia; Koskenvuo, Markku; Silventoinen, Karri; Kaprio, Jaakko
2014-06-01
Physical work loading and psychological stress commonly co-occur in working life, hence potentially having an interrelationship that may affect work incapacity. This prospective cohort study aimed to investigate the effect of stability and change in physical work loading and stress on the risk of disability pension (DP) due to musculoskeletal diagnoses (MSD), while accounting for familial confounding in these associations. Data on 12,455 twins born before 1958 were surveyed of their physical work loading and psychological stress of daily activities in 1975 and 1981. The follow-up data was collected from pension registers until 2004. Cox proportional hazards regression models were used. During the follow up, 893 participants were granted DP due to MSD. Stable high (hazard ratio, HR, 2.21), but also increased physical work loading (HR 2.05) and high psychological stress (HR 2.22) were associated with increased risk for DP, and had significant interaction (p=0.032). The associations were confirmed when accounting for several confounding factors. Stable high but also increased physical work loading and psychological stress of daily activities between two timepoints with 6 years apart confirms their predictive role for an increased risk of DP. Both physical work loading and psychological stress seem to be independent from various confounding factors hence suggesting direct effect on risk for DP providing potential for occupational health care to early identification of persons at risk. © 2014 the Nordic Societies of Public Health.
Brand, Serge; Gerber, Markus; Pühse, Uwe; Holsboer-Trachsler, Edith
2011-06-01
No research has yet focused on hypomanic states in non-clinical early adult populations. The aim of the present study was therefore to assess hypomania in a large non-clinical sample of young adults. A total of 862 participants (639 females and 223 males; mean age: M=24.67; SD=5.91) took part in the study. They completed a series of validated self-report questionnaires assessing hypomania (HCL-32) and other aspects of psychological functioning, sleep, stress, quality of life, cognitive-emotional elaboration of pain, self-efficacy, and physical activity. Based on the HCL-32, 19% of the participants (n=169) were categorized as currently being in a hypomanic state. Of those, 57.6% were classified as "active/elated" ('bright side'), whereas 42.4% were classified as "irritable/risk-taking" ('dark side'). Compared to non-hypomanic participants and the 'bright side' group, 'dark side' hypomanic participants reported more depressive symptoms, sleep disturbances, somatic complaints, perceived stress, negative coping strategies, and lower self-efficacy. By contrast, 'bright side' hypomanic participants had lower stress scores, more positive self-instructions, and higher levels of exploration, self-efficacy, and physical activity. A cross-sectional design was adopted, assessing university students, who may not be representative of the stage of early adulthood. The present results underscore the notion of a continuity between a mood state and both favorable ('bright side') and unfavorable ('dark side') hypomanic states. In early adulthood, 'bright' and 'dark side' hypomania differs with respect to physical activity, psychological functioning and sleep. Copyright © 2010 Elsevier B.V. All rights reserved.
Load allocation of power plant using multi echelon economic dispatch
NASA Astrophysics Data System (ADS)
Wahyuda, Santosa, Budi; Rusdiansyah, Ahmad
2017-11-01
In this paper, the allocation of power plant load which is usually done with a single echelon as in the load flow calculation, is expanded into a multi echelon. A plant load allocation model based on the integration of economic dispatch and multi-echelon problem is proposed. The resulting model is called as Single Objective Multi Echelon Economic Dispatch (SOME ED). This model allows the distribution of electrical power in more detail in the transmission and distribution substations along the existing network. Considering the interconnection system where the distance between the plant and the load center is usually far away, therefore the loss in this model is seen as a function of distance. The advantages of this model is its capability of allocating electrical loads properly, as well as economic dispatch information with the flexibility of electric power system as a result of using multi-echelon. In this model, the flexibility can be viewed from two sides, namely the supply and demand sides, so that the security of the power system is maintained. The model was tested on a small artificial data. The results demonstrated a good performance. It is still very open to further develop the model considering the integration with renewable energy, multi-objective with environmental issues and applied to the case with a larger scale.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
a Floating Mobile Quay for Super Container Ships in a Hub Port
NASA Astrophysics Data System (ADS)
Chae, Jang-Won; Park, Woo-Sun
A floating mobile quay (FMQ), which is an innovative berth system, has functions of not only both side loading/unloading but also direct transshipment to feeder ships in a hub port. Applying the FMQ to a hub port such as the west terminal of Busan New Port of Korea, it is shown from a physical modeling and field model test that the quay is dynamically stable and workable in the prevailing wave condition and also safe in a design storm condition, respectively. The terminal productivity is increased by 30% comparing with the present land based berth. The B/C ratio of the new berth system is evaluated as 1.13 considering super-large container ships. It appears that the FMQ is a technically and economically feasible system in the hub port.
8. INTERIOR, DETAIL OF HOUSE COAL CONVEYOR IN LOADING ROOM, ...
8. INTERIOR, DETAIL OF HOUSE COAL CONVEYOR IN LOADING ROOM, USED TO CONVEY COAL TO A STORAGE HOPPER AND MADE AVAILABLE TO NUTTALLBURG RESIDENTS, LOOKING WEST - Nuttallburg Mine Complex, Tipple, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV
Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Ruf, Joseph
2015-01-01
Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and with four different versions of the TIC nozzle model geometry, each of which was created with a different simplification to the test article geometry.
Falke, Lucas L; van Vuuren, Stefan H; Kazazi-Hyseni, Filis; Ramazani, Farshad; Nguyen, Tri Q; Veldhuis, Gert J; Maarseveen, Erik M; Zandstra, Jurjen; Zuidema, Johan; Duque, Luisa F; Steendam, Rob; Popa, Eliane R; Kok, Robbert Jan; Goldschmeding, Roel
2015-02-01
Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres. Copyright © 2014 Elsevier Ltd. All rights reserved.
Response of Composite Fuselage Sandwich Side Panels Subjected to Internal Pressure and Axial Tension
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Ambur, Damodar R.; Dopker, Bernard; Shah, Bharat
1998-01-01
The results from an experimental and analytical study of two composite sandwich fuselage side panels for a transport aircraft are presented. Each panel has two window cutouts and three frames and utilizes a distinctly different structural concept. These panels have been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on both panels. One of the sandwich panels was tested with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. A damage tolerance study was conducted on the two-frame panel by cutting a notch in the panel that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. Both the sandwich panel designs successfully satisfied all desired load requirements in the experimental part of the study, and experimental results from the two-frame panel with and without damage are fully explained by the analytical results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in. wide frame spacing to further reduce aircraft fuselage structural weight.
End-User Tools Towards AN Efficient Electricity Consumption: the Dynamic Smart Grid
NASA Astrophysics Data System (ADS)
Kamel, Fouad; Kist, Alexander A.
2010-06-01
Growing uncontrolled electrical demands have caused increased supply requirements. This causes volatile electrical markets and has detrimental unsustainable environmental impacts. The market is presently characterized by regular daily peak demand conditions associated with high electricity prices. A demand-side response system can limit peak demands to an acceptable level. The proposed scheme is based on energy demand and price information which is available online. An online server is used to communicate the information of electricity suppliers to users, who are able to use the information to manage and control their own demand. A configurable, intelligent switching system is used to control local loads during peak events and mange the loads at other times as necessary. The aim is to shift end user loads towards periods where energy demand and therefore also prices are at the lowest. As a result, this will flatten the load profile and avoiding load peeks which are costly for suppliers. The scheme is an endeavour towards achieving a dynamic smart grid demand-side-response environment using information-based communication and computer-controlled switching. Diffusing the scheme shall lead to improved electrical supply services and controlled energy consumption and prices.
Hu, Yu-Chen
2018-01-01
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%. PMID:29702607
Steentjes, L; Siesling, S; Drummond, F J; van Manen, J G; Sharp, L; Gavin, A
2018-01-01
We identified patient and disease characteristics associated with (1) "current" physical side-effects of any severity; and (2) "severe" physical side-effects "ever" experienced by 3,348 (54%) prostate cancer (PCa) survivors in Ireland diagnosed 2-18 years previously. Postal questionnaires collected symptoms at diagnosis, post-biopsy complications, comorbidities, primary treatments and physical side-effects post-treatment (urinary incontinence, erectile dysfunction, libido loss, bowel problems, breast changes, hot flushes, and fatigue, "ever" and "current" at time of questionnaire completion). Men were grouped by "early" (localised) and "late" (locally advanced/advanced) disease at diagnosis. Multivariable logistic regression analysis identified patient and disease-related factors associated with post-treatment side-effects. Complications post-biopsy were associated with higher risk of "current" libido loss and impotence. Radical prostatectomy was associated with higher risk of "current" and "severe" incontinence, libido loss and impotence in both early and late disease. In early disease, brachytherapy was associated with lower risk of "current" fatigue and "severe" impotence. Comorbidities were associated with higher risk of "current" experience of four side-effects (incontinence, libido loss, bowel problems, fatigue). Men on active surveillance/watchful-waiting reported lower risk of sexual dysfunction. These findings could inform development of tailored information on side-effects, which, in turn, could inform treatment decision-making and post-treatment monitoring. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Nikityuk, B. A.; Kogan, B. I.; Yermolyev, V. A.; Tindare, L. V.
1980-01-01
Tests were conducted on 100 sexually immature inbred August and Wistar male rats in order to determine the effects hypokinesia, physical load and phenamine on the liver. Weight and linear dimension fell in hypokinesia; total serum protein lowered and aldolase and cholesterol and beta-lipoprotein levels rose. Blood sugar content rose and liver glycogen fell. Interlinear differences of these indices are found. Rehabilitated physical loading against hypokinesia background diminished and at times completely prevented its negative effect. Extent of correction depended on animal species. Evidence of genotypical conditionality of organism adaptation to physical load in hypokinesia was found.
123. Pre1911. View forward from near mizzen hatch, starboard side ...
123. Pre-1911. View forward from near mizzen hatch, starboard side showing crew standing on a load of lumber. Note main fife rail, small hatch with cover (possibly original 'lime juice hatch') just aft. Fred Heick Collection. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF ...
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF BUILDING. CAMERA FACING NORTHEAST. CONTAMINATED AIR FILTERS LOADED IN TRANSPORT CASKS WERE TRANSFERRED TO VEHICLES AND SENT TO RADIOACTIVE WASTE MANAGEMENT COMPLEX FOR STORAGE. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Spinal loads as influenced by external loads: a combined in vivo and in silico investigation.
Zander, Thomas; Dreischarf, Marcel; Schmidt, Hendrik; Bergmann, Georg; Rohlmann, Antonius
2015-02-26
Knowledge of in vivo spinal loads and muscle forces remains limited but is necessary for spinal biomechanical research. To assess the in vivo spinal loads, measurements with telemeterised vertebral body replacements were performed in four patients. The following postures were investigated: (a) standing with arms hanging down on sides, (b) holding dumbbells to subject the patient to a vertical load, and (c) the forward elevation of arms for creating an additional flexion moment. The same postures were simulated by an inverse static model for validation purposes, to predict muscle forces, and to assess the spinal loads in subjects without implants. Holding dumbbells on sides increased implant forces by the magnitude of the weight of the dumbbells. In contrast, elevating the arms yielded considerable implant forces with a high correlation between the external flexion moment and the implant force. Predictions agreed well with experimental findings, especially for forward elevation of arms. Flexion moments were mainly compensated by erector spinae muscles. The implant altered the kinematics and, thus, the spinal loads. Elevation of both arms in vivo increased spinal axial forces by approximately 100N; each additional kg of dumbbell weight held in the hands increased the spinal axial forces by 60N. Model predictions suggest that in the intact situation, the force increase is one-third greater for these loads. In vivo measurements are essential for the validation of analytical models, and the combination of both methods can reveal unquantifiable data such as the spinal loads in the intact non-instrumented situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Chongshi; Zhang, Yuanyuan; Zhang, Yan; Fan, Yubo; Deng, Feng
2015-01-01
Despite various X-ray approaches have been widely used to monitor root resorption after orthodontic treatment, a non-invasive and accurate method is highly desirable for long-term follow up. The aim of this study was to build a non-invasive method to quantify longitudinal orthodontic root resorption with time-lapsed images of micro-computed tomography (micro-CT) in a rodent model. Twenty male Sprague Dawley (SD) rats (aged 6-8 weeks, weighing 180-220 g) were used in this study. A 25 g orthodontic force generated by nickel-titanium coil spring was applied to the right maxillary first molar for each rat, while contralateral first molar was severed as a control. Micro-CT scan was performed at day 0 (before orthodontic load) and days 3, 7, 14, and 28 after orthodontic load. Resorption of mesial root of maxillary first molars at bilateral sides was calculated from micro-CT images with registration algorithm via reconstruction, superimposition and partition operations. Obvious resorption of mesial root of maxillary first molar can be detected at day 14 and day 28 at orthodontic side. Most of the resorption occurred in the apical region at distal side and cervical region at mesiolingual side. Desirable development of molar root of rats was identified from day 0 to day 28 at control side. The development of root concentrated on apical region. This non-invasive 3D quantification method with registration algorithm can be used in longitudinal study of root resorption. Obvious root resorption in rat molar can be observed three-dimensionally at day 14 and day 28 after orthodontic load. This indicates that registration algorithm combined with time-lapsed images provides clinic potential application in detection and quantification of root contour.
A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.
Miara, Ariel; Vörösmarty, Charles J
2013-06-01
Major strategic planning decisions loom as society aims to balance energy security, economic development and environmental protection. To achieve such balance, decisions involving the so-called water-energy nexus must necessarily embrace a regional multi-power plant perspective. We present here the Thermoelectric Power & Thermal Pollution Model (TP2M), a simulation model that simultaneously quantifies thermal pollution of rivers and estimates efficiency losses in electricity generation as a result of fluctuating intake temperatures and river flows typically encountered across the temperate zone. We demonstrate the model's theoretical framework by carrying out sensitivity tests based on energy, physical and environmental settings. We simulate a series of five thermoelectric plants aligned along a hypothetical river, where we find that warm ambient temperatures, acting both as a physical constraint and as a trigger for regulatory limits on plant operations directly reduce electricity generation. As expected, environmental regulation aimed at reducing thermal loads at a single plant reduces power production at that plant, but ironically can improve the net electricity output from multiple plants when they are optimally co-managed. On the technology management side, high efficiency can be achieved through the use of natural gas combined cycle plants, which can raise the overall efficiency of the aging population of plants, including that of coal. Tradeoff analysis clearly shows the benefit of attaining such high efficiencies, in terms of both limiting thermal loads that preserve ecosystem services and increasing electricity production that benefits economic development.
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, SECOND LEVEL. LOOKING UP AT POWDER AND DISTRIBUTION TUBES. ELEVATOR SHAFT ON LEFT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
An Assessment of Reservoir Density Currents and Inflow Processes
1983-07-01
Perrier et al. 1977, Westerdahl et al. 1981). During storms, certain constituents (e.g., phosphorus, coliform bacteria, turbidity) charac...teristically load on the rising side of the hydrograph while others (e.g., nitrate and many metals) load on the falling limb (Perrier et al. 1977, Westerdahl et...Perrier, E. R., Westerdahl , H. E., and Nix, J. F. 1977. Water quality loadings during thirteen storms in the Caddo River, Arkansas. Am. Soc. Agr
Chhablani, Jay; Nieto, Alejandra; Hou, Huiyuan; Wu, Elizabeth C.; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun
2013-01-01
Purpose. To test the feasibility of covalent loading of daunorubicin into oxidized porous silicon (OPS) and to evaluate the ocular properties of sustained delivery of daunorubicin in this system. Methods. Porous silicon was heat oxidized and chemically functionalized so that the functional linker on the surface was covalently bonded with daunorubicin. The drug loading rate was determined by thermogravimetric analysis. Release of daunorubicin was confirmed in PBS and excised rabbit vitreous by mass spectrometry. Daunorubicin-loaded OPS particles (3 mg) were intravitreally injected into six rabbits, and ocular properties were evaluated through ophthalmic examinations and histology during a 3-month study. The same OPS was loaded with daunorubicin using physical adsorption and was evaluated similarly as a control for the covalent loading. Results. In the case of covalent loading, 67 ± 10 μg daunorubicin was loaded into each milligram of the particles while 27 ± 10 μg/mg particles were loaded by physical adsorption. Rapid release of daunorubicin was observed in both PBS and excised vitreous (∼75% and ∼18%) from the physical adsorption loading, while less than 1% was released from the covalently loaded particles. Following intravitreal injection, the covalently loaded particles demonstrated a sustained degradation of OPS with drug release for 3 months without evidence of toxicity; physical adsorption loading revealed a complete release within 2 weeks and localized retinal toxicity due to high daunorubicin concentration. Conclusions. OPS with covalently loaded daunorubicin demonstrated sustained intravitreal drug release without ocular toxicity, which may be useful to inhibit unwanted intraocular proliferation. PMID:23322571
Elastic-Tether Suits for Artificial Gravity and Exercise
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.
2005-01-01
Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.
... Another side effect of immunosuppressant medications is hyperglycemia (high blood sugar) and secondary diabetes because they may alter the way your body manages glucose (sugar). It is important to routinely check your ...
A pulsed load model and its impact on a synchronous-rectifier system
NASA Astrophysics Data System (ADS)
Hou, Pengfei; Xu, Ye; Li, Jianke; Wang, Jinquan; Zhang, Haitao; Yan, Jun; Wang, Chunming; Chen, Jingjing
2017-02-01
The pulsed load has become a developing trend of power loading. Unlike traditional loads, pulsed loads with current abrupt and repeated charges will result in unstable Microgrid operations because of their small capacity and inertia. In this paper, an Average Magnitude Sum Function (AMSF) is proposed to calculate the frequency of the grid, and based on AMSF, the Relative Deviation Rate (RDR) that characterises the impact of pulsed load on the AC side of the grid is defined and its calculation process is described in detail. In addition, the system dynamic characteristics under a pulsed load are analysed using an Insulated Gate Bipolar Transistor (IGBT) to control the on/off state of the resistive load for simulating a pulsed load. Finally, the transient characteristics of a synchronous-rectifier system with a pulsed load are studied and validated experimentally.
Code of Federal Regulations, 2010 CFR
2010-01-01
... narrative shall address the overall approach, time periods, and expected internal and external uses of the forecast. Examples of internal uses include providing information for developing or monitoring demand side... suppliers. Examples of external uses include meeting state and Federal regulatory requirements, obtaining...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2014 CFR
2014-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
Investigation of the Behavior of Thin-Walled Panels with Cutouts
NASA Technical Reports Server (NTRS)
Podorozhny, A. A.
1946-01-01
The present paper deals with the computation and methods of reinforcement of stiffened panels with cutouts under bending loads such as are applied to the sides of a fuselage. A comparison is maade between the computed and test results. Results are presented of tests on panels with cutouts under tensile and compressive loads.
Sezgin-Bayindir, Zerrin; Elcin, Ayse Eser; Parmaksiz, Mahmut; Elcin, Yasar Murat; Yuksel, Nilufer
2018-03-01
Medication during pregnancy is often a necessity for women to treat their acute or chronic diseases. The goal of this study is to evaluate the potential of micelle-like nanoparticles (MNP) for providing safe drug usage in pregnancy and protect both foetus and mother from medication side effects. Clonazepam-loaded MNP were prepared from copolymers [polystyrene-poly(acrylic acid) (PS-PAA), poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) and distearyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-poly(ethylene glycol) (PEG-DSPE)] with varying monomer ratios and their drug-loading efficiency, drug release ratio, particle size, surface charge and morphology were characterised. The cellular transport and cytotoxicity experiments were conducted on clonazepam and MNP formulations using placenta-choriocarcinoma-BeWo and brain-endothelial-bEnd3 cells. Clonazepam-loaded PEG 5000 -PLA 4500 MNP reduced the drug transport through BeWo cells demonstrating that MNP may lower foetal drug exposure, thus reduce the drug side effects. However, lipofectamine modified MNP improved the transport of clonazepam and found to be promising for brain and in-utero-specific drug treatment.
Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.
Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun
2018-03-07
Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.
Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.
Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen
2017-07-01
A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.
Ivanov, V. V.; Maximov, A. V.; Betti, R.; ...
2017-05-16
Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, V. V.; Maximov, A. V.; Betti, R.
Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less
Progress in Acoustic Transmission of Power through Walls
NASA Technical Reports Server (NTRS)
Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu
2008-01-01
A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.
Improved power transfer to wearable systems through stretchable magnetic composites
NASA Astrophysics Data System (ADS)
Lazarus, N.; Bedair, S. S.
2016-05-01
The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Childhood abuse and depression in adulthood: The mediating role of allostatic load.
Scheuer, Sandra; Wiggert, Nicole; Brückl, Tanja Maria; Awaloff, Yvonne; Uhr, Manfred; Lucae, Susanne; Kloiber, Stefan; Holsboer, Florian; Ising, Marcus; Wilhelm, Frank H
2018-04-22
Traumatic experiences during childhood are considered a major risk factor for depression in adulthood. Childhood trauma may induce physiological dysregulation with long-term effects of increased allostatic load until adulthood, which may lead to depression. Thus, our aim was to investigate whether allostatic load - which represents a multi-system measure of physiological dysregulation - mediates the association between childhood trauma and adult depression. The study sample consisted of 324 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project and 261 mentally healthy control participants. The mediation analysis using a case-control approach included childhood trauma, i.e., physical and sexual abuse, as predictor variables and an allostatic load index comprised of 12 stress-related biomarkers as mediator. Age and sex were included as covariates. Mediation analyses revealed that the influence of physical abuse, but not sexual abuse, during childhood on depression in adulthood was mediated by allostatic load. This effect was moderated by age: particularly young (18-42 years) and middle-aged (43-54 years) adults with a history of physical abuse during childhood exhibited high allostatic load, which in turn was associated with increased rates of depression, but this was not the case for older participants (55-81 years). Results support the theoretical assumption of allostatic load mediating the effect of physical abuse during childhood on depression in adulthood. This predominantly holds for younger participants, while depression in older participants was independent of physical abuse and allostatic load. The effect of sexual abuse on depression, however, was not mediated by allostatic load. Identifying allostatic load biomarkers prospectively in the developmental course of depression is an important target for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fitness Load and Exercise Time in Secondary Physical Education Classes.
ERIC Educational Resources Information Center
Li, Xiao Jun; Dunham, Paul, Jr.
1993-01-01
Investigates the effect of secondary school physical education on fitness load: the product of the mean heart rate above threshold (144 bpm) and the time duration of heart rate above that threshold. Highly and moderately skilled students achieved fitness load more frequently than their lower skilled colleagues. (GLR)
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING AT SOUTHEAST CORNER. BUILDING NO. 332, CHANGE HOUSE, IN RIGHT BACKGROUND; BUILDING NO. 445-F, MAGAZINE, IN LEFT BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Cancer Treatment for Women: Possible Sexual Side Effects
... the clitoris. These play a major part in sexual arousal in women. Removing the vulva and the clitoris ... www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects/fertility-and-sexual-side-effects/sexuality-for-women-with-cancer.html. ...
The Social Side Effects of Acetaminophen
NASA Astrophysics Data System (ADS)
Mischkowski, Dominik
About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical processes. Finally, public health and legal implications of the social side effects of acetaminophen are discussed.
24 CFR 200.926 - Minimum property standards for one and two family dwellings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... units in a structure where the units are located side-by-side in town house fashion. Section 200.926d(c... the subarea for seismic design (see § 200.926a(c)(5)), or if it fails to regulate subareas in more..., structural loads and seismic design, foundation systems, materials standards, construction components, glass...
24 CFR 200.926 - Minimum property standards for one and two family dwellings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... units in a structure where the units are located side-by-side in town house fashion. Section 200.926d(c... the subarea for seismic design (see § 200.926a(c)(5)), or if it fails to regulate subareas in more..., structural loads and seismic design, foundation systems, materials standards, construction components, glass...
76 FR 423 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... dog-links was found broken (one on the nut side & one on the head side). In both occasions, the bolt... affected. If a single dog-link connection fails, the complete stabilizer load is taken up by the remaining dog-link connection. * * * To address and correct this unsafe condition EASA [European Aviation Safety...
Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.
Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa
2017-08-01
In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.
Characterizing the proton loading site in cytochrome c oxidase.
Lu, Jianxun; Gunner, M R
2014-08-26
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.
Characterizing the proton loading site in cytochrome c oxidase
Lu, Jianxun; Gunner, M. R.
2014-01-01
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, CuB, Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1–4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded. PMID:25114210
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-08-22
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui; ...
2017-05-02
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui
Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less
ADX - Advanced Divertor and RF Tokamak Experiment
NASA Astrophysics Data System (ADS)
Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl
2015-11-01
The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
NASA Technical Reports Server (NTRS)
Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.
2005-01-01
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.
PACIFIC NORTHWEST SIDE-BY-SIDE PROTOCOL COMPARISON TEST
Eleven state, tribal, and federal agencies participated during summer 2005 in a side-by-side comparison of protocols used to measure common in-stream physical attributes to help determine which protocols are best for determining status and trend of stream/watershed condition. Th...
Kon, Kazuhiro; Shiota, Makoto; Sakuyama, Aoi; Ozeki, Maho; Kozuma, Wataru; Kawakami, Sawako; Kasugai, Shohei
2017-02-01
The present study aimed to evaluate the effect of implant prostheses on the occlusal force and area as well as the distribution of occlusal loading in unilateral free-end and intermediate missing cases. Fourteen healthy subjects (7 free-end missing cases in the first and second molars and 7 intermediate missing cases in the first molar region) were included. Six months after the implant prosthesis was placed, an occlusal evaluation was performed with or without the implant superstructure by using Dental Prescale film and an occluder device. In free-end missing cases, the total occlusal force and area, implant-side occlusal force and area, and implant-side occlusal force and area of the residual natural teeth were significantly affected by the implant prostheses. In intermediate missing cases, the implant-side occlusal force of the residual natural teeth was significantly affected by the implant prostheses. In free-end missing cases, the proportions of implant-side occlusal force, non-implant-side occlusal force, and implant-side occlusal force of the residual natural teeth relative to the total occlusal force were significantly affected by the implant prostheses. In the intermediate missing cases, the proportion of the implant-side occlusal force of the residual natural teeth relative to the total occlusal force was significantly affected by the implant prostheses. The proportion of the occlusal area was also significantly affected. In free-end missing cases, implant prostheses significantly increased the occlusal force and area, which resulted in the proper occlusal distribution. In intermediate missing cases, an implant prosthesis may only improve the same-side occlusal loading of the natural teeth.
Goto, Takaharu; Nagao, Kan; Ishida, Yuichi; Tomotake, Yoritoki; Ichikawa, Tetsuo
2015-02-01
This in vitro study investigated the effect of attachment installation conditions on the load transfer and denture movements of implant overdentures, and aims to clarify the differences among the three types of attachments, namely ball, Locator, and magnet attachments. Three types of attachments, namely ball, Locator, and magnetic attachments were used. An acrylic resin mandibular edentulous model with two implants placed in the bilateral canine regions and removable overdenture were prepared. The two implants and bilateral molar ridges were connected to three-axis load-cell transducers, and a universal testing machine was used to apply a 50 N vertical force to each site of the occlusal table in the first molar region. The denture movement was measured using a G(2) motion sensor. Three installation conditions, namely, the application of 0, 50, and 100 N loads were used to install each attachment on the denture base. The load transfer and denture movement were then evaluated. The resultant force decreased with increasing installation load for all attachments. In particular, the resultant force on implants on the loading side of the Locator attachment significantly decreased when the installation load was increased from 0 to 50 N, and that for magnetic attachment significantly decreased when the installation load was increased from 50 to 100 N. For the residual ridges on the loading side, the direction of the forces for all attachments changed to downward with increasing installation load. Furthermore, the yaw Euler angle increased with increasing installation load for the magnetic attachment. Subject to the limitations of this study, the use of any installation load greater than 0 N is recommended for the installation of ball and Locator attachments on a denture base. Regarding magnetic attachments, our results also recommend installation on a denture base using any installation load greater than 0 N, and suggest that the resultant force acting on the implant can be decreased by increasing the installation load; however, a large installation load of 100 N should be avoided when installing the attachment on the denture base to avoid increasing the denture movement. © 2014 by the American College of Prosthodontists.
Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.
Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji
2018-07-01
Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling occupants in far-side impacts.
Douglas, Clay; Fildes, Brian; Gibson, Tom
2011-10-01
Far-side impacts are not part of any regulated NCAP, FMVSS, or similar test regime despite accounting for 43 percent of the seriously injured persons and 30 percent of the harm in U.S. side impact crashes. Furthermore, injuries to the head and thorax account for over half of the serious injuries sustained by occupants in far-side crashes. Despite this, there is no regulated or well-accepted anthropomorphic test device (ATD) or computer model available to investigate far-side impacts. As such, this presents an opportunity to assess a computer model that can be used to measure the effect of varying restraint parameters on occupant biomechanics in far-side impacts. This study sets out to demonstrate the modified TASS human facet model's (MOTHMO) capabilities in modeling whole-body response in far-side impacts. MOTHMO's dynamic response was compared to that of postmortem human subjects (PMHS), WorldSID, and Thor-NT in a series of far-side sled tests. The advantages, disadvantages, and differences of using MOTHMO compared to ATDs were highlighted and described in terms of model design and instrumentation. Potential applications and improvements for MOTHMO were also recommended. The results showed that MOTHMO is capable of replicating the seat belt-to-shoulder complex interaction, pelvis impacts, head displacement, neck and shoulder belt loading from inboard mounted belts, and impacts from multiple directions. Overall, the model performed better than Thor-NT and at least as well as WorldSID when compared to PMHS results. Though WorldSID and Thor-NT ATDs were capable of reproducing many of these impact loads, measuring the seat belt-to-shoulder complex interaction and thoracic deflection at multiple sites and directions was less accurately handled. This study demonstrated that MOTHMO is capable of modeling whole-body response in far-side impacts. Furthermore, MOTHMO can be used as a virtual design tool to explore the effect of varying restraint parameters on occupant kinematics in far-side crash configurations.
Wise, Daniel R.; Johnson, Henry M.
2013-01-01
The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.
NASA Astrophysics Data System (ADS)
Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry
2018-05-01
Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.
Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R
2014-08-22
Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.
23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...
23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), INTERIOR, LOOKING SOUTH DOWN CENTRAL CORRIDOR. NOTE BINS IN WALLS ON EITHER SIDE OF CORRIDOR, USED FOR PASSING EXPLOSIVES AND LOADED ITEMS TO SIEVING ROOMS BEYOND WALLS. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Yoganandan, Narayan; Pintar, Frank; Humm, John; Rudd, Rodney
2015-01-01
To conduct near-side moving deformable barrier (MDB) and pole tests with postmortem human subjects (PMHS) in full-scale modern vehicles, document and score injuries, and examine the potential for angled chest loading in these tests to serve as a data set for dummy biofidelity evaluations and computational modeling. Two PMHS (outboard left front and rear seat occupants) for MDB and one PMHS (outboard left front seat occupant) for pole tests were used. Both tests used sedan-type vehicles from same manufacturer with side airbags. Pretest x-ray and computed tomography (CT) images were obtained. Three-point belt-restrained surrogates were positioned in respective outboard seats. Accelerometers were secured to T1, T6, and T12 spines; sternum and pelvis; seat tracks; floor; center of gravity; and MDB. Load cells were used on the pole. Biomechanical data were gathered at 20 kHz. Outboard and inboard high-speed cameras were used for kinematics. X-rays and CT images were taken and autopsy was done following the test. The Abbreviated Injury Scale (AIS) 2005 scoring scheme was used to score injuries. MDB test: male (front seat) and female (rear seat) PMHS occupant demographics: 52 and 57 years, 177 and 166 cm stature, 78 and 65 kg total body mass. Demographics of the PMHS occupant in the pole test: male, 26 years, 179 cm stature, and 84 kg total body mass. Front seat PMHS in MDB test: 6 near-side rib fractures (AIS = 3): 160-265 mm vertically from suprasternal notch and 40-80 mm circumferentially from center of sternum. Left rear seat PMHS responded with multiple bilateral rib fractures: 9 on the near side and 5 on the contralateral side (AIS = 3). One rib fractured twice. On the near and contralateral sides, fractures were 30-210 and 20-105 mm vertically from the suprasternal notch and 90-200 and 55-135 mm circumferentially from the center of sternum. A fracture of the left intertrochanteric crest occurred (AIS = 3). Pole test PMHS had one near-side third rib fracture. Thoracic accelerations of the 2 occupants were different in the MDB test. Though both occupants sustained positive and negative x-accelerations to the sternum, peak magnitudes and relative changes were greater for the rear than the front seat occupant. Magnitudes of the thoracic and sternum accelerations were lower in the pole test. This is the first study to use PMHS occupants in MDB and pole tests in the same recent model year vehicles with side airbag and head curtain restraints. Injuries to the unilateral thorax for the front seat PMHS in contrast to the bilateral thorax and hip for the rear seat occupant in the MDB test indicate the effects of impact on the seating location and restraint system. Posterolateral locations of fractures to the front seat PMHS are attributed to constrained kinematics of occupant interaction with torso side airbag restraint system. Angled loading to the rear seat occupant from coupled sagittal and coronal accelerations of the sternum representing anterior thorax loading contributed to bilateral fractures. Inward bending initiated by the distal femur complex resulting in adduction of ipsilateral lower extremity resulted in intertrochanteric fracture to the rear seat occupant. These results serve as a data set for evaluating the biofidelity of the WorldSID and federalized side impact dummies and assist in validating human body computational models, which are increasingly used in crashworthiness studies.
Internal consistency and validity of a new physical workload questionnaire
Bot, S; Terwee, C; van der Windt, D A W M; Feleus, A; Bierma-Zeinstra, S; Knol, D; Bouter, L; Dekker, J
2004-01-01
Aims: To examine the dimensionality, internal consistency, and construct validity of a new physical workload questionnaire in employees with musculoskeletal complaints. Methods: Factor analysis was applied to the responses in three study populations with musculoskeletal disorders (n = 406, 300, and 557) on 26 items related to physical workload. The internal consistency of the resulting subscales was examined. It was hypothesised that physical workload would vary among different occupational groups. The occupations of all subjects were classified into four groups on the basis of expected workload (heavy physical load; long lasting postures and repetitive movements; both; no physical load). Construct validity of the subscales created was tested by comparing the subscale scores among these occupational groups. Results: The pattern of the factor loadings of items was almost identical for the three study populations. Two interpretable factors were found: items related to heavy physical workload loaded highly on the first factor, and items related to static postures or repetitive work loaded highly on the second factor. The first constructed subscale "heavy physical work" had a Cronbach's α of 0.92 to 0.93 and the second subscale "long lasting postures and repetitive movements", of 0.86 to 0.87. Six of eight hypotheses regarding the construct validity of the subscales were confirmed. Conclusions: The results support the internal structure, internal consistency, and validity of the new physical workload questionnaire. Testing this questionnaire in non-symptomatic employees and comparing its performance with objective assessments of physical workload are important next steps in the validation process. PMID:15550603
Gallizzi, Michael A.; Kuhns, Craig A.; Jenkins, Tyler J.; Pfeiffer, Ferris M.
2014-01-01
Study Design Biomechanical analysis of lateral mass screw pullout strength. Objective We compare the pullout strength of our bone cement–revised lateral mass screw with the standard lateral mass screw. Methods In cadaveric cervical spines, we simulated lateral mass screw “cutouts” unilaterally from C3 to C7. We salvaged fixation in the cutout side with polymethyl methacrylate (PMMA) or Cortoss cement (Orthovita, Malvern, Pennsylvania, United States), allowed the cement to harden, and then drilled and placed lateral mass screws back into the cement-augmented lateral masses. On the contralateral side, we placed standard lateral mass screws into the native, or normal lateral, masses and then compared pullout strength of the cement-augmented side to the standard lateral mass screw. For pullout testing, each augmentation group was fixed to a servohydraulic load frame and a specially designed pullout fixture was attached to each lateral mass screw head. Results Quick-mix PMMA-salvaged lateral mass screws required greater force to fail when compared with native lateral mass screws. Cortoss cement and PMMA standard-mix cement-augmented screws demonstrated less strength of fixation when compared with control-side lateral mass screws. Attempts at a second round of cement salvage of the same lateral masses led to more variations in load to failure, but quick-mix PMMA again demonstrated greater load to failure when compared with the nonaugmented control lateral mass screws. Conclusion Quick-mix PMMA cement revision equips the spinal surgeon with a much needed salvage option for a failed lateral mass screw in the subaxial cervical spine. PMID:25649421
[New methods for determining the relative load due to physical effort of the human body].
Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja
2014-01-01
The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Klein, Talysa; Lee, Benjamin G
The rear side metallization of Si solar cells comes with a number of inherent losses and trade-offs: a larger metallized area fraction improves fill factor at the expense of open-circuit voltage, depositing directly on textured Si leads to low contact resistivity at the expense of short-circuit current, and some metallization processes create defects in Si. To mitigate many of these losses we have developed a novel approach for rear side metallization of Si solar cells, utilizing a transparent conducting adhesive (TCA) to metallize Si without exposing the wafer to the metal deposition process. The TCA consists of an insulating adhesivemore » loaded with conductive microspheres. This approach leads to virtually no loss in implied open-circuit voltage upon metallization. Electrical measurements showed that contact resistivities of 3-9 ..omega.. cm2 were achieved, and an analysis of the transit resistance per microsphere showed that less than 1 ..omega.. cm2 should be achievable with higher microsphere loading of the TCA.« less
Passive Orbital Disconnect Strut (PODS 3) structural test program
NASA Technical Reports Server (NTRS)
Parmley, R. T.
1985-01-01
A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests.
NASA Astrophysics Data System (ADS)
Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang
2018-01-01
In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.
Warden, S J; Weatherholt, A M; Gudeman, A S; Mitchell, D C; Thompson, W R; Fuchs, R K
2017-07-01
Physical activity benefits the skeleton, but there is contrasting evidence regarding whether benefits differ at different stages of growth. The current study demonstrates that physical activity should be encouraged at the earliest age possible and be continued into early adulthood to gain most skeletal benefits. The current study explored physical activity-induced bone adaptation at different stages of somatic maturity by comparing side-to-side differences in midshaft humerus properties between male throwing athletes and controls. Throwers present an internally controlled model, while inclusion of control subjects removes normal arm dominance influences. Throwing athletes (n = 90) and controls (n = 51) were categorized into maturity groups (pre, peri, post-early, post-mid, and post-late) based on estimated years from peak height velocity (<-2, -2 to 2, 2 to 4, 4 to 10, and >10 years). Side-to-side percent differences in midshaft humerus cortical volumetric bone mineral density (Ct.vBMD) and bone mineral content (Ct.BMC); total (Tt.Ar), medullary (Me.Ar), and cortical (Ct.Ar) areas; average cortical thickness (Ct.Th); and polar Strength Strain Index (SSI P ) were assessed. Significant interactions between physical activity and maturity on side-to-side differences in Ct.BMC, Tt.Ar, Ct.Ar, Me.Ar, Ct.Th, and SSI P resulted from the following: (1) greater throwing-to-nonthrowing arm differences than dominant-to-nondominant arm differences in controls (all p < 0.05) and (2) throwing-to-nonthrowing arm differences in throwers being progressively greater across maturity groups (all p < 0.05). Regional analyses revealed greatest adaptation in medial and lateral sectors, particularly in the three post-maturity groups. Years throwing predicted 59% of the variance of the variance in throwing-to-nonthrowing arm difference in SSI P (p < 0.001). These data suggest that physical activity has skeletal benefits beginning prior to and continuing beyond somatic maturation and that a longer duration of exposure to physical activity has cumulative skeletal benefits. Thus, physical activity should be encouraged at the earliest age possible and be continued into early adulthood to optimize skeletal benefits.
Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri
2015-08-07
A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.
Josephson, M; Pernold, G; Ahlberg-Hultén, G; Härenstam, A; Theorell, T; Vingård, E; Waldenström, M; Hjelm, E W
1999-01-01
This study investigated whether there is a relationship between high physical work load and adverse psychosocial work factors, and whether this relationship is different for women and men. Separate analyses for female registered nurses and assistant nurses were made because these are common occupations involving high physical and psychological demands. This study was part of the MUSIC-Norrtälje study, a population study with the overall aim of identifying risk factors for musculoskeletal disorders. The respondents, 1423 gainfully employed men and women, were randomly selected from the study population. The exposure assessments referred to a typical workday during the previous 12 months. Physical exposure was investigated by interview, psychosocial work factors by interview and questionnaire. For the women, but not the men, mainly routine work and a job strain situation, according to the model of Karasek and Theorell, increased the probability of having a high physical work load, assessed as a time-weighted average of energy expenditure in multiples of the resting metabolic rate. Results indicated that in female-dominated occupations, high physical work load might also imply adverse psychosocial conditions. A higher frequency of high physical work load and job strain was observed among assistant nurses compared with registered nurses. Covariance between physical and psychosocial demands makes it difficult to determine the relative influence of each in health problems. Results of the present study imply that this is a larger problem in studies of women than men.
Measuring alignment of loading fixture
Scavone, Donald W.
1989-01-01
An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.
NASA Astrophysics Data System (ADS)
Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan
2018-02-01
Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.
The TICTOP nozzle: a new nozzle contouring concept
NASA Astrophysics Data System (ADS)
Frey, Manuel; Makowka, Konrad; Aichner, Thomas
2017-06-01
Currently, mainly two types of nozzle contouring methods are applied in space propulsion: the truncated ideal contour (TIC) and the thrust-optimized parabola (TOP). This article presents a new nozzle contouring method called TICTOP, combining elements of TIC and TOP design. The resulting nozzle is shock-free as the TIC and therefore does not induce restricted shock separation leading to excessive side-loads. Simultaneously, the TICTOP nozzle will allow higher nozzle wall exit pressures and hence give a better separation margin than is the case for a TIC. Hence, this new nozzle type combines the good properties of TIC and TOP nozzles and eliminates their drawbacks. It is especially suited for first stage application in launchers where flow separation and side-loads are design drivers.
Dissipation of Energy in a Concentric ER Clutch and its Refined Quasi-Static Model
NASA Astrophysics Data System (ADS)
Oravský, Vladimír
A concentric electrorheological clutch (ERC) constituting the central part of a broader system: electro-hydro-aggregate (EHA) with an electrodrive (ED) on one side and a loading machine (brake B) on the other side is considered. The corresponding quasi-static model (at constant load and speed) is investigated and refined by insertion of power absorbed by electrorheological fluid (ERF). This increases the number of nondimensional parameters of the model from 8 to 12. Classification of several kinds of dissipation of energy in ERC is presented. Description and analysis of dissipation of the first kind are given more in detail and illustrated by synoptical diagrams. Also two definitions of efficiency of ERC are introduced and discussed.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Swegle, A. R.
1981-01-01
The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
Krishnamurthy, Sangeetha; Ng, Victor W L; Gao, Shujun; Tan, Min-Han; Yang, Yi Yan
2014-11-01
Conventional cancer chemotherapy often fails as most anti-cancer drugs are not effective against drug-resistant cancer stem cells. These surviving cancer stem cells lead to relapse and metastasis. In this study, an anti-diabetic drug, phenformin, capable of eliminating cancer stem cells was loaded into micelles via self-assembly using a mixture of a diblock copolymer of poly(ethylene glycol) (PEG) and urea-functionalized polycarbonate and a diblock copolymer of PEG and acid-functionalized polycarbonate through hydrogen bonding. The phenformin-loaded micelles, having an average diameter of 102 nm with narrow size distribution, were stable in serum-containing solution over 48 h and non-cytotoxic towards non-cancerous cells. More than 90% of phenformin was released from the micelles over 96 h. Lung cancer stem cells (side population cells, i.e. SP cells) and non-SP cells were sorted from H460 human lung cancer cell line, and treated with free phenformin and phenformin-loaded micelles. The results showed that the drug-loaded micelles were more effective in inhibiting the growth of both SP and non-SP cells. In vivo studies conducted in an H460 human lung cancer mouse model demonstrated that the drug-loaded micelles had greater anti-tumor efficacy, and reduced the population of SP cells in the tumor tissues more effectively than free phenformin. Liver function analysis was performed following drug treatments, and the results indicated that the drug-loaded micelles did not cause liver damage, a harmful side-effect of phenformin when used clinically. These phenformin-loaded micelles may be used to target both cancer cells and cancer stem cells in chemotherapy for the prevention of relapse and metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...
Code of Federal Regulations, 2010 CFR
2010-01-01
... on the landing gear but near the plane of symmetry of the airplane, the drag and side tow load....Aft. Swiveled aft 0.3W 78 Forward.Aft. Swiveled 45° from forward 0.15W 910 Forward, in plane of wheel.Aft, in plane of wheel. Swiveled 45° from aft 0.15W 1112 Forward, in plane of wheel.Aft, in plane of...
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
NASA Astrophysics Data System (ADS)
Abdulaal, Ahmed
The work in this study addresses the current limitations of the price-driven demand response (DR) approach. Mainly, the dependability on consumers to respond in an energy aware conduct, the response timeliness, the difficulty of applying DR in a busy industrial environment, and the problem of load synchronization are of utmost concern. In order to conduct a simulation study, realistic price simulation model and consumers' building load models are created using real data. DR action is optimized using an autonomous control method, which eliminates the dependency on frequent consumer engagement. Since load scheduling and long-term planning approaches are infeasible in the industrial environment, the proposed method utilizes instantaneous DR in response to hour-ahead price signals (RTP-HA). Preliminary simulation results concluded savings at the consumer-side at the cost of increased supplier-side burden due to the aggregate effect of the universal DR policies. Therefore, a consumer disaggregation strategy is briefly discussed. Finally, a refined discrete-continuous control system is presented, which utilizes multi-objective Pareto optimization, evolutionary programming, utility functions, and bidirectional loads. Demonstrated through a virtual testbed fit with real data, the new system achieves momentary optimized DR in real-time while maximizing the consumer's wellbeing.
Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.
2013-01-01
Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model estimates E. coli loads better in the smaller ranges, whereas the BNN model estimates E. coli loads better in the higher ranges. Hence, the BNN model can be used to design targeted monitoring programs and implement regulatory standards through TMDL programs. PMID:24511166
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert L; Fioroni, Gina; Fatouraie, Mohammad
Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulatemore » emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.« less
Shahin, Mostafa; Lavasanifar, Afsaneh
2010-04-15
Poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) copolymers bearing paclitaxel (PTX) side groups on PCL (PEO-b-P(CL-PTX) were synthesized and assembled to particles of 123 nm average diameter. At 20% (w/w) PTX to polymer conjugation, PEO-b-P(CL-PTX) demonstrated only 5.0 and 6.7% PTX release after 72 h incubation at pH 7.4 and 5.0, respectively, but revealed signs of chain cleavage at pH 5.0. The cytotoxicity of PEO-b-P(CL-PTX) against MDA-MB-435 cancer cells increased as incubation time was raised from 72 to 96 h (IC(50) of 680 and 475 ng/mL, respectively), but it was still significantly lower than the cytotoxicity of free PTX (IC(50) of 3.5 ng/mL at 72 h). In further studies, micelles of PEO-b-PCL and those bearing benzyl or PTX on PCL were used for physical encapsulation of PTX, where maximum level of loading was achieved by PEO-b-P(CL-PTX) (2.22%, w/w). The release of PTX from this carrier was rapid; however. The in vitro cytotoxicity of physically loaded PTX was independent of carrier and similar to that of free PTX. This was attributed to the low concentration of polymers which fell below their critical micellar concentration in the cytotoxicity study. The results point to the potential of chemically tailored PEO-b-PCL for optimum PTX solubilization and delivery. Copyright 2010 Elsevier B.V. All rights reserved.
Marano, Francesca; Argenziano, Monica; Frairia, Roberto; Adamini, Aloe; Bosco, Ornella; Rinella, Letizia; Fortunati, Nicoletta; Cavalli, Roberta; Catalano, Maria Graziella
2016-05-01
No standard chemotherapy is available for anaplastic thyroid cancer (ATC). Drug-loaded nanobubbles (NBs) are a promising innovative anticancer drug formulation, and combining them with an externally applied trigger may further control drug release at the target region. Extracorporeal shock waves (ESWs) are acoustic waves widely used in urology and orthopedics, with no side effects. The aim of the present work was to combine ESWs and new doxorubicin-loaded glycol chitosan NBs in order to target doxorubicin and enhance its antitumor effect in ATC cell lines. CAL-62 and 8305C cells were treated with empty NBs, fluorescent NBs, free doxorubicin, and doxorubicin-loaded NBs in the presence or in the absence of ESWs. NB entrance was evaluated by fluorescence microscopy and flow cytofluorimetry. Cell viability was assessed by Trypan Blue exclusion and WST-1 proliferation assays. Doxorubicin intracellular content was measured by high-performance liquid chromatography. Treatment with empty NBs and ESWs, even in combination, was safe, as cell viability and growth were not affected. Loading NBs with doxorubicin and combining them with ESWs generated the highest cytotoxic effect, resulting in drug GI50 reduction of about 40%. Mechanistically, ESWs triggered intracellular drug release from NBs, resulting in the highest nuclear drug content. Combined treatment with doxorubicin-loaded NBs and ESWs is a promising drug delivery tool for ATC treatment with the possibility of using lower doxorubicin doses and thus limiting its systemic side effects.
Song, Wantong; Tang, Zhaohui; Li, Mingqiang; Lv, Shixian; Sun, Hai; Deng, Mingxiao; Liu, Huaiyu; Chen, Xuesi
2014-03-01
A novel methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine) (mPEG-b-P(Glu)-b-P(Phe)) triblock copolymer was prepared and explored as a micelle carrier for the co-delivery of paclitaxel (PTX) and cisplatin (cis-diamminedichlo-platinum, CDDP). PTX and CDDP were loaded inside the hydrophobic P(Phe) inner core and chelated to the middle P(Glu) shell, respectively, while mPEG provided the outer corona for prolonged circulation. An in vitro release profile of the PTX+CDDP-loaded micelles showed that the CDDP chelation cross-link prevented an initial burst release of PTX. The PTX+CDDP-loaded micelles exhibited a high synergism effect in the inhibition of A549 human lung cancer cell line proliferation over 72 h incubation. For the in vivo treatment of xenograft human lung tumor, the PTX+CDDP-loaded micelles displayed an obvious tumor inhibiting effect with a 83.1% tumor suppression rate (TSR%), which was significantly higher than that of a free drug combination or micelles with a single drug. In addition, more importantly, the enhanced anti-tumor efficacy of the PTX+CDDP-loaded micelles came with reduced side-effects. No obvious body weight loss occurred during the treatment of A549 tumor-bearing mice with the PTX+CDDP-loaded micelles. Thus, the polypeptide-based combination of PTX and CDDP may provide useful guidance for effective and safe cancer chemotherapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING EAST AT SOUTHWEST END OF BUILDING. HVAC EQUIPMENT LOCATED OUTDOORS IN FOREGROUND. DUCTS CONDUCT HOT OR COLD AIR INDOORS. ROUND PIPES ARE INSULATED STEAM LINES. BUILDING NO. 448, ORDNANCE FACILITY, IN BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Phan, Huy Phuong
2016-01-01
We examined the use of balance and inverse methods in equation solving. The main difference between the balance and inverse methods lies in the operational line (e.g. +2 on both sides vs -2 becomes +2). Differential element interactivity favours the inverse method because the interaction between elements occurs on both sides of the equation for…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... tires sidewall markings on the opposite side of the full DOT TIN are lacking the designation ``Extra... tires lack the marking ``Extra Load'' on the sidewall opposite of the full DOT TIN as required by FMVSS... subject tires are mounted on a vehicle, the left side tires on the vehicle will show the full DOT TIN and...
114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...
114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
The Need of Slanted Side Holes for Venous Cannulae
Park, Joong Yull
2012-01-01
Well-designed cannulae must allow good flow rate and minimize nonphysiologic load. Venous cannulae generally have side holes to prevent the rupture of blood vessel during perfusion. Optimizing side hole angle will yield more efficient and safe venous cannulae. A numerical modeling was used to study the effect of the angle (0°–45°) and number (0–12) of side holes on the performance of cannulae. By only slanting the side holes, it increases the flow rate up to 6% (in our models). In addition, it was found that increasing the number of side holes reduces the shear rate up to 12% (in our models). A new parameter called “penetration depth” was introduced to describe the interfering effect of stream jets from side holes, and the result showed that the 45°-slanted side holes caused minimum interfering for the flow in cannula. Our quantitative hemodynamic analysis study provides important guidelines for venous cannulae design. PMID:22291856
Effects of small-sided games on physical conditioning and performance in young soccer players.
Katis, Athanasios; Kellis, Eleftherios
2009-01-01
The purpose of this study was to examine, first, the movement actions performed during two different small-sided games and, second, their effects on a series of field endurance and technical tests. Thirty-four young soccer players (age: 13 ± 0.9 yrs; body mass: 62.3 ± 15.1 kg; height: 1.65 ± 0.06 m) participated in the study. Small-sided games included three-a-side (3 versus 3 players) and six-a-side (6 versus 6 players) games consisting of 10 bouts of 4 min duration with 3 min active recovery between bouts. Soccer player performance was evaluated using five field tests: a) 30m sprint, b) throw-in for distance, c) Illinois Agility Test, d) dribbling the ball and e) horizontal jump before, in the middle and after the implementation of both game situations. Heart rate was monitored during the entire testing session. Each game was also filmed to measure soccer movements within the game. The ANOVA analysis indicated that the three-a- side games displayed significantly higher heart rate values compared with the six-a-side games (p < 0.05). The number of short passes, kicks, tackles, dribbles and scoring goals were significantly higher during the three-a-side compared with the six-a-side game condition (p < 0. 05) while players performed more long passes and headed the ball more often during the six-a-side (p < 0.05). After the three-a-side games, there was a significant decline in sprint and agility performance (p < 0.05), while after both game conditions significant alterations in the throw-in and the horizontal jump performance were observed (p < 0.05). The results of the present study indicated that three-a-side games provide higher stimulus for physical conditioning and technical improvement than six-a-side games and their use for training young soccer players is recommended. Key pointsThree-a-side games display higher HR compared with six-a-side games.In the three-a-side games players performed more short passes, kicks, dribbles, tackles and scored more goals compared with the six-a-side games.Impairment in endurance and field test performance was observed mainly after three-a-side games.The use of the three-a-side games to develop physical fitness and technique in young soccer players is recommended.
Dai, Boyi; Garrett, William E; Gross, Michael T; Padua, Darin A; Queen, Robin M; Yu, Bing
2015-02-01
Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Controlled laboratory study. A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by increased stance time and mechanical work as well as decreased jump height and movement speed. Training effects tested in laboratory environments with the focus on reducing ACL loading may be reduced in actual competition environments when the focus is on athlete performance. The effects of training programs for ACL injury prevention on lower extremity biomechanics in athletic tasks may need to be evaluated in laboratories as well as in actual competitions. © 2014 The Author(s).
Predicting physiological capacity of human load carriage - a review.
Drain, Jace; Billing, Daniel; Neesham-Smith, Daniel; Aisbett, Brad
2016-01-01
This review article aims to evaluate a proposed maximum acceptable work duration model for load carriage tasks. It is contended that this concept has particular relevance to physically demanding occupations such as military and firefighting. Personnel in these occupations are often required to perform very physically demanding tasks, over varying time periods, often involving load carriage. Previous research has investigated concepts related to physiological workload limits in occupational settings (e.g. industrial). Evidence suggests however, that existing (unloaded) workload guidelines are not appropriate for load carriage tasks. The utility of this model warrants further work to enable prediction of load carriage durations across a range of functional workloads for physically demanding occupations. If the maximum duration for which personnel can physiologically sustain a load carriage task could be accurately predicted, commanders and supervisors could better plan for and manage tasks to ensure operational imperatives were met whilst minimising health risks for their workers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1987-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1989-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
NASA Astrophysics Data System (ADS)
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, R.G.; Williamson, M.A.; Richman, E.E.
1990-07-01
The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoringmore » of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.« less
Scaling analysis of bilateral hand tremor movements in essential tremor patients.
Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos
2011-08-01
Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.
Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie
2016-01-01
In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502
NASA Astrophysics Data System (ADS)
Islam, Mujahidul
A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable from the vast network. A path tracing methodology is developed to identify the power lines that are vulnerable to an unscheduled flow effect in the sub-transmission network. It is much harder to aggregate power system network sensitivity information or data from measuring load flow physically than to simulate in software. System dynamics is one of the key factors to determine an appropriate dynamic control mechanism at an optimum network location. Once a model of deterministic but variable power generator is used, the simulation can be meaningful in justifying this claim. The method used to model the variable generator is named the two-components phase distortion model. The model was validated from the high resolution data collected from three pilot photovoltaic sites in Florida - two in the city of St. Petersburg and one in the city of Tampa. The high resolution data was correlated with weather radar closest to the sites during the design stage of the model. Technically the deterministic model cannot replicate a stochastic model which is more realistically applicable for solar isolation and involves a Markov chain. The author justified the proposition based on the fact that for analysis of the response functions of different systems, the excitation function should be common for comparison. Moreover, there could be many possible simulation scenarios but fewer worst cases. Almost all commercial systems are protected against potential faults and contingencies to a certain extent. Hence, the proposed model for worst case studies was designed within a reasonable limit. The simulation includes steady state and transient mode using multiple software modules including MatlabRTM, PSCADRTM and Paladin Design BaseRTM. It is shown that by identifying vulnerable or sensitive branches in the network, the control mechanisms can be coordinated reliably. In the long run this can save money by preventing unscheduled power flow in the network and eventually stabilizing the energy market.
ERIC Educational Resources Information Center
Jamniczky, Heather A.; McLaughlin, Kevin; Kaminska, Malgorzata E.; Raman, Maitreyi; Somayaji, Ranjani; Wright, Bruce; Ma, Irene W. Y.
2015-01-01
Ultrasonography is increasingly used for teaching anatomy and physical examination skills but its effect on cognitive load is unknown. This study aimed to determine ultrasound's perceived utility for learning, and to investigate the effect of cognitive load on its perceived utility. Consenting first-year medical students (n?=?137) completed…
Electrical load forecasting with artificial neural networks Demand-side management optimization with Matlab -58491. D. Palchak, S. Suryanarayanan, and D. Zimmerle. "An Artificial Neural Network in Short-Term
Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun
2011-04-10
A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Teten, Andra L.; Sherman, Michelle D.; Han, Xiaotong
2009-01-01
Among male veterans and their female partners seeking therapy for relationship issues, three violence profiles were identified based on self-reports of physical violence: nonviolent, in which neither partner reported perpetrating physical violence (44%); one-sided violent, in which one partner reported perpetrating violence (30%); and mutually…
A new physical performance classification system for elite handball players: cluster analysis
Chirosa, Ignacio J.; Robinson, Joseph E.; van der Tillaar, Roland; Chirosa, Luis J.; Martín, Isidoro Martínez
2016-01-01
Abstract The aim of the present study was to identify different cluster groups of handball players according to their physical performance level assessed in a series of physical assessments, which could then be used to design a training program based on individual strengths and weaknesses, and to determine which of these variables best identified elite performance in a group of under-19 [U19] national level handball players. Players of the U19 National Handball team (n=16) performed a set of tests to determine: 10 m (ST10) and 20 m (ST20) sprint time, ball release velocity (BRv), countermovement jump (CMJ) height and squat jump (SJ) height. All players also performed an incremental-load bench press test to determine the 1 repetition maximum (1RMest), the load corresponding to maximum mean power (LoadMP), the mean propulsive phase power at LoadMP (PMPPMP) and the peak power at LoadMP (PPEAKMP). Cluster analyses of the test results generated four groupings of players. The variables best able to discriminate physical performance were BRv, ST20, 1RMest, PPEAKMP and PMPPMP. These variables could help coaches identify talent or monitor the physical performance of athletes in their team. Each cluster of players has a particular weakness related to physical performance and therefore, the cluster results can be applied to a specific training programmed based on individual needs. PMID:28149376
Tsarouhas, Alexander; Iosifidis, Michael; Spyropoulos, Giannis; Kotzamitelos, Dimitrios; Tsatalas, Themistoklis; Giakas, Giannis
2011-12-01
To evaluate in vivo the differences in tibial rotation between single- and double-bundle anterior cruciate ligament (ACL)-reconstructed knees under combined loading conditions. An 8-camera optoelectronic system and a force plate were used to collect kinematic and kinetic data from 14 patients with double-bundle ACL reconstruction, 14 patients with single-bundle reconstruction, 12 ACL-deficient subjects, and 12 healthy control individuals while performing 2 tasks. The first included walking, 60° pivoting, and stair ascending, and the second included stair descending, 60° pivoting, and walking. The 2 variables evaluated were the maximum range of internal-external tibial rotation and the maximum knee rotational moment. Tibial rotation angles were not significantly different across the 4 groups (P = .331 and P = .851, respectively) or when side-to-side differences were compared within groups (P = .216 and P = .371, respectively) for the ascending and descending maneuvers, nor were rotational moments among the 4 groups (P = .418 and P = .290, respectively). Similarly, for the descending maneuver, the rotational moments were not significantly different between sides (P = .192). However, for the ascending maneuver, rotational moments of the affected sides were significantly lower by 20.5% and 18.7% compared with their intact counterparts in the single-bundle (P = .015) and double-bundle (P = .05) groups, respectively. High-intensity activities combining stair ascending or descending with pivoting produce similar tibial rotation in single- and double-bundle ACL-reconstructed patients. During such maneuvers, the reconstructed knee may be subjected to significantly lower rotational loads compared with the intact knee. Level III, retrospective comparative study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Brown, Larry R.; Panshin, Sandra Y.; Kratzer, Charles R.; Zamora, Celia; Gronberg, JoAnn M.
2004-01-01
Water samples were collected from 22 drainage basins for analysis of 48 dissolved pesticides during summer flow conditions in 1994 and 2001. Of the 48 pesticides, 31 were reported applied in the basin in the 28 days preceding the June 1994 sampling, 25 in the 28 days preceding the June 2001 sampling, and 24 in the 28 days preceding the August 2001 sampling. The number of dissolved pesticides detected was similar among sampling periods: 26 were detected in June 1994, 28 in June 2001, and 27 in August 2001. Concentrations of chlorpyrifos exceeded the California criterion for the protection of aquatic life from acute exposure at six sites in June 1994 and at five sites in June 2001. There was a single exceedance of the criterion for diazinon in June 1994. The number of pesticides applied in tributary basins was highly correlated with basin area during each sampling period (Spearman's r = 0.85, 0.70, and 0.84 in June 1994, June 2001, and August 2001, respectively, and p < 0.01 in all cases). Larger areas likely include a wider variety of crops, resulting in more varied pesticide use. Jaccard's similarities, cluster analysis, principal components analysis, and instantaneous load calculations generally indicate that west-side tributary basins were different from east-side tributary basins. In general, west-side basins had higher concentrations, instantaneous loads, and instantaneous yields of dissolved pesticides than east-side basins, although there were a number of exceptions. These differences may be related to a number of factors, including differences in basin size, soil texture, land use, irrigation practices, and stream discharge.
A loose bolt delays loading of Endeavour's external tank
NASA Technical Reports Server (NTRS)
2000-01-01
This loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.
Effects of Load, Cognitive Complexity and Type A on Satisfaction.
1983-06-01
load, performance , style, cognitive style, Type A, cognitive complexity, stress, satisfaction , visual motor tasks 20. ABSTRAC (Continue on reverse side...1982) and Ewen (1973) have pointed toward pressure to perform as a condition which modifies the satisfaction - performance relationship. Other moderator...1975; Mehrabian and West, 1977) are much more rare than theory and research focused on, for example, the performance - satisfaction relationship
Berberi, Antoine N; Sabbagh, Joseph M; Aboushelib, Moustafa N; Noujeim, Ziad F; Salameh, Ziad A
2014-01-01
The aim of present investigation was to evaluate marginal bone level after 5-year follow-up of implants placed in healed ridges and fresh extraction sockets in maxilla with immediate loading protocol. Thirty-six patients in need of a single-tooth replacement in the anterior maxilla received 42 Astra Tech implants (Astra Tech Implant system™, Dentsply Implants, Mölndal, Sweden). Implants were placed either in healed ridges (group I) or immediately into fresh extraction sockets (group II). Implants were restored and placed into functional loading immediately by using a prefabricated abutment. Marginal bone level relative to the implant reference point was recorded at implant placement, crown cementation, 12, 36, and 60 months following loading using intra-oral radiographs. Measurements were made on the mesial and distal sides of each implant. Overall, two implants were lost from the group II, before final crown cementation: they were excluded from the study. The mean change in marginal bone loss (MBL) after implant placement was 0.26 ± 0.161 mm for 1 year, and 0.26 ± 0.171 mm for 3 years, and 0.21 ± 0.185 mm for 5 years in extraction sockets and was 0.26 ± 0.176 mm for 1 year and 0.21 ± 0.175 mm for 3 years, and 0.19 ± 0.172 mm for 5 years in healed ridges group. Significant reduction of marginal bone was more pronounced in implants inserted in healed ridges (P < 0.041) compared to fresh surgical extraction sockets (P < 0.540). Significant MBL was observed on the mesial side of the implant after cementation of the provisional (P < 0.007) and after 12 months (P < 0.034) compared to the distal side which remained stable for 3 and 5 years observation period. Within the limitations of this study, responses of local bone to immediately loaded implants placed either in extraction sockets or healed ridges were similar. Functional loading technique by using prefabricated abutment placed during the surgery time seems to maintain marginal bone around implant in both healed and fresh extraction sites.
Electric terminal performance and characterization of solid oxide fuel cells and systems
NASA Astrophysics Data System (ADS)
Lindahl, Peter Allan
Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...
2018-01-04
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
Kim, Joong-Hyun; Oh, Se Heang; Min, Hyun Ki; Lee, Jin Ho
2018-01-01
Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018. © 2017 Wiley Periodicals, Inc.
Allaire, P; Hilton, E; Baloh, M; Maslen, E; Bearnson, G; Noh, D; Khanwilkar, P; Olsen, D
1998-06-01
A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.
Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang
2014-05-01
The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
NASA Astrophysics Data System (ADS)
Mandour Eldeeb, Mohamed
The backward facing steps nozzle (BFSN) is a new developed flow adjustable exit area nozzle. It consists of two parts, the first is a base nozzle with small area ratio and the second part is a nozzle extension with surface consists of backward facing steps. The steps number and heights are carefully chosen to produce controlled flow separation at steps edges that adjust the nozzle exit area at all altitudes (pressure ratios). The BFSN performance parameters are assessed numerically in terms of thrust and side loads against the dual-bell nozzle with the same pressure ratios and cross sectional areas. Cold flow inside the planar BFSN and planar DBN are simulated using three-dimensional turbulent Navier-Stoke equations solver at different pressure ratios. The pressure distribution over the upper and the lower nozzles walls show symmetrical flow separation location inside the BFSN and an asymmetrical flow separation location inside the DBN at same vertical plane. The side loads are calculated by integrate the pressure over the nozzles walls at different pressure ratios for both nozzles. Time dependent solution for the DBN and the BFSN are obtained by solving two-dimensional turbulent flow. The side loads over the upper and lower nozzles walls are plotted against the flow time. The BFSN side loads history shows a small values of fluctuated side loads compared with the DBN which shows a high values with high fluctuations. Hot flow 3-D numerical solutions inside the axi-symmetric BFSN and DBN are obtained at different pressure ratios and compared to assess the BFSN performance against the DBN. Pressure distributions over the nozzles walls at different circumferential angels are plotted for both nozzles. The results show that the flow separation location is axi-symmetric inside the BFSN with symmetrical pressure distributions over the nozzle circumference at different pressure ratios. While the DBN results show an asymmetrical flow separation locations over the nozzle circumference at all pressure ratios.The results show that the side loads in the BFSN is 0.01%-0.6% of its value in the DBN for same pressure ratio. For further confirmation of the axi-symmetric nature of the flow in the BFSN, 2-D axi-symmetric solutions are obtained at same pressure ratios and boundary conditions. The flow parameters at the nozzle exit are calculated the 3-D and the 2-D solutions and compared to each other. The maximum difference between the 3-D and the 2-D solutions is less than 1%. Parametric studies are carried out with number of the backward facing steps varied from two to forty. The results show that as the number of backward facing steps increase, the nozzle performance in terms of thrust approach the DBN performance. The BFSN with two and six steps are simulated for pressure ratios range from 148 to 1500 and compared with the DBN and a conventional bell nozzle. Expandable BFSN study is carried out on the BFSN with two steps where the nozzle operation is divided into three modes related to the operating altitude (PR). Backward facing steps concept is applied to a full scale conventional bell nozzle by adding two backward facing steps at the end of the nozzle increasing its expansion area results in 1.8% increasing in its performance in terms of thrust coefficient at high altitudes.
82. CANAL WEST OF LOCK 12 EAST NEAR BOONTON. STORAGE ...
82. CANAL WEST OF LOCK 12 EAST NEAR BOONTON. STORAGE BUILDING AND CHUTE ON LEFT SIDE OF CANAL MAY BE A COAL FACILITY. COAL WOULD BE UNLOADED FROM THE BOAT AND PASSED UP THE CHUTE INTO THE COAL STORAGE BIN. COAL COULD THEN BE LOADED INTO WAGONS FROM THE BOTTOM OF THE BIN ON THE OPPOSITE SIDE OF THE STRUCTURE WHEN NECESSARY. - Morris Canal, Phillipsburg, Warren County, NJ
2014-04-01
engine mechanic, selects a compressor blade to install in the core module of an F-16 jet engine. DLA Aviation has partnered with Air Force customers to...Support 9 Supporting the Fleet 14 Air Force Support 18 Beyond the Military Services 22 SERVICE TEAMS Side-by-Side Support Chemical Management Services...Marine Corps ordnance technicians load a missile at Kunsan Air Base, South Korea. Service members from the different military branches often work
Apparatus and method for pressure testing closure disks
Merten, Jr., Charles W.
1992-01-21
A method and device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug.
Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day.
Mora-Rodríguez, Ricardo; Pallarés, Jesús G; López-Gullón, José María; López-Samanes, Álvaro; Fernández-Elías, Valentín E; Ortega, Juan F
2015-05-01
To determine whether the ergogenic effects of caffeine ingestion on neuromuscular performance are similar when ingestion takes place in the morning and in the afternoon. Double blind, cross-over, randomized, placebo controlled design. Thirteen resistance-trained males carried out bench press and full squat exercises against four incremental loads (25%, 50%, 75% and 90% 1RM), at maximal velocity. Trials took place 60 min after ingesting either 6 mg kg(-1) of caffeine or placebo. Two trials took place in the morning (AMPLAC and AMCAFF) and two in the afternoon (PMPLAC and PMCAFF), all separated by 36-48 h. Tympanic temperature, plasma caffeine concentration and side-effects were measured. Plasma caffeine increased similarly during AMCAFF and PMCAFF. Tympanic temperature was lower in the mornings without caffeine effects (36.7±0.4 vs. 37.0±0.5°C for AM vs. PM; p<0.05). AMCAFF increased propulsive velocity above AMPLAC to levels similar to those found in the PM trials for the 25%, 50%, 75% 1RM loads in the SQ exercise (5.4-8.1%; p<0.05). However, in the PM trials, caffeine ingestion did not improve propulsive velocity at any load during BP or SQ. The negative side effects of caffeine were more prevalent in the afternoon trials (13 vs. 26%). The ingestion of a moderate dose of caffeine counteracts the muscle contraction velocity declines observed in the morning against a wide range of loads. Caffeine effects are more evident in the lower body musculature. Evening caffeine ingestion not only has little effect on neuromuscular performance, but increases the rate of negative side-effects reported. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The influence of freezing on the tensile strength of tendon grafts : a biomechanical study.
Arnout, Nele; Myncke, Jan; Vanlauwe, Johan; Labey, Luc; Lismont, Daniel; Bellemans, Johan
2013-08-01
We investigated the influence of freezing on the tensile strength of fresh frozen tendon grafts. The biomechanical characteristics of tendons that are less commonly used in knee surgery (tibialis anterior, tibialis posterior, peroneus longus and medial and lateral half of Achilles tendons) were compared to those of a semitendinosus and gracilis graft harvested from the same 10 multi-organ donors. All right side tendons constituted the study group and were frozen at -80 degrees C and thawed at room temperature 5 times. All left side tendons were frozen at -80 degrees C and thawed at room temperature once. There were 59 tendons in the control group and 56 in the study group. The looped grafts were clamped at one side using a custom-made freeze clamp and loaded until failure on an Instron 4505 testing machine. The average ultimate failure load was not significantly different between the control and the study group (p > 0.05). The failure load of the medial tendon Achilles was the lowest in both study and control group (p < 0.001). There was no significant difference in maximum stress, maximum displacement, maximum strain and stiffness between the control and study group (p > 0.05). From our study, we conclude that freezing tendons at -80 degrees C and thawing several times does not influence the maximum load, maximum stress, maximum displacement, maximum strain and stiffness. The medial half of the Achilles tendon is clearly the weakest tendon (p < 0.001). These findings show that tendon grafts can be frozen at -80 degrees C and thawed at room temperature several times without altering their biomechanical properties.
High-resolution mapping of yield curve shape and evolution for high porosity sandstones
NASA Astrophysics Data System (ADS)
Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.
2017-12-01
The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.
Medial Patellofemoral Ligament Reconstruction Procedure Using a Suspensory Femoral Fixation System
Nakagawa, Shuji; Arai, Yuji; Kan, Hiroyuki; Ueshima, Keiichiro; Ikoma, Kazuya; Terauchi, Ryu; Kubo, Toshikazu
2013-01-01
Recurrent patellar dislocation has recently been treated with anatomic medial patellofemoral ligament (MPFL) reconstruction using a semitendinosus muscle tendon. Although it is necessary to add tension to fix the tendon graft without loading excess stress on the patellofemoral joint, adjustment of the tension can be difficult. To resolve this problem, we developed an MPFL reconstruction procedure using the ToggleLoc Fixation Device (Biomet, Warsaw, IN), in which the semitendinosus muscle tendon is folded and used as a double-bundle tendon graft and 2 bone tunnels and 1 bone tunnel are made on the patellar and femoral sides, respectively. The patellar side of the tendon graft is fixed with an EndoButton (Smith & Nephew, London, England), and the femoral side is fixed with the ToggleLoc. Stepless adjustment of tension of the tendon graft is possible by reducing the size of the loop of the ToggleLoc hung onto the tendon graft. It may be useful to position the patella in the center of the femoral sulcus by confirming the patellofemoral joint fitting. Stability can be confirmed by loading lateral stress on the patella in the extended knee joint. This procedure is less invasive because opening of the lateral side of the femur is not necessary, and it may be useful for MPFL reconstruction. PMID:24892014
Lin, Yu-Hsiu; Hu, Yu-Chen
2018-04-27
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%.
Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire
NASA Astrophysics Data System (ADS)
Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.
2010-12-01
The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the first post-fire rainy season regardless of storm size.
Hayashi, Shigeki; Yasuki, Tsuyoshi; Kitagawa, Yuichi
2008-11-01
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models. Finite element simulations were conducted assuming a case where a passenger vehicle collides against a pole at 29km/h. Occupant kinematics, force-deformation responses and pressure levels were compared between cases with and without side airbag deployment. The results indicated that strain to the ribs and pressure to the organs was smaller with side airbag deployment. The side airbag widened the contact area at the torso, helping to distribute the force to the shoulder, arm and chest. Such distributed force helped generate relatively smaller deformation in the ribs. Furthermore, the side airbag deployment helped restrict the spine displacement. The smaller displacement contributed to lowering the magnitude of contact force between the torso and the door. The study also examined the correlations between the pressure levels in the internal organs, rib deflection, and V*C of chest. The study found that the V*C(t) peak appeared to be synchronized with the organ pressure peak, suggesting that the pressure level of the internal organs could be one possible indicator to estimate their injury risk.
Seismic Stratigraphy of the Ross Island Flexural Basin, West Antarctica
NASA Astrophysics Data System (ADS)
Wenman, C. P.; Harry, D. L.; Jha, S.
2014-12-01
Marine seismic reflection data collected over the past 30+ years in the Ross Sea region of southwest Antarctica has been tied to the ANDRILL and CIROS boreholes to develop a seismic stratigraphic model that constrains the spatial and temporal evolution of the flexural basin surrounding Ross Island. Ross Island was formed from 4.6 Ma to present by extrusive volcanism in the Ross Sea at the southern end of the Terror Rift. Preliminary mapping has identified a hinge zone trending northeastward from Mt. Bird, separating the well-developed flexural moat on the west side of the island from sub-horizontal strata on the northeast and east sides. The flexural moat on the west and north-northwest sides of the island is approximately 40-45 km wide with sediment fill thickness of roughly 1100 m. Seismic lines to the east and northeast of the island do not indicate the presence of a flexural moat. Instead, the thickness of strata on the east side of the island that are time-equivalent to the infill of the flexural moat on the west side remains constant from the Coulman High westward to within ~28 km of Ross Island (the landward extent of the seismic data coverage). The concordant post-Miocene strata on the east and northeast sides of Ross Island imply either that the flexural basin does not extend more than ~28 km eastward from the Ross Island shoreline, or that the flexural basin is not present on that side of the island. The first scenario requires that the elastic strength of the lithosphere differ on either side of the hinge. The second scenario can be explained by a mechanical rupture in the lithosphere beneath Ross Island, with Ross Island acting as an end-load on a mechanical half-plate that forms the lithosphere beneath Ross Island and westward. In this model, the lithosphere east of Ross Island and the hinge forms a second half-plate, bearing little or none of the Ross Island volcanic load.
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ye, Ya-Jing; Wang, Yun; Lou, Kai-Yan; Chen, Yan-Zuo; Chen, Rongjun; Gao, Feng
2015-01-01
A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol®), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC0→24h (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects. PMID:26170666
The veto system of the DarkSide-50 experiment
Agnes, P.
2016-03-16
Here, nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
Speed control with end cushion for high speed air cylinder
Stevens, Wayne W.; Solbrig, Charles W.
1991-01-01
A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.
The veto system of the DarkSide-50 experiment
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Johnson, T.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-03-01
Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
Jain, Aparna; Reichenbach, Laura; Ehsan, Iqbal; Rob, Ubaidur
2017-01-01
In a country like Bangladesh that has made great progress in contraceptive use with one of the lowest levels of fertility and highest levels of contraceptive use, understanding what factors influence women's decisions to discontinue a contraceptive method and not switch to a new method is critical in designing interventions and programs that will help enable Bangladesh to reach its FP2020 goals. Research on side effects has focused on physical manifestations like headaches, moodiness, abdominal pain, and menstrual irregularities. While physical effects alone may stop women from continuing a contraceptive method, less is known about how side effects influence women's daily activities and lives. The purpose of this study is to understand the ways that side effects affect Bangladeshi women's participation in different social settings. Thirty-five in-depth interviews with married women who recently discontinued or switched to a different contraceptive method were conducted in Sylhet and Khulna Divisions. Interviews explored reasons for discontinuation including experience of side effects and impact of side effects on women's lives. Key themes emerged including that side effects are not only experienced physically but are barriers to women's participation in many aspects of their lives. The spheres of life that most commonly appeared to be influenced by side effects include religion, household, and sexual intimacy irrespective of method used or residence. Family planning providers need to be aware of these additional consequences associated with contraceptive side effects to provide tailored counseling that recognizes these issues and helps women to mitigate them. For Bangladesh to achieve its FP2020 goals, understanding the broader context in which family planning decisions are made vis-à-vis side effects is critical to design programs and interventions that meet all the needs of women beyond just their fertility intentions.
29 CFR 1919.76 - Safe working load reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... load reduction. (a) If the operation in which equipment is engaged never utilizes more than a fraction... physically capable of operation at the original load rating and the load reduction is not for the purpose of...
NASA Astrophysics Data System (ADS)
Duce, Celia; Della Porta, Valentina; Bramanti, Emilia; Campanella, Beatrice; Spepi, Alessio; Tiné, Maria Rosaria
2017-02-01
Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen. Loaded HNTs can be used for the controlled or sustained release of proteins, drugs, bioactive molecules and other agents. We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and β -lactoglobulin loaded into HTNs using Fourier transform infrared spectroscopy and thermogravimetry. These techniques enabled us to study the protein conformation and thermal stability, respectively, and to estimate the amount of protein loaded into the HNTs. TEM images confirmed the loading of proteins into HTNs.
Analysis of series resonant converter with series-parallel connection
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren; Huang, Chien-Lan
2011-02-01
In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.
Side Effect Perceptions and Their Impact on Treatment Decisions in Women.
Waters, Erika A; Pachur, Thorsten; Colditz, Graham A
2017-04-01
Side effects prompt some patients to forego otherwise-beneficial therapies. This study explored which characteristics make side effects particularly aversive. We used a psychometric approach, originating from research on risk perception, to identify the factors (or components) underlying side effect perceptions. Women ( N = 149) aged 40 to 74 years were recruited from a patient registry to complete an online experiment. Participants were presented with hypothetical scenarios in which an effective and necessary medication conferred a small risk of a single side effect (e.g., nausea, dizziness). They rated a broad range of side effects on several characteristics (e.g., embarrassing, treatable). In addition, we collected 4 measures of aversiveness for each side effect: choosing to take the medication, willingness to pay to avoid the side effect (WTP), negative affective attitude associated with the side effect, and how each side effect ranks among others in terms of undesirability. A principal components analysis (PCA) was used to identify the components underlying side effect perceptions. Then, for each aversiveness measure separately, regression analyses were used to determine which components predicted differences in aversiveness among the side effects. The PCA revealed 4 components underlying side effect perceptions: affective challenge (e.g., frightening), social challenge (e.g., disfiguring), physical challenge (e.g., painful), and familiarity (e.g., common). Side effects perceived as affectively and physically challenging elicited the highest levels of aversiveness across all 4 measures. Understanding what side effect characteristics are most aversive may inform interventions to improve medical decisions and facilitate the translation of novel biomedical therapies into clinical practice.
Side Effect Perceptions and their Impact on Treatment Decisions in Women
Waters, Erika A.; Pachur, Thorsten; Colditz, Graham A.
2016-01-01
Background Side effects prompt some patients to forego otherwise-beneficial therapies. This study explored which characteristics make side effects particularly aversive. Methods We used a psychometric approach, originating from research on risk perception, to identify the factors (or components) underlying side effect perceptions. Women (N=149) aged 40–74 were recruited from a patient registry to complete an online experiment. Participants were presented with hypothetical scenarios in which an effective and necessary medication conferred a small risk of a single side effect (e.g., nausea, dizziness). They rated a broad range of side effects on several characteristics (e.g., embarrassing, treatable). In addition, we collected four measures of aversiveness for each side effect: choosing to take the medication, willingness to pay to avoid the side effect (WTP), negative affective attitude associated with the side effect, and how each side effect ranks among others in terms of undesirability. A principle-components analysis (PCA) was used to identify the components underlying side effect perceptions. Then, for each aversiveness measure separately, regression analyses were used to determine which components predicted differences in aversiveness among the side effects. Results The PCA revealed four components underlying side effect perceptions: affective challenge (e.g., frightening), social challenge (e.g., disfiguring), physical challenge (e.g., painful), and familiarity (e.g., common). Side effects perceived as affectively and physically challenging elicited the highest levels of aversiveness across all four measures. Conclusions Understanding what side effect characteristics are most aversive may inform interventions to improve medical decisions and facilitate the translation of novel biomedical therapies into clinical practice. PMID:27216581
Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem
Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki
2014-01-01
Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain. PMID:24416346
Jamniczky, Heather A; McLaughlin, Kevin; Kaminska, Malgorzata E; Raman, Maitreyi; Somayaji, Ranjani; Wright, Bruce; Ma, Irene W Y
2015-01-01
Ultrasonography is increasingly used for teaching anatomy and physical examination skills but its effect on cognitive load is unknown. This study aimed to determine ultrasound's perceived utility for learning, and to investigate the effect of cognitive load on its perceived utility. Consenting first-year medical students (n = 137) completed ultrasound training that includes a didactic component and four ultrasound-guided anatomy and physical examination teaching sessions. Learners then completed a survey on comfort with physical examination techniques (three items; alpha = 0.77), perceived utility of ultrasound in learning (two items; alpha = 0.89), and cognitive load on ultrasound use [measured with a validated nine-point scale (10 items; alpha = 0.88)]. Learners found ultrasound useful for learning for both anatomy and physical examination (mean 4.2 ± 0.9 and 4.4 ± 0.8, respectively; where 1 = very useless and 5 = very useful). Principal components analysis on the cognitive load survey revealed two factors, "image interpretation" and "basic knobology," which accounted for 60.3% of total variance. Weighted factor scores were not associated with perceived utility in learning anatomy (beta = 0.01, P = 0.62 for "image interpretation" and beta = -0.04, P = 0.33 for "basic knobology"). However, factor score on "knobology" was inversely associated with perceived utility for learning physical examination (beta = -0.06; P = 0.03). While a basic introduction to ultrasound may suffice for teaching anatomy, more training may be required for teaching physical examination. Prior to teaching physical examination skills with ultrasonography, we recommend ensuring that learners have sufficient knobology skills. © 2014 American Association of Anatomists.
Designing of Timber Bolt Connection Subjected To Double Unequal Shears
NASA Astrophysics Data System (ADS)
Musilek, Josef; Plachy, Jan
2017-10-01
The paper deals with load-carrying capacity of bolted connections subjected to unequal double shear with thin plates as outer members and inner timber member. This type of connection is usually widespread and in building support structures made of wood is commonly used. This may occur for example in skeletal structures which contain structural elements based on wood, but also for smaller wooden buildings. Specifically, this type of connection can be found in ceiling structures in the joint joists and beams. If one joist greater margin than the second, bringing the load on the side of the joists of a larger span greater loads than on the side with a smaller span joist. Structure engineer, who is designing such a connection, must use for the design of the connection design procedures and formulas from which he or she calculates the design resistance in order to carry out further assessment of the reliability of the connection in the ultimate limit state. The load-carrying capacity of this connections type can be calculated at present according to Johansen’s equations, which are also contained in present European standard for the design timber structures -Eurocode 5. These Johansen’s equations assume that the loads which act on the outer plates are equal. For this reason, the structure engineer is often forced to use formulas intended for the timber bolt connection subjected to double equal shear and he or she must find ways how to use them although the formulas are not suitable. This paper deals with the case, when the loads acting on the outer plates are unequal.
One-dimensional pressure transfer models for acoustic-electric transmission channels
NASA Astrophysics Data System (ADS)
Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.
2015-09-01
A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.
Malone, Shane; Collins, Kieran D
2017-06-01
The current study examined the effect that game design modification, goal type, and player numbers on the running performance and physiological demands of small-sided hurling games (SSG). Forty-eight hurling players (age, 25.5 ± 3.2 years; height, 178.9 ± 3.2 cm; body mass, 78.5 ± 4.5 kg) performed 4 types of SSG (possession [P], normal play [NP], regular goals [RG] and small goals [SG]) in 4-a-side, 5-a-side, and 6-a-side formats. Heart rate (Polar Electro Oy) and global positioning system technology (VX Sport, 4-Hz, Lower Hutt) were used to analyze the physical and physiological differences between SSG. Total distance (m), high-speed running distance (m) (≥17 km·h), very-high speed running distance (≥22 km·h) (m), peak and mean velocity (km·h) were analyzed as an indicator of the physical demands of play. The 4-a-side SSG independent of game design and goal type resulted in a significantly higher relative exercise intensity compared with 5-a-side (mean change: 6 ± 2%; p = 0.001; d = 1.9 ± 0.2; large) and 6-a-side SSG independent of game design or goal type (mean change: 12 ± 2%; p = 0.001; d = 2.9 ± 0.8; very large). The 4-a-side SG (619 ± 106-m [419-735-m]) resulted in the highest distance when compared with all PP (mean change: 141 ± 9 m; p = 0.05; d = 1.9 ± 0.3; moderate) and RG (mean change: 119 ± 39 m; p = 0.004; d = 2.1 ± 0.8; large). Similar trends were observed for 5-a-side and 6-a-side games with SG resulting in increased total running performance. In conclusion, the current observations reveal that 4-a-side NP, SG, and RG have the highest physiological demands with 4-a-side SG having increased running performance in contrast to other game design and goal-type games. Furthermore, independent of game design and goal type, 4-a-side SSG show increased relative intensity compared with 5-a-side and 6-a-side SSG.
Castellano, Julen; Puente, Asier; Echeazarra, Ibon; Usabiaga, Oidui; Casamichana, David
2016-01-01
The aim of the present study is to analyse the influence of different large-sided games (LSGs) on the physical and physiological variables in under-12s (U12) and -13s (U13) soccer players. The effects of the combination of different number of players per team, 7, 9, and 11 (P7, P9, and P11, respectively) with three relative pitch areas, 100, 200, and 300 m(2) (A100, A200, and A300, respectively), were analysed in this study. The variables analysed were: 1) global indicator such as total distance (TD); work:rest ratio (W:R); player-load (PL) and maximal speed (Vmax); 2) heart rate (HR) mean and time spent in different intensity zones of HR (<75%, 75-84%, 84-90% and >90%), and; 3) five absolute (<8, 8-13, 13-16 and >16 Km h(-1)) and three relative speed categories (<40%, 40-60% and >60% Vmax). The results support the theory that a change in format (player number and pitch dimensions) affects no similarly in the two players categories. Although it can seem that U13 players are more demanded in this kind of LSG, when the work load is assessed from a relative point of view, great pitch dimensions and/or high number of player per team are involved in the training task to the U12 players. The results of this study could alert to the coaches to avoid some types of LSGs for the U12 players such as: P11 played in A100, A200 or A300, P9 played in A200 or A300 and P7 played in A300 due to that U13>U12 in several physical and physiological variables (W:R, time spent in 84-90%HRmax, distance in 8-13 and 13-16 Km h(-1) and time spent in 40-60%Vmax). These results may help youth soccer coaches to plan the progressive introduction of LSGs so that task demands are adapted to the physiological and physical development of participants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian; Wright, Ian
Boiler tubes in steam power plants experience exfoliation of oxide grown on the inner side of the tubes. In extreme cases, the exfoliation cause significant tube blockages that lead to forced power plant outages. It is thus desired to predict through modeling the propensity of exfoliation events in order to inform power plant operators of possible tube blockages. SpallMap solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages at one-location along a boiler tube and compares it with scale damage criteria represented by Armitt diagram. The SPALLMAP code contains modules developedmore » for oxide growth, stress analysis, and classical fracture mechanics correlations by taking into account the following phenomena and features, (a) Non-uniform thermal expansion coefficient of oxides and metal substrates, (b) Plant operation schedule with periodic alternate full-load and partial-load regimes, (c) axisymmetric formulation for cylindrical tubes, (d) Multiple oxide layers, (e) oxide-growth induced stresses, and (f) damage criteria from classical fracture mechanics. The computer program is written in FORTRAN90. Its modular structure was sought for allowing the best flexibility in updating the program by implementing new constitutive equations due to availability of new material property data and/or new physical phenomena.« less
Altubasi, Ibrahim M
2018-06-07
Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.
Is burnout related to allostatic load?
Langelaan, Saar; Bakker, Arnold B; Schaufeli, Wilmar B; van Rhenen, Willem; van Doornen, Lorenz J P
2007-01-01
Burnout has a negative impact on physical health, but the mechanisms underlying this relation remain unclear. To elucidate these mechanisms, possible mediating physiological systems or risk factors for adverse health in burned-out employees should be investigated. The aim of the present study among 290 Dutch managers was to explore whether allostatic load mediates the relationship between burnout and physical health. Burned-out managers, as identified with the Maslach Burnout Inventory General Survey (MBI-GS), were compared with a healthy control group with regard to their allostatic load. The allostatic load index included eight parameters: Body-mass index (BMI), systolic and diastolic blood pressure (SBP and DBP), C-reactive protein (CRP), high-density lipoprotein (HDL), cholesterol, glycosylated hemoglobin (HbA1C) and glucose. Contrary to expectations, burned-out managers did not differ from healthy managers with regard to their scores on the allostatic load index. An additional analysis, using groups of managers in the extreme deciles of exhaustion (the core symptom of burnout), did also not reveal differences in allostatic load. Burnout seems not to be associated with this proxy measure of allostatic load. The mediating physiological mechanisms between burnout and objective physical health remain to be elucidated.
A loose bolt delays loading of Endeavour's external tank
NASA Technical Reports Server (NTRS)
2000-01-01
A closeup reveals the loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, that delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.
NASA Astrophysics Data System (ADS)
Sugiartha, N.; Sastra Negara, P.
2018-01-01
A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.
Innovative lightweight substrate for stable optical benches and mirrors
NASA Astrophysics Data System (ADS)
Rugi Grond, E.; Herren, A.; Mérillat, S.; Fermé, J. J.
2017-11-01
High precision space optics, such as spectrometers, relay optics, and filters, require ultra stable, lightweight platforms. These equipped platforms have on one side to survive the launch loads, on the other side they have to maintain their stability also under the varying thermal loads occurring in space. Typically such platforms have their equipment (prisms, etalons, beam expanders, etc.) mounted by means of classical bonding, hydro-catalytic bonding or optical contacting. Therefore such an optical bench requires to provide an excellent flatness, minimal roughness and is usually made of the same material as the equipment it carries (glass, glass ceramics). For space systems, mass is a big penalty, therefore such optical platforms are in most cases light weighted by means of machining features (i.e. pockets). Besides of being not extremely mass efficient, such pockets reduce the load carrying capability of the base material significantly. The challenge for Oerlikon Space, in this context, was to develop, qualify and deliver such optical benches, providing a substantial mass reduction compared to actual light weighted systems, while maintaining most of the full load carrying capacity of the base material. Additionally such a substrate can find an attractive application for mirror substrates. The results of the first development and of the first test results will be presented.
Design and fabrication of realistic adhesively bonded joints
NASA Technical Reports Server (NTRS)
Shyprykevich, P.
1983-01-01
Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.
Transformer coupling for transmitting direct current through a barrier
Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.
1988-01-01
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.
Transformer coupling for transmitting direct current through a barrier
Brown, R.L.; Guilford, R.P.; Stichman, J.H.
1987-06-29
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.
Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang
2017-05-01
This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p < 0.05). However, no significant difference of the power in alpha between 1 kg and 3 kg was observed (p > 0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p < 0.01 for all the force loads except 3 kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly decreased than without stimulation (all p < 0.05), and the difference in the power of alpha between fatigue and non-fatigue status disappeared with 1 kg and 3 kg force loads, The powers of beta and gamma bands and SampEn were not significantly different between different force loads, between fatigue and non-fatigue status, and between with and without ELF magnetic stimulation (all p > 0.05, except between non-fatigue and fatigue with magnetic stimulation in gamma band of C3-EEG at 1 kg, and in the SampEn at 1 kg and 3 kg force loads from C4-EEG). Our study comprehensively quantified the effects of force, fatigue and the ELF magnetic stimulation on EEG features with difference forces, fatigue status and ELF magnetic stimulation.
Aeroacoustic theory for noncompact wing-gust interaction
NASA Technical Reports Server (NTRS)
Martinez, R.; Widnall, S. E.
1981-01-01
Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.
Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources.
Davis, A P; Shokouhian, M; Ni, S
2001-08-01
Urban stormwater runoff is being recognized as a substantial source of pollutants to receiving waters. A number of investigators have found significant levels of metals in runoff from urban areas, especially in highway runoff. As an initiatory study, this work estimates lead, copper, cadmium, and zinc loadings from various sources in a developed area utilizing information available in the literature, in conjunction with controlled experimental and sampling investigations. Specific sources examined include building siding and roofs; automobile brakes, tires, and oil leakage; and wet and dry atmospheric deposition. Important sources identified are building siding for all four metals, vehicle brake emissions for copper and tire wear for zinc. Atmospheric deposition is an important source for cadmium, copper, and lead. Loadings and source distributions depend on building and automobile density assumptions and the type of materials present in the area examined. Identified important sources are targeted for future comprehensive mechanistic studies. Improved information on the metal release and distributions from the specific sources, along with detailed characterization of watershed areas will allow refinements in the predictions.
The Effect of Physical Load and Environment on Soldier Performance
2014-02-01
when walking over obstacles compared with standing still with and without a load. Knapik et al. (1990) found significant decrements in military...load carriage (34–61 kg carried 20 km) led to decrements in subsequent physical performance but not in cognitive ability. Crowell et al. (1999) found...with a simultaneous visual navigation task was thought to be advantageous; Wickens’s (1984) multiple resource theory stated that different tasks can
Byrne, Michael J.; Wood, Molly S.
2011-01-01
Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.
Sensorimotor dysfunction of grasping in schizophrenia: a side effect of antipsychotic treatment?
Nowak, D A; Connemann, B J; Alan, M; Spitzer, M
2006-01-01
Background Antipsychotic treatment in schizophrenia is frequently associated with extrapyramidal side effects. Objective behavioural measures to evaluate the severity of extrapyramidal side effects in the clinical setting do not exist. Objectives This study was designed to investigate grasping movements in five drug naive and 13 medicated subjects with schizophrenia and to compare their performance with that of 18 healthy control subjects. Deficits of grip force performance were correlated with clinical scores of both parkinson‐like motor disability and psychiatric symptom severity Methods Participants performed vertical arm movements with a handheld instrumented object and caught a weight that was dropped into a handheld cup either expectedly from the opposite hand or unexpectedly from the experimenter's hand. The scaling of grip force and the temporospatial coupling between grip and load force profiles was analysed. The psychiatric symptom severity was assessed by the positive and negative symptom score of schizophrenia and the brief psychiatric rating scale. Extrapyramidal symptoms were assessed by the unified Parkinson's disease rating scale. Results Drug naive subjects with schizophrenia performed similar to healthy controls. In contrast, medicated subjects with schizophrenia exhibited excessive grip force scaling and impaired coupling between grip and load force profiles. These performance deficits were strongly correlated with the severity of both extrapyramidal side effects related to antipsychotic therapy and negative symptoms related to the underlying pathology. Conclusions These data provide preliminary evidence that deficits of sensorimotor performance in schizophrenia are, at least in part, related to the side effects of antipsychotic treatment. The investigation of grasping movements may provide a sensitive measure to objectively evaluate extrapyramidal side effects related to antipsychotic therapy. PMID:16614027
Load reduction of a monopile wind turbine tower using optimal tuned mass dampers
NASA Astrophysics Data System (ADS)
Tong, Xin; Zhao, Xiaowei; Zhao, Shi
2017-07-01
We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.
Kohyama, Kaoru; Gao, Zhihong; Ishihara, Sayaka; Funami, Takahiro; Nishinari, Katsuyoshi
2016-07-01
The objectives of this study were to examine the effects of mouthful quantities and mechanical properties of gels on natural mastication behaviors using electromyography (EMG). Two types of hydrocolloid gels (A and K) with similar fracture loads but different moduli and fracture strains were served to eleven normal women in 3-, 6-, 12-, and 24-g masses in a randomized order. EMG activities from both masseter muscles were recorded during natural mastication. Because of the similar fracture loads, the numbers of chews, total muscle activities, and entire oral processing times were similar for similar masses of both gel types. Prior to the first swallow, the more elastic K gel with a higher fracture strain required higher muscle activities than the brittle A gel, which had higher modulus. Majority of subjects had preferred sides of chewing, but all subjects with or without preferred sides used both masseters during the consumption of gels. Similar effects of masses and types of gels were observed in EMG activities of both sides of masseters. Contributions of the dominant side of chewing were diminished with increasing masses of gels, and the mass dependency on ratio of the dominant side was more pronounced with K gel. More repetitions of smaller masses required greater muscle activities and longer periods for the consumption of 24-g gel portions. Reduction in the masses with an increased number of repetitions necessitated slower eating and more mastication to consume the gel portions. These observations suggest that chewing using both sides is more effective and unconsciously reduces mastication times during the consumption of gels. Copyright © 2016 Elsevier Inc. All rights reserved.
Strain of implants depending on occlusion types in mandibular implant-supported fixed prostheses
Sohn, Byoung-Sup; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun
2011-01-01
PURPOSE This study investigated the strain of implants using a chewing simulator with strain gauges in mandibular implant-supported fixed prostheses under various dynamic loads. MATERIALS AND METHODS Three implant-supported 5-unit fixed prostheses were fabricated with three different occlusion types (Group I: Canine protected occlusion, Group II: Unilaterally balanced occlusion, Group III: Bilaterally balanced occlusion). Two strain gauges were attached to each implant abutment. The programmed dynamic loads (0 - 300 N) were applied using a chewing simulator (MTS 858 Mini Bionix II systems, MTS systems corp., Minn, USA) and the strains were monitored. The statistical analyses were performed using the paired t-test and the ANOVA. RESULTS The mean strain values (MSV) for the working sides were 151.83 µε, 176.23 µε, and 131.07 µε for Group I, Group II, and Group III, respectively. There was a significant difference between Group II and Group III (P < .05). Also, the MSV for non-working side were 58.29 µε, 72.64 µε, and 98.93 µε for Group I, Group II, and Group III, respectively. One was significantly different from the others with a 95% confidence interval (P < .05). CONCLUSION The MSV for the working side of Groups I and II were significantly different from that for the non-working side (Group I: t = 7.58, Group II: t = 6.25). The MSV for the working side of Group II showed significantly larger than that of Group III (P < .01). Lastly, the MSV for the non-working side of Group III showed significantly larger than those of Group I or Group II (P < .01). PMID:21503186
AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Chowdhury, Badrul H.
2005-01-01
ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side redundancies and including emergency generators on both ac and dc sides is proposed. The generation frequency is 400 Hz mostly because of the technology maturity at this frequency in the aerospace industry. Power will be distributed to several ac load distribution buses through solid state variable speed, constant frequency converters on the ac side. A segmented dc ring bus supplied from ac/dc converters and with the capability of connecting/disconnecting the segments will supply power to multiple de load distribution buses. The system will have the capability of reverse flow from dc to ac side in the case of an extreme emergency on the main ac generation side.
NASA Astrophysics Data System (ADS)
Bunte, Christine; Hussein, Laith; Urban, Gerald A.
2014-02-01
Novel single compartment Glucose/O2 biofuel cells (BFCs) were developed using immobilized enzymes and the mediated electron transfer (MET) approach. The bioanode was prepared through a ferrocene-containing redox polymer crosslinked in the presence of a biocatalyst on a glassy carbon support. Here, the redox polymer can physically entrap the enzyme and prevent it from leaching. Additionally it provides a biocompatible microenvironment and thus could extend the life time of enzyme. On the other side, the mediated biocathode was prepared based on bilirubin oxidase and 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2-) system which has been physically entrapped in Nafion matrix and then adsorbed directly on a highly porous, conductive and functionalized buckypaper (fBP). Both electrodes were characterized physically and electrochemically. Employing these electrodes, the resulting BFC generates an open circuit voltage (Voc) of approximately 0.550 V and a peak power density of 26 μW cm-2 at 0.2 V at 37 °C in quiescent O2-saturated physiological buffer containing 5 mM glucose. The cell sustains a load up to 225 μA cm-2. Moreover, a high short circuit current (Isc) of 300 μA cm-2 is approached. This BFC can operate in mild conditions without using any toxic materials which makes it attractive for implantable devices.
Rozhkova, E A; Ordzhonikidze, Z G; Druzhinin, A E; Seĭfulla, N R; Paniushkin, V V; Kuznetsov, Iu M
2007-01-01
The effects of a submaximum single physical load with a mixed aerobic-anaerobic character (combined rowing test) on the intensity of lipid peroxidation (LPO) processes, antioxidant state of the organism, and rheological properties of blood have been studied in a group of athletes. The administration of natural antioxidants significantly decreased the LPO stress induced by the physical load, reduced the suppression of the antioxidant system of the organism, and normalized the LPO-disturbed hemorheological parameters. Antioxidants such as carnosine, cytamine, and apilac can be used as non-doping means for the accelerated recovery and increase in the physical work capacity in athletes.
NASA Technical Reports Server (NTRS)
Machablishvili, O. G.
1980-01-01
The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.
Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.
Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K
2018-01-08
Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Huang, Kuo-Yuan; Lin, Ruey-Mo; Lee, Yung-Ling; Li, Jenq-Daw
2009-12-01
Few studies have investigated the factors related to the disability and physical function in degenerative lumbar spondylolisthesis using axially loaded magnetic resonance imaging (MRI). Therefore, we aimed to investigate the effect of axial loading on the morphology of the spine and the spinal canal in patients with degenerative spondylolisthesis of L4-5 and to correlate morphologic changes to their disability and physical functions. From March 2003 to January 2004, 32 consecutive cases (26 females, 6 males) with degenerative L4-5 spondylolisthesis, grade 1-2, intermittent claudication, and low back pain without sciatica were included in this study. All patients underwent unloaded and axially loaded MRI of the lumbo-sacral spine in supine position to elucidate the morphological findings and to measure the parameters of MRI, including disc height (DH), sagittal translation (ST), segmental angulation (SA), dural sac cross-sectional area (DCSA) at L4-5, and lumbar lordotic angles (LLA) at L1-5 between the unloaded and axially loaded condition. Each patient's disability was evaluated by the Oswestry Disability Index (ODI) questionnaire, and physical functioning (PF) was evaluated by the Physical Function scale proposed by Stucki et al. (Spine 21:796-803, 1996). Three patients were excluded due to the presence of neurologic symptoms found with the axially loaded MRI. Finally, a total of 29 (5 males, 24 females) consecutive patients were included in this study. Comparisons and correlations were done to determine which parameters were critical to the patient's disability and PF. The morphologies of the lumbar spine changed after axially loaded MRI. In six of our patients, we observed adjacent segment degeneration (4 L3-L4 and 2 L5-S1) coexisting with degenerative spondylolisthesis of L4-L5 under axially loaded MRI. The mean values of the SA under pre-load and post-load were 7.14 degrees and 5.90 degrees at L4-L5 (listhetic level), respectively. The mean values of the LLA under pre-load and post-load were 37.03 degrees and 39.28 degrees , respectively. There were significant correlations only between the ODI, PF, and the difference of SA, and between PF and the post-loaded LLA. The changes in SA (L4-L5) during axial loading were well correlated to the ODI and PF scores. In addition, the LLA (L1-L5) under axial loading was well correlated to the PF of patients with degenerative L4-L5 spondylolisthesis. We suggest that the angular instability of the intervertebral disc may play a more important role than neurological compression in the pathogenesis of disability in degenerative lumbar spondylolisthesis.
Choi, Jong Seo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Youn, Yu Seok; Jin, Sung Giu; Choi, Han-Gon
2016-10-01
To develop a novel neomycin sulfate-loaded hydrogel dressing (HD), numerous neomycin sulfate-loaded HDs were prepared with various amounts of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and sodium alginate (SA) using freeze-thawing technique, and their physical dressing properties, drug release, in vivo wound curing and histopathology in diabetic-induced rats were assessed. SA had a positive effect on a swelling capacity, but a negative effect on the physical dressing properties and drug release of HD. However, PVP did the opposite. In particular, the neomycin sulfate-loaded HD composed of drug, PVA, PVP and SA at the weight ratio of 1/10/0.8/0.8 had excellent swelling and bioadhesive capacity, good elasticity and fast drug release. Moreover, this HD gave more improved wound curing effect compared to the commercial product, ensured the disappearance of granulation tissue and recovered the wound tissue to normal. Therefore, this novel neomycin sulfate-loaded HD could be an effective pharmaceutical product for the treatment of wounds.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2015-03-24
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
Inductrack III configuration--a maglev system for high loads
Post, Richard F
2013-11-12
Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
Waqas, Sarmad; O’Connor, Mairead; Levey, Ciara; Mallon, Paddy; Sheehan, Gerard; Patel, Anjali; Avramovic, Gordana; Lambert, John S
2016-01-01
Objective: Dolutegravir, an HIV integrase inhibitor, is a relatively new treatment option. To assess the tolerability, side effects, and time to viral decline to non-detectable in patients newly started on dolutegravir. Methods: Retrospective health care record of 61 consecutive HIV treatment-naive patients started on dolutegravir was reviewed and analysed on SPSS. Results: The mean initial viral load was 160826.05 copies/mL (range, 79–1,126,617 copies/mL). HIV viral load became non-detectable in 63.9% of patients on dolutegravir within 3 months. In all, 60.7% of patients reported no side effects on dolutegravir; 98.4% of the patients claimed full compliance to their antiretrovirals. Conclusion: Dolutegravir was found to be efficacious and well tolerated in HIV-infected treatment-naive patients. PMID:27826447
Dynamic loads on twin jet exhaust nozzles due to shock noise
NASA Technical Reports Server (NTRS)
Norum, T. D.; Shearin, J. G.
1986-01-01
Acoustic near field data were collected with model single and twin jet nozzles to determine if closely spaced nozzles produce higher acoustic loading than do single nozzles. The tests were spurred by structural failure of the B-1 exhaust nozzle external flaps and similar damage on the F-15. The test was performed using two 5/8 in. ID pipes machined and placed side-by-side to mimic B-1 nozzles. A microphone mounted on the internozzle fairing measured acoustic levels near the nozzle exit plane. The nozzles oscillated significantly more than did a single nozzle over a wide range of nozzle pressure ratios. Acoustic levels in the dual jets exceeded single jet noise by as much as 20 dB, making acoustic resonance a definite candidate for structural damage in the twin jet configuration.
Stokholm, Rie; Isidor, Flemming; Nyengaard, Jens R
2014-11-01
The primary aim of this study was to compare the bone reaction around immediate-loaded non-splinted single implants vs. delayed loaded non-splinted single implants placed in healed ridges in the posterior mandible. Six adult Macaca Fascicularis monkeys were used in this study. The first and second premolars and the first molar were extracted in both sides of the mandible. After 3 months of healing, four implants (Replace Select Tapered; Nobel Biocare, Gothenburg, Sweden) with a moderately rough surface (TiUnite, Nobel Biocare) were placed in the edentulous areas of each monkey, two in each side. The implants had a length of 10 mm and a diameter of 3.5 mm. Four groups of varying time and occlusal loading aspects were created: (i) control group: implant placed non-loaded for 3 months; (ii) immediate loaded: implant placed and loaded immediately for 3 months; (iii) immediate loaded: implant placed and loaded immediately for 6 months; and (iv) delayed loaded: implant placed submerged for 3 months and then loaded for 3 months. At the loaded implants, after a second stage surgery, a composite crown was made directly on an abutment mounted on the implant reinsuring simultaneous occlusal contact on the implant crown and the neighboring teeth. After euthanization of the animals, histologic specimens were quantified in the light microscope. All implants were clinically, radiographically, and histologically osseointegrated at the time of euthanization and with only mild signs of inflammation in the peri-implant mucosa. The histologic marginal bone level was located on average 1.14-1.74 mm apical to the margin of the implants in the various groups. The average bone-to-implant contact (BIC) varied between 55% and 65% and the average bone density (i.e., the proportion of mineralized bone tissue from the implant surface and to a distance of 1 mm lateral to the implant) varied between 30.6% and 34.2%. No statistical significant differences between groups were observed in the above-stated histomorphometric parameters. Similar histologic and histomorphometric findings were observed in immediately and delayed loaded non-splinted implants placed in the posterior mandible of macaque monkeys. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
FEM analysis of escape capsule suffered to gas explosion
NASA Astrophysics Data System (ADS)
Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua
2013-05-01
Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.
Pseudoephedrine and circadian rhythm interaction on neuromuscular performance.
Pallarés, J G; López-Samanes, Á; Fernández-Elías, V E; Aguado-Jiménez, R; Ortega, J F; Gómez, C; Ventura, R; Segura, J; Mora-Rodríguez, R
2015-12-01
This study analyzed the effects of pseudoephedrine (PSE) provided at different time of day on neuromuscular performance, side effects, and violation of the current doping cut-off threshold [World Anti-Doping Agency (WADA)]. Nine resistance-trained males carried out bench press and full squat exercises against four incremental loads (25%, 50%, 75%, and 90% one repetition maximum [1RM]), in a randomized, double-blind, cross-over design. Participants ingested either 180 mg of PSE (supra-therapeutic dose) or placebo in the morning (7:00 h; AM(PLAC) and AM(PSE)) and in the afternoon (17:00 h; PM(PLAC) and PM(PSE)). PSE enhanced muscle contraction velocity against 25% and 50% 1RM loads, only when it was ingested in the mornings, and only in the full squat exercise (4.4-8.7%; P < 0.05). PSE ingestion raised urine and plasma PSE concentrations (P < 0.05) regardless of time of day; however, cathine only increased in the urine samples. PSE ingestion resulted in positive tests occurring in 11% of samples, and it rose some adverse side effects such us tachycardia and heart palpitations. Ingestion of a single dose of 180 mg of PSE results in enhanced lower body muscle contraction velocity against low and moderate loads only in the mornings. These mild performance improvements are accompanied by undesirable side effects and an 11% risk of surpassing the doping threshold. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Marano, Francesca; Frairia, Roberto; Rinella, Letizia; Argenziano, Monica; Bussolati, Benedetta; Grange, Cristina; Mastrocola, Raffaella; Castellano, Isabella; Berta, Laura; Cavalli, Roberta; Catalano, Maria Graziella
2017-06-01
Anaplastic thyroid cancer is one of the most lethal diseases, and a curative therapy does not exist. Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low response rate and causes numerous side effects among which cardiotoxicity is the most prominent. Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve the drug efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the intracellular drug content and in vitro cytotoxicity. In the present study, we tested the efficacy of this treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the combined treatment determined the greatest drug accumulation in tumors with consequent reduction of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the treatment induced tumor apoptosis and decreased cell proliferation. Finally, although doxorubicin caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin into nanobubbles avoided these effects preventing heart damage. The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves might be a promising drug delivery system for anaplastic thyroid cancer treatment. © 2017 Society for Endocrinology.
Small female head and neck interaction with a deploying side airbag.
Duma, Stefan M; Crandall, Jeff R; Rudd, Rodney W; Kent, Richard W
2003-09-01
This paper presents dummy and cadaver experiments designed to investigate the injury potential of an out-of-position small female head and neck from a deploying side airbag. Seat-mounted, thoracic-type, side airbags were selected for this study to represent those currently available on selected luxury automobiles. A computer simulation program was used to identify the worst case loading position for the small female head and neck. Once the initial position was identified, experiments were performed with the Hybrid III 5th percentile dummy and three small female cadavers, using three different inflators. Peak head center of gravity (CG) accelerations for the dummy ranged from 71x g to 154 x g, and were greater than cadaver values, which ranged from 68 x g to 103 x g. Peak neck tension as measured at the upper load cell of the dummy increased with inflator aggressivity from 992 to 1670N. A conservative modification of the US National Highway Traffic Safety Administration's (NHTSA's) N(ij) proposed neck injury criteria, which combines neck tension and bending, was used. All values were well below the 1.0 injury threshold for the dummy and suggested a very low possibility of neck injury. In agreement with this prediction, no injuries were observed. Even in a worst case position, small females are at low risk of head or neck injuries under loading from these thoracic-type airbags; however, injury risk increases with increasing inflator aggressivity.
Effects of physical and mental stressors on muscle pain.
Westgaard, R H
1999-01-01
Physical and mental stressors as risk factors for pain development are discussed. These multifaceted stressor terms are narrowed down so that physical stressors are represented by muscle activity recorded by electromyography (EMG), while mental stress is considered synonymous with psychosocial stress in vocational studies; in experimental studies cognitive stress is used as a model. Pain in the shoulder and neck are focused and related to EMG recordings of activity in the trapezius muscle. Major challenges in this field include proper risk assessment at low physical work loads and criteria for evaluating stress as a risk factor. A 3-factor conceptual model is presented in which the independent dimensions physical work load, mental stress, and individual sensitivity determine the risk of shoulder and neck complaints. It is pointed out that a predominant reduction in physical work load for many jobs and an increasing interaction between work conditions and the general life situation of workers pose particular challenges for risk assessment.
Development and Realization of a Shock Wave Test on Expert Flap Qualification Model
NASA Astrophysics Data System (ADS)
De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.
2012-07-01
This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.
Hendriksen, Ruben G F; Lionarons, Judith M; Hendriksen, Jos G M; Vles, Johan S H; McAdam, Laura C; Biggar, W Douglas
There is no cure for Duchenne Muscular Dystrophy (DMD); treatment is symptomatic and corticosteroids slow the progression. Side effects of corticosteroids - especially the physical effects - have been described, however patients' and caregivers perception on chronic corticosteroid treatment and their side effects is less well known, in particular with regards to cognition, behaviour, and emotional functioning. The primary aim of this pilot study was to (i) construct a self-report questionnaire to assess the perceived benefits and side effects of corticosteroids for patients with DMD and their parents. Furthermore we aimed to (ii) investigate the psychometric qualities of this questionnaire, (iii) whether there was a difference between parents' and patient's perceptions, and finally (iv) to what extent reported side effects may alter over time. A 23-item questionnaire (SIDECORT: side effect of corticosteroids) was constructed to assess the perception of these benefits and side effects in a systematic manner. In total, 86 patients (aged 5 - 28 years) and 125 of their parents completed the questionnaire. Internal consistency was good. Using factor analyses on the side effect items as reported by parents, two underlying factors were found, with the first factor describing cognitive, behavioural and emotional functioning, and the second factor describing physical functioning. The potential benefits of corticosteroids were highly rated among both parents and patients, although parents rated the importance of the benefits higher than their sons (p = 0.002). Similarly, parents rated the severity of the side effects generally higher than their sons (p = 0.011), especially with regards to the physical side effects (p = 0.014). Based on the parent's perception, the neurodevelopmental side effects generally appeared to decline the longer corticosteroids were used. To our knowledge, this is the first explicit study on perceived cognitive-, behavioural-, and emotional side effects and the allocation of benefits to corticosteroids in DMD. On the basis of our research we suggest a short form questionnaire, which proves to be reliable and valid for research- and clinical practice. This questionnaire could provide useful insights for the care of boys and men with DMD.
Experimental analysis of the flow pattern of a pump turbine model in pump mode
NASA Astrophysics Data System (ADS)
Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian
2016-11-01
Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.
Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems
Medford, June; Prasad, Ashok
2014-01-01
Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102
Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol.
1979-08-01
media. M SECTION II TEST PROGRAM I. TESTING PROCEDURE Sheets of the filter media were obtained from Owens - Corning Fiberglas Corporation. Ten centimeter...loading cycle. 2. TEST FILTERS The four following glass fiber filter medias were obtained from Owens - Corning Fiberglas Corporation (OCF) and tested both...shown in Table 22. Filters were washed from the back side. 5. ONCLUSIONS Four glass fiber filters, specified in the contract, were obtained from Owens
Dello Iacono, A; Eliakim, A; Padulo, J; Laver, L; Ben-Zaken, S; Meckel, Y
2017-10-01
The aim of this study was to investigate the influence of physical contact on neuromuscular impairments and inflammatory response during handball small-sided games. Using a counterbalanced design, 12 elite male junior handball players were divided into two groups: contact (C-SSG) and no-contact (NC-SSG), performing both contact and no-contact small-sided games, in reverse order on two training sessions separated by 5 days. The methodology and rules were identical for the two SSG regimens, with the only difference being the inclusion or prohibition of upper body use for physical contacts. Upper and lower body neuromuscular performances and blood concentrations of inflammatory cytokine IL-6 were assessed before and immediately after the games. During small-sided games, video analysis was used to establish the physical contact counts. Significant differences were found in most upper and lower limbs muscles kinetic variables and in the physical contact events (all P < 0.001) following the two training regimens. There was an increase in IL-6 after C-SSG and no changes following NC-SSG (P < 0.05 and P = 0.12, respectively). Moreover, a strong correlation was found between the number of physical contacts and IL-6 responses (r = 0.971, P < 0.001) in C-SSG. This study indicates that an inflammatory response and large upper and lower body neuromuscular impairments result from physical contact in elite handball players. These outcomes outline the specific physiological profile of C-SSG that, in turn, might be used by practitioners and coaches as a practical approach to strategically select exercises in athlete's overall training program. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.