Sample records for side wall angle

  1. A new method of evaluating the side wall interference effect on airfoil angle of attack by suction from the side walls

    NASA Technical Reports Server (NTRS)

    Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.

    1984-01-01

    A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.

  2. Three-Dimensional Effects in Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.

    2003-01-01

    In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.

  3. Three-Dimensional Effects on Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

    2002-01-01

    In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

  4. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  5. Method of making a modular off-axis solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plesniak, Adam P.; Hall, John C.

    A method of making a solar concentrator may include forming a receiving wall having an elongated wall, a first side wall and a second side wall; attaching the first side wall and the second side wall to a reflecting wall to form a housing having an internal volume with an opening; forming a lip on the receiving wall and the reflecting wall; attaching a cover to the receiving wall and the reflecting wall at the lip to seal the opening into the internal volume, thereby creating a rigid structure; and mounting at least one receiver having at least one photovoltaicmore » cell on the elongated wall to receive solar radiation entering the housing and reflected by the receiving wall, the receiver having an axis parallel with a surface normal of the photovoltaic cell, such that the axis is disposed at a non-zero angle relative to the vertical axis of the opening.« less

  6. Possibility of Atherosclerosis in an Arterial Bifurcation Model

    PubMed Central

    Arjmandi-Tash, Omid; Razavi, Seyed Esmail; Zanbouri, Ramin

    2011-01-01

    Introduction Arterial bifurcations are susceptible locations for formation of atherosclerotic plaques. In the present study, steady blood flow is investigated in a bifurcation model with a non-planar branch. Methods The influence of different bifurcation angles and non-planar branch is demonstrated on wall shear stress (WSS) distribution using three-dimensional Navier–Stokes equations. Results The WSS values are low in two locations at the top and bottom walls of the mother vessels just before the bifurcation, especially for higher bifurcation angles. These regions approach the apex of bifurcation with decreasing the bifurcation angle. The WSS magnitudes approach near to zero at the outer side of bifurcation plane and these locations are separation-prone. By increasing the bifurcation angle, the minimum WSS decreases at the outer side of bifurcation plane but low WSS region squeezes. WSS peaks exist on the inner side of bifurcation plane near the entry section of daughter vessels and these initial peaks drop as bifurcation angle is increased. Conclusion It is concluded that the non-planarity of the daughter vessel lowers the minimum WSS at the outer side of bifurcation and increases the maximum WSS at the inner side. So it seems that the formation of atherosclerotic plaques at bifurcation region in direction of non-planar daughter vessel is more risky. PMID:23678432

  7. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  8. Capillary Contact Angle in a Completely Wet Groove

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Malijevský, A.; Rascón, C.

    2014-10-01

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  9. Moffatt eddies at an interface

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir

    2014-12-01

    It is shown that an infinite set of eddies can develop near the interface-wall intersection in a two-fluid flow. A striking feature is that the eddy occurrence depends on from what side of the interface the flow is driven. In air-water flows where the viscosity ratio is 0.018, the eddies develop if a driving source is located on (i) the air side for , (ii) any side for , and (iii) the water side for , where is the upper interface-wall angle.

  10. Integral Textile Structure for 3-D CMC Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Marshall, David B. (Inventor); Cox, Brian N. (Inventor); Sudre, Olivier H. (Inventor)

    2017-01-01

    An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.

  11. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  12. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  13. Solar concentrator with restricted exit angles

    DOEpatents

    Rabl, Arnulf; Winston, Roland

    1978-12-19

    A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.

  14. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    PubMed Central

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  15. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  16. 3-D simulation of hanging wall effect at dam site

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, Y.

    2017-12-01

    Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.

  17. Convergence behavior that controls adaptive wind tunnel walls near the test section in the high angle of attack range

    NASA Technical Reports Server (NTRS)

    Ziemann, J.

    1982-01-01

    The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible.

  18. Noise of the SR-3 propeller model at 2 deg and 4 deg angle of attack

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Jeracki, R. J.

    1981-01-01

    The noise effect of operating supersonic tip speed propellers at angle of attack with respect to the incoming flow was determined. Increases in the maximum blade passage noise were observed for the propeller operating at angle of attack. The noise increase was not symmetrical with one wall of the wind tunnel having significantly more noise increase than the other wall. This was apparently the result of the rotational direction of the propeller. The lack of symmetry of the noise at angle of attack to the use of oppositely rotating propellers on opposite sides of an airplane fuselage as a way of minimizing the noise due to operation at angle of attack.

  19. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  20. Wind tunnel and numerical data on the ventilation performance of windcatcher with wing wall.

    PubMed

    Nejat, Payam; Calautit, John Kaiser; Abd Majid, Muhd Zaimi; Hughes, Ben Richard; Zeynali, Iman; Jomehzadeh, Fatemeh

    2016-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled "Evaluation of a two-sided windcatcher integrated with wing wall (as a new design) and comparison with a conventional windcatcher" (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016) [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD) three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.

  1. Tracking Solar Energy Conersion Unit Adapted For Field Assembly

    DOEpatents

    Kaminar, Neil R.; Ross, III, James G.; Carrie, Peter J.

    2000-02-01

    A modular solar energy collector having elongated V-shaped side walls formed by a pair of coplanar panels for each side wall. The upper panels, occupying most of the wall area are diffusely reflective, but the lower panels are specularly reflective. A Fresnel lens, having a snap fit relation to the side walls focuses some light on the lower specularly reflective panels which direct light to the solar cells at the base of the V-shaped walls. A heat sink provides support for the two panels with two opposed, upwardly extending wings terminating in opposed linear clips located near the lengthwise seam of the coplanar panels, each clip holding two coplanar panels in parallel alignment. The clips not only provide support for the panels, but also transfer heat to the remainder of the heat sink. The clips are shaped so that edges of the panels engage each clip by a snap fit, outside of the clip in one embodiment and inside of the clip in another embodiment. End caps are also formed with structures which snap to the wall panels. Since all junctions of components snap together, the collector of the present invention is easily assembled without specialized tools. Using side walls which are only partly specularly reflective permits a large angle of acceptance, yet provides an economical wall design because the entire wall need not be specularly reflective.

  2. An angle-by-angle approach to predicting broadband high-frequency sound fields in rectangular enclosures with experimental comparison.

    PubMed

    Franzoni, Linda P; Elliott, Christopher M

    2003-10-01

    Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.

  3. Analytical calculation on the determination of steep side wall angles from far field measurements

    NASA Astrophysics Data System (ADS)

    Cisotto, Luca; Pereira, Silvania F.; Urbach, H. Paul

    2018-06-01

    In the semiconductor industry, the performance and capabilities of the lithographic process are evaluated by measuring specific structures. These structures are often gratings of which the shape is described by a few parameters such as period, middle critical dimension, height, and side wall angle (SWA). Upon direct measurement or retrieval of these parameters, the determination of the SWA suffers from considerable inaccuracies. Although the scattering effects that steep SWAs have on the illumination can be obtained with rigorous numerical simulations, analytical models constitute a very useful tool to get insights into the problem we are treating. In this paper, we develop an approach based on analytical calculations to describe the scattering of a cliff and a ridge with steep SWAs. We also propose a detection system to determine the SWAs of the structures.

  4. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  5. CALUTRON RECEIVER

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improvement in a calutron receiver for collecting the isotopes ts described. The electromagnetic separation of the isotopes produces a mass spectrum of closely adjacent beams of ions at the foci regions, and a dividing wall between the two pockets is arranged at an angle. Substantially all of the tons of the less abundant isotope enter one of the pockets and strike one side of the wall directly, while substantially none of the tons entering the other pocket strikes the wall directly.

  6. Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas

    DTIC Science & Technology

    2014-01-01

    walls of the supersonic test section after the nozzle exit diverge at a 1.5 degree angle each to provide boundary- layer relief. The static pressure in...the supersonic section is measured using a wall pressure tap in the side wall at the end of the nozzle . A 4 cm long, 5 mm diameter quartz cylinder...model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle . The model extends wall-to

  7. 59. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW FROM THE NORTHEAST IN THE NORTHEAST QUADRANT. GENERAL VIEW OF THE RIGHT FLANK WALL. RIGHT SHOULDER ANGLE IS INCLUDED ON THE RIGHT SIDE OF THE PHOTOGRAPH. - Fort Sumter, Charleston, Charleston County, SC

  8. Radiant energy collector

    DOEpatents

    Winston, Roland

    1977-01-11

    An electromagnetic energy collection device is provided which does not require a solar tracking capability. It includes an energy receiver positioned between two side walls which reflect substantially all incident energy received over a predetermined included angle directly onto the energy receiver.

  9. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  10. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  11. Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995

  12. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  13. Limited-interval definitions of the photometric functions of lunar crater walls by photography from orbiting Apollo

    USGS Publications Warehouse

    Wildey, R.L.

    1971-01-01

    By the use of only relative photometry (intraframe) it is shown that the photometric functions of material reposed on the inner walls of some of the ypunger lunar craters photographed on the far side of the Moon from the Apollo 11 Command Module are not of a form which can be reduced to a dependence on phase angle and brightness-longitude (g, ??) alone. Some other dependence on the completely general degrees of freedom described by phase angle, angle of incidence, and angle of emergence (g, i, ??{lunate}) seems to be required. In addition, however, it has been found that a dependence of g and ?? is more closely approached for the crater, in the group observed, which is obviously the oldest by virtue of the roundedness of the rim crest and the mass-wasting which has occured on its inner walls. The possibility thus arises of crater age-dating by making a brightness ratio measurement together with some image geometry measurements. It is at least evident that more than one type of geologic material has been encountered. ?? 1971.

  14. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  15. Simulation of Natural Convection Heat Transfer in an Inclined Square Cavity With Perfectly Conducting Side Walls Using Finite Difference Approach

    NASA Astrophysics Data System (ADS)

    Azwadi, C. S. Nor; Fairus, M. Y. Mohd

    2010-06-01

    This study is about numerical simulation of natural heat transfer inside an inclined square cavity with perfectly conducting boundary conditions for the side walls. The Navier Stokes equations were solved using finite difference approach with uniform mesh procedure. Three different inclination angels were applied and the results are presented in terms of streamlines and isotherms plots. Based on the fluid flow pattern and the isothermal lines behaviour, the convection heat transfer has shown domination over the conduction as the tilt angle increases. The simulation of natural convection inside an air filled-tilted cavity is the first time to be done to the best of our knowledge.

  16. The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Williams, K. E.

    1991-01-01

    Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  17. Femtosecond laser-induced herringbone patterns

    NASA Astrophysics Data System (ADS)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  18. INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED CHAMBER. THE ANGLED PASSAGE RUNS PARALLEL TO WHAT WAS AN EXTERIOR WALL OF THE THREE-SIDED WINDOW BOW PRESENT IN THE HOUSE’S ORIGINAL CA. 1770 STATE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  19. Computational Investigations on the Aerodynamics of a Generic Car Model in Proximity to a Side Wall

    NASA Astrophysics Data System (ADS)

    Mallapragada, Srivatsa

    A moving road vehicle is subjected to many fluid interferences caused by a number of external agents apart from the vehicle itself. Vehicles moving in proximity to a side wall is an interesting aspect that has been little investigated in the literature. This is of great interest in motorsports, more specifically in NASCAR racing. The aim of this thesis is to develop a Computational Fluid Dynamics (CFD) model that can simulate the motion of a race car moving close to a side wall with an objective of understanding the influence of this side barrier on the overall aerodynamic characteristics of the vehicle, like the force and moment coefficients. Additionally, flow visualization tools are used to gain insights into the flow field and to explain the causes of the observed aerodynamic characteristics of the vehicle. This is accomplished by using a generic car model, a 25-degree slant angle Ahmed Body, in proximity to a side wall in a virtual wind tunnel where the vehicle body is allowed to move at constant velocity. This methodology is different from the traditional CFD approach where the air is blown over a stationary vehicle. The simulation process used in this thesis requires the use of a recently developed meshing methodology called the Overset mesh. All simulations were run using a commercial finite volume CFD code called StarCCM+ where the Unsteady Reynolds Averaged Navier-Stokes URANS fluid flow solver was used to model turbulence. However, the existing literature suggests that no URANS model can correctly predict the flow field around a 25-degree slant Ahmed body model; all models under-predict turbulence in the initial separated shear layer and over-predict the separation region. Subsequently, the first phase of this thesis involved the determination of a modeling methodology that can accurately predict the flow-field over a 25-degree Ahmed body. Two two-equation eddy-viscosity turbulence models, the AKN and SST preferred by many researchers for CFD simulations of massively separated flows, were tested. It turned out that only the latter with modified model coefficients was capable of reproducing the experimental results with a reasonable accuracy. Compared to the eddy viscosity CFD simulations of an isolated 25-degree slant angle Ahmed body seen in existing literature, the results presented in this thesis show significantly better correlations with experiments. The wall proximity studies show a strong influence of the presence of the wall on the overall aerodynamic characteristics of the vehicle body. When compared with the experimental studies, although both show similar trends, however, there exists a significant difference between the experimental and CFD predicted results which tend to worsen as one approaches the wall. These differences can be attributed to fact that the CFD emulation of the flow around the side-wall is more realistic compared to the experimental implementation.

  20. Simulation of one-sided heating of boiler unit membrane-type water walls

    NASA Astrophysics Data System (ADS)

    Kurepin, M. P.; Serbinovskiy, M. Yu.

    2017-03-01

    This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.

  1. Spray shadowing for stress relief and mechanical locking in thick protective coatings

    DOEpatents

    Hollis, Kendall [Los Alamos, NM; Bartram, Brian [Los Alamos, NM

    2007-05-22

    A method for applying a protective coating on an article, comprising the following steps: selecting an article with a surface for applying a coating thickness; creating undercut grooves on the article, where the grooves depend beneath the surface to a bottom portion with the grooves having an upper width on the surface and a lower width on the bottom portion connected by side walls, where at least one of the side walls connects the upper width and the lower width to form an undercut angle with the surface less than 90.degree.; and, applying the protective coating onto the article to fill the undercut grooves and cover the surface, thereby forming weak paths within the protective coating.

  2. Gravity enhanced acoustic levitation method and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)

    1985-01-01

    An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.

  3. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    PubMed

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect was observed. On the other hand, the hexadecane drop is shown to wet the pillar surface and the side wall of the overhang. It then pins at the lower edge of the overhang structure. A plot of the thickness of the overhang as a function of the static, advancing, and receding contact angles and sliding angle of hexadecane reveals that static, advancing, and receding contact angles decrease and sliding angle increases as the thickness of the overhang increases. A larger overhang effect is observed with octane due to its lower surface tension. The robustness of the pillar array surface against external pressure induced wetting and abrasion was modeled. Surface Evolver simulation (with the hexadecane drop) indicates that wetting breakthrough pressure as high as ~70 kPa is achievable with 0.5-μm-diameter pillar array FOTS surfaces. Mechanical modeling shows that bending of the pillars is the key failure by abrasion, which can be avoided with a short pillar structure. The path to fabricate a superoleophobic surface that can withstand the external force equivalent of a gentle cleaning blade (up to ~30 kPa) without wetting and abrasion failure is discussed.

  4. Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel

    2013-01-01

    Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.

  5. 6. Workers laying up the graphite core of the 105B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA

  6. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  7. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  8. Thick photosensitive polyimide film side wall angle variability and scum improvement for IC packaging stress control

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan Singh; Yeung, Marco; Mirza, Fahad; Raman, Thiagarajan; Longenbach, Travis; Morgan, Justin; Duggan, Mark; Soedibyo, Rio A.; Reidy, Sean; Rabie, Mohamed; Cho, Jae Kyu; Premachandran, C. S.; Faruqui, Danish

    2018-03-01

    In this paper, we demonstrate photosensitive polyimide (PSPI) profile optimization to effectively reduce stress concentrations and enable PSPI as protection package-induced stress. Through detailed package simulation, we demonstrate 45% reduction in stress as the sidewall angle (SWA) of PSPI is increased from 45 to 80 degrees in Cu pillar package types. Through modulation of coating and develop multi-step baking temperature and time, as well as dose energy and post litho surface treatments, we demonstrate a method for reliably obtaining PSPI sidewall angle >75 degree. Additionally, we experimentally validate the simulation findings that PSPI sidewall angle impacts chip package interaction (CPI). Finally, we conclude this paper with PSPI material and tool qualification requirements for future technology node based on current challenges.

  9. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    NASA Technical Reports Server (NTRS)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  10. Vortex generating flow passage design for increased film cooling effectiveness

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    1985-07-01

    It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.

  11. Vortex generating flow passage design for increased film cooling effectiveness

    NASA Technical Reports Server (NTRS)

    Papell, S. S. (Inventor)

    1985-01-01

    It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.

  12. Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth.

    PubMed

    Wang, Yue; Gril, Joseph; Sugiyama, Junji

    2009-05-01

    Growth strains (GSs) and growth eccentricity in the branches of Viburnum odoratissimum var. awabuki (K. Koch) Zabel were measured. A pronounced growth promotion occurred on the lower side of some branches. Although the GS of the branches was similar to that of normal wood, a larger GS was observed on the upper side of the branches. Thus, eccentric growth occurred on the side opposite to the larger GS. In addition, there was a strong negative relationship between f-back bending and eccentric growth, indicating that eccentric growth largely precluded correction to the vertical position. To understand the function of eccentric growth on the lower side of the branches, we examined several anatomical features of the branches and found that (1) the cell walls of both sides lacked the gelatinous layer, (2) the microfibril angle measured by X-ray diffraction and polarizing light was small on both the upper and the lower sides and (3) the vessel number and the cell wall area did not change to a large extent. The anatomical features of the xylem did not differ obviously between the upper and the lower sides of the branches; however, the fibers were longer on the lower side than on the upper side. These results suggest that the growth stress pattern and formation of branch architecture in V. odoratissimum differ from those observed in other woody angiosperms.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, L.; Zhao, J.

    The supercritical water mixing phenomenon is investigated with a wide range of conditions, i.e. the inlet temperature of the streams ranges from 323.15 K to 723.15 K and the pressure ranges from 25 MPa to 45 MPa. A sensitivity study is carried out for the jet and main flow velocity ratio (VR) which is varying from 1 to 40. In addition, the effect of the inject angles of branch flow to main flow on the mixing is conducted by varying the inject angle from 80 deg. to 100 deg.. The results show that the maximum temperature gradient appears on themore » wall of the upstream side in all the cases, and the inclined angles can be optimized to mitigate the thermal stress. (authors)« less

  14. Cruise noise of counterrotation propeller at angle of attack in wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1986-01-01

    The noise of a counterrotation propeller at angle of attack was measured in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at cruise conditions. Noise increases of as much as 4 dB were measured at positive angles of attack on the tunnel side wall, which represented an airplane fuselage. These noise increases could be minimized or eliminated by operating the counterrotation propeller with the front propeller turning up-inboard. This would require oppositely rotating propellers on opposite sides of the airplane. Noise analyses at different bandwidths enabled the separate front- and rear-propeller tones, as well as the total noise, at each harmonic to be determined. A simplified noise model was explored to show how the observed circumferential noise patterns of the separate propeller tones might have occurred. The total noise pattern, which represented the sum of the front- and rear-propeller tones at a particular harmonic, showed trends that would be hard to interpret without the separate-tone results. Therefore it is important that counterrotation angle-of-attack noise data be taken in such a manner that the front- and rear-propeller tones can be separated.

  15. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  16. A Tapered Aluminium Microelectrode Array for Improvement of Dielectrophoresis-Based Particle Manipulation

    PubMed Central

    Buyong, Muhamad Ramdzan; Larki, Farhad; Faiz, Mohd Syafiq; Hamzah, Azrul Azlan; Yunas, Jumrail; Majlis, Burhanuddin Yeop

    2015-01-01

    In this work, the dielectrophoretic force (FDEP) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The FDEP is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (fxo). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode’s side wall. PMID:25970255

  17. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation.

    PubMed

    Buyong, Muhamad Ramdzan; Larki, Farhad; Faiz, Mohd Syafiq; Hamzah, Azrul Azlan; Yunas, Jumrail; Majlis, Burhanuddin Yeop

    2015-05-11

    In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall.

  18. Classical and quantum localization and delocalization in the Fermi accelerator, kicked rotor and two-sided kicked rotor models

    NASA Astrophysics Data System (ADS)

    Zaslavsky, M.

    1996-06-01

    The phenomena of dynamical localization, both classical and quantum, are studied in the Fermi accelerator model. The model consists of two vertical oscillating walls and a ball bouncing between them. The classical localization boundary is calculated in the case of ``sinusoidal velocity transfer'' [A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, Berlin, 1983)] on the basis of the analysis of resonances. In the case of the ``sawtooth'' wall velocity we show that the quantum localization is determined by the analytical properties of the canonical transformations to the action and angle coordinates of the unperturbed Hamiltonian, while the existence of the classical localization is determined by the number of continuous derivatives of the distance between the walls with respect to time.

  19. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOEpatents

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  20. Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.

    PubMed

    Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma

    2016-01-01

    To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.

  1. Space Weathering of the Lunar Surface by Solar Wind Particles

    NASA Astrophysics Data System (ADS)

    Kim, Sungsoo S.; Sim, Chaekyung

    2017-08-01

    The lunar regolith is space-weathered to a different degree in response to the different fluxes of incident solar wind particles and micrometeoroids. Crater walls, among other slating surfaces, are good tracers of the space-weathering process because they mature differently depending on the varying incident angles of weathering agents. We divide a crater wall into four quadrants (north, south, east, and west) and analyze the distribution of 950-nm/750-nm reflectance-ratio and 750-nm reflectance values in each wall quadrant, using the topography-corrected images by Multispectral Imager (MI) onboard SELENE (Kaguya). For thousands of impact craters across the Moon, we interpret the spectral distributions in the four wall quadrants in terms of the space weathering by solar wind particles and micrometeoroids and of gardening by meteroids. We take into account the solar-wind shielding by the Earth’s magnetotail to correctly assess the different spectral behaviors between east- and west-facing walls of the craters in the near-side of the Moon.

  2. Phenomenology of electromagnetic coupling: Conductors penetrating an aperture

    NASA Astrophysics Data System (ADS)

    Wright, D. B.; King, R. J.

    1987-06-01

    The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.

  3. Study on the intelligent decision making of soccer robot side-wall behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochuan; Shao, Guifang; Tan, Zhi; Li, Zushu

    2007-12-01

    Side-wall is the static obstacle in soccer robot game, reasonably making use of the Side-wall can improve soccer robot competitive ability. As a kind of artificial life, the Side-wall processing strategy of soccer robot is influenced by many factors, such as game state, field region, attacking and defending situation and so on, each factor also has different influence degree, so, the Side-wall behavior selection is an intelligent selecting process. From the view point of human simulated, based on the idea of Side-wall processing priority[1], this paper builds the priority function for Side-wall processing, constructs the action predicative model for Side-wall obstacle, puts forward the Side-wall processing strategy, and forms the Side-wall behavior selection mechanism. Through the contrasting experiment between the strategy applied and none, proves that this strategy can improve the soccer robot capacity, it is feasible and effective, and has positive meaning for soccer robot stepped study.

  4. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  5. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  6. Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder.

    PubMed

    Morales-Orcajo, Enrique; Siebert, Tobias; Böl, Markus

    2018-05-25

    The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  8. Investigations of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1982-01-01

    Measurements and computations are being applied to an axisymmetric swirling flow, emerging from swirl vanes at angle phi, entering a large chamber test section via a sudden expansion of various side-wall angles alpha. New features are: the turbulence measurements are being performed on swirling as well as nonswirling flow; and all measurements and computations are also being performed on a confined jet flowfield with realistic downstream blockage. Recent activity falls into three categories: (1) Time-mean flowfield characterization by five-hole pitot probe measurements and by flow visualization; (2) Turbulence measurements by a variety of single- and multi-wire hot-wire probe techniques; and (3) Flowfield computations using the computer code developed during the previous year's research program.

  9. Airfoil for a gas turbine engine

    DOEpatents

    Liang, George [Palm City, FL

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  10. Containers for use in a self supporting assembly

    DOEpatents

    Gillespie, Peter J.

    1982-07-13

    This invention is directed to a container having side walls and end walls forming a body having a generally rectangular cross-section. Means for restraining lateral and rotational movement of the container relative to an adjacent container while allowing relatively unhindered movement perpendicular to the side walls is also included. The lateral and rotational movement is restrained in a plane parallel to the side walls. The means include a projection connected to at least one of the side walls and extending outwardly therefrom to engage the adjacent container. Also part of this invention is an assembly of containers which includes a plurality of the above described containers arranged side by side with the end walls generally coplanar and the side walls generally parallel. Means for restraining movement perpendicular to the side walls of the plurality of containers is also included. Each of the containers may house a plurality of battery electrodes.

  11. Visualization of interaction of Mach waves with a bow shock

    NASA Astrophysics Data System (ADS)

    Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.

    2017-10-01

    The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.

  12. Low NO.sub.x burner system

    DOEpatents

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  13. Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian; Itzel, Gary Michael

    2001-01-01

    A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

  14. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  15. Aerothermal tests of a 12.5 percent cone at Mach 6.7 for various Reynolds numbers, angles of attack and nose shapes. [conducted in Langley 8-foot high temperature tunnel

    NASA Technical Reports Server (NTRS)

    Nowak, R. J.; Albertson, C. W.; Hunt, L. R.

    1984-01-01

    The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.

  16. Modal propagation angles in ducts with soft walls and their connection with suppressor performance

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1979-01-01

    The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.

  17. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  18. Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.

  19. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall andmore » not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.« less

  20. Side wall cooling for nozzle segments for a gas turbine

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A nozzle vane segment includes outer and inner band portions with a vane extending therebetween and defining first and second cavities separated by an impingement plate for flowing cooling medium for impingement cooling of nozzle side walls. The side wall of each nozzle segment has an undercut region. The impingement plate has an inturned flange with a plurality of openings. Cooling inserts or receptacles having an open end are received in the openings and the base and side walls of the receptacles have apertures for receiving cooling medium from the first cavity and directing the cooling medium for impingement cooling of the side wall of the nozzle segment and a portion of the nozzle wall.

  1. [Two-wall decompression without resection of the medial wall. Effect on squint angle].

    PubMed

    Bertelmann, E; Rüther, K

    2011-11-01

    Postoperative new onset diplopia can be a disadvantage for surgical orbital decompression in patients with exophthalmos in thyroid eye disease. The various modifications of decompression (number and combination of walls) differ in their influence on the postoperative squint angle. We report on postoperative diplopia in a modified 2 wall decompression strategy (lateral wall and floor). This study was a retrospective analysis of 36 consecutive 2-wall decompressions performed between 2006-2010 in 24 patients with 6 months of stable exophthalmos in thyroid eye disease after medical therapy and radiotherapy. The preoperative and postoperative squint angle in prism cover test (PCT), motility, induction of diplopia, reduction of exophthalmos, visual acuity and complications were evaluated. In all 36 decompressions the postoperative squint angle was equal to or less than before surgery. In 8 eyes additional squint surgery was performed. The mean reduction in exopthalmos was 4.3 mm. An adverse effect of decompression on the postoperative squint angle was not evident in this study. New induction of diplopia was not observed at all. One possible explanation is the preservation of the medial wall.

  2. Highly Collimated Jets and Wide-angle Outflows in HH 46/47: New Evidence from Spitzer Infrared Images

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Marsh, Kenneth. A.

    2007-01-01

    We present new details of the structure and morphology of the jets and outflows in HH 46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the 'HiRes' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected (1) the sharply delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (2) several very narrow jet features at distances approximately 400 AU to approximately 0.1 pc from the star, and (3) compact emissions at MIPS 24 m with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks. Together the IRAC and MIPS images provide a more complete picture of the bow shocks, tracing both the molecular and atomic/ionic gases, respectively. The narrow width and alignment of all jet-related features indicate a high degree of jet collimation and low divergence (width of approximately 400 AU increasing by only a factor of 2.3 over 0.2 pc). The morphology of this jet, bow shocks, wide-angle outflows, and the fact that the jet is nonprecessing and episodic, constrain the mechanisms for producing the jet's entrained molecular gas, and origins of the fast jet, and slower wide-angle outflow.

  3. Growth Angle - a Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazurak, K.; Volz, M. P.; Croll, A.

    2017-01-01

    The growth angle that is formed between the side of the growing crystal and the melt meniscus is an important parameter in the detached Bridgman crystal growth method, where it determines the extent of the crystal-crucible wall gap, and in the Czochralski and float zone methods, where it influences the size and stability of the crystals. The growth angle is a non-equilibrium parameter, defined for the crystal growth process only. For a melt-crystal interface translating towards the crystal (melting), there is no specific angle defined between the melt and the sidewall of the solid. In this case, the corner at the triple line becomes rounded, and the angle between the sidewall and the incipience of meniscus can take a number of values, depending on the position of the triple line. In this work, a microscopic model is developed in which the fluid interacts with the solid surface through long range van der Waals or Casimir dispersive forces. This growth angle model is applied to Si and Ge and compared with the macroscopic approach of Herring. In the limit of a rounded corner with a large radius of curvature, the wetting of the melt on the crystal is defined by the contact angle. The proposed microscopic approach addresses the interesting issue of the transition from a contact angle to a growth angle as the radius of curvature decreases.

  4. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  5. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  6. Measurements of Intra‐Aortic Balloon Wall Movement During Inflation and Deflation: Effects of Angulation

    PubMed Central

    Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R.

    2015-01-01

    Abstract The intra‐aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre‐, intra‐, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi‐recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra‐aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. PMID:25959284

  7. Senarmont compensation for determining fibril angles of cell wall layers

    Treesearch

    Floyd G. Manwiller

    1966-01-01

    A technique originated by Preston, is explained for determining fibril angles of the secondary wall layers of fibers. A polarizing microscope equipped with Senarmont compensator is used to measure birefringence of the wall layers in series of sections cut at various angles to the long axis of the cells. Enough measurements are taken on each section to give a...

  8. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  9. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  10. Wedge-Shaped GaN Nanowalls: A Potential Candidate for Two-Dimensional Electronics and Spintronics

    NASA Astrophysics Data System (ADS)

    Deb, Swarup; Dhar, Subhabrata

    Schrödingerand Poisson equations are solved self-consistently in order to obtain the potential and charge density distribution in n-type GaN nanowalls tapered along c-axis by different angles. The study shows two-dimensional (2D) quantum confinement of electrons in the central vertical plane of the wall for the entire range of tapering. Calculation of room temperature electron mobility in the 2D channel shows a steady decrease with the increase of the inclination angle of the side facets with respect to the base. However, it is interesting to note that the mobility remains to be much larger than that of bulk GaN even for the inclination angle of 65∘. The properties of high mobility and the vertical orientation of the 2DEG plane in this system can be exploited in fabricating highly conducting transparent interconnects and field effect transistors, which can lead to large scale integration of 2D devices in future.

  11. SU-F-T-85: Energy Modulated Electron Postmastectomy Unreconstructed (PU) Chest Wall (CW) Irradiation Technique to Achieve Heart Sparing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, L; Ballangrud, A; Mechalakos, J

    Purpose: For left-sided PU patients requiring CW and nodal irradiation, sometimes partial wide tangents (PWT) are not feasible due to abnormal chest wall contour or heart position close to the anterior chest wall or unusual wide excision scar. We developed an energy modulated electron chest wall irradiation technique that will achieve heart sparing. Methods: Ten left-sided PU patients were selected for this dosimetry study. If PWT were used, the amount of the ipsilateral lung would be ranged 3.4 to 4.4 cm, and the amount of heart would be ranged 1.3 to 3.8 cm. We used electron paired fields that matchedmore » on the skin to achieve dose conformity to the chest wall. The enface electron fields were designed at extended SSD from a single isocenter and gantry angle with different energy beams using different cutout. Lower energy was used in the central chest wall part and higher energy was used in the periphery of the chest wall. Bolus was used for the electron fields to ensure adequate skin dose coverage. The electron fields were matched to the photon supra-clavicle field in the superior region. Daily field junctions were used to feather the match lines between all the fields. Target volumes and normal tissues were drawn according to institutional protocols. Prescription dose was 2Gy per fraction for a total 50Gy. Dose calculations were done with Eclipse EMC-11031 for Electron and AAA-11031 for photons. Results: Six patients were planned using 6/9MeV, three using 9/12MeV and one 6/12MeV. Target volumes achieved adequate coverage. For heart, V30Gy, V20Gy and Mean Dose were 0.6%±0.6%, 2.7%±1.7%, and 3.0Gy±0.8Gy respectively. For ipsilateral lung, V50Gy, V20Gy, V10Gy and V5Gy were 0.9%±1.1%, 34.3%±5.1%, 51.6%±6.3% and 64.1%±7.5% respectively. Conclusion: For left-sided PU patients with unusual anatomy, energy modulated electron CW irradiation technique can achieve heart sparing with acceptable lung dose.« less

  12. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  13. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  14. An investigation of the sound field above the audience in large lecture halls with a scale model.

    PubMed

    Kahn, D W; Tichy, J

    1986-09-01

    Measurements of steady-state sound pressure levels above the audience in large lecture halls show that the classical equation for predicting the sound pressure level is not accurate. The direct field above the seats was measured on a 1:10 scale model and was found to be dependent on the incidence angle and direction of sound propagation across the audience. The reverberant field above the seats in the model was calculated by subtracting the direct field from the measured total field and was found to be dependent on the magnitude and particularly on the placement of absorption. The decrease of sound pressure level versus distance in the total field depends on the angle (controlled by absorption placement) at which the strong reflections are incident upon the audience area. Sound pressure level decreases at a fairly constant rate with distance from the sound source in both the direct and reverberant field, and the decrease rate depends strongly on the absorption placement. The lowest rate of decay occurs when the side walls are absorptive, and both the ceiling and rear wall are reflective. These consequences are discussed with respect to prediction of speech intelligibility.

  15. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  16. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  17. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  18. A miniature pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI) is a great potential threat to people who deal with explosive devices. Protection from TBI has attracted more and more interest. Great efforts have been taken to the studies on the understanding of the propagation of the blast events and its effect on TBI. However, one of the biggest challenges is that the current available pressure sensors are not fast enough to capture the blast wave especially the transient period. This paper reports an ultrafast pressure sensor that could be very useful for analysis of the fast changing blast signal. The sensor is based on Fabry-Perot (FP) principle. It uses a 45º angle polished fiber sitting in a V-groove on a silicon chip. The endface of the angle polished fiber and the diaphragm which is lifted off on the side wall of the V-groove form the FP cavity. The sensor is very small and can be mounted on different locations of a helmet to measure blast pressure simultaneously. The tests were conducted at Natick Soldier Research, Development, and Engineering Center (NSRDEC) in Natick, MA. The sensors were mounted in a shock tube, side by side with the reference sensors, to measure a rapidly increased pressure. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors and their response time is comparable.

  19. 6. View of east side abutment and wing wall. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of east side abutment and wing wall. The detail of this abutment and wing wall is the same for the similar abutment treatment at the west side. - Tipp-Elizabeth Road Bridge, Spanning Great Miami River, Tipp City, Miami County, OH

  20. Effect of aperture geometry on heat transfer in tilted partially open cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.M.; Chakroun, W.

    1999-11-01

    Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less

  1. Adaptation of the Levee Erosional Equivalence Method for the Hurricane Storm Damage Risk Reduction System (HSDRRS)

    DTIC Science & Technology

    2011-05-01

    ER D C/ CH L TR -1 1- 3 Flood and Coastal Storm Damage Reduction R& D Program Adaptation of the Levee Erosional Equivalence Method for the...of vertical wall [-] γw Specific weight of water [kN/m3] γβ Reduction factor for influence of angle of wave attack [-] θ Landward-side levee ...stress multiplied by the flow velocity. Thus, from Equation (4) stream power has the form ERDC/CHL TR-11-3 9 S o D D dW P τ u ρ f u u ρ f u dt

  2. Turbine blade with contoured chamfered squealer tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less

  3. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  4. Powder collection apparatus/method

    DOEpatents

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  5. Powder collection apparatus/method

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.

  6. WEST WING, EAST SIDE, TO LEFT: NORTH WALL, SOUTH SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST WING, EAST SIDE, TO LEFT: NORTH WALL, SOUTH SIDE, IN BACKGROUND - Fort Sam Houston, San Antonio Quartermaster Depot, Northwest corner of New Braunfels Avenue & Grayson Street, San Antonio, Bexar County, TX

  7. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  8. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    NASA Astrophysics Data System (ADS)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  9. Seismic behavior of outrigger truss-wall shear connections using multiple steel angles

    NASA Astrophysics Data System (ADS)

    Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang

    2016-06-01

    An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.

  10. 12. NORTH WALL, SOUTH SIDE, EAST SECTION (WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTH WALL, SOUTH SIDE, EAST SECTION (WEST SIDE OF EAST WING IN BACKGROUND) - Fort Sam Houston, San Antonio Quartermaster Depot, Northwest corner of New Braunfels Avenue & Grayson Street, San Antonio, Bexar County, TX

  11. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.

  12. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  13. Local heat/mass transfer and pressure drop in a two-pass rib-roughened channel for turbine airfoil cooling

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Chandra, P. R.

    1987-01-01

    The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.

  14. ECRH launching scenario in FFHR-d1

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  15. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2016-07-01

    In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.

  16. Influence of knee flexion angle and transverse drill angle on creation of femoral tunnels in double-bundle anterior cruciate ligament reconstruction using the transportal technique: Three-dimensional computed tomography simulation analysis.

    PubMed

    Choi, Chong Hyuk; Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Eom, Nam-Kyu; Jung, Min

    2018-01-01

    The purpose of this study was to find appropriate flexion angle and transverse drill angle for optimal femoral tunnels of anteromedial (AM) bundle and posterolateral (PL) bundle in double-bundle ACL reconstruction using transportal technique. Thirty three-dimensional knee models were reconstructed. Knee flexion angles were altered from 100° to 130° at intervals of 10°. Maximum transverse drill angle (MTA), MTA minus 10° and 20° were set up. Twelve different tunnels were determined by four flexion angles and three transverse drill angles for each bundle. Tunnel length, wall breakage, inter-tunnel communication and graft-bending angle were assessed. Mean tunnel length of AM bundle was >30mm at 120° and 130° of flexion in all transverse drill angles. Mean tunnel length of PL bundle was >30mm during every condition. There were ≥1 cases of wall breakage except at 120° and 130° of flexion with MTA for AM bundle. There was no case of wall breakage for PL bundle. Considering inter-tunnel gap of >2mm without communication and obtuse graft-bending angle, 120° of flexion and MTA could be recommended as optimal condition for femoral tunnels of AM and PL bundles. Flexion angle and transverse drill angle had combined effect on femoral tunnel in double-bundle ACL reconstruction using transportal technique. Achieving flexion angle of 120° and transverse drill angle close to the medial femoral condyle could be recommended as optimal condition for femoral tunnels of AM and PL bundles to avoid insufficient tunnel length, wall breakage, inter-tunnel communication and acute graft-bending angle. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Relationship between Lateral Femoral Bowing and Varus Knee Deformity Based on Two-Dimensional Assessment of Side-to-Side Differences.

    PubMed

    Cho, Myung-Rae; Lee, Young Sik; Choi, Won-Kee

    2018-03-01

    The objective was to evaluate the relationship between side-to-side differences of lateral femoral bowing and varus knee deformity based on two-dimensional (2D) assessment in unilateral total knee arthroplasty (TKA). A total of 143 patients with varus knee osteoarthritis who underwent unilateral TKA were enrolled. We evaluated the side-to-side differences of the frontal lower limb alignment by assessing lateral femoral bowing, anatomical medial distal femoral angle, and anatomical medial proximal tibial angle (aMPTA). The average values of all anatomical indices were significantly different between the operated side and the non-operated side (p<0.05). The side-to-side difference in hip knee ankle (HKA) angle had a statistically significant correlation with that in lateral femoral bowing (intraclass correlation coefficient, 0.259; p=0.002) and that in aMPTA. Linear regression analysis showed 0.199° of side-to-side difference in lateral femoral bowing was associated with 1° of side-to-side difference in bilateral HKA angle. The side-to-side difference in lateral femoral bowing showed a tendency to increase in proportion to varus knee deformity based on 2D assessment in unilateral TKA patients.

  18. Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.

    DOEpatents

    Aune, Jan Arthur; Brinch, Jon Christian; Johansen, Kai

    2005-12-27

    The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

  19. Heat Transfer in the LCCM Thermal Reserve Battery

    DTIC Science & Technology

    2009-09-01

    and Molded Sheet 3M Corporation, Elkhart IN 46516 Microtherm Sheet Microtherm Inc., Alcoa TN 37701 AR5401 Flexible Blanket Aspen Aerogels, Inc...heated Microtherm side wall and axial thermal insulation 90.9 GPS9I 04/27/07 All batteries after GPS9H used six silicone rubber gaskets to form...pressure before ignition. Thin Microtherm side wrap next to cell stack. No pre- compression of any side wall insulation or side wall heat paper (– 40

  20. Microelectrofluidic lens for variable curvature

    NASA Astrophysics Data System (ADS)

    Chang, Jong-hyeon; Lee, Eunsung; Jung, Kyu-Dong; Lee, Seungwan; Choi, Minseog; Kim, Woonbae

    2012-10-01

    This paper presents a tunable liquid lens based on microelectrofluidic technology which integrates electrowetting and microfluidics. In the novel microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. The previous electrowetting lens in which the contact angle changes at the side wall has a certain limitation of the curvature variation because of the contact angle saturation. Although the contact angle saturation also appears in the surface channel of the MEFL, the low surface channel increases the Laplace pressure and it makes the MEFL to have full variation of the optical power possible. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL as well as the electrowetting lens. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. It is expected that the proposed MEFL is able to be widely used because of its full variation of the optical power without the use of oil and digital operation with fast response.

  1. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  2. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Heat transfer and pressure drop in a compact pin-fin heat exchanger with pin orientation at 18 deg to the flow direction

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.

  4. Wind Tunnel Investigation of a Balloon as Decelerator at Mach Numbers from 1.47 to 2.50

    NASA Technical Reports Server (NTRS)

    McShera, John T.; Keyes, J. Wayne

    1961-01-01

    A wind-tunnel investigation was conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 degrees. Tow-cable length was approximately 24 inches from asymmetric body to cone on the upstream side of the balloon. As the tow cable was lengthened the balloon reached a point in the test section where wall-reflected shocks intersected the balloon and caused severe oscillations. As a result, the tow cable broke and the inflatable balloon model was destroyed. Further tests used a model rigid plastic sphere 6.75 inches in diameter. Tow cable length was approximately 24 inches from asymmetric body to the upstream side of the sphere.

  5. Microwave based civil structure inspection device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohns, C.W.; Bible, D.W.

    1994-06-01

    A microwave based ``wall probe`` has been developed which is capable of nondestructive evaluation of architectural structures. By using microwaves in the 8 to 12 GHz range this probing instrument can detect subsurface characteristics through concrete, brick, wood or other building materials to depths in excess of 12 inches. The instrument interrogates a structure from a single side by transmitting a microwave signal into the surface at some angle of incidence and receiving the reflected signal some distance away on the same side of the structure. The transmitted signal is partially reflected at each internal boundary of different dielectric constant,more » giving a composite reflection which contains information from each internal layer. The reflected composite signal is compared in phase and amplitude to the transmitted signal and that reading is considered the ``signature`` of the structure under test. Computer algorithms analyze the signature for recognizable features and nonstandard construction.« less

  6. Measurements of Intra-Aortic Balloon Wall Movement During Inflation and Deflation: Effects of Angulation.

    PubMed

    Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R; Khir, Ashraf W

    2015-08-01

    The intra-aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre-, intra-, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi-recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra-aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organ and Transplantation (ICAOT).

  7. Mathematical modeling of two phase stratified flow in a microchannel with curved interface

    NASA Astrophysics Data System (ADS)

    Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.

    2017-11-01

    Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.

  8. 18. WEST WING, EAST SIDE, TO LEFT: NORTH WALL, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WEST WING, EAST SIDE, TO LEFT: NORTH WALL, SOUTH SIDE, IN BACKGROUND - Fort Sam Houston, San Antonio Quartermaster Depot, Northwest corner of New Braunfels Avenue & Grayson Street, San Antonio, Bexar County, TX

  9. Three-dimensional analysis of the proximal humeral and glenoid geometry using MicroScribe 3D digitizer.

    PubMed

    Owaydhah, Wejdan H; Alobaidy, Mohammad A; Alraddadi, Abdulrahman S; Soames, Roger W

    2017-07-01

    To understand the geometry of the proximal humerus and glenoid fossa to facilitate the design of components used in shoulder arthroplasty. The aim is to evaluate the geometry of the proximal humerus and glenoid fossa and their relationship using a MicroScribe 3D digitizer. Scans and measurements were obtained from 20 pairs of dry proximal humeri and scapulae [10 female and 10 male cadavers: median age 81 years (range 70-94 years)] using a MicroScribe 3D digitizer and Rhinoceros software. Means (±SD) of humeral inclination, medial wall angle of the bicipital groove, and radius of the humeral head values were 135 ± 11°, 39 ± 19°, and 14 ± 3 mm, respectively. Means (±SD) of glenoid height and width were 35 ± 4 and 26 ± 4 mm, while the means (±SD) of the angles of glenoid inclination, retroversion, and rotation were 87 ± 32°, 96 ± 10°, and 9 ± 6°, respectively. A significant difference in glenoid height (P ≤ 0.002) and width (P ≤ 0.0001) was observed between males and females, despite them having almost an identical radius of the humeral head, glenoid inclination, retroversion, and angle of rotation. There was also a significant difference (P ≤ 0.01) in the angle of glenoid retroversion between the right and left sides. Using a MicroScribe 3D digitizer, the glenoid fossa was observed to be significantly smaller in females than males; furthermore, there was a difference in glenoid retroversion between the right and left sides.

  10. Capillary rise between planar surfaces

    NASA Astrophysics Data System (ADS)

    Bullard, Jeffrey W.; Garboczi, Edward J.

    2009-01-01

    Minimization of free energy is used to calculate the equilibrium vertical rise and meniscus shape of a liquid column between two closely spaced, parallel planar surfaces that are inert and immobile. States of minimum free energy are found using standard variational principles, which lead not only to an Euler-Lagrange differential equation for the meniscus shape and elevation, but also to the boundary conditions at the three-phase junction where the liquid meniscus intersects the solid walls. The analysis shows that the classical Young-Dupré equation for the thermodynamic contact angle is valid at the three-phase junction, as already shown for sessile drops with or without the influence of a gravitational field. Integration of the Euler-Lagrange equation shows that a generalized Laplace-Young (LY) equation first proposed by O’Brien, Craig, and Peyton [J. Colloid Interface Sci. 26, 500 (1968)] gives an exact prediction of the mean elevation of the meniscus at any wall separation, whereas the classical LY equation for the elevation of the midpoint of the meniscus is accurate only when the separation approaches zero or infinity. When both walls are identical, the meniscus is symmetric about the midpoint, and the midpoint elevation is a more traditional and convenient measure of capillary rise than the mean elevation. Therefore, for this symmetric system a different equation is fitted to numerical predictions of the midpoint elevation and is shown to give excellent agreement for contact angles between 15° and 160° and wall separations up to 30mm . When the walls have dissimilar surface properties, the meniscus generally assumes an asymmetric shape, and significant elevation of the liquid column can occur even when one of the walls has a contact angle significantly greater than 90°. The height of the capillary rise depends on the spacing between the walls and also on the difference in contact angles at the two surfaces. When the contact angle at one wall is greater than 90° but the contact angle at the other wall is less than 90°, the meniscus can have an inflection point separating a region of positive curvature from a region of negative curvature, the inflection point being pinned at zero height. However, this condition arises only when the spacing between the walls exceeds a threshold value that depends on the difference in contact angles.

  11. Limiting Impact Force Due to Yielding and Buckling of the Plates and Internal Structural Frame at the Bow of a Barge during Its Head-on Impact with a Bullnose or Cellular Structure

    DTIC Science & Technology

    2009-08-01

    Locks and Dam. ERDC/ITL TR-09-3 16 The proposed flexible approach walls at Lock and Dams 22 and 25 consist of precast concrete beams supported...Figures 2.3 and 2.5. The rounded hull plate connecting the front and side hull plates (in blue) is shown in brown in Figures 2.2 and 2.3. Figure 2.4...approach angle column in Table 3.1 is of no consequence for these analyses. Table 3.1. Three design load condition categories, frequency of loadings

  12. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Numerical Optimization of converging diverging miniature cavitating nozzles

    NASA Astrophysics Data System (ADS)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  14. Single-Side Two-Location Spotlight Imaging for Building Based on MIMO Through-Wall-Radar.

    PubMed

    Jia, Yong; Zhong, Xiaoling; Liu, Jiangang; Guo, Yong

    2016-09-07

    Through-wall-radar imaging is of interest for mapping the wall layout of buildings and for the detection of stationary targets within buildings. In this paper, we present an easy single-side two-location spotlight imaging method for both wall layout mapping and stationary target detection by utilizing multiple-input multiple-output (MIMO) through-wall-radar. Rather than imaging for building walls directly, the images of all building corners are generated to speculate wall layout indirectly by successively deploying the MIMO through-wall-radar at two appropriate locations on only one side of the building and then carrying out spotlight imaging with two different squint-views. In addition to the ease of implementation, the single-side two-location squint-view detection also has two other advantages for stationary target imaging. The first one is the fewer multi-path ghosts, and the second one is the smaller region of side-lobe interferences from the corner images in comparison to the wall images. Based on Computer Simulation Technology (CST) electromagnetic simulation software, we provide multiple sets of validation results where multiple binary panorama images with clear images of all corners and stationary targets are obtained by combining two single-location images with the use of incoherent additive fusion and two-dimensional cell-averaging constant-false-alarm-rate (2D CA-CFAR) detection.

  15. Periodontal Responses to Augmented Corticotomy with Collagen Membrane Application during Orthodontic Buccal Tipping in Dogs

    PubMed Central

    Herr, Yeek; Kwon, Young-Hyuk; Kim, Seong-Hun; Kim, Eun-Cheol

    2014-01-01

    This prospective randomized split-mouth study was performed to examine the effects of absorbable collagen membrane (ACM) application in augmented corticotomy using deproteinized bovine bone mineral (DBBM), during orthodontic buccal tipping movement in the dog. After buccal circumscribing corticotomy and DBBM grafting into the decorticated area, flaps were repositioned and sutured on control sides. ACM was overlaid and secured with membrane tacks, on test sides only, and the flaps were repositioned and sutured. Closed coil springs were used to apply 200 g orthodontic force in the buccolingual direction on the second and third premolars, immediately after primary flap closure. The buccal tipping angles were 31.19 ± 14.60° and 28.12 ± 11.48° on the control and test sides, respectively. A mean of 79.5 ± 16.0% of the buccal bone wall was replaced by new bone on the control side, and on the test side 78.9 ± 19.5% was replaced. ACM application promoted an even bone surface. In conclusion, ACM application in augmented corticotomy using DBBM might stimulate periodontal tissue reestablishment, which is useful for rapid orthodontic treatment or guided bone regeneration. In particular, ACM could control the formation of mesenchymal matrix, facilitating an even bone surface. PMID:25276824

  16. Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition

    PubMed Central

    Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin

    2013-01-01

    Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334

  17. Cross Cell Sandwich Core

    NASA Technical Reports Server (NTRS)

    Ford, Donald B. (Inventor)

    2004-01-01

    A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.

  18. DBD Actuated Flow Control of Wall-Jet and Cross-Flow Interaction for Film Cooling Applications

    NASA Astrophysics Data System (ADS)

    Tirumala, Rakshit; Benard, Nicolas; Moreau, Eric; Fenot, Matthieu; Lalizel, Gildas; Dorignac, Eva

    2014-11-01

    In this work, we use surface DBD actuators to control the interaction between a wall jet and mainstream flow in film cooling applications. The intention of the study is to improve the contact of the jet with the wall and enhance the convective heat transfer coefficient downstream of the jet exit. A 2D wall jet (10 mm height) is injected into the mainstream flow at an angle of 30°. With an injected jet velocity (Ui) of 5 m/s, two blowing ratios M (=ρi Ui / ρ∞U∞) of 1.0 and 0.5 are studied corresponding to the mainstream flow velocity (U∞) of 5 m/s and 10 m/s respectively. Different configurations of the DBD actuator are studied, positioned both inside the jet and on the downstream side. PIV measurements are conducted to investigate the flow field of the interaction between the jet and cross flow. Streamwise velocity profiles at different downstream locations are compared to analyze the efficacy of the plasma actuator in improving the contact between the injected jet stream and the wall surface. Reynolds shear stress measurements are also conducted to study the mixing regions in the plasma-jet-mainstream flow interaction. Work was partially funded by the French government program ``Investissements d'avenir'' (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

  19. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  20. Differences in humeral retroversion in dominant and nondominant sides of young baseball players.

    PubMed

    Kurokawa, Daisuke; Yamamoto, Nobuyuki; Ishikawa, Hiroaki; Nagamoto, Hideaki; Takahashi, Hiroyuki; Muraki, Takayuki; Tanaka, Minoru; Sato, Katsumi; Itoi, Eiji

    2017-06-01

    The relationship between the disabled throwing shoulder and humeral retroversion has recently attracted a great deal of attention. However, none of the previous studies clarified when the side-to-side difference of humeral retroversion in young baseball players would start. This study aimed to clarify when the difference of humeral retroversion in the dominant and nondominant sides appeared in baseball players. The bicipital-forearm angle in bilateral shoulders of 172 elementary school baseball players was measured by ultrasound. The bicipital-forearm angle was defined as an angle between the perpendicular line to the bicipital groove and the ulnar long axis with the elbow flexed at 90°. The correlation between the bicipital-forearm angle and the grade and the difference of the bicipital-forearm angle between the dominant and nondominant sides were analyzed. In the nondominant shoulders, the bicipital-forearm angle increased with the grade in school (r = 0.32, P < .0001), but this was not observed in the dominant shoulders. In the fourth to sixth graders, the bicipital-forearm angles were significantly smaller in the dominant shoulders than in the nondominant shoulders. Our findings indicated that humeral retroversion decreased with age in the nonthrowing side but not in the throwing side and that the side-to-side difference of humeral retroversion in the baseball players became obvious from the fourth grade. We assume that the repetitive throwing motion restricts the physiologic humeral derotation process and the difference became apparent from the fourth grade when the growth spurt begins in boys. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Modified locking thread form for fastener

    NASA Technical Reports Server (NTRS)

    Roopnarine, (Inventor); Vranish, John D. (Inventor)

    1998-01-01

    A threaded fastener has a standard part with a standard thread form characterized by thread walls with a standard included angle, and a modified part complementary to the standard part having a modified thread form characterized by thread walls which are symmetrically inclined with a modified included angle that is different from the standard included angle of the standard part's thread walls, such that the threads of one part make pre-loaded edge contact with the thread walls of the other part. The thread form of the modified part can have an included angle that is greater, less, or compound as compared to the included angle of the standard part. The standard part may be a bolt and the modified part a nut, or vice versa. The modified thread form holds securely even under large vibrational forces, it permits bi-directional use of standard mating threads, is impervious to the build up of tolerances and can be manufactured with a wider range of tolerances without loss of functionality, and distributes loading stresses (per thread) in a manner that decreases the possibility of single thread failure.

  2. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  3. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  4. Response of hot element flush wall gauges in oscillating laminar flow

    NASA Technical Reports Server (NTRS)

    Giddings, T. A.; Cook, W. J.

    1986-01-01

    The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.

  5. Reynolds number invariance of the structure inclination angle in wall turbulence.

    PubMed

    Marusic, Ivan; Heuer, Weston D C

    2007-09-14

    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.

  6. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  7. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.

    PubMed

    Smith, E R; Müller, E A; Craster, R V; Matar, O K

    2016-12-06

    Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

  8. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  9. Open-field arena boundary is a primary object of exploration for Drosophila

    PubMed Central

    Soibam, Benjamin; Mann, Monica; Liu, Lingzhi; Tran, Jessica; Lobaina, Milena; Kang, Yuan Yuan; Gunaratne, Gemunu H; Pletcher, Scott; Roman, Gregg

    2012-01-01

    Drosophila adults, when placed into a novel open-field arena, initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity and spend a majority of time near the arena edge, executing motions along the walls. In order to determine the environmental features that are responsible for the initial high activity and wall-following behavior exhibited during exploration, we examined wild-type and visually impaired mutants in arenas with different vertical surfaces. These experiments support the conclusion that the wall-following behavior of Drosophila is best characterized by a preference for the arena boundary, and not thigmotaxis or centrophobicity. In circular arenas, Drosophila mostly move in trajectories with low turn angles. Since the boundary preference could derive from highly linear trajectories, we further developed a simulation program to model the effects of turn angle on the boundary preference. In an hourglass-shaped arena with convex-angled walls that forced a straight versus wall-following choice, the simulation with constrained turn angles predicted general movement across a central gap, whereas Drosophila tend to follow the wall. Hence, low turn angled movement does not drive the boundary preference. Lastly, visually impaired Drosophila demonstrate a defect in attenuation of the elevated initial activity. Interestingly, the visually impaired w1118 activity decay defect can be rescued by increasing the contrast of the arena's edge, suggesting that the activity decay relies on visual detection of the boundary. The arena boundary is, therefore, a primary object of exploration for Drosophila. PMID:22574279

  10. Turbulent flow separation in three-dimensional asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert

    2011-12-01

    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.

  11. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  12. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  13. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  14. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy

    NASA Astrophysics Data System (ADS)

    Kuncser, A.; Antohe, S.; Kuncser, V.

    2017-02-01

    Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.

  15. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  16. Three dimensional profile measurement using multi-channel detector MVM-SEM

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki

    2014-07-01

    In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.

  17. Mach 6 flow field surveys beneath the forebody of an airbreathing missile

    NASA Technical Reports Server (NTRS)

    Johnson, P. J.; Hunt, J. L.

    1986-01-01

    Wall static, local stream static, and pitot pressure surveys were made on the windward side of a hypersonic airbreathing missile at full-scale length Reynolds numbers. In the inviscid part of the flow field, the experimental massflow ratios agreed with trends predicted by a three-dimensional method-of-characteristics solution. At a longitudinal station 3.5 diameters downstrea of the nose, the boundary layer was transitional or turbulent at zero incidence but became laminar as the angle of attack increased. The bell-shaped distribution of the boundary layer across the width of the body affected the mass flow distribution out to the bow shock and decreased the mass flow available the engine inlet.

  18. Integral manifolding structure for fuel cell core having parallel gas flow

    DOEpatents

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  19. Integral manifolding structure for fuel cell core having parallel gas flow

    DOEpatents

    Herceg, J.E.

    1983-10-12

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  20. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

    PubMed

    Cogswell, Petrice M; Siero, Jeroen C W; Lants, Sarah K; Waddle, Spencer; Davis, L Taylor; Gilbert, Guillaume; Hendrikse, Jeroen; Donahue, Manus J

    2018-03-31

    Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo. To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences. Prospective. Healthy adults (n = 13; age = 37 ± 15 years) were enrolled. A 3.0T 3D T 1 /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied. Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist). A Wilcoxon signed-rank test was applied with corrected two-sided P < 0.05 required for significance (critical P = 0.008, 0.005, and 0.05 for SNR/CNR, SR, and wall thickness, respectively). A TSE pulse sweep = 40-120° and sweep = 50-120° provided similar (P = 0.55) CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P < 0.008) improvement in CSF suppression. The DANTE preparation also resulted in a significant (P < 0.008) reduction in vessel wall SNR, but variable vessel wall to CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P < 0.05) with (basilar artery 4.45 mm, 0.81 mm, respectively) vs. without (basilar artery 4.88 mm, 0.97 mm, respectively) DANTE 8°. IC VWI with TSE sweep = 40-120° and with DANTE flip angle = 8° provides the best CSF suppression and CNR of the approaches evaluated. However, improvements are heterogeneous, likely owing to intersubject vessel pulsatility and CSF flow variations, which can lead to variable flow suppression efficacy in these velocity-dependent modules. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  1. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  2. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  3. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    PubMed

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8°, respectively. The average preoperative and postoperative implant rod angle of curvature at the convex side was 25.5° and 23.9°, respectively. A significant relationship was found between the degree of rod deformation and preoperative implant rod angle of curvature (r=0.60, p<.005). The implant rods at the convex side of all patients did not have significant deformation. The results indicate that the postoperative sagittal outcome could be predicted from the initial rod shape. Changes in implant rod angle of curvature may lead to over- or undercorrection of the sagittal curve. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than the convex side. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Projectile-generating explosive access tool

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Tijeras, NM; Todd, Steven N [Rio Rancho, NM

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  5. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.

    PubMed

    Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

  6. Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows

    NASA Astrophysics Data System (ADS)

    Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria

    2017-04-01

    The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to the wall friction. Different kinds of side-wall velocity profiles are observed. As regards the smooth basal surface, a slip velocity at the bed is observed. The profiles are Bagnold-type near the free surface and become linear as the depth increases. On the glued-grain basal surface the flow velocity at the bed is null and all the velocity profiles show a rheological stratification with a lower exponential tail and an upper linear profile. Grain rolling is observed at the sandpaper bed, instead. With the increase of flow depths, the velocity profiles gradually shift from the ones observed on the smooth bed to the ones observed on the glued-grain bed. In order to further understand the constitutive behaviour of granular mixtures, it is useful to perform simultaneous measurements of flow velocity and volume fraction. In this perspective, a new series of experiments is actually undergoing for the measurement of the volume fraction.

  7. Side forces on forebodies at high angles of attack and Mach numbers from 0.1 to 0.7: two tangent ogives, paraboloid and cone

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.

    1977-01-01

    An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.

  8. Using wood creep data to discuss the contribution of cell-wall reinforcing material.

    PubMed

    Gril, Joseph; Hunt, David; Thibaut, Bernard

    2004-01-01

    Longitudinal four-point creep bending tests were performed on small clear-wood spruce specimens having various microfibrillar angles. Cell-wall compliance was deduced from macroscopic data by accounting for porosity. Time-dependent compliance was converted into complex compliance and rigidity using the value and the slope of the compliance versus logarithm of time. Complex rigidity plots of all specimens, for the time range 10(3)-10(6) s, could be superimposed by a horizontal shift depending on the microfibrillar angle. The shape of complex trajectories allowed a decomposition of the cell-wall relaxation modulus as the sum of an elastic contribution function of the microfibrillar angle and a time-dependent term unrelated to it, and suggested a discussion on the contribution of the various cell-wall layers to the observed relaxation process.

  9. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-06

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

  10. Modifying the inlet characteristics of a Turbulent Coanda Wall Jet

    NASA Astrophysics Data System (ADS)

    Pandey, Anshuman; Gregory, James W.

    2017-11-01

    The Coanda effect has been ingeniously used over the past century for augmentation of lift. More recently, NOTAR helicopters have employed the use of the Coanda effect for producing the stabilizing side force with quieter and safer configurations. A manifestation of the Coanda effect in its simplest form is a wall jet issuing tangentially to a cylinder that tends to stay attached to the cylinder over turning angles as large as 180 degrees. An experimental study on such a configuration has been performed in this work to understand the effect of inlet characteristics on the evolution of the wall jet. In previous studies, it has been found that the radial momentum influx is maximum near the inlet and it provides the necessary centrifugal force for the jet to stay attached. So it can be hypothesized that a protrusion of the upper wall of the nozzle that issues the jet would lead to an earlier separation and decreased efficiency. On the other hand, the predisposition of the jet to stay attached to the flat surface of the protrusion could create a separation bubble between the jet and the curved wall and lead to increased suction. These competing phenomena have been explored using Particle Image Velocimetry performed in the streamwise direction at mid-span location of a 3 ft long cylinder. The effect of varying the length of the protrusion for different combinations of initial jet width and flow velocity has been studied to understand how changing the inlet affects the efficiency of the wall jet.

  11. Endoscopic and computed tomographic evaluation of influence of nasal septal deviation on lateral wall of nose and its relation to sinus diseases.

    PubMed

    Poorey, V K; Gupta, Neha

    2014-09-01

    To correlate symptoms of deviated nasal septum (DNS) and chronic rhinosinusitis with the findings of nasal endoscopy and computed tomographic (CT) imaging. To evaluate the influence of degree of septal angle deviation on the severity of lateral nasal wall abnormalities. A prospective study was conducted on 67 patients with clinical evidence of DNS and chronic sinusitis attending ENT OPD between January 2012 and September 2013. All these patients underwent nasal endoscopy and CT scan PNS coronal sections. Direction and degree of DNS was recorded. Range of sinus mucosal thickening on CT scan films was also recorded. Chronic sinusitis is common in the age group between 21 and 40 years (50.74 %) with male preponderance (55.22 %), chief symptoms being nasal obstruction (86.56 %), headache (73.13 %) and nasal discharge (52.23 %). Left sided DNS is more common (64.17 %). Most of the patients have moderate DNS, i.e. 6°-10° (56.7 %), followed by severe (22.4 %) and then mild (20.9 %). DNS results in compensatory structural changes in the turbinates and/or lateral nasal wall which causes ostiomeatal complex (OMC) obstruction resulting in sinusitis. Contralateral concha bullosa and ethmoid bulla prominence was noted. Maxillary sinus is most commonly affected sinus (73.13 %). Patients with increasing septal angles were associated with a higher incidence of maxillary sinus mucosal changes (p < 0.05). Present study reemphasized the concept that septal deviation causes obstruction at OMC which results in an increased incidence and severity of bilateral chronic sinus disease.

  12. Qualitative and quantitative effects of harmonic echocardiographic imaging on endocardial edge definition and side-lobe artifacts

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.

    2000-01-01

    Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.

  13. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head. PMID:26539715

  14. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head.

  15. Determining Angle of Humeral Torsion Using Image Software Technique.

    PubMed

    Patil, Sachin; Sethi, Madhu; Vasudeva, Neelam

    2016-10-01

    Several researches have been done on the measurement of angles of humeral torsion in different parts of the world. Previously described methods were more complicated, not much accurate, cumbersome or required sophisticated instruments. The present study was conducted with the aim to determine the angles of humeral torsion with a newer simple technique using digital images and image tool software. A total of 250 dry normal adult human humeri were obtained from the bone bank of Department of Anatomy. The length and mid-shaft circumference of each bone was measured with the help of measuring tape. The angle of humeral torsion was measured directly from the digital images by the image analysis using Image Tool 3.0 software program. The data was analysed statistically with SPSS version 17 using unpaired t-test and Spearman's rank order correlation coefficient. The mean angle of torsion was 64.57°±7.56°. On the right side it was 66.84°±9.69°, whereas, on the left side it was found to be 63.31±9.50°. The mean humeral length was 31.6 cm on right side and 30.33 cm on left side. Mid shaft circumference was 5.79 on right side and 5.63 cm on left side. No statistical differences were seen in angles between right and left humeri (p>0.001). From our study, it was concluded that circumference of shaft is inversely proportional to angle of humeral torsion. The length and side of humerus has no relation with the humeral torsion. With advancement of digital technology, it is better to use new image softwares for anatomical studies.

  16. 10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  17. Turbulent Structure of a Simplified Urban Fluid Flow Studied Through Stereoscopic Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Monnier, Bruno; Goudarzi, Sepehr A.; Vinuesa, Ricardo; Wark, Candace

    2018-02-01

    Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence ( AOI), was changed from 0° to 15°, 30°, and 45°. The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts R_{uv} were dominant for all four AOI cases. At higher wall-normal positions in the array, the R_{uw} correlation decreased with increasing AOI, whereas the R_{uv} coefficient increased as AOI increased, and at {it{AOI}}=45° all three correlations exhibited relatively high values of around 0.4.

  18. Use of Precast Concrete Walls for Blast Protection of Steel Stud Construction Preprint

    DTIC Science & Technology

    2007-11-01

    Side Elevation Front Elevation Front Elevation Side Elevation a) Sandwich Wall b) Solid Wall I I---6’-10" " 11.. Exterior Face - Form finish 2------C...damage to the interior drywall was visible. The instnunentation consisted of three external reflected pressure gages at the front face of the test

  19. Magnetoresistance of non-180° domain wall in the presence of electron-photon interaction

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-04-01

    In the present paper, influence of photon on resistance of non-180° domain wall in metallic magnetic nanowires has been studied using the semiclassical approach. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type domain wall between two ferromagnetic domains with relative magnetization angle less than 180° is considered. By increasing this angle, the contribution of the domain wall in the resistivity of the nanowire becomes considerable. It is also found that the fundamental contribution of the domain wall in resistivity can be controlled by propagating photon. These results are valuable in designing spintronic devices based on magnetic nanowires.

  20. Sound decay in a rectangular room with impedance walls

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2012-09-01

    The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.

  1. Structural heat pipe. [for spacecraft wall thermal insulation system

    NASA Technical Reports Server (NTRS)

    Ollendorf, S. (Inventor)

    1974-01-01

    A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.

  2. DETAIL, WEST SIDE SHOWING CHIMNEY AND WALL WITH TYPICAL CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, WEST SIDE SHOWING CHIMNEY AND WALL WITH TYPICAL CONCRETE BLOCK BUTTRESS; VIEW TO NORTH - Fort Bragg, Noncommissioned Officers' Service Club, Guest House Building, South of Butner Road, Fayetteville, Cumberland County, NC

  3. Nozzle airfoil having movable nozzle ribs

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  4. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  5. 8. AFRD WAREHOUSE, EAST SIDE DETAIL SHOWS CONNECTION OF LEANTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. AFRD WAREHOUSE, EAST SIDE DETAIL SHOWS CONNECTION OF LEAN-TO TO WALL. FACING WEST. NOTE THE PROFILE OF THE METAL AWNING ON SOUTH SIDE. ELECTRICAL CONDUIT AND OTHER SERVICES PENETRATE WALL. POLE SECURED WITH TRIANGULAR BRACES AT CORNER IS COMMUNICATION POLE. - Minidoka Relocation Center Warehouse, 111 South Fir Street, Shoshone, Lincoln County, ID

  6. Projectile-generating explosive access tool

    DOEpatents

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  7. Differential transesophageal echocardiographic diagnosis between linear artifacts and intraluminal flap of aortic dissection or disruption.

    PubMed

    Vignon, P; Spencer, K T; Rambaud, G; Preux, P M; Krauss, D; Balasia, B; Lang, R M

    2001-06-01

    The relatively low specificity of transesophageal echocardiography (TEE) for the diagnosis of aortic dissection (AD) or traumatic disruption of the aorta (TDA) has been attributed to linear artifacts. We sought to determine the incidence of intra-aortic linear artifacts in a cohort of patients with suspected AD or TDA, to establish the differential TEE diagnostic criteria between these artifacts and true aortic flaps, and to evaluate their impact on TEE diagnostic accuracy. During an 8-year period, patients at high risk of AD (n = 261) or TDA (n = 90) who underwent a TEE study and had confirmed final diagnoses were studied. In an initial retrospective series, linear artifacts were observed within the ascending and descending aorta in 59 of 230 patients (26%) and 17 of 230 patients (7%), respectively. TEE findings associated with linear artifacts in the ascending aorta were as follows: displacement parallel to aortic walls; similar blood flow velocities on both sides; angle with the aortic wall > 85 degrees; and thickness > 2.5 mm. Diagnostic criteria of reverberant images in the descending aorta were as follows: displacement parallel to aortic walls, overimposition of blood flow, and similar blood flow velocities on both sides of the image. In a subsequent prospective series (n = 121), systematic use of these diagnostic criteria resulted in improved TEE specificity for the identification of true intra-aortic flaps. Misleading intra-aortic linear artifacts are frequently observed in patients undergoing a TEE study for suspected AD or TDA. Routine use of the herein-proposed diagnostic criteria promises to further improve TEE diagnostic accuracy in the setting of severely ill patients with potential need for prompt surgery.

  8. Ventilation for an enclosure of a gas turbine and related method

    DOEpatents

    Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  9. Comparison of Accuracy between Side-Cutting Instruments and Front-Cutting Instruments in Minimally Invasive Total Knee Arthroplasty.

    PubMed

    Pinsornsak, Piya; Harnroongroj, Thos

    2016-11-01

    The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.

  10. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus

    2017-12-01

    This experimental study investigates the effects of ambient pressure and Reynolds number on the volume of a plastron in a superhydrophobic surface (SHS) due to compression and gas diffusion. The hierarchical SHS consists of nanotextured, ˜100 μm wide spanwise grooves. Microscopic observations measure the time evolution of interface height and contact angle. The water tunnel tests are performed both without flow as well as in transitional and turbulent boundary layers at several Reynolds numbers. Particle image velocimetry is used for estimating the wall shear stress and calculating the momentum thickness for the SHSs under Cassie-Baxter (CB) and Wenzel states as well as a smooth wall at the same conditions. Holographic microscopy is used for determining the wall shear stress directly for one of the CB cases. The mass diffusion rate is calculated from changes to the plastron volume when the liquid is under- or supersaturated. For stationary water, the mass diffusion is slow. With increasing pressure, the interface is initially pinned and then migrates into the groove with high advancing contact angle. Upon subsequent decrease in pressure, the interface migrates upward at a shallow angle and, after being pinned to the tip corner, becomes convex. With flow and exposure to undersaturated liquid, the diffusion-induced wetting also involves pinned and downward migration states, followed by shrinkage of the plastron until it decreases below the resolution limit. The corresponding changes to the velocity profile indicate a transition from slight drag reduction to significant drag increase. In supersaturated water starting at a Wenzel state, a bubble grows from one of the bottom corners until it reaches the other side of the groove. Subsequently, dewetting involves upward migration of the interface, pinning to the tip corners, and formation of a convex interface. The diffusion rate increases with the level of under- or supersaturation and with the Reynolds number. A power law relation, S hΘ 0=0.47 ReΘ0 0.77 , is obtained for the turbulent flow regime using the smooth wall momentum thickness for calculating the Sherwood (S hΘ 0 ) and Reynolds (R eΘ 0 ) numbers. This relation agrees with published diffusion rates for smooth wall turbulent boundary layers. However, the mass diffusion rate is lower than this prediction in the transitional boundary layer. When S hΘ 0 is plotted against the friction Reynolds number (R eτ 0 ) instead, both the transitional and turbulent boundary layer results collapse onto a single power law, S hΘ 0=0.34 Reτ0 0.913 . This trend suggests that turbulent diffusion and wall friction are correlated. The relation between Sherwood number and momentum thickness Reynolds number persists if length scales of the Wenzel state are used instead of those of the smooth wall. However, trends with the friction Reynolds number change slightly.

  11. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?

    PubMed

    Das, Subir K; Egorov, Sergei A; Virnau, Peter; Winter, David; Binder, Kurt

    2018-06-27

    Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle [Formula: see text] on the droplet radius [Formula: see text] of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on 'thermodynamic' observables, e.g. chemical potential, excess density due to the droplet, etc, is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation [Formula: see text], [Formula: see text] being the contact angle in the thermodynamic limit ([Formula: see text]). The possibility to use such results to estimate the excess free energy related to the contact line of the droplet, namely the line tension, at the wall, is discussed. Various problems that hamper this approach and were not fully recognized in previous attempts to extract the line tension are identified. It is also found that the dependence of wall tensions on the difference of chemical potential of the droplet from that at the bulk coexistence provides effectively a change of the contact angle of similar magnitude. The simulation approach yields precise estimates for the excess density due to wall-attached droplets and the corresponding free energy excess, relative to a system without a droplet at the same chemical potential. It is shown that this information suffices to estimate nucleation barriers, not affected by ambiguities on droplet shape, contact angle and line tension.

  12. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    NASA Astrophysics Data System (ADS)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  13. 1. EAST SIDE SHOWING LOW CINDERBLOCK WALL AND ASPHALTPAVED PARKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAST SIDE SHOWING LOW CINDER-BLOCK WALL AND ASPHALT-PAVED PARKING LOT FOR NEW CONTROL BUILDING. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Control Station, Hydrographer's Office, Bishop Creek, Bishop, Inyo County, CA

  14. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  15. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  16. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  17. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, Kirk J.; Barrie, Scott L.; Buttner, William J.

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  18. Comparison of Experimental Data and Computations Fluid Dynamics Analysis for a Three Dimensional Linear Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Hagemann, G.; Immich, H.

    2003-01-01

    A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.

  19. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  20. Reliability and Validity of Nonradiologic Measures of Forward Flexed Posture in Parkinson Disease.

    PubMed

    Nair, Prajakta; Bohannon, Richard W; Devaney, Laurie; Maloney, Catherine; Romano, Alexis

    2017-03-01

    To examine the intertester reliability and validity of 5 nonradiologic measures of forward flexed posture in individuals with Parkinson disease (PD). Cross-sectional observational study. University outpatient facility and community centers. Individuals (N=28) with PD with Hoehn and Yahr scores of 1 through 4. Not applicable. Occiput to wall status, tragus to wall distance, C7 to wall distance, photographically derived trunk flexion angle, and inclinometric kyphosis measure. Participants were older adults (mean, 69.7±10.6y) with a 14-month to 15-year (mean, 5.9±3.5y) history of PD. Intertester reliability was excellent for all measures (κ=.89 [cued condition] and 1.0 [relaxed condition] for occiput to wall status; intraclass correlation coefficients, .779-.897 for tragus to wall distance, C7 to wall distance, flexion angle, and inclinometric kyphosis measure). Convergent validity was supported for all measures by significant correlations between the same measures obtained during relaxed and cued conditions (eg, occiput to wall relaxed and cued) and for most measures by significant correlations between measures obtained under the same condition (eg, occiput to wall cued and tragus to wall cued). Significant correlations between tragus to wall distance, C7 to wall distance, flexion angle, and inclinometric kyphosis measure and the Unified Parkinson Disease Rating Scale item 28 (posture) also supported convergent validity. Significant differences between tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure values under relaxed and cued conditions supported known condition validity. Known group validity was demonstrated by significant differences in tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure obtained from individuals able and individuals unable to touch their occiput to wall when cued to stand tall. Tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure are reliable and valid nonradiologic measures of forward flexed posture in PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  2. Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.

  3. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

    PubMed Central

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-01-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  4. Side Flow Effect on Surface Generation in Nano Cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-05-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  5. Side Flow Effect on Surface Generation in Nano Cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  6. 7. WINDOW DETAIL SOUTHERN WALL OF BUILDING. (SOUTH SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WINDOW DETAIL SOUTHERN WALL OF BUILDING. (SOUTH SIDE OF BUILDING 4 IS NOW WITHIN BUILDING 40 GARAGE.) - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  7. Riddle Me This

    NASA Image and Video Library

    2015-03-09

    This view shows two craters in an area of smooth plains. The crater on the left presents an interesting geological puzzle. Note that about 90° of the rim (in the east, the right side) is sharp. But the remaining 270° of the circumference consists of a broad terrace, formed by slumping and inward movement of material. Why do you think that part of the rim and wall suffered slumping? Differences in the strength of the target material? (And, if so, caused by what?) The angle at which the impactor struck the surface? The topography of the surface? The presence of buried topography or structures? Local or regional tectonics? What additional data could help to solve this riddle? http://photojournal.jpl.nasa.gov/catalog/PIA19232

  8. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  9. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  10. Loading differences in single-leg landing in the forehand- and backhand-side courts after an overhead stroke in badminton: A novel tri-axial accelerometer research.

    PubMed

    Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi

    2018-05-10

    Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.

  11. Duct attachment and extension for an air conditioning unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, R.D.; Frenia, F.J.

    1986-12-16

    An apparatus is described for attaching a fixed duct extension to the discharge opening of an air conditioning unit, the unit slidably inserted in and removed from a fixed through-the-wall sleeve, for supplying conditioned air to the space containing the unit and an adjacent space comprising: a discharge plenum assembly adapted to be connected to the unit encase the discharge opening. The discharge plenum assembly defines an air flow path for the conditioned air discharged from the unit and includes a first housing member having a forward wall, a rear wall, and a pair of opposed side walls joining themore » front wall to the rear wall, and a second housing member having a top wall connected to a front wall. The top wall and the front wall are fixedly attached to the rear wall and the forward wall respectively of the first housing member and forming a duct outlet in one of the side walls. The top wall and the front wall of the second housing member and one of the pair of opposed side walls of the lower housing member having longitudinal flanges extending therefrom forming a C-like flange; a bracket removably secured to the through the wall sleeve having an outwardly extending flange member at the top of the bracket; and a duct extension means secured to the outwardly extending flange of the bracket near one end and to the wall of the adjacent space at the opposite end. The duct extension means has a collar at one end configured to engage with the C-like flange whereby the unit with the discharge plenum assembly attached thereto slidably engages with and disengages from the through-the-wall sleeve while the duct extension is secured to the bracket.« less

  12. Trestle #1, wing wall on northwest side of northeast abutment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Trestle #1, wing wall on northwest side of northeast abutment. View to northeast - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT

  13. 5. PERSONNEL ROOM ON WEST SIDE OF PYROTECHNIC SHED (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PERSONNEL ROOM ON WEST SIDE OF PYROTECHNIC SHED (BLDG. 757) STORAGE LOCKER ON EAST WALL; PADDED TABLE ON SOUTH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Pyrotechnic Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 25. May 1985. DETAIL OF CELLAR STEPS AND EARTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. May 1985. DETAIL OF CELLAR STEPS AND EARTH WALL OF CELLAR IN CENTRAL BLOCK - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC

  15. 4. WEST SIDE ELEVATION SHOWING WEATHERBOARD LOG COVERING, DOOR CUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WEST SIDE ELEVATION SHOWING WEATHERBOARD LOG COVERING, DOOR CUT INTO WEST WALL TO ENTER DOG TROT, AND UPROOTED TREE WHERE LATER SECOND PEN WAS LOCATED (4 x 5 negative) - Thomas Jefferson Walling Log Cabin, Henderson, Rusk County, TX

  16. Battery Carpenter Observation Station, collapsed ruin showing south wall; view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Battery Carpenter Observation Station, collapsed ruin showing south wall; view northeast - Fort McKinley, Battery Carpenter Observation Station, West side of East Side Drive, approximately 275 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  17. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  18. Inductive coupler for downhole components and method for making same

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael A.

    2006-10-03

    An inductive coupler for downhole components. The inductive coupler includes an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  19. Needle twins and right-angled twins in minerals: comparison between experiment and theory

    USGS Publications Warehouse

    Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L.

    1998-01-01

    Transformation twinning in minerals forms isolated twin walls, intesecting walls with corner junctions, and wedge-shaped twins as elements of hierarchical patterns. When cut perpendicular to the twin walls, the twins have characteristic shapes, right-angled and needle-shaped wall traces, which can be observed by transmission electron microscopy or by optical microscopy. Theoretical geometries of wall shapes recently derived for strain-related systems should hold for most displacive and order-disorder type phase transitions: 1) right-angled twins show curved junctions; 2) needle-shaped twins contain flat wall segments near the needle tip if the elastic behaviour of the mineral is dominated by its anisotroyp; 3) additional bending forces and pinning effects lead to curved walls near the junction that make the needle tip appear more blunt. Bent right-angled twins were analyzed in Gd2(MoO4)3. Linear needle tips were found in WO3, [N(CH3)4]2.ZnBr4 CrAl, BiVO4, GdBa2Cu3O7, and PbZrO. Parabolic tips occur in K2Ba(NO2)4, and GeTe whereas exponential curvatures appear in BaTiO3, KSCN, Pb3(PO4)2, CaTiO3, alkali feldspars, YBa2Cu3O7, and MnAl. The size and shape of the twin microstructure relates to its formation during the phase transition and the subsequent annealing history. The mobility of the twin walls after formation depends not only on the thermal activation but also on the structure of the wall, which may be pinned to impurities on a favorable structural site. Depinnign energies are often large compared with thermal energies for diffusion. This leads to kinetic time scales for twin coarsening that are comparable to geological time scales. Therefore, transformation twins that exhibit needle domains not only indicate that the mineral underwent a structural phase transition but also contain information about its subsequent geological history.

  20. Torsional Growth Modulation of Long Bones by Oblique Plating in a Rabbit Model.

    PubMed

    Lazarus, David E; Farnsworth, Christine L; Jeffords, Megan E; Marino, Nikolas; Hallare, Jericho; Edmonds, Eric W

    2018-02-01

    There is evidence that oblique tension band plating can affect torsional growth in long bones. This study sought to determine if the torsional growth could be modulated based on the angles of the tension band plating and whether or not oblique plating affected overall longitudinal growth. New Zealand White rabbits (10.5 wk old) had one screw placed on the metaphyseal side and one on the epiphyseal side of both medial and lateral sides of the right knee distal femoral physis. The sham group (n=5) included screw placement only. For the plate group (n=13), unlocked plates, angled from 0 to 76 degrees, connected the screws and spanned the physis. Radiographs were taken at biweekly intervals. After 6 weeks of growth, hindlimbs were harvested and microCT scans performed. Femoral length, distances between screw heads and angle between the plates were measured on radiographs. Femoral length differences were compared between groups. Femoral version was measured from 3D microCT. Plate angle changes were correlated to the difference in femoral version between limbs using Pearson correlation (significance was set to P<0.05 for all comparisons). Femur length difference between the contralateral and the operative side was significantly greater in the plate group compared with the sham group over time (P=0.049). Medial and lateral screw distances changed significantly more in the sham group than the plate group on both sides (P<0.001). A greater initial angle between plates resulted in a greater change in the angle between plates (P<0.001). Significant correlations were found between right-left side femoral version differences and initial plate angle (P=0.003) and plate angle change (P=0.014). The torsional effect of oblique plating seems to correlate with the amount of initial plate angle, with an additional, not negligible, longitudinal growth effect. Placing plates at given angles across open physes may result in predictable changes in bone torsion allowing for a safer and less invasive option when treating childhood torsional deformities, but the resulting shortening of the ipsilateral femur must be considered.

  1. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  2. Side-force alleviation on slender, pointed forebodies at high angles of attack

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1978-01-01

    A new device was proposed for alleviating high angle-of-attack side force on slender, pointed forebodies. A symmetrical pair of separation strips in the form of helical ridges are applied to the forebody to disrupt the primary lee-side vortices and thereby avoid the instability that produces vortex asymmetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds no. 5,250,000 on a variety of forebody configurations and on a wing-body combination at angles of attack up to 56 degrees, demonstrated the effectiveness of the device.

  3. How gender and boat-side affect shape characteristics of force-angle profiles in single sculling: Insights from functional data analysis.

    PubMed

    Warmenhoven, John; Cobley, Stephen; Draper, Conny; Harrison, Andrew; Bargary, Norma; Smith, Richard

    2018-05-01

    To examine whether gender or side of the boat influenced shape characteristics of the force-angle profile in on-water single sculling. Cross-sectional study design. Bivariate functional principal components analysis (bfPCA) was applied to force-angle data to identify the main modes of variance in curves of forty highly skilled male and female rowers (national and international level), rowing at 32 strokes per minute in a single scull boat. Separate discriminant function analyses for each side of the boat showed strong classification of rowers for gender. Force application close to (or closely around) the perpendicular oar position was demonstrated to be different between genders. A mixed ANOVA exploring gender, boat side and their interaction revealed that bow and stroke side forces were also statistically different from each other independently of gender. A main effect, independent of side of the boat, was also present for gender and no interaction was found between gender and boat side. Bow side forces seemingly acted as a driver of power and peak force production, while stroke side forces may have acted as a mediator of propulsive forces with an additional potential role in steering due to known asymmetrical offsets in boat rigging. Results demonstrate that propulsive force differences according to gender and boat-side are evident and must be acknowledged and accounted for before force-angle graphs are explored relative to performance measures. Copyright © 2017. Published by Elsevier Ltd.

  4. STS-5 crewmembers with meal tray assembly on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand (in dark blue shirt), Pilot Overmyer (left), and Mission Specialist (MS) Lenoir (right) conduct microgravity experiments with food containers and meal tray assemblies in front of middeck port side wall and side hatch. Brand prepares to eat as meal tray assembly floats above his chest and Overmeyer and Lenoir look on. Sign on port side wall is labeled STS-5 Message Board.

  5. Do peak torque angles of muscles change following anterior cruciate ligament reconstruction using hamstring or patellar tendon graft?

    PubMed

    Yosmaoğlu, Hayri Baran; Baltacı, Gül; Sönmezer, Emel; Özer, Hamza; Doğan, Deha

    2017-12-01

    This study aims to compare the effects of anterior cruciate ligament (ACL) reconstruction using autogenous hamstring or patellar tendon graft on the peak torque angle. The study included 132 patients (103 males, 29 females; mean age 29±9 year) who were performed ACL reconstruction with autogenous hamstring or patellar tendon graft. The peak torque angles in the quadriceps and hamstring muscles were recorded using an isokinetic dynamometer. Angle of peak knee flexion torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the hamstring tendon group. Angle of peak knee extension torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the patellar tendon group. There were no statistically significant differences in the flexion and extension peak torque angles between the operated and nonoperated knees at 60°/second in both groups. The angle of peak torque at relatively high angular velocities is affected after ACL reconstruction in patients with hamstring or patellar tendon grafts. The graft donor site directly influences this parameter. This finding may be important for clinicians in terms of preventing re-injury.

  6. Numerical Investigation of the Effect of the Location of Critical Rock Block Fracture on Crack Evolution in a Gob-side Filling Wall

    NASA Astrophysics Data System (ADS)

    Li, Xuehua; Ju, Minghe; Yao, Qiangling; Zhou, Jian; Chong, Zhaohui

    2016-03-01

    Generation, propagation, and coalescence of the shear and tensile cracks in the gob-side filling wall are significantly affected by the location of the fracture of the critical rock block. The Universal Discrete Element Code software was used to investigate crack evolution characteristics in a gob-side filling wall and the parameter calibration process for various strata and the filling wall was clearly illustrated. The cracks in both the filling wall and the coal wall propagate inward in a V-shape pattern with dominant shear cracks generated initially. As the distance between the fracture and the filling wall decreases, the number of cracks in the filling wall decreases, and the stability of the filling wall gradually improves; thus, by splitting the roof rock at the optimal location, the filling wall can be maintained in a stable state. Additionally, we conducted a sensitivity analysis that demonstrated that the higher the coal seam strength, the fewer cracks occur in both the filling wall and the coal wall, and the less failure they experience. With the main roof fracturing into a cantilever structure, the higher the immediate roof strength, the fewer cracks are in the filling wall. With the critical rock block fracturing above the roadway, an optimal strength of the immediate roof can be found that will stabilize the filling wall. This study presents a theoretical investigation into stabilization of the filling wall, demonstrating the significance of pre-splitting the roof rock at a desirable location.

  7. Morning view, contextual view of the exterior west side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Morning view, contextual view of the exterior west side of the north wall along the unpaved road; camera facing west, positioned in road approximately 8 posts west of the gate. - Beaufort National Cemetery, Wall, 1601 Boundary Street, Beaufort, Beaufort County, SC

  8. The Calibration of the Corneal Light Reflex to Estimate the Degree of an Angle of Deviation.

    PubMed

    Tengtrisorn, Supaporn; Tangkijwongpaisarn, Sitthi; Burachokvivat, Somporn

    2015-12-01

    To measure the conversion factor for the size of an angle of deviation from the clinical photographs of the corneal light reflex. In this cross-sectional study, 19 normal subjects with 20/20 visual acuity were photographed with a digital camera while staring at targets placed five prism diopters (PD) apart from one another on a screen. The subjects were tested at a distance of 1 meter (m) and 4 m from a screen. Measurement of the corneal light reflex displacement for each fixed target was obtained from the photographs. The calibration of the corneal light reflex displacement in millimeters (mm) against the angle of deviation in PD was then analyzed with repeated measure linear regression analysis. At 1 m, the values of 0.047 mm/PD and 0.058 mm/PD were obtained as the conversion factor from reflex displacement to deviated angle for the nasal side and temporal side respectively. At 4 m, the values were 0.050 mm/PD and 0.064 mm/PD for the nasal side and the temporal side respectively. There were significant differences between the values obtained at the different distances, regardless of nasal or temporal side. Conversion factors were presented for estimating the strabismic angle at different distances and gazes. For clinical practice, the use of photographs to estimate the strabismic angle should use different values for different distances and strabismic types.

  9. Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

    DTIC Science & Technology

    2016-03-24

    In addition, the close proximity of side walls had the potential to reflect sound back into the well, thus contributing to the overall measurement... wall reflections. The reduced amplitude for sounds radiated near the side wall may have been the result of the greater angular displacement between...NUWC-NPT Technical Report 12,203 24 March 2016 Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

  10. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  11. Novel combination of photoactive species: photoresists formed from selectively esterified novolacs and polyfunctional photoactive compounds

    NASA Astrophysics Data System (ADS)

    Jeffries, Alfred T., III; Brzozowy, David J.; Naiini, Ahmad A.; Gallagher-Wetmore, Paula M.

    1997-07-01

    The addition of selected PACs to resists comprised of selectively esterified DNQ novolacs improves their performance in terms of side wall angle and resolution compared to resists whose photoactive component is composed of entirely selectively esterified DNQ novolacs. The performance gain is particularly evident for the resists with two selectively esterified fractions. A conventional 60/40 m-cresol/p-cresol novolac was synthesized and fractionated into five nearly equal weight fractions using supercritical fluids (SCF) fractionation technique. Resists were made from either a single esterified fraction [fraction Two, esterification level (EL), 42%] or dual esterified fractions (fractions Two and Four, EL 21% each), a selection of PACs and the remaining unesterified fractions. They were compared to a control containing only the corresponding esterified fraction(s). The PACs A and B were effective at increasing the resist profile angle for 0.50 (mu) features in the singly esterified novalacs in comparison to the control material and exhibited flat tops. The resolution and profiles of dual esterified fraction resists improved significantly when low levels of PACs were added to dual esterified fraction control resist. The comparison was made from 0.40 (mu) features. The resist made using PAC C is the best candidate for photospeed although its profile angle is less in comparison to PACs A and B.

  12. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  13. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  14. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  15. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  16. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  17. DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE THE INCLUSIONS IN THE CONCRETE. OBLIQUE VIEW TO THE SOUTH-SOUTHWEST. 21 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure 58.1X, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  18. Wall extensibility and gravitropic curvature of sunflower hypocotyls: correlation between timing of curvature and changes in extensibility

    NASA Technical Reports Server (NTRS)

    Bagshaw, S. L.; Cleland, R. E.

    1990-01-01

    Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.

  19. 18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF THE 32' DIAMETER LAUNCHING TUBE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  20. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    NASA Technical Reports Server (NTRS)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  1. Subclinical Cardiotoxicity Detected by Strain Rate Imaging up to 14 months After Breast Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erven, Katrien, E-mail: katrien.erven@uzleuven.be; Iridium Cancer Network, Antwerp; Florian, Anca

    Purpose: Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function. We investigated the role of SRI and troponin I (TnI) in the detection of subclinical radiation therapy (RT)-induced cardiotoxicity in breast cancer patients. Methods and Materials: This study prospectively included 75 women (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes. Sequential echocardiographs with SRI were obtained before RT, immediately after RT, and 8 and 14 months after RT. TnI levels were measured on the first and last day of RT. Results: Mean heart andmore » left ventricle (LV) doses were both 9 ± 4 Gy for the left-sided patients and 4 ± 4 Gy and 1 ± 0.4 Gy, respectively, for the right-sided patients. A decrease in strain was observed at all post-RT time points for left-sided patients (−17.5% ± 1.9% immediately after RT, −16.6% ± 1.4% at 8 months, and −17.7% ± 1.9% at 14 months vs −19.4% ± 2.4% before RT, P<.01) but not for right-sided patients. When we considered left-sided patients only, the highest mean dose was given to the anterior left ventricular (LV) wall (25 ± 14 Gy) and the lowest to the inferior LV wall (3 ± 3 Gy). Strain of the anterior wall was reduced after RT (−16.6% ± 2.3% immediately after RT, −16% ± 2.6% at 8 months, and −16.8% ± 3% at 14 months vs −19% ± 3.5% before RT, P<.05), whereas strain of the inferior wall showed no significant change. No changes were observed with conventional echocardiography. Furthermore, mean TnI levels for the left-sided patients were significantly elevated after RT compared with before RT, whereas TnI levels of the right-sided patients remained unaffected. Conclusions: In contrast to conventional echocardiography, SRI detected a regional, subclinical decline in cardiac function up to 14 months after breast RT. It remains to be determined whether these changes are related to clinical outcome. In the meantime, we encourage the use of radiation techniques that minimize the exposure of the anterior LV wall in left-sided patients.« less

  2. Contact angle of sessile drops in Lennard-Jones systems.

    PubMed

    Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans

    2014-11-18

    Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  3. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  4. Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells

    PubMed Central

    Barton, Deborah A.; Law, Andrew M.K.; Overall, Robyn L.

    2015-01-01

    Lobe development in the epidermal pavement cells of Arabidopsis thaliana cotyledons and leaves is thought to take place via tip-like growth on the concave side of lobes driven by localized concentrations of actin filaments and associated proteins, with a predicted role for cortical microtubules in establishing the direction of restricted growth at the convex side. We used homologous landmarks fixed to the outer walls of pavement cells and thin-plate spline analysis to demonstrate that lobes form by differential growth of both the anticlinal and periclinal walls. Most lobes formed within the first 24 h of the cotyledons unfurling, during the period of rapid cell expansion. Cortical microtubules adjacent to the periclinal wall were persistently enriched at the convex side of lobes during development where growth was anisotropic and were less concentrated or absent at the concave side where growth was promoted. Alternating microtubule-enriched and microtubule-free zones at the periclinal wall in neighboring cells predicted sites of new lobes. There was no particular arrangement of cortical actin filaments that could predict where lobes would form. However, drug studies demonstrate that both filamentous actin and microtubules are required for lobe formation. PMID:26296967

  5. Cornering characteristics of the main-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.

    1988-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.

  6. CADB: Conformation Angles DataBase of proteins

    PubMed Central

    Sheik, S. S.; Ananthalakshmi, P.; Bhargavi, G. Ramya; Sekar, K.

    2003-01-01

    Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/. PMID:12520049

  7. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-07-08

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less

  8. Landing Mechanics During Side Hopping and Crossover Hopping Maneuvers in Noninjured Women and Women With Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Ortiz, Alexis; Olson, Sharon; Trudelle-Jackson, Elaine; Rosario, Martin; Venegas, Heidi L.

    2011-01-01

    Objective To compare, landing mechanics and electromyographic activity of the lower extremities during side hopping and crossover hopping maneuvers, in noninjured women and women with anterior cruciate ligament (ACL) reconstruction. Design A case-control study. Setting A 3-dimensional motion analysis laboratory. Participants Twenty-eight young women (range, 21–35 years) (15 control subjects and 13 subjects with ACL reconstruction). Patients and Methods All participants performed a side-to-side hopping task that consisted of hopping single-legged 10 times consecutively from side to side across 2 lines marked 30 cm apart on 2 individual force plates. The task was designated as a side hopping when the hop was to the opposite side of the stance leg and as crossover hopping when the hop was toward the side of the stance leg. Main Outcome Measurements Peak hip-/knee-joint angles; peak knee extension/abduction joint moments; electromyographic studies of the gluteus maximus, gluteus medius, rectus femoris, and hamstring muscles; and quadriceps/hamstring co-contraction ratio were compared between the groups by means of 2 × 2 multivariate analysis of variance tests (group × maneuver). Results Noninjured women and women with ACL reconstruction exhibited similar hip-and knee-joint angles during both types of hopping. Hip-joint angles were greater during the crossover hopping in both groups, and knee-joint angles did not differ between the groups or hops. Knee-joint moments demonstrated a significant group × maneuver interaction. Greater knee extension and valgus moments were noted in the control group during crossover hopping, and greater knee abduction moments were noted in the ACL group during side hopping. Electromyographic data revealed no statistically significantly differences between the groups. Conclusions Women with ACL reconstruction exhibited the restoration of functional biomechanical movements such as hip-/knee-joint angles and lower extremity neuromuscular activation during side-to-side athletic tasks. However, not all biomechanical strategies are restored years after surgery, and women who have undergone a procedure such as ACL reconstruction may continue to exhibit knee-joint abduction moments that increase the risk of additional knee injury. PMID:21257128

  9. Wall-modeled large eddy simulation of high-lift devices from low to post-stall angle of attacks

    NASA Astrophysics Data System (ADS)

    Bodart, Julien; Larsson, Johan; Moin, Parviz

    2013-11-01

    The flow around a McDonnell-Douglas 30P/30N multi-element airfoil at the flight Reynolds number of 9 million (based on chord) is computed using LES with an equilibrium wall-model with special treatment for transitional flows. Several different angles of attack are considered, up to and including stall, challenging the wall-model in several flow regimes. The maximum lift coefficient, which is generally difficult to predict with RANS approaches, is accurately predicted, as compared to experiments performed in the NASA LPT wind-tunnel. NASA grant: NNX11AI60A.

  10. The influence of finite cavities on the sound insulation of double-plate structures.

    PubMed

    Brunskog, Jonas

    2005-06-01

    Lightweight walls are often designed as frameworks of studs with plates on each side--a double-plate structure. The studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-circuiting the plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmission coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory and measurement can be achieved.

  11. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  12. Revealing bending and force in a soft body through a plant root inspired approach

    PubMed Central

    Lucarotti, Chiara; Totaro, Massimo; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia

    2015-01-01

    An emerging challenge in soft robotics research is to reveal mechanical solicitations in a soft body. Nature provides amazing clues to develop unconventional components that are capable of compliant interactions with the environment and living beings, avoiding mechanical and algorithmic complexity of robotic design. We inspire from plant-root mechanoperception and develop a strategy able to reveal bending and applied force in a soft body with only two sensing elements of the same kind, and a null computational effort. The stretching processes that lead to opposite tissue deformations on the two sides of the root wall are emulated with two tactile sensing elements, made of soft and stretchable materials, which conform to reversible changes in the shape of the body they are built in and follow its deformations. Comparing the two sensory responses, we can discriminate the concave and the convex side of the bent body. Hence, we propose a new strategy to reveal in a soft body the maximum bending angle (or the maximum deflection) and the externally applied force according to the body's mechanical configuration. PMID:25739743

  13. A swept wing panel in a low speed flexible walled test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1987-01-01

    The testing of two-dimensional airfoil sections in adaptive wall tunnels is relatively widespread and has become routine at all speeds up to transonic. In contrast, the experience with the three-dimensional testing of swept panels in adaptive wall test sections is very limited, except for some activity in the 1940's at NPL, London. The current interest in testing swept wing panels led to the work covered by this report, which describes the design of an adaptive-wall swept-wing test section for a low speed wind tunnel and gives test results for a wing panel swept at 40 deg. The test section has rigid flat sidewalls supporting the panel, and features flexible top and bottom wall with ribs swept at the same angle as the wing. When streamlined, the walls form waves swept at the same angle as the wing. The C sub L (-) curve for the swept wing, determined from its pressure distributions taken with the walls streamlined, compare well with reference data which was taken on the same model, unswept, in a test section deep enough to avoid wall interference.

  14. Articular Eminence Inclination in Medieval and Contemporary Croatian Population

    PubMed

    Kranjčić, Josip; Šlaus, Mario; Vodanović, Marin; Peršić, Sanja; Vojvodić, Denis

    2016-12-01

    Articular eminence inclination (AEI) of the temporomandibular joint leads the mandible in its movements. Therefore, the aim of the present study was to determine AEI values in medieval (MP) and recent (RP) Croatian population. The study was carried out on two groups of specimens: first group with 30 MP human dry skulls, while the other, serving as control group consisted of 137 dry skulls. The AEI was measured on lateral digital skull images as the angle between the best fi t line drawn along the posterior wall of the articular eminence and the Frankfurt horizontal plane. No statistically significant (p>0.05) differences between the left and right side AEI were found between MP skulls and RP skulls. The mean value of MP AEI was 45.5˚, with a range of 20.9˚-64˚. The mean RP AEI value was steeper (61.99˚), with a range of 30˚-94˚. Difference between the mean MP and RP AEI values was statistically significant (p<0.05). Values of AEI vary a lot. Nonsignificant differences between the left and right side AEI confirmed the natural left-right side asymmetry. The values of AEI differ between the RP and MP groups, most probably due to different type of food consumption in medieval time, and consequently different masticatory loads and forces.

  15. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error.

    PubMed

    Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo

    2008-05-01

    Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.

  16. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  17. Parametric study of rod-pinch diode using particle-in-cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R.; Biswas, D., E-mail: raghav@barc.gov.in; Chandra, R.

    2014-07-01

    We perform Particle-In-Cell (PIC) simulation of KALI-30 GW pulsed power generator based rod-pinch diode. It is shown that ions emitted from the anode-plasma play a crucial role in diode dynamics. It is found that ions not only help in compensating the space charge due to electron beam, but also lead to enhancement of the local electric field at the side walls of the cathode leading to additional electron emission from the side wall. Electrons emanating from one side wall of the cathode tend to converge at the anode tip. This can be used to design an improved Flash X-ray source.more » (author)« less

  18. How Wedge You Teach the Unit-Angle Concept?

    ERIC Educational Resources Information Center

    Millsaps, Gayle M.

    2012-01-01

    The concepts of angle and angle measure have been acknowledged as difficult for elementary school students to grasp (Strutchens, Martin, and Kenney 2003). The Wedge activity (Browning and Garza-Kling 2009; Van de Walle 2004; Wilson 1990) can provide an opportunity for students to examine their understanding of angle measurement and to rethink what…

  19. Origin of the styloglossus muscle in the human fetus

    PubMed Central

    Mérida-Velasco, J R; Rodríguez-Vazquez, J F; de la Cuadra Blanco, C; Sánchez-Montesinos, I; Mérida-Velasco, J A

    2006-01-01

    The origin of the styloglossus muscle was histologically studied bilaterally in nine human fetuses (18 sides). In all cases, the muscle originated in Reichert's cartilage, which gives rise to the temporal styloid process. We identified three types of variation: type A, an accessory muscle fascicle originating from the mandibular angle, found in 7 cases (12 sides); type B, where the styloglossus muscle was attached to the mandibular angle by fibrous tracts, found in three cases (4 sides); and type C, where an accessory muscle fascicle arose from the fibrous tract connecting Reichert's cartilage to the mandibular angle; found in one case. In all cases (2 sides), the styloglossus muscle was innervated by the hypoglossal nerve. Relationships between the styloglossus muscle and vasculonervous elements of the prestyloid and retrostyloid spaces were analysed. PMID:16637887

  20. ETR, TRA642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL BUILDING, OFFICE BUILDING, AND ROOF. KAISER ETR-5528-MTR-A-13, 11/1955. INL INDEX NO. 532-0642-00-486-100920, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  2. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  3. 1. View toward south, facade (north side or "A" wall) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View toward south, facade (north side or "A" wall) of perimeter acquisition radar building. The globe on the upper left is a shelter housing the Hercules tracker antenna. To the right is the utility tunnel leading to the par power plant. The antennae for the par are contained in the large lighter-toned shape covering most of the wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin

    2011-09-01

    In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.

  5. Assessment of the degree of pelvic tilt within a normal asymptomatic population.

    PubMed

    Herrington, Lee

    2011-12-01

    In clinical practice the degree of pelvic tilt is commonly assessed because of its reported relationship to pelvic, spinal and lower limb pathologies. There is little normative data presented within the literature establishing typical findings within an asymptomatic population from which to make comparisons in pathological populations. The aim of this study was to report typical pelvic angle in an asymptomatic populations and also the degree of side-to-side asymmetry which might exist within the pelvis. Pelvic angle was measured by finding the angle from horizontal of a line between the anterior superior and posterior superior iliac spines of the ilium using a PALM palpation meter in 120 healthy subjects (65 males, 55 females) with a mean age of 23.8(2.1) years. 85% of males and 75% of females presented with an anterior pelvic tilt, 6% of males and 7% of females with a posterior tilt and 9% of males and 18% of females presented as neutral. There was significant difference in pelvic angle between sides for males (p = 0.002) but a non-significant difference between sides for females (p = 0.314). But the difference in angle for males between sides was less than the smallest detectable difference statistic found in the reliability study, so most likely to be due to measurement error. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Static continuous electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H. (Inventor)

    1982-01-01

    An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.

  7. Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells.

    PubMed

    Armour, William J; Barton, Deborah A; Law, Andrew M K; Overall, Robyn L

    2015-09-01

    Lobe development in the epidermal pavement cells of Arabidopsis thaliana cotyledons and leaves is thought to take place via tip-like growth on the concave side of lobes driven by localized concentrations of actin filaments and associated proteins, with a predicted role for cortical microtubules in establishing the direction of restricted growth at the convex side. We used homologous landmarks fixed to the outer walls of pavement cells and thin-plate spline analysis to demonstrate that lobes form by differential growth of both the anticlinal and periclinal walls. Most lobes formed within the first 24 h of the cotyledons unfurling, during the period of rapid cell expansion. Cortical microtubules adjacent to the periclinal wall were persistently enriched at the convex side of lobes during development where growth was anisotropic and were less concentrated or absent at the concave side where growth was promoted. Alternating microtubule-enriched and microtubule-free zones at the periclinal wall in neighboring cells predicted sites of new lobes. There was no particular arrangement of cortical actin filaments that could predict where lobes would form. However, drug studies demonstrate that both filamentous actin and microtubules are required for lobe formation. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Experimental aerodynamic characteristics for a cylindrical body of revolution with side strakes and various noses at angles of attack from 0 degrees to 58 degrees and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Nelson, E. R.

    1975-01-01

    For a body of revolution with afterbody side strakes, an experimental investigation was conducted in the Ames 6- by 6-Foot Wind Tunnel to determine the effects on the aerodynamic characteristics of forebody geometry, nose strakes, body side strakes, Reynolds number, Mach number, and angle of attack. Aerodynamic force and moment characteristics were measured for the straked cylindrical afterbody (cylinder fineness ratio of 7) with tangent ogive noses of fineness ratio 2.5 to 5.0. In addition, the straked cylinder afterbody was tested with an ogive nose having a rounded tip and an ogive nose with two different nose strake arrangements. The data demonstrate that the aerodynamic characteristics for a body of revolution with side strakes can be significantly affected by changes in nose fineness ratio, nose bluntness, Reynolds number, Mach number, and, of course, angle of attack. Removing the strakes from the cylindrical aftersection greatly decreased the lift, but this removal hardly changed the maximum magnitudes of the undesirable side forces that developed at angles of attack greater than about 25 deg for subsonic Mach numbers.

  9. Antagonistic role of vertebral translation against vertebral rotation in the spontaneous postoperative modulation of the anterior chest wall contour in thoracic idiopathic scoliosis.

    PubMed

    Qian, Bang-ping; Mao, Sai-hu; Zhu, Ze-zhang; Zhu, Feng; Liu, Zhen; Xu, Lei-lei; Wang, Bing; Yu, Yang; Qiu, Yong

    2013-09-01

    A computed tomography study. To identify the best scoliotic deformity components that show impact upon the spontaneous postoperative modulation of the deformed anterior chest wall contour in right convex thoracic adolescent idiopathic scoliosis. Spontaneous postoperative aggravation of the anterior concave costal projection was a common occurrence in adolescent idiopathic scoliosis, yet the risk factors that effectively bridged the gap between what the surgeons did in the interior and how the rib cages reacted on the exterior were still open to debate. Pre- and postoperative computed tomographic scans of 77 patients with right convex thoracic adolescent idiopathic scoliosis were retrieved and analyzed. According to the postoperative variation of anterior chest wall angle (CWA), the patients were divided into 2 groups with either aggravated or improved CWA. Multiple scoliotic deformity parameters and their surgical correction rates were evaluated, correlated, and then compared between the 2 groups. Moreover, patients with apex located at T9 were isolated and evaluated independently. A logistic regression analysis was used to determine the independent predictors of the spontaneous postoperative modulation of the anterior chest wall contour. The surgical correction rate of Cobb angle (supine), the rotational angle with respect to the sagittal plane (RAsag angle), the rotational angle with respect to the anterior midline of the body (RAml angle), the angle of lateral deviation of the apical vertebrae from the midline (MLdev angle), the posterior hemithorax ratio, the vertebral translation (VT), and the thoracic rotation averaged 64.6%, 19.5%, 30.8%, 39.2%, 15.0%, 41.2%, and 28.7%, respectively. Ratio of aggravated anterior chest wall contour was the highest at the T7 apex group (84.6%) as compared with T8 apex group (47.1%), T9 apex group (19.5%), and T10 apex group (0.0%). The preoperative CWA was significantly lower in the aggravated CWA group when compared with the improved group (2.1 ± 1.8°vs. 6.6 ± 2.4°, P < 0.001). Besides, in the aggravated CWA group, significantly greater surgical correction of VT and lesser correction of RAsag angle were demonstrated when compared with the improved CWA group (VT: 53.0% vs. 34.8%, P = 0.001; RAsag: 2.5% vs. 28.7%, P = 0.000). In the T9 subgroup, remarkably different correction rate of VT and RAsag were similarly observed (VT: 54.9% vs. 35.3%, P = 0.046; RAsag: 4.9% vs. 23.5%, P = 0.034). In terms of other deformity parameters, no significantly different correction rate was consistently detected. In the logistic regression analysis, apex location, CWA, and correction rate of RAsag were demonstrated to be independent factors predictive of the alteration of chest wall contour. In addition to the smaller preoperative CWA and higher apex location, lesser correction of vertebral rotation, if accompanied by great surgical correction of apical VT, could also largely result in a poor postoperative anterior chest wall contour.

  10. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.

  11. Curved film cooling admission tube

    NASA Astrophysics Data System (ADS)

    Graham, R. W.; Papell, S. S.

    1980-10-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  12. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (Inventor)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  13. Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.

    1997-11-01

    An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less

  14. Element for use in an inductive coupler for downhole components

    DOEpatents

    Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT

    2009-03-31

    An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.

  15. Scale growth of structures in the turbulent boundary layer with a rod-roughened wall

    NASA Astrophysics Data System (ADS)

    Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa

    2016-01-01

    Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.

  16. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  17. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; White, Lee R; Carnie, Steven L; Horn, Roger G

    2011-12-15

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Double Mine Building (N) wall showing clerestory slot windows opening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Double Mine Building (N) wall showing clerestory slot windows opening above level of main roof. Note structure is built on poured concrete foundation partly buried in hillside; view in southeast - Fort McKinley, Double Mine Building, East side of East Side Drive, approximately 125 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  19. NORTHWEST SIDE OF THE HOUSE WHERE A HOLE HAS BEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHWEST SIDE OF THE HOUSE WHERE A HOLE HAS BEEN CUT INTO THE WALL TO ALLOW FOR THROUGH WALL AIR CONDITIONERS - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Single-Family Type 6, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  20. A General Computational Approach for Magnetohydrodynamic Flows Using the CFX Code: Buoyant Flow Through a Vertical Square Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Piazza, Ivan; Buehler, Leo

    2000-09-15

    The buoyancy-driven magnetoconvection in the cross section of an infinitely long vertical square duct is investigated numerically using the CFX code package. The implementation of a magnetohydrodynamic (MHD) problem in CFX is discussed, with particular reference to the Lorentz forces and the electric potential boundary conditions for arbitrary electrical conductivity of the walls. The method proposed is general and applies to arbitrary geometries with an arbitrary orientation of the magnetic field. Results for fully developed flow under various thermal boundary conditions are compared with asymptotic analytical solutions. The comparison shows that the asymptotic analysis is confirmed for highly conducting wallsmore » as high velocity jets occur at the side walls. For weakly conducting walls, the side layers become more conducting than the side walls, and strong electric currents flow within these layers parallel to the magnetic field. As a consequence, the velocity jets are suppressed, and the core solution is only corrected by the viscous forces near the wall. The implementation of MHD in CFX is achieved.« less

  1. Downstream fish passage guide walls: A hydraulic scale model analysis

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.

  2. Cheerios Effect Controlled by Electrowetting.

    PubMed

    Yuan, Junqi; Feng, Jian; Cho, Sung Kwon

    2015-08-04

    The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.

  3. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  4. 1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM NORTHWEST. AEROVANE FAN AT UPPER LEFT, SCAFFOLD AND LEPLEY VENTILATOR AT UPPER RIGHT. - Consolidation Coal Company Mine No. 11, Air-Manway Shaft, East side of State Route 936, Midlothian, Allegany County, MD

  5. Experiments towards establishing of design rules for R2R-UV-NIL with polymer working shims

    NASA Astrophysics Data System (ADS)

    Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Stadlober, Barbara

    2016-03-01

    Roll-to-Roll-UV-nanoimprint lithography (R2R-UV-NIL) enables high resolution large area patterning of flexible substrates and is therefore of increasing industrial interest. We have set up a custom-made R2R-UV-NIL pilot machine which is able to convert 10 inch wide web with velocities of up to 30 m/min. In addition, we have developed self-replicable UV-curable resins with tunable surface energy and Young's modulus for UV-imprint material as well as for polymer working stamp/shim manufacturing. Now we have designed test patterns for the evaluation of the impact of structure shape, critical dimension, pitch, depth, side wall angle and orientation relative to the web movement onto the imprint fidelity and working shim life time. We have used female (recessed structures) silicon masters of that design with critical dimensions between CD = 200 nm and 1600 nm, and structure depths of d = 500 nm and 1000 nm - all with vertical as well as inclined side walls. These entire master patterns have been transferred onto single male (protruding structures) R2R polymer working shims. The polymer working shims have been used for R2R-UV-NIL runs of several hundred meters and the imprint fidelity and process stability of the various test patterns have been compared. This study is intended as a first step towards establishing of design rules and developing of nanoimprint proximity correction strategies for industrial R2R-UV-NIL processes using polymer working shims.

  6. A Description of a Family of Heron Quadrilaterals

    ERIC Educational Resources Information Center

    Sastry, K. R. S.

    2005-01-01

    Mathematical historians place Heron in the first century. Right-angled triangles with integer sides and area had been determined before Heron, but he discovered such a "non" right-angled triangle, viz 13, 14, 15; 84. In view of this, triangles with integer sides and area are named "Heron triangles." The Indian mathematician Brahmagupta, born in…

  7. 41. THE BEAR PIT (OLD SIDE DINING ROOM). THE ETCHINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. THE BEAR PIT (OLD SIDE DINING ROOM). THE ETCHINGS ON THE CEILING BEAMS AND COLUMNS OF PARK WILDLIFE ARE ORIGINAL TO THE OLD SIDE DINING ROOM. THE SIDE DINING ROOM WAS DESIGNED AND BUILT BY ROBERT REAMER IN 1927. IN 1962 WHEN IT WAS CONVERTED INTO THE BEAR PIT A WALL WAS ADDED BETWEEN THE THREE COLUMNS THAT SEPARATE THIS ROOM FROM THE MAIN DINING ROOM. THE ORIGINAL BEAR PIT ETCHINGS DEPICTING BEARS TENDING BAR AND PLAYING THE PIANO WERE MOUNTED ON THE WALL BETWEEN THE COLUMNS. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  8. Calculation of Dental Exam Room X-Ray Shielding in Walls and Entrances

    DTIC Science & Technology

    2012-08-24

    currently uses 5/16 in drywall on all walls. No specialty shielding products (e.g., lead) are currently being used on any walls. f. The window and...needed for Q (Eq. 2). This calculation assumes the use of a 100-kVp beam. (3) With the use of 5/16 in drywall , no radiation shielding properties are...the doonl’ilay entry t o the room. Both sides of the room contain offices1 single sheet of 5/15n drywall on each side of each \\!Vall to combine

  9. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  10. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  11. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  12. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  13. Molecular Control of Cell Growth During Gravity Responses of Maize Seedlings

    NASA Technical Reports Server (NTRS)

    Cosgrove, Daniel J.

    2003-01-01

    Gravity influences plants in many ways via its physical effects on the convective flows of gases and liquids, the buoyancy and sedimentation of cellular organelles, and the distribution of mechanical stresses in weight-bearing structures. These physical effects lead to a variety of reactions and adaptive developmental responses in plants. Perhaps the best-studied plant gravity response is gravitropism - the "homing in" of growing organs towards a particular angle with respect to gravity. Most plants respond to gravity by gravitropic bending of roots downwards and stems upwards. Such gravitropic bending arises from differential cell growth on the two sides of the bending organ. For this project we hypothesized that such growth differences arise from differences in expansin activity, which come about because of organ-level asymmetries of H+ efflux and expansin export to the wall.

  14. Tire-soil interaction model for turning (steered) tires

    NASA Astrophysics Data System (ADS)

    Karafiath, L. L.

    1985-07-01

    A review of the experimental information on the development of lateral forces on tires traveling at an angle to their center plane is presented and the usefulness of the consideration of the lateral forces for the development of an analytical model is evaluated. Major components of the lateral force have been identified as the forces required to balance the tractive force and the drawbar pull vectorially. These are the shear stresses developing in the contact area and the horizontal component of the normal stresses acting on the in-ground portion or the curved side walls of the tire. The tire-soil interaction model for steady state straight travel has been expanded to include the necessary algorithms for the calculation of these lateral forces. The pattern of tractive force-slip and longitudinal-lateral force relationships is in general agreement with experiments.

  15. Reconstruction and Modelling of Cylinder Test Wall Expansion from Heterodyne Velocimetry Data

    NASA Astrophysics Data System (ADS)

    Hodgson, Alexander

    2015-06-01

    The `cylinder test' is comprised of a cylinder of explosive encased in a copper tube and detonated at one end. Analysis of the copper wall expansion can be used to generate a JWL equation of state for the explosive. The wall arrival times are traditionally measured using angled probe boards. These times are converted to radial expansion times using the measured steady state detonation velocity. This expansion represents the intersection of the wall with a radial line, hence its differential is the radial intersection velocity. The true radial wall velocity is different due to the small component of particle velocity along the axis. Wall velocities can be directly measured using a Heterodyne Velocimetry (HetV) diagnostic, to a high degree of temporal resolution. However, the wall profile cannot be reconstructed from a standard HetV probe due to a lack of spatial information. This work describes how velocity traces from two HetV probes at different angles can be combined to evaluate the path of a particle on the copper wall, and how the wall profile may then be reconstructed. The method is applied to data from cylinder test experiments on a conventional high explosive. Results are validated using hydrocode modelling coupled with Detonation Shock Dynamics theory.

  16. Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao

    2015-05-01

    Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.

  17. 27. A VIEW TOWARD THE FISHING PIER AT THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. A VIEW TOWARD THE FISHING PIER AT THE EAST END OF THE NORTH TRAINING WALL, SHOWING SIDE WALL CONSTRUCTION. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  18. The carina angle-new geometrical parameter associated with periprocedural side branch compromise and the long-term results in coronary bifurcation lesions with main vessel stenting only.

    PubMed

    Gil, Robert J; Vassilev, Dobrin; Formuszewicz, Radoslaw; Rusicka-Piekarz, Teresa; Doganov, Alexander

    2009-12-01

    The two main problems unresolved in coronary bifurcation stenting are periprocedural side branch compromise and higher restenosis at long term. The purpose of this study is to reveal the link between periprocedural side branch compromise and long-term results after main vessel stenting only in coronary bifurcations. Eighty-four patients formed the study population. The inclusion criteria were good-quality angiograms, with maximal between-branch angle opening, no overlap, permitting accurate angiographic analysis. Carina angle (alpha)-the distal angle between main vessel (MV) before bifurcation and side branch (SB)-was measured pre- and poststenting. Clinical follow-up 9-12 months was obtained with coronary angiography if needed. The patient population was high-risk with 33% diabetics and 84% two- and three-vessel disease. Ninety-five stents were implanted in 92 lesions, with three T-stenting cases. Drug-eluting stents were implanted in 54%. Kissing-balloon (KBI) or sequential inflation was performed in 35%. SB functional closure occurred in 17.4%, with independent predictors alpha < 40 degrees and diameter ratio MB/SB >1.22. After 12+/-4 months there were five myocardial infarctions (6%) and 13 (15%) target lesion revascularization procedures. Independent predictors of major cardiovascular events were carina angle <40 degrees , MB lesion length >8 mm, negative change of between-branch angle, DES usage, and KBI. Smaller carina angle with straightening of MV-main branch from stent implantation in coronary bifurcations predicted higher SB compromise, restenosis, and MACE rates during follow-up of 1 year.

  19. 143. VIEW OF PARAPET WALL WITH ONE OF THE LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. VIEW OF PARAPET WALL WITH ONE OF THE LAMP COLUMNS (WITH LAMP REMOVED). PARAPET WALL FLANKS ROAD ACROSS TOP OF DAM. THIS SECTION OF PARAPET WALL IS ON THE SOUTH SIDE OF THE DAM, LOOKING SOUTHWEST (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  20. Seismic analysis for translational failure of landfills with retaining walls.

    PubMed

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Three dimensional microelectrode system for dielectrophoresis

    DOEpatents

    Dehlinger, Dietrich A.; Rose, Klint A.; Shusteff, Maxim; Bailey, Christopher G.; Mariella, Jr., Raymond P.

    2013-09-03

    A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.

  2. Gecko-inspired bidirectional double-sided adhesives.

    PubMed

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2014-05-14

    A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.

  3. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  4. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. A comparison of latanoprost monotherapy with a combination therapy of timolol/dorzolamide in patients with primary open-angle glaucoma.

    PubMed

    Caça, Ihsan; Simsek, Hüseyin; Unlü, Kaan; Ari, Seyhmus; Keklikçi, Ugur

    2006-01-01

    We compared latanoprost monotherapy therapy with timolol/ dorzolamide in patients with primary open-angle glaucoma to evaluate the effects on intraocular pressure (IOP) and occurrence of adverse events. IOP and topical side effects were evaluated at the beginning, first, and third months. Mean IOP was decreased at the third month. The most common side effect was hyperemia (43.6%). We concluded that latanoprost reduces IOP better than fixed combination and its topical side effects are tolerable.

  6. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.

    PubMed

    Li, Dayong; Jing, Dalei; Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng

    2016-11-01

    Surface nanobubbles, which are nanoscopic or microscopic gaseous domains forming at the solid/liquid interface, have a strong impact on the interface by changing the two-phase contact to a three-phase contact. Therefore, they are believed to affect the boundary condition and liquid flow. However, there are still disputes in the theoretical studies as to whether the nanobubbles can increase the slip length effectively. Furthermore, there are still no direct experimental studies to support either side. Therefore, an intensive study on the effective slip length for flows over bare surfaces with nanobubbles is essential for establishing the relation between nanobubbles and slip length. Here, we study the effect of nanobubbles on the slippage experimentally and theoretically. Our experimental results reveal an increase from 8 to 512 nm in slip length by increasing the surface coverage of nanobubbles from 1.7 to 50.8% and by decreasing the contact angle of nanobubbles from 42.8 to 16.6°. This is in good agreement with theoretical results. Our results indicate that nanobubbles could always act as a lubricant and significantly increase the slip length. The surface coverage, height, and contact angle are key factors for nanobubbles to reduce wall friction.

  7. The directivity of the sound radiation from panels and openings.

    PubMed

    Davy, John L

    2009-06-01

    This paper presents a method for calculating the directivity of the radiation of sound from a panel or opening, whose vibration is forced by the incidence of sound from the other side. The directivity of the radiation depends on the angular distribution of the incident sound energy in the room or duct in whose wall or end the panel or opening occurs. The angular distribution of the incident sound energy is predicted using a model which depends on the sound absorption coefficient of the room or duct surfaces. If the sound source is situated in the room or duct, the sound absorption coefficient model is used in conjunction with a model for the directivity of the sound source. For angles of radiation approaching 90 degrees to the normal to the panel or opening, the effect of the diffraction by the panel or opening, or by the finite baffle in which the panel or opening is mounted, is included. A simple empirical model is developed to predict the diffraction of sound into the shadow zone when the angle of radiation is greater than 90 degrees to the normal to the panel or opening. The method is compared with published experimental results.

  8. A Zero-Gravity Cup for Drinking Beverages in Microgravity

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Weislogel, Mark; Concus, Paul; Finn, Robert

    2011-01-01

    To date, the method for astronauts to drink liquids in microgravity or weightless environments is to suck the liquid from a bag or pouch through a straw. A new beverage cup works in microgravity and allows astronauts to drink liquids from a cup in a manner consistent with that on Earth. The cup is capable of holding beverages with an angled channel running along the wall from the bottom to the lip. In microgravity, a beverage is placed into the cup using the galley dispenser. The angled channel acts as an open passage that contains only two sides where capillary forces move the liquid along the channel until it reaches the top lip where the forces reach an equilibrium and the flow stops. When one sips the liquid at the lip of the channel, the capillary force equilibrium is upset and more liquid flows to the lip from the reservoir at the bottom to re-establish the equilibrium. This sipping process can continue until the total liquid contents of the cup is consumed, leaving only a few residual drops about the same quantity as in a ceramic cup when it is drunk dry on Earth.

  9. Reactive ion etching of GaN using BCl 3, BCl 3/Ar and BCl 3/ N 2 gas plasmas

    NASA Astrophysics Data System (ADS)

    Basak, D.; Nakanishi, T.; Sakai, S.

    2000-04-01

    Reactive ion etching (RIE) of GaN has been performed using BCl 3 and additives, Ar and N 2, to BCl 3 plasma. The etch rate, surface roughness and the etch profile have been investigated. The etch rate of GaN is found to be 104 nm/min at rf power of 200 W, pressure of 2 Pa, with 9.5 sccm flow rate of BCl 3. The addition of 5 sccm of Ar to 9.5 sccm of BCl 3 reduces the etch rate of GaN while the addition of N 2 does not influence the etch rate significantly. The RIE of GaN layer with BCl 3/Ar and BCl 3/N 2 results in a smoother surface compared to surfaces etched with BCl 3 only. The etched side-wall in BCl 3 plasma makes an angle of 60° with the normal surface, and the angle of inclination is more in cases of BCl 3/Ar and BCl 3/N 2 plasmas. The RIE induced damage to the surface is measured qualitatively by PL measurements. It is observed that the damage to the etched surfaces is similar for all the plasmas.

  10. Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.

  11. Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.

    2007-01-01

    The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.

  12. Revision of orthovoltage chest wall treatment using Monte Carlo simulations.

    PubMed

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K

    2017-01-01

    Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.

  13. Temporomandibular Disorders: The Habitual Chewing Side Syndrome

    PubMed Central

    Santana-Mora, Urbano; López-Cedrún, José; Mora, María J.; Otero, Xosé L.; Santana-Penín, Urbano

    2013-01-01

    Background Temporomandibular disorders are the most common cause of chronic orofacial pain, but, except where they occur subsequent to trauma, their cause remains unknown. This cross-sectional study assessed chewing function (habitual chewing side) and the differences of the chewing side and condylar path and lateral anterior guidance angles in participants with chronic unilateral temporomandibular disorder. This is the preliminary report of a randomized trial that aimed to test the effect of a new occlusal adjustment therapy. Methods The masticatory function of 21 randomly selected completely dentate participants with chronic temporomandibular disorders (all but one with unilateral symptoms) was assessed by observing them eat almonds, inspecting the lateral horizontal movement of the jaw, with kinesiography, and by means of interview. The condylar path in the sagittal plane and the lateral anterior guidance angles with respect to the Frankfort horizontal plane in the frontal plane were measured on both sides in each individual. Results Sixteen of 20 participants with unilateral symptoms chewed on the affected side; the concordance (Fisher’s exact test, P = .003) and the concordance-symmetry level (Kappa coefficient κ = 0.689; 95% confidence interval [CI], 0.38 to 0.99; P = .002) were significant. The mean condylar path angle was steeper (53.47(10.88) degrees versus 46.16(7.25) degrees; P = .001), and the mean lateral anterior guidance angle was flatter (41.63(13.35) degrees versus 48.32(9.53) degrees P = .036) on the symptomatic side. Discussion The results of this study support the use of a new term based on etiology, “habitual chewing side syndrome”, instead of the nonspecific symptom-based “temporomandibular joint disorders”; this denomination is characterized in adults by a steeper condylar path, flatter lateral anterior guidance, and habitual chewing on the symptomatic side. PMID:23593156

  14. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, A.F.; Petersen, R.W.

    1993-08-31

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  15. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, Anthony F.; Petersen, Robert W.

    1993-01-01

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  16. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly in the close vicinity of the corner line. The maximum value of the wall shear stress and its location from the corner line, on both the surfaces forming the corner region, were observed to change along the corner. These observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the stretching and attenuation of the horseshoe vortex. The wall shear stress vectors in the blade end-wall corner region were observed to be more skewed on the end-wall surface as compared to that on the blade surface. The differences in the wall shear stress directions obtained with the Preston tube and flow visualization method were within the range in which the Preston tube was found to be insensitive to the yaw angle.

  17. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1990-01-01

    The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.

  18. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  19. Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    NASA Astrophysics Data System (ADS)

    Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.

    2015-06-01

    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.

  20. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  1. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  2. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Angle of torsion of the femur and its correlates.

    PubMed

    Prasad, R; Vettivel, S; Isaac, B; Jeyaseelan, L; Chandi, G

    1996-01-01

    Unpaired femora (171), devoid of gross pathology and grouped by gender (94 male and 77 female) and side (88 left and 83 right), were used to measure the angle of femoral torsion and the maximum femur length and to score the degree of prominency of the superior cervical tubercle, intertrochanteric line, quadrate tubercle, linea aspera, and adductor tubercle. The angle of torsion ranged from -9 to +35 degrees with a mean of +12.3 degrees. The means were not significantly different either by gender or side. The angle correlated negatively with superior cervical tubercle, intertrochanteric line, and adductor tubercle (P < 0.001), positively with quadrate tubercle (P < 0.001) but not with linea aspera, neck-shaft angle, or length of femur. Bony prominences were significantly more apparent in males. There was no significant association between prominency and side. The torsion seems to be brought about by muscular activity and capsular and ligamentous strain at the hip. This study suggests to clinicians the possibility of correction of torsion defects in certain hip diseases of growing children by suitable alteration in posture of the lower extremity.

  4. Minimum viewing angle for visually guided ground speed control in bumblebees.

    PubMed

    Baird, Emily; Kornfeldt, Torill; Dacke, Marie

    2010-05-01

    To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

  5. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  6. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  7. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  8. Noise of the SR-6 propeller model at 2 deg and 4 deg angles of attack

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Stefko, G. L.

    1983-01-01

    The noise generated by supersonic-tip-speed propellers creates a cabin noise problem for future airplanes powered by these propellers. Noise of a number of propeller models were measured in the NASA Lewis 8- by 6-Foot Wind Tunnel with flow parallel to the propeller axis. In flight, as a result of the induced upwash from the airplane wing, the propeller is at an angle of attack with respect to the incoming flow. Therefore, the 10-blade SR-6 propeller was operated at angle of attack to determine its noise behavior. Higher blade passage tones were observed for the propeller operating at angle of attack in a 0.6 axial Mach number flow. The noise increase was not symmetrical, with one wall of the wind tunnel showing a larger noise increase than the other wall. No noise increase was observed at angle of attack in a 0.8 axial Mach number flow. For this propeller the dominance of thickness noise, which does not increase with angle of attack, explains the lack of noise increase at the higher 0.8 Mach number.

  9. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall

    PubMed Central

    Del Castillo, Lorena A.; Ohnishi, Satomi; White, Lee R.; Carnie, Steven L.; Horn, Roger G.

    2011-01-01

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a theory developed by two of us [2] which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1–5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. PMID:21924429

  10. Radial pressure flange seal

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  11. Radial pressure flange seal

    DOEpatents

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  12. Look up: Human adults use vertical height cues in reorientation.

    PubMed

    Du, Yu; Spetch, Marcia L; Mou, Weimin

    2016-11-01

    Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.

  13. Evaluation of changes to foot shape in females 5 years after mastectomy: a case-control study.

    PubMed

    Głowacka-Mrotek, Iwona; Sowa, Magdalena; Siedlecki, Zygmunt; Nowikiewicz, Tomasz; Hagner, Wojciech; Zegarski, Wojciech

    2017-06-01

    The aim of this study was to evaluate changes in foot shape of women 5 years after undergoing breast amputation. Evaluation of foot shape was performed using a non-invasive device for computer analysis of the plantar surface of the foot. Obtained results were compared between feet on the healthy breast side (F1) and on the amputated breast side (F2). 128 women aged 63.60 ± 8.83, 5-6 years after breast amputation were enrolled in this case-control study. Weight bearing on the lower extremity on the amputated breast side (F1) compared with the healthy breast side (F2) showed statistically significant differences (p < 0.01). Patients put more weight onto the healthy breast side. No statistically significant difference was found with regard to F1 and F2 foot length (p = 0.4239), as well as BETA (p = 0.4470) and GAMMA (p = 0.4566) angles. Highly statistically significant differences were noted with respect to foot width, ALPHA angle, and Sztriter-Godunov index-higher values were observed on the healthy breast side (p < 0.001). Highly statistically significant differences were also noted while comparing Clark's angles, higher values being observed on the operated breast side (p < 0.001). Differences in foot shape on the healthy breast side and amputated breast side constitute a long-term negative consequence of mastectomy, and can be caused by unbalanced weight put on feet on the healthy breast side compared to the amputated breast side.

  14. A novel investigation of heat transfer characteristics in rifled tubes

    NASA Astrophysics Data System (ADS)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  15. Passively Q-switched side pumped monolithic ring laser

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2012-01-01

    Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.

  16. [Research Award providing funds for a tracking video camera

    NASA Technical Reports Server (NTRS)

    Collett, Thomas

    2000-01-01

    The award provided funds for a tracking video camera. The camera has been installed and the system calibrated. It has enabled us to follow in real time the tracks of individual wood ants (Formica rufa) within a 3m square arena as they navigate singly in-doors guided by visual cues. To date we have been using the system on two projects. The first is an analysis of the navigational strategies that ants use when guided by an extended landmark (a low wall) to a feeding site. After a brief training period, ants are able to keep a defined distance and angle from the wall, using their memory of the wall's height on the retina as a controlling parameter. By training with walls of one height and length and testing with walls of different heights and lengths, we can show that ants adjust their distance from the wall so as to keep the wall at the height that they learned during training. Thus, their distance from the base of a tall wall is further than it is from the training wall, and the distance is shorter when the wall is low. The stopping point of the trajectory is defined precisely by the angle that the far end of the wall makes with the trajectory. Thus, ants walk further if the wall is extended in length and not so far if the wall is shortened. These experiments represent the first case in which the controlling parameters of an extended trajectory can be defined with some certainty. It raises many questions for future research that we are now pursuing.

  17. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls

    PubMed Central

    Schendel, Rachel R.; Meyer, Marleen R.; Bunzel, Mirko

    2016-01-01

    Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763

  18. Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls

    NASA Astrophysics Data System (ADS)

    Khosravi Parsa, Mohsen; Hormozi, Faramarz

    2014-06-01

    In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.

  19. Glenoid deformity in the coronal plane correlates with humeral head changes in osteoarthritis: a radiographic analysis.

    PubMed

    Hawi, Nael; Magosch, Petra; Tauber, Mark; Lichtenberg, Sven; Martetschläger, Frank; Habermeyer, Peter

    2017-02-01

    A variety of measurements can be used to assess radiographic osteoarthritic changes of the shoulder. This study aimed to analyze the correlation between the radiographic humeral-sided Samilson and Prieto classification system and 3 different radiographic classifications describing the changes of the glenoid in the coronal plane. The study material included standardized radiographs of 50 patients with idiopathic osteoarthritis before anatomic shoulder replacement. On the basis of radiographic measurements, the cases were evaluated using the Samilson and Prieto grading system, angle β, inclination type, and critical shoulder angle by 2 independent observers. Classification measurements showed an excellent agreement between observers. Our results showed that the humeral-sided Samilson and Prieto grading system had a statistically significant good correlation with angle β (observer 1, r = 0.74; observer 2, r = 0.77; P < .05) and a statistically significant excellent correlation with the inclination type of the glenoid (observer 1, r  = 0.86; observer 2, r = 0.8; P < .05). A poor correlation to the critical shoulder angle was observed (r = -0.14, r = 0.03; P > .05). The grade of humeral-sided osteoarthritis according to Samilson and Prieto correlates with the glenoid-sided osteoarthritic changes of the glenoid in the coronal plane described by the angle β and by the inclination type of the glenoid. Higher glenoid-sided inclination is associated with higher grade of osteoarthritis in primary shoulder osteoarthritis. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Control for small-speed lateral flight in a model insect.

    PubMed

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  1. Numerical Simulation of Dual-Mode Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.

    2000-01-01

    Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.

  2. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 2. [computer programs

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.

  3. Effect of wood grain and veneer side on loblolly pine veneer wettability

    Treesearch

    Todd E. Shupe; Chung Y. Hse; Elvin T. Choong; Leslie H. Groom

    1998-01-01

    Research was initiated to determine the effect of veneer side (tight or loose), and wood grain (earlywood or latewood) on the wettability of loblolly pine veneer. Contact angle measurements were performed with phenol-formaldehyde resin and distilled water. The resin and distilled water showed slightly higher contact angle mean values on the latewood portion for both...

  4. Wind tunnel investigation of the aerodynamic characteristics of five forebody models at high angles of attack at Mach numbers from 0.25 to 2

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Taleghani, J.

    1975-01-01

    Five forebody models of various shapes were tested in the Ames 6- by 6-Foot Wind Tunnel to determine the aerodynamic characteristics at Mach numbers from 0.25 to 2 at a Reynolds number of 800000. At a Mach number of 0.6 the Reynolds number was varied from 0.4 to 1.8 mil. Angle of attack was varied from -2 deg to 88 deg at zero sideslip. The purpose of the investigation was to determine the effect of Mach number of the side force that develops at low speeds and zero sideslip for all of these forebody models when the nose is pointed. Test results show that with increasing Mach number the maximum side forces decrease to zero between Mach numbers of 0.8 and 1.5, depending on the nose angle; the smaller the nose angle of the higher the Mach number at which the side force exists. At a Mach number of 0.6 there is some variation of side force with Reynolds number, the variation being the largest for the more slender tangent ogive.

  5. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  6. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori

    2016-07-18

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less

  7. Universal fluid droplet ejector

    DOEpatents

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  8. Universal fluid droplet ejector

    DOEpatents

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  9. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  10. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  11. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-03-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  12. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  13. Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues.

    PubMed

    Biswal, Ajaya K; Tan, Li; Atmodjo, Melani A; DeMartini, Jaclyn; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Black, Ian M; Mohanty, Sushree S; Ryno, David; Wyman, Charles E; Mohnen, Debra

    2017-01-01

    The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. Arabidopsis, Populus , rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus ) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.

  14. Space shuttle: High angle of attack transition and low angle of attack launch phase aerodynamic stability and control of GD/C B-18E-2, B-18E-3 delta wing booster, and launch configuration of MSC-040A orbiter and twin pressure fed boosters

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    The test was a conventional stability and control test except for two aspects. One was the very high angles of attack at which the delta wing configurations were tested (up to 60 degrees) at Mach numbers of 3 and 4.96. The other was the installation of the orbiter and twin boosters in a manner that caused the support system to induce normal forces and side forces on the aft portion of the boosters at all Mach numbers; i.e., the support and the booster bodies were close together, side by side.

  15. Detail of pier structure and wood fenders of Facility No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of pier structure and wood fenders of Facility No. B-1, showing floats in foreground and bollards on pier, view facing east - U.S. Naval Base, Pearl Harbor, South Quay Wall & Repair Wharf, L-shaped portion of quay walls starting at east side of mouth of Dry Dock No. 1, continuing along ocean side of Sixth Street, adjacent to Pier B-2, Pearl City, Honolulu County, HI

  16. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  17. ARC-1980-AC80-0512-3

    NASA Image and Video Library

    1980-06-05

    N-231 High Reynolds Number Channel II Facility In this timeframe the test section was designed specifically to test two-dimensional airfoil models. It is equipped with 'through-the-wall' turntables that remotely position the airfoil, with flexible upper and lower walls that can be adjusted to minimize wall interference. Porous side-wall panels provide boundary-layer removal.

  18. TUBEWALL: a passive solar thermo-siphoning, field-fabricated, water storage wall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, F.; Hemker, P.

    1980-01-01

    The basic component of TUBEWALL is a water-filled thin-wall cylindrical tube with an insulating foam vertical partition insert that divides the inside of the tube into a thin collector water compartment (solar side) and a larger storage water compartment (room side). The two compartments are connected at the top and bottom by means of circulation holes in the foam partition. When the sun strikes the solar side of the tube, the thin layer of collector water is heated, thermosiphons through the top opening in the partition into the larger storage compartment on the room side, and is replaced with coolmore » water drawn from the bottom of the storage through the bottom hole in the partition. Night back-siphonage is prevented by a thin flap valve over the top circulation hole. The tubes may by used between wall studs having a low-cost fiberglass/tedlar double glazing. The tubes can be covered on the room side with drywall and heat transferred to the living space by indirect radiation, and either natural air convection through top and bottom vent slots or by fan. Alternatively, the tubes can be left exposed for direct radiation.« less

  19. Handbook of Supersonic Aerodynamics Volume 1

    DTIC Science & Technology

    1950-04-01

    Appears in Z10 Publication Remarks •Mlc) *(lc) •Pile) Angle Potential function Helical angle of advance (propellers) Dimensionless Dependent on...heat of- combustion re(lc) N (cap) Nu. o(lc) Net Nozzle Normal (perpendicu- lar to longitudinal axis) ; normal (force) Nusselt ...Concepts ^ Concept Absolute Acceleration, angular Acceleration due to gravity Added; additional Adiabatic Adiabatic wall Advance, helical angle

  20. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  1. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  2. Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)

    2017-01-01

    A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.

  3. Fibrin tissue adhesive and autologous concha cartilage for reconstruction of the posterior-superior canal wall of the chinchilla middle ear.

    PubMed

    Siedentop, Karl H; O'Grady, Kevin; Bhattacharyya, Tapan K; Shah, Ami

    2004-05-01

    We conducted this study to prove that fibrin tissue adhesive (FTA) is safe, efficacious, biocompatible, and readily biodegradable with no deleterious side effects for fixation of a cartilage graft to bone along the chinchilla canal wall. A posterior-superior canal defect was created in 12 chinchillas. The canal walls of six chinchillas were closed with autologous concha cartilage alone, whereas the canal wall of the remaining six animals were closed with cartilage in conjunction with fibrin tissue adhesive. Animals were killed 8 weeks postoperatively. Three of six cartilage grafts were displaced in the graft alone group, whereas all six grafts in the cartilage with FTA group healed without displacement. Fibrin tissue adhesive was found to be effective, biocompatible, biodegradable, and without any deleterious side effects for reconstruction of the superior-posterior canal wall of chinchillas.

  4. The Need of Slanted Side Holes for Venous Cannulae

    PubMed Central

    Park, Joong Yull

    2012-01-01

    Well-designed cannulae must allow good flow rate and minimize nonphysiologic load. Venous cannulae generally have side holes to prevent the rupture of blood vessel during perfusion. Optimizing side hole angle will yield more efficient and safe venous cannulae. A numerical modeling was used to study the effect of the angle (0°–45°) and number (0–12) of side holes on the performance of cannulae. By only slanting the side holes, it increases the flow rate up to 6% (in our models). In addition, it was found that increasing the number of side holes reduces the shear rate up to 12% (in our models). A new parameter called “penetration depth” was introduced to describe the interfering effect of stream jets from side holes, and the result showed that the 45°-slanted side holes caused minimum interfering for the flow in cannula. Our quantitative hemodynamic analysis study provides important guidelines for venous cannulae design. PMID:22291856

  5. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  6. Cloud-Droplet Ingestion in Engine Inlets with Inlet Velocity Ratios of 1.0 and 0.7

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J

    1957-01-01

    The paths of cloud droplets into two engine inlets have been calculated for a wide range of meteorological and flight conditions. The amount of water in droplet form ingested by the inlets and the amount and distribution of water impinging on the inlet walls are obtained from these droplet-trajectory calculations. In both types of inlet, a prolate ellipsoid of revolution represents either part or all of the forebody at the center of an annular inlet to an engine. The configurations can also represent a fuselage of an airplane with side ram-scoop inlets. The studies were made at an angle of attack of 0 degree. The principal difference between the two inlets studied is that the inlet-air velocity of one is 0.7 that of the other. The studies of the two velocity ratios lead to some important general concepts of water ingestion in inlets.

  7. Refrigerator with anti-sweat hot liquid loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, S.J.; Cushing, D.S.; Jenkins, T.E.

    A cabinet assembly for a refrigerator having a freezer compartment ontop with two top front corners, a fresh food compartment on the bottom, a mullion partition between the compartments and a hot liquid anti-sweat loop is described comprising; an outer sheet metal shell having a top panel, side panels and a front face, a brace located at each of the two top front corners of the cabinet and having two formed sections at right angles to each other and each section is formed as an inwardly open U-shaped channel having a base, a first leg and a second leg spacedmore » apart and integrally joined to the base, fastening means for rigidly attaching each of the second leg of the corner braces to the flange of the third wall of the front face, and means to secure a portion of the hot liquid anti-sweat loop to the braces.« less

  8. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    NASA Astrophysics Data System (ADS)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  9. Midline shift and lateral guidance angle in adults with unilateral posterior crossbite.

    PubMed

    Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano

    2008-06-01

    Unilateral posterior crossbite is a malocclusion that, if not corrected during infancy, typically causes permanent asymmetry. Our aims in this study were to evaluate various occlusal parameters in a group of adults with uncorrected unilateral posterior crossbite and to compare findings with those obtained in a group of normal subjects. Midline shift at maximum intercuspation, midline shift at maximum aperture, and lateral guidance angle in the frontal plane were assessed in 25 adults (ages, 17-26 years; mean, 19.6 years) with crossbites. Midline shift at maximum intercuspation was zero (ie, centric midline) in 36% of the crossbite subjects; the remaining subjects had a shift toward the crossbite side. Midline shift at maximum aperture had no association with crossbite side. Lateral guidance angle was lower on the crossbite side than on the noncrossbite side. No parameter studied showed significant differences with respect to the normal subjects. Adults with unilateral posterior crossbite have adaptations that compensate for the crossbite and maintain normal function.

  10. Calculation of heat flux through a wall containing a cavity: Comparison of several models

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Kirkpatrick, J. R.; Tunstall, J. N.; Childs, K. W.

    1986-02-01

    This paper describes the calculation of the heat transfer through the standard stud wall structure of a residential building. The wall cavity contains no insulation. Results from five test cases are presented. The first four represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using an improvement to the Implicit-Compressible Eulerian (ICE) algorithm of Harlow and Amsden. An algorithm is described to efficiently couple the fluid flow calculations to the radiation-conduction model for the solid portions of the system. Results indicate that conduction through still plates contributes less than 2% of the total heat transferred through a composite wall. All of the other elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to am bients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  11. Sequential cooling insert for turbine stator vane

    DOEpatents

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  12. Turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1982-01-01

    Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

  13. Nozzle cavity impingement/area reduction insert

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane

    2002-01-01

    A turbine vane segment is provided that has inner and outer walls spaced from one another, a vane extending between the inner and outer walls and having leading and trailing edges and pressure and suction sides, the vane including discrete leading edge, intermediate, aft and trailing edge cavities between the leading and trailing edges and extending lengthwise of the vane for flowing a cooling medium; and an insert sleeve within at least one of the cavities and spaced from interior wall surfaces thereof. The insert sleeve has an inlet for flowing the cooling medium into the insert sleeve and has impingement holes defined in first and second walls thereof that respectively face the pressure and suction sides of the vane. The impingement holes of at least one of those first and second walls are defined along substantially only a first, upstream portion thereof, whereby the cooling flow is predominantly impingement cooling along a first region of the insert wall corresponding to the first, upstream portion and the cooling flow is predominantly convective cooling along a second region corresponding to a second, downstream portion of the at least one wall of the insert sleeve.

  14. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  15. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  16. [Vision-astigmatometer and methods of its use].

    PubMed

    Dashevskiĭ, A I; Kirrilov, Iu A

    1991-01-01

    A combination of astigmatic figures with black strips in different directions every 45 degrees and of two mutually perpendicular figures combined with an angle on a rotating disk on the front side of the astigmatometer and a combination of an angle and visometric cross of Landolt's optotypes on its back side with the similar disk, and a table of optotypes on the same side is suggested, that was tried in clinic. The directions of optotype ring ruptures are situated in 8 meridians. The front side of the astigmatometer shows a scheme for vector analysis of lenticular astigmatism. The method employed by the authors simplifies and accelerates the investigation, making unnecessary clouding and use of cross cylinders.

  17. Transition of the Laminar Boundary Layer on a Delta Wing with 74 degree Sweep in Free Flight at Mach Numbers from 2.8 to 5.3

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.

    1961-01-01

    The tests were conducted at Mach numbers from 2.8 to 5.3, with model surface temperatures small compared to boundary-layer recovery temperature. The effects of Mach number, temperature ratio, unit Reynolds number, leading-edge diameter, and angle of attack were investigated in an exploratory fashion. The effect of heat-transfer condition (i.e., wall temperature to total temperature ratio) and Mach number can not be separated explicitly in free-flight tests. However, the data of the present report, as well as those of NACA TN 3473, were found to be more consistent when plotted versus temperature ratio. Decreasing temperature ratio increased the transition Reynolds number. The effect of unit Reynolds number was small as was the effect of leading-edge diameter within the range tested. At small values of angle of attack, transition moved forward on the windward surface and rearward on the leeward surface. This trend was reversed at high angles of attack (6 deg to 18 deg). Possible reasons for this are the reduction of crossflow on the windward side and the influence of the lifting vortices on the leeward surface. When the transition results on the 740 delta wing were compared to data at similar test conditions for an unswept leading edge, the results bore out the results of earlier research at nearly zero heat transfer; namely, sweep causes a large reduction in the transition Reynolds number.

  18. Friction Angles of Open-Graded Aggregates from Large-Scale Direct Shear Testing : TechBrief

    DOT National Transportation Integrated Search

    2013-07-08

    State and local transportation agencies frequently use opengraded aggregates for wall, roadway, and bridge construction. The primary advantages of using this type of material in wall and abutment applications are ease of constructability, lighter in-...

  19. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  20. Courtyard. Left wall is corridor from 511 to 515. Right ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Courtyard. Left wall is corridor from 511 to 515. Right wall is the south side of 517. - Fitzsimons General Hospital, Physiotherapy & Electrocardiograph Department Building, North of Building No. 516, East of corridor connecting Building No. 511 to Building No. 515, Aurora, Adams County, CO

  1. 12. FIRST FLOOR, ENTRY HALL WALL ON WEST ELEVATION, DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. FIRST FLOOR, ENTRY HALL WALL ON WEST ELEVATION, DETAIL OF NOGGING AND FRAMING OF WEST WALL AND FRONT DOOR, LOOKING WEST - Stiegel House, East side State Route 419, North of intersection of State Route 419 & State Route 897 (Heidelberg Township), Schaefferstown, Lebanon County, PA

  2. A numerical study of the effects of wind tunnel wall proximity on an airfoil model

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark; Roberts, Leonard

    1990-01-01

    A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.

  3. Life raft stabilizer

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.; Barnett, J. H., Jr.; Harrison, F. L.; Marak, R. J. (Inventor)

    1973-01-01

    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft.

  4. Moisture separator reheater with round tube bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byerley, W. M.

    1984-11-27

    A moisture separator reheater having a central chamber with cylindrical wall protions and a generally round tube bundle, the tube bundle having arcuate plates disposed on each side of the bundle which form a wrapper on each side of the bundle and having a tongue and groove juncture between the wrapper and cylindrical wall portions to provide a seal therebetween and a track for installing and removing the tube bundle from the central chamber.

  5. The Berlin Wall: A Simulation for the Social Studies Classroom

    ERIC Educational Resources Information Center

    Russell, William B., III

    2010-01-01

    November 9, 2009, marked the twentieth anniversary of the opening of the Berlin Wall. The Wall, a symbol of the Cold War, separated the German people for 28 years (1961-1989), keeping those on the East side isolated. Although the construction and dismantling of the Berlin Wall is a significant part of history, the topic is little covered in the…

  6. Automated localization of costophrenic recesses and costophrenic angle measurement on frontal chest radiographs

    NASA Astrophysics Data System (ADS)

    Maduskar, Pragnya; Hogeweg, Laurens; Philipsen, Rick; van Ginneken, Bram

    2013-03-01

    Computer aided detection (CAD) of tuberculosis (TB) on chest radiographs (CXR) is difficult because the disease has varied manifestations, like opacification, hilar elevation, and pleural effusions. We have developed a CAD research prototype for TB (CAD4TB v1.08, Diagnostic Image Analysis Group, Nijmegen, The Netherlands) which is trained to detect textural abnormalities inside unobscured lung fields. If the only abnormality visible on a CXR would be a blunt costophrenic angle, caused by pleural fluid in the costophrenic recess, this is likely to be missed by texture analysis in the lung fields. The goal of this work is therefore to detect the presence of blunt costophrenic (CP) angles caused by pleural effusion on chest radiographs. The CP angle is the angle formed by the hemidiaphragm and the chest wall. We define the intersection point of both as the CP angle point. We first detect the CP angle point automatically from a lung field segmentation by finding the foreground pixel of each lung with maximum y location. Patches are extracted around the CP angle point and boundary tracing is performed to detect 10 consecutive pixels along the hemidiaphragm and the chest wall and derive the CP angle from these. We evaluate the method on a data set of 250 normal CXRs, 200 CXRs with only one or two blunt CP angles and 200 CXRs with one or two blunt CP angles but also other abnormalities. For these three groups, the CP angle location and angle measurements were accurate in 91%, 88%, and 92% of all the cases, respectively. The average CP angles for the three groups are indeed different with 71.6° +/- 22.9, 87.5° +/- 25.7, and 87.7° +/- 25.3, respectively.

  7. An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique

    NASA Astrophysics Data System (ADS)

    Oh, Se-Yoon

    A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s. A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.* *A CD is included with dissertation containing video clips in avi format which can be viewed with media player.

  8. Experimental aerodynamics characteristics for bodies of elliptic cross section at angles of attack from 0 deg to 58 deg and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Nelson, E. R.

    1975-01-01

    An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.

  9. Angle transducer based on fiber Bragg gratings able for tunnel auscultation

    NASA Astrophysics Data System (ADS)

    Quintela, A.; Lázaro, J. M.; Quintela, M. A.; Mirapeix, J.; Muñoz-Berti, V.; López-Higuera, J. M.

    2010-09-01

    In this paper an angle transducer based on Fiber Bragg Grating (FBG) is presented. Two gratings are glued to a metallic platen, one in each side. It is insensitive to temperature changes, given that the temperature shifts affect equally to both FBG. When the platen is uniformly bent an uniform strain appears in both sides of the platen. It depends on the bend angle and the platen length and thickness. The transducer has been designed to be used in the auscultation of tunnels during their construction process and during their live time. The transducer design and its characterization are presented.

  10. Effect of yaw angle on steering forces for the lunar roving vehicle wheel

    NASA Technical Reports Server (NTRS)

    Green, A. J.

    1974-01-01

    A series of tests was conducted with a Lunar Roving Vehicle (LRV) wheel operating at yaw angles ranging from -5 to +90 deg. The load was varied from 42 to 82 lb (187 to 365 N), and the speed was varied from 3.5 to 10.0 ft/sec (1.07 to 3.05 m/sec). It was noted that speed had an effect on side thrust and rut depth. Side thrust, rut depth, and skid generally increased as the yaw angle increased. For the range of loads used, the effect of load on performance was not significant.

  11. Condylar guidance: correlation between protrusive interocclusal record and panoramic radiographic image: a pilot study.

    PubMed

    Tannamala, Pavan Kumar; Pulagam, Mahesh; Pottem, Srinivas R; Swapna, B

    2012-04-01

    The purpose of this study was to compare the sagittal condylar angles set in the Hanau articulator by use of a method of obtaining an intraoral protrusive record to those angles found using a panoramic radiographic image. Ten patients, free of signs and symptoms of temporomandibular disorder and with intact dentition were selected. The dental stone casts of the subjects were mounted on a Hanau articulator with a springbow and poly(vinyl siloxane) interocclusal records. For all patients, the protrusive records were obtained when the mandible moved forward by approximately 6 mm. All procedures for recording, mounting, and setting were done in the same session. The condylar guidance angles obtained were tabulated. A panoramic radiographic image of each patient was made with the Frankfurt horizontal plane parallel to the floor of the mouth. Tracings of the radiographic images were made. The horizontal reference line was marked by joining the orbitale and porion. The most superior and most inferior points of the curvatures were identified. These two lines were connected by a straight line representing the mean curvature line. Angles made by the intersection of the mean curvature line and the horizontal reference line were measured. The results were subjected to statistical analysis with a significance level of p < 0.05. The radiographic values were on average 4° greater than the values obtained by protrusive interocclusal record method. The mean condylar guidance angle between the right and left side by both the methods was not statistically significant. The comparison of mean condylar guidance angles between the right side of the protrusive record method and the right side of the panoramic radiographic method and the left side of the protrusive record method and the left side of the panoramic radiographic method (p= 0.071 and p= 0.057, respectively) were not statistically significant. Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used in programming semi-adjustable articulators. © 2012 by the American College of Prosthodontists.

  12. Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    PubMed Central

    Wiggers, Nathan; Nauwelaerts, Sandra L. P.; Hobbs, Sarah Jane; Bool, Sophie; Wolschrijn, Claudia F.; Back, Willem

    2015-01-01

    Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (<1.5 and >1.5° difference between forefeet respectively) and individual feet as flat (<50°), medium (between 50° and 55°) or upright (>55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot. PMID:25646752

  13. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.

    PubMed

    Chen, Da; Harris, Philip J; Sims, Ian M; Zujovic, Zoran; Melton, Laurence D

    2017-06-15

    Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na 2 CO 3 , 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na 2 CO 3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.

  14. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  15. 3. WEST SIDE, FROM CORNER OF FIRST STREET AND GOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WEST SIDE, FROM CORNER OF FIRST STREET AND GOLD AVENUE (Original arcade on this side was blocked ca. 1934 to create bar and offices. High wall on left enclosed outdoor bar.) - Alvarado Hotel, First Street, Albuquerque, Bernalillo County, NM

  16. Correlation of side-force and yawing-moment data for TACV configurations at large angles of sideslip

    DOT National Transportation Integrated Search

    1974-01-01

    Methods developed by Woolard and Ruetenik and Zartarian for predicting the side force and yawing moment on TACV configurations due to side winds are compared against available data from wind-tunnel tests. The predicted side force based on slender-bod...

  17. Dependency of the apparent contact angle on nonisothermal conditions

    NASA Astrophysics Data System (ADS)

    Krahl, Rolf; Gerstmann, Jens; Behruzi, Philipp; Bänsch, Eberhard; Dreyer, Michael E.

    2008-04-01

    The dynamic behavior of liquids in partly filled containers is influenced to a large extend by the angle between the gas-liquid phase boundary and the solid container wall at the contact line. This contact angle in turn is influenced by nonisothermal conditions. In the case of a cold liquid meniscus spreading over a hot solid wall, the contact angle apparently becomes significantly larger. In this paper we want to establish a quantitative equation for this enlargement, both from experimental and numerical data. Our findings can be used to build a subgrid model for computations, where the resolution is not sufficient to resolve the boundary layers. This might be the case for large containers which are exposed to low accelerations and where the contact angle boundary condition determines the position of the free surface. These types of computation are performed, for example, to solve propellant management problems in launcher and satellite tanks. In this application, the knowledge of the position of the free surface is very important for the withdrawal of liquid and the calculation of heat and mass transfer.

  18. Decoding structural complexity in conical carbon nanofibers.

    PubMed

    Zhu, Yi-An; Wang, Zi-Jun; Cheng, Hong-Ye; Yang, Qin-Min; Sui, Zhi-Jun; Zhou, Xing-Gui; Chen, De

    2017-06-07

    Conical carbon nanofibers (CNFs) exist primarily as graphitic ribbons that fold into a cylindrical structure with the formation of a hollow core. Structural analysis aided by molecular modeling proves useful for obtaining a full picture of how the size of the central channel varies from fiber to fiber. From a geometrical perspective, conical CNFs possibly have cone tips that are nearly closed. On the other hand, their fiber wall thickness can be reduced to a minimum possible value that is determined solely by the apex angle, regardless of the outer diameter. A formula has been developed to express the number of carbon atoms present in conical CNFs in terms of measurable structural parameters. It appears that the energetically preferred fiber wall thickness increases not only with the apex angle, but also with the number of atoms in the constituent graphitic cones. The origin of the empirical observation that conical CNFs with small apex angles tend to have a large hollow core lies in the fact that in graphene sheets that are more highly curved the curvature-induced strain energy rises more rapidly as the fiber wall thickens.

  19. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  20. Directional self-cleaning superoleophobic surface.

    PubMed

    Zhao, Hong; Law, Kock-Yee

    2012-08-14

    In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.

  1. Dyspnea, chest wall hyperinflation, and rib cage distortion in exercising patients with chronic obstructive pulmonary disease.

    PubMed

    Bruni, Giulia Innocenti; Gigliotti, Francesco; Binazzi, Barbara; Romagnoli, Isabella; Duranti, Roberto; Scano, Giorgio

    2012-06-01

    Whether dyspnea, chest wall dynamic hyperinflation, and abnormalities of rib cage motion are interrelated phenomena has not been systematically evaluated in patients with chronic obstructive pulmonary disease (COPD). Our hypothesis that they are not interrelated was based on the following observations: (i) externally imposed expiratory flow limitation is associated with no rib cage distortion during strenuous incremental exercise, with indexes of hyperinflation not being correlated with dyspnea, and (ii) end-expiratory chest wall volume may either increase or decrease during exercise in patients with COPD, with those who hyperinflate being as breathless as those who do not. Sixteen patients breathed either room air or 50% supplemental O2 at 75% of peak exercise in randomized order. We evaluated the volume of chest wall (V(cw)) and its compartments: the upper rib cage (V(rcp)), lower rib cage (V(rca)), and abdomen (V(ab)) using optoelectronic plethysmography; rib cage distortion was assessed by measuring the phase angle shift between V(rcp) and V(rca). Ten patients increased end-expiratory V(cw) (V(cw,ee)) on air. In seven hyperinflators and three non-hyperinflators, the lower rib cage paradoxed inward during inspiration with a phase angle of 63.4° ± 30.7° compared with a normal phase angle of 16.1° ± 2.3° recorded in patients without rib cage distortion. Dyspnea (by Borg scale) averaged 8.2 and 9 at the end of exercise on air in patients with and without rib cage distortion, respectively. At iso-time during exercise with oxygen, decreased dyspnea was associated with a decrease in ventilation regardless of whether patients distorted the rib cage, dynamically hyperinflated, or deflated the chest wall. Dyspnea, chest wall dynamic hyperinflation, and rib cage distortion are not interrelated phenomena.

  2. Effect of buoyancy on the motion of long bubbles in horizontal tubes

    NASA Astrophysics Data System (ADS)

    Atasi, Omer; Khodaparast, Sepideh; Scheid, Benoit; Stone, Howard A.

    2017-09-01

    As a confined long bubble translates along a horizontal liquid-filled tube, a thin film of liquid is formed on the tube wall. For negligible inertial and buoyancy effects, respectively, small Reynolds (Re) and Bond (Bo) numbers, the thickness of the liquid film depends only on the flow capillary number (Ca). However, buoyancy effects are no longer negligible as the diameter of the tube reaches millimeter length scales, which corresponds to finite values of Bo. We perform experiments and theoretical analysis for a long bubble in a horizontal tube to investigate the effect of Bond number (0.05

  3. 18. PLAIN OFFICE; SHOWS WOODWORK AND WALL TREATMENT. ROOM 2662, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. PLAIN OFFICE; SHOWS WOODWORK AND WALL TREATMENT. ROOM 2662, SECOND FLOOR, SOUTH SIDE. - Hughes Aircraft Company, Processing & Electronics Building, 6775 Centinela Avenue, Los Angeles, Los Angeles County, CA

  4. Interior view of north wing, south wall offices; camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of north wing, south wall offices; camera facing south. - Mare Island Naval Shipyard, Smithery, California Avenue, west side at California Avenue & Eighth Street, Vallejo, Solano County, CA

  5. The Effects of Word-Learning Biases on Children's Concept of Angle

    ERIC Educational Resources Information Center

    Gibson, Dominic J.; Congdon, Eliza L.; Levine, Susan C.

    2015-01-01

    Despite evidence that young children are sensitive to differences in angle measure, older students frequently struggle to grasp this important mathematical concept. When making judgments about the size of angles, children often rely on erroneous dimensions such as the length of the angles' sides. The present study tested the possibility that…

  6. Quantitative evaluation of the relationship between dorsal wall length, sole thickness, and rotation of the distal phalanx in the bovine claw using computed tomography.

    PubMed

    Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T

    2014-10-01

    Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Experimental analysis on viscoelasticity-induced migration of RBCs using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2016-11-01

    Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).

  8. Striation and convection in penumbral filaments

    NASA Astrophysics Data System (ADS)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  9. DISCHARGE VALVE FOR GRANULAR MATERIAL

    DOEpatents

    Stoughton, L.D.; Robinson, S.T.

    1962-05-15

    A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

  10. Adult acetabulo - pelvic parameters in Turkish society: A descriptive radiological study.

    PubMed

    Aydin, Murat; Kircil, Cihan; Polat, Onur; Arikan, Murat; Erdemli, Bülent

    2016-12-01

    The aim of this study was to measure the prevalences of the acetabular index, collodiaphyseal angle, CE angle, articulo-trochanteric distance, cross-over sign and posterior wall sign in healthy Turkish people, in order to shed light on the production of orthopedic medical products. In this study, both hips (a total of 3960 hips) of 1980 individuals (1178 males, 802 females) from nine different cities between the ages of 18 and 65 years were measured and statistically analyzed. The right articulo-trochanteric distance of all participants was 19.67 ± 4.52 mm and the left articulo-trochanteric distance was 19.10 ± 4.58 mm. The CE angle was 35.11°±7.41° in the right hip and 35.37°±6.76° in the left hip. The acetabular index was 37.58°±5.30° in the right hip and 37.80°±4.82° in the left hip. The collodiaphyseal angle was 138.60°±8.27° in the right and 137.84°±8.01° in the left hip. The prevalence of cross-over sign in the right hip was 6.46% and 6.66% for the left hip. The prevalence of posterior wall sign was 4.24% for the right hip and 4.19% for the left hip. This study has provided prevalence values of cross-over sign, posterior wall sign, acetabular index, collodiaphyseal angle, CE angle and articulo-trochanteric distances of a healthy Turkish population between the ages of 18 and 65 years. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  11. Anatomical predisposing factors of transmural thermal injury after pulmonary vein isolation.

    PubMed

    Kaneshiro, Takashi; Matsumoto, Yoshiyuki; Nodera, Minoru; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yoshihisa, Akiomi; Ohkawara, Hiroshi; Suzuki, Hitoshi; Takeishi, Yasuchika

    2017-06-12

    Transmural thermal injury (TTI), such as oesophageal erosion/ulcer and perioesophageal nerve injury leading to gastric hypomotility, is an important complication associated with pulmonary vein isolation (PVI). However, a predictor of TTI concerning anatomical structures surrounding the oesophagus has not yet been fully elucidated. Therefore, we sought to identify the predisposing factors of TTI after PVI. Consecutive 110 patients, who underwent PVI for atrial fibrillation, received oesophagogastroduodenoscopy 2 days later, were investigated. The relationships between TTI and clinical and anatomical parameters were examined. Based on the computed tomography data, we measured the angle of the left atrial (LA) posterior wall to the descending aorta (Ao) (LA-Ao angle), the branching angle of the left inferior pulmonary vein (LIPV) to the coronal plane (LIPV angle), and the minimum distance between the LA posterior wall and descending Ao enclosing the oesophagus (LA-Ao distance). Transmural thermal injuries occurred in 21 patients (oesophageal erosion in 5 and gastric hypomotility in 16). Age, gender, body mass index, LA diameter, and LA volume index in echocardiography were not associated with TTI. However, the LIPV angle was larger and the LA-Ao distance was shorter in the TTI (+) group compared to the TTI (-) group. With multivariate logistic regression analysis, the LIPV angle [odds ratio (OR): 2.144, P = 0.0031] and LA-Ao distance (OR: 0.392, P = 0.0229) were independent predictors of TTI. The anatomical proximities of the LA posterior wall, LIPV, and descending Ao surrounding the oesophagus are strongly associated with the prevalence of TTI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Bathel, Brett; Danehy, Paul M.; Inman, Jennifer A.; Watkins, A. Neal; Jones, Stephen B.; Lipford, William E.; Goodman, Kyle Z.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Laminar boundary layer velocity measurements are made on a 10-degree half-angle wedge in a Mach 10 flow. Two types of discrete boundary layer trips were used to perturb the boundary layer gas. The first was a 2-mm tall, 4-mm diameter cylindrical trip. The second was a scaled version of the Orbiter Boundary Layer Transition (BLT) Detailed Test Objective (DTO) trip. Both 1-mm and 2.5-mm tall BLT DTO trips were tested. Additionally, side-view and plan-view axial boundary layer velocity measurements were made in the absence of these tripping devices. The free-stream unit Reynolds numbers tested for the cylindrical trips were 1.7x10(exp 6)/m and 3.3x10(exp 6)/m. The free-stream unit Reynolds number tested for the BLT DTO trips was 1.7x10(exp 6)/m. The angle of attack was kept at approximately 5-degrees for most of the tests resulting in a Mach number of approximately 8.3. These combinations of unit Reynolds numbers and angle of attack resulted in laminar flowfields. To study the precision of the measurement technique, the angle of attack was varied during one run. Nitric-oxide (NO) molecular tagging velocimetry (MTV) was used to obtain averaged axial velocity values and associated uncertainties. These uncertainties are as low as 20 m/s. An interline, progressive scan CCD camera was used to obtain separate images of the initial reference and shifted NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond sequential acquisition of both images. The maximum planar spatial resolution achieved for the side-view velocity measurements was 0.07-mm in the wall-normal direction by 1.45-mm in the streamwise direction with a spatial depth of 0.5-mm. For the plan-view measurements, the maximum planar spatial resolution in the spanwise and streamwise directions was 0.69-mm by 1.28-mm, respectively, with a spatial depth of 0.5-mm. Temperature sensitive paint (TSP) measurements are provided to compliment the velocity data and to provide further insight into the behavior of the boundary layers. The experiments were performed at the NASA Langley Research Center 31-Inch Mach 10 Air tunnel.

  13. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  14. The relationship between the carrying angle and the distal extent of the 2nd and 4th fingertips.

    PubMed

    Sönmez, M; Tattemur, Y; Karacan, K; Erdal, M

    2012-08-01

    The angle towards the lateral side between the arm and forearm when the forearm is in full extension and supination is defined as the carrying angle. It is well known that the 2nd finger is longer in women whereas the 4th finger is longer in men, due to in-utero hormonal effects. In the present study, the relationship between the carrying angle and the distal extent of the 2nd and 4th fingertips is studied. The findings reveal that the carrying angle was greater both in left and right sides in women than in men. In addition, while the distal extent of the 2nd fingertips was longer in women, the 4th fingertip was longer in men. There was a moderately positive correlation between the carrying angle and the distal fingertip lengths. Therefore, it could be suggested that the morphometric factors play role on the distal extent of the fingertips other than the hormonal effects.

  15. Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel

    NASA Technical Reports Server (NTRS)

    Chandra, P. R.; Han, J. C.; Lau, S. C.

    1987-01-01

    The naphthalene sublimation technique is used to investigate the heat transfer characteristics of turbulent air flow in a two-pass channel. A test section that resembles the internal cooling passages of gas turbine airfoils is employed. The local Sherwood numbers on the ribbed walls were found to be 1.5-6.5 times those for a fully developed flow in a smooth square duct. Depending on the rib angle-of-attack and the Reynolds number, the average ribbed-wall Sherwood numbers were 2.5-3.5 times higher than the fully developed values.

  16. ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL DETAILS. DATED 03/15/1971 - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  17. 4. VIEW OF CASTIRON WALL PLATE PROTECTING BRICK DOORWAY, MARKED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CAST-IRON WALL PLATE PROTECTING BRICK DOORWAY, MARKED '1880 B & O.' - Baltimore & Ohio Railroad, Locust Point Tobacco Warehouse, Northeast side of Fort Avenue, Baltimore, Independent City, MD

  18. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  19. Mechanically driven centrifugal pyrolyzer

    DOEpatents

    Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  20. Wall shear stress in portal vein of cirrhotic patients with portal hypertension.

    PubMed

    Wei, Wei; Pu, Yan-Song; Wang, Xin-Kai; Jiang, An; Zhou, Rui; Li, Yu; Zhang, Qiu-Juan; Wei, Ya-Juan; Chen, Bin; Li, Zong-Fang

    2017-05-14

    To investigate wall shear stress (WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. Idealized portal vein (PV) system models were reconstructed with different angles of the PV-splenic vein (SV) and superior mesenteric vein (SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSS in the portal hypertension group with that in healthy controls. For the idealized models, WSS in the portal hypertension group (0-10 dyn/cm 2 ) was significantly lower than that in the healthy controls (10-20 dyn/cm 2 ), and low WSS area (0-1 dyn/cm 2 ) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension (10.13 ± 1.34 dyn/cm 2 ) was also significantly lower than that in the healthy controls ( P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence. Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis.

  1. Wall shear stress in portal vein of cirrhotic patients with portal hypertension

    PubMed Central

    Wei, Wei; Pu, Yan-Song; Wang, Xin-Kai; Jiang, An; Zhou, Rui; Li, Yu; Zhang, Qiu-Juan; Wei, Ya-Juan; Chen, Bin; Li, Zong-Fang

    2017-01-01

    AIM To investigate wall shear stress (WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. METHODS Idealized portal vein (PV) system models were reconstructed with different angles of the PV-splenic vein (SV) and superior mesenteric vein (SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSS in the portal hypertension group with that in healthy controls. RESULTS For the idealized models, WSS in the portal hypertension group (0-10 dyn/cm2) was significantly lower than that in the healthy controls (10-20 dyn/cm2), and low WSS area (0-1 dyn/cm2) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension (10.13 ± 1.34 dyn/cm2) was also significantly lower than that in the healthy controls (P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence. CONCLUSION Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis. PMID:28566887

  2. Dual-Pump CARS Thermometry and Species Concentration Measurements in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    OByrne, Sean; Danehy, Paul M.; Cutler, Andrew D.

    2004-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center's Direct Connect Supersonic Combustion Test Facility. In this facility, hydrogen and air bum to increase the enthalpy of the test gas; O2 is then added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward facing step and another constant area section. At the end of this straight section H2 fuel is then injected at Mach 2 and at 30 deg. angle with respect to the freestream. One wall of the duct then expands at a 3 deg. angle for over 1 meter. The ensuing combustion is monitored optically through ports in the side of the combustor. CARS measurements were performed at the nozzle exit and at four different planes downstream fuel injection. Maps were obtained of the mean temperature, as well as quantitative N2 and O2 and qualitative H2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are presented for one of the planes of data.

  3. Dynamic contact angle analysis of protein adsorption on polysaccharide multilayer's films for biomaterial reendothelialization.

    PubMed

    Benni, Safiya; Avramoglou, Thierry; Hlawaty, Hanna; Mora, Laurence

    2014-01-01

    Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D-. The other film was the same as D- but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.

  4. Dynamic Contact Angle Analysis of Protein Adsorption on Polysaccharide Multilayer's Films for Biomaterial Reendothelialization

    PubMed Central

    Benni, Safiya; Mora, Laurence

    2014-01-01

    Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation. PMID:25276808

  5. Boundary-layer and wake measurements on a swept, circulation-control wing

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.

    1987-01-01

    Wind-tunnel measurements of boundary-layer and wake velocity profiles and surface static pressure distributions are presented for a swept, circulation-control wing. The model is an aspect-ratio-four semispan wing mounted on the tunnel side wall at a sweep angle of 45 deg. A full-span, tangential, rearward blowing, circulation-control slot is located ahead of the trailing edge on the upper surface. Flow surveys were obtained at mid-semispan at freestream Mach numbers of 0.425 and 0.70. Boundary-layer profiles measured on the forward portions of the wing are approximately streamwise and two dimensional. The flow in the vicinity of the jet exit and in the near wake is highly three dimensional. The jet flow near the slot on the Coanda surface is directed normal to the slot. Near-wake surveys show large outboard flows at the center of the wake. At Mach 0.425 and a 5-deg angle of attack, a range of jet-blowing rates was found for which an abrupt transition from incipient separation to attached flow occurs in the boundary layer upstream of the slot. The variation in the lower-surface separation location with blowing rate was determined from boundary-layer measurements at Mach 0.425.

  6. Investigations of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1984-01-01

    Studies are concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions. The flow enters the test section and proceeds into a larger chamber (the linear expansion ratio D/d = 2, 1.5 and 1) via a sudden or gradual expansion (side wall angle alpha = 90 and 45 degrees). A weak or strong nozzle (of area ratio A/a = 2 and 4) may be positioned downstream at x/D = 2 to form a contraction exit to the test section. Inlet swirl vanes are adjustable to a variety of vane angles with values of theta = 0, 38, 45, 60 and 70 degrees being emphasized. The objective is to determine the effect of these parameters on isothermal flow field patterns, time mean velocities and turbulence quantities, and to establish an improved simulation in the form of a computer prediction code equipped with a suitable turbulence model. The goal of the on going research is to perform experiments and complementary computations with the idea of doing the necessary type of research that will yield improved calculation capability. This involves performing experiments where time mean turbulence quantities are measured and taking input conditions and running an existing prediction code for a variety of test cases so as to compare predictions against experiment.

  7. Carbon nanopipettes and microtubes for electrochemical sensing and microfluidics

    NASA Astrophysics Data System (ADS)

    Mani, Radhika C.; Bhimarasetti, Gopinath; Lowe, Randall; Sunkara, Mahendra K.

    2004-12-01

    We present the synthesis of two novel morphologies for carbon tubular structures: Nanopipettes and Micropipes. The synthesis procedures for both these structures are both unique and different from each other and the conventional methods used for carbon nanotubes. Carbon nanopipettes, open at both ends, are made up of a central nanotube (~10-20 nm) surrounded by helical sheets of graphite. Thus nanopipettes have an outer conical structure, with a base size of about a micron, that narrows down to about 10-20 nm at the tip. Due to their unique morphology, the outer walls of the nanopipettes continuously expose edge planes of graphite, giving a very stable and reversible electrochemical response for detecting neurological compounds such as dopamine. The synthesis of carbon nanopipettes is based on high temperature nucleation and growth of carbon nanotubes under conditions of hydrogen etching during growth. Carbon micropipes, on the other hand, are tubular structures whose internal diameters range from a few nanometers to a few microns with a constant wall thickness of 10-20 nm. In addition to tuning the internal diameters, the conical angles of these structures could also be changed during synthesis. Due to their larger inner diameters and thin walls, both the straight and conical micro-tubular structures are suitable for microfluidic devices such as throttle valves, micro-reactors, and distribution channels. The synthesis of carbon micro-tubular structures is based on the wetting behavior of gallium with carbon during growth. The contact angle between gallium and the carbon wall determines the conical angle of the structure. By varying the contact angle, one can alter the conical angles from 400 to -150, and synthesize straight tubes using different N2/O2 dosing compositions. An 'n-step' dosing sequence at various stages of growth resulted in 'n-staged' morphologies for carbon micro-tubular structures such as funnels, tube-on-cone, Y-junctions and dumbbells.

  8. Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5.

    NASA Technical Reports Server (NTRS)

    West, H. I., Jr.; Buck, R. M.; Walton, J. R.

    1973-01-01

    A survey of the equatorial pitch angle distributions of energetic electrons is provided for all local times out to radial distances of 20 earth radii on the night side of the earth and to the magnetopause on the day side of the earth. In much of the inner magnetosphere and in the outer magnetosphere on the day side of the earth, the normal loss cone distribution prevails. The effects of drift shell splitting - i.e., the appearance of pitch angle distributions with minimums at 90 deg, called butterfly distributions - become apparent in the early afternoon magnetosphere at extended distances, and the distribution is observed in to 5.5 earth radii in the nighttime magnetosphere. Inside about 9 earth radii the pitch angle effects are quite energy-dependent. Beyond about 9 earth radii in the premidnight magnetosphere during quiet times the butterfly distribution is often observed. It is shown that these electrons cannot survive a drift to dawn without being considerably modified. The role of substorm activity in modifying these distributions is identified.

  9. 19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD BAY Showing asphalt felt applied to both sides of interior wall studs beneath wood cladding. Back-nailing of felt indicates sequence of felt and cladding installation. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY

  10. Air pressures in wood frame walls

    Treesearch

    Anton TenWolde; Charles G. Carll; Vyto Malinauskas

    1998-01-01

    Wind pressures can play an important role in the wetting of exterior walls (driving rain). In response, the rain screen concept, including compartmentalization and air spaces, has been developed to provide pressure equalization and limit water entry into the wall. However, conventional construction such as wood lap siding has not been evaluated as to its ability to...

  11. 14. DETAIL OF THE WEST WALL OF THE WEST WING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF THE WEST WALL OF THE WEST WING. SHOWS CONCRETE AND WOODED WINDOWS, DRIP CAST IN THE EAVES, AND SEA OF DARKNESS TILE MOSAIC SET IN THE WALL. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  12. Modular off-axis solar concentrator

    DOEpatents

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, J.B.

    An experimental test model, which is dynamically similar to an actual UCC (Underground Coal Conversion) system, was used to determine fluid-flow patterns and local heat transfer that occur in the UCC burn cavity. This study was designed to provide insight into the little understood mechanisms (i.e., heat transfer and oxygen transport to the cavity walls) that control maximum cavity width, and therefore resource recovery during UCC. The experimental studies will be designed to study the effects of a growing cavity upon the transport to the side walls of a UCG cavity. The flow model will be used to study themore » effects of rubble pile shape changes upon the transport to the side walls.« less

  14. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    PubMed

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  15. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  16. Curved and conformal high-pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The firstmore » inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.« less

  17. Comparative Computed Flow Dynamic Analysis of Different Optimization Techniques in Left Main Either Provisional or Culotte Stenting.

    PubMed

    Rigatelli, Gianluca; Dell'Avvocata, Fabio; Zuin, Marco; Giatti, Sara; Duong, Khanh; Pham, Trung; Tuan, Nguyen Si; Vassiliev, Dobrin; Daggubati, Ramesh; Nguyen, Thach

    2017-12-01

    Provisional and culotte are the most commonly used techniques in left main (LM) stenting. The impact of different post-dilation techniques on fluid dynamic of LM bifurcation has not been yet investigated. The aim of this study is to evaluate, by means of computational fluid dynamic analysis (CFD), the impact of different post-dilation techniques including proximal optimization technique (POT), kissing balloon (KB), POT-Side-POT and POT-KB-POT, 2-steps Kissing (2SK) and Snuggle Kissing balloon (SKB) on flow dynamic profile after LM provisional or culotte stenting. We considered an LM-LCA-LCX bifurcation reconstructed after reviewing 100 consecutive patients (mean age 71.4 ± 9.3 years, 49 males) with LM distal disease. The diameters of LAD and LCX were modelled according to the Finnet's law as following: LM 4.5 mm, LAD 3.5 mm, LCX 2.75 mm, with bifurcation angle set up at 55°. Xience third-generation stent (Abbot Inc., USA) was reconstructed and virtually implanted in provisional/cross-over and culotte fashion. POT, KB, POT-side-POT, POT-KB-POT, 2SK and SKB were virtually applied and analyzed in terms of the wall shear stress (WSS). Analyzing the provisional stenting, the 2SK and KB techniques had a statistically significant lower impact on the WSS at the carina, while POT seemed to obtain a neutral effect. In the wall opposite to the carina, the more physiological profile has been obtained by KB and POT with higher WSS value and smaller surface area of the lower WSS. In culotte stenting, at the carina, POT-KB-POT and 2SK had a very physiological profile; while at the wall opposite to the carina, 2SK and POT-KB-POT decreased significantly the surface area of the lower WSS compared to the other techniques. From the fluid dynamic point of view in LM provisional stenting, POT, 2SK and KB showed a similar beneficial impact on the bifurcation rheology, while in LM culotte stenting, POT-KB-POT and 2SK performed slightly better than the other techniques, probably reflecting a better strut apposition.

  18. Wind tunnel wall effects in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1991-01-01

    Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.

  19. 75 FR 69571 - World Freedom Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ..., Germans from both sides of the wall joined to tear down the hated blockade. World Freedom Day commemorates... not only to tear down walls, but also to build bridges between people separated by geography, cultures...

  20. Interior detail of main entrance doors on south wall; camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of main entrance doors on south wall; camera facing south. - Mare Island Naval Shipyard, Old Administrative Offices, Eighth Street, north side between Railroad Avenue & Walnut Avenue, Vallejo, Solano County, CA

  1. Detail of second floor window, south wall of north wing; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of second floor window, south wall of north wing; camera facing south. - Mare Island Naval Shipyard, Marine Prison, Suisun Avenue, west side between Mesa Road & San Pablo, Vallejo, Solano County, CA

  2. Exhaust system for use with a turbine and method of assembling same

    DOEpatents

    Dalsania, Prakash Bavanjibhai; Sadhu, Antanu

    2015-08-18

    An exhaust system for use with a steam turbine is provided. An exhaust hood includes an input and an output, the input receiving fluid from the steam turbine. The exhaust hood includes a first side wall that extends between the input and the output. The first side wall includes an aperture. An ejector is coupled to the exhaust hood. The ejector includes inlets and an outlet. At least one of the inlets receives fluid from the exhaust hood via the aperture.

  3. Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser

    DTIC Science & Technology

    1990-12-01

    in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in

  4. Ferrielectric Twin Walls in CaTiO3

    NASA Astrophysics Data System (ADS)

    Goncalves-Ferreira, Liliana; Redfern, Simon A. T.; Artacho, Emilio; Salje, Ekhard K. H.

    2008-08-01

    Sizeable spontaneous polarization has been found in the (100) twin walls of CaTiO3, a definitely nonpolar material. Theoretical simulations of these walls show an extremely rich texture of the local polarization at and close to the walls, including a strong antiferroelectric component, and local nonzero contributions perpendicular to the wall plane, which do not contribute to the net dipole. Individual Ti displacements of 2 pm off the octahedron center give rise to a net polarization corresponding to a displacement of 0.6 pm in the direction of the bisector of the twin angle.

  5. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.

    PubMed

    Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L

    2006-05-28

    Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.

  6. The effect of dimple error on the horizontal launch angle and side spin of the golf ball during putting.

    PubMed

    Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn

    2017-02-01

    This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.

  7. Topographic effect on the inclination angle of ramp like structures in rough wall, turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Awasthi, Ankit; Anderson, William

    2015-11-01

    We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.

  8. 4. View of Clovelley Farm tenant house, back side (east) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Clovelley Farm tenant house, back side (east) area of two room addition. Note dark metal heating oil tank against rear wall and silver maple trees to shade house from south and east. - Clovelley Farm Tenant House, 4958 Paris Road (east side), Paris, Bourbon County, KY

  9. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses.

    PubMed

    Thomas, Lynne H; Forsyth, V Trevor; Martel, Anne; Grillo, Isabelle; Altaner, Clemens M; Jarvis, Michael C

    2015-06-23

    Cellulose from grasses and cereals makes up much of the potential raw material for biofuel production. It is not clear if cellulose microfibrils from grasses and cereals differ in structure from those of other plants. The structures of the highly oriented cellulose microfibrils in the cell walls of the internodes of the bamboo Pseudosasa amabilis are reported. Strong orientation facilitated the use of a range of scattering techniques. Small-angle neutron scattering provided evidence of extensive aggregation by hydrogen bonding through the hydrophilic edges of the sheets of chains. The microfibrils had a mean centre-to-centre distance of 3.0 nm in the dry state, expanding on hydration. The expansion on hydration suggests that this distance between centres was through the hydrophilic faces of adjacent microfibrils. However in the other direction, perpendicular to the sheets of chains, the mean, disorder-corrected Scherrer dimension from wide-angle X-ray scattering was 3.8 nm. It is possible that this dimension is increased by twinning (crystallographic coalescence) of thinner microfibrils over part of their length, through the hydrophobic faces. The wide-angle scattering data also showed that the microfibrils had a relatively large intersheet d-spacing and small monoclinic angle, features normally considered characteristic of primary-wall cellulose. Bamboo microfibrils have features found in both primary-wall and secondary-wall cellulose, but are crystallographically coalescent to a greater extent than is common in celluloses from other plants. The extensive aggregation and local coalescence of the microfibrils are likely to have parallels in other grass and cereal species and to influence the accessibility of cellulose to degradative enzymes during conversion to liquid biofuels.

  10. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  11. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  12. Definition, transformation-formulae and measurements of tipvane angles

    NASA Astrophysics Data System (ADS)

    Bruining, A.

    1987-10-01

    The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.

  13. Cone-beam computed tomographic evaluation of the temporomandibular joint and dental characteristics of patients with Class II subdivision malocclusion and asymmetry

    PubMed Central

    Huang, Mingna; Hu, Yun; Yu, Jinfeng; Sun, Jicheng; Ming, Ye

    2017-01-01

    Objective Treating Class II subdivision malocclusion with asymmetry has been a challenge for orthodontists because of the complicated characteristics of asymmetry. This study aimed to explore the characteristics of dental and skeletal asymmetry in Class II subdivision malocclusion, and to assess the relationship between the condyle-glenoid fossa and first molar. Methods Cone-beam computed tomographic images of 32 patients with Class II subdivision malocclusion were three-dimensionally reconstructed using the Mimics software. Forty-five anatomic landmarks on the reconstructed structures were selected and 27 linear and angular measurements were performed. Paired-samples t-tests were used to compare the average differences between the Class I and Class II sides; Pearson correlation coefficient (r) was used for analyzing the linear association. Results The faciolingual crown angulation of the mandibular first molar (p < 0.05), sagittal position of the maxillary and mandibular first molars (p < 0.01), condylar head height (p < 0.01), condylar process height (p < 0.05), and angle of the posterior wall of the articular tubercle and coronal position of the glenoid fossa (p < 0.01) were significantly different between the two sides. The morphology and position of the condyle-glenoid fossa significantly correlated with the three-dimensional changes in the first molar. Conclusions Asymmetry in the sagittal position of the maxillary and mandibular first molars between the two sides and significant lingual inclination of the mandibular first molar on the Class II side were the dental characteristics of Class II subdivision malocclusion. Condylar morphology and glenoid fossa position asymmetries were the major components of skeletal asymmetry and were well correlated with the three-dimensional position of the first molar. PMID:28861389

  14. 3. DOWNHILL SIDE AND END ELEVATION OF COAL POCKETS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DOWNHILL SIDE AND END ELEVATION OF COAL POCKETS, WITH RETAINING WALL IN BACKGROUND. VIEW LOOKING NORTHEAST. - Honesdale Coal Pockets, Main & Commercial Streets, between 700 & 800 blocks, Honesdale, Wayne County, PA

  15. 6. SOUTHWEST CORNER DETAIL (FRONT AND LEFT SIDE) SHOWING LOG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SOUTHWEST CORNER DETAIL (FRONT AND LEFT SIDE) SHOWING LOG JOINERY AND WEATHERBOARDING (copy negative, original 35 mm negative in field records) - Thomas Jefferson Walling Log Cabin, Henderson, Rusk County, TX

  16. Convection effects on radial segregation and crystal melt interface in vertical Bridgman growth

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1993-01-01

    We analytically study the influence of convection caused by horizontal heat transfer through the sides of a vertical Bridgman apparatus. We consider the case when the heat transfer across the side walls is small so that the resulting interfacial deformation and fluid velocities are also small. This allows us to linearize the Navier-Stokes equations and express the interfacial conditions about a planar interface through a Taylor expansion. Using a no tangential stress conditions on the side walls, asymptotic expressions for both the interfacial slope, and radial segregation at the crystal-melt interface are obtained in closed form in the limit of large thermal Rayleigh number. It is suggested that these can be reduced by appropriately controlling a specific heat transfer property at the edge of the insulation zone in the solid side.

  17. Design of an Experiment to Measure ann Using 3H(γ, pn)n at HIγS★

    NASA Astrophysics Data System (ADS)

    Friesen, F. Q. L.; Ahmed, M. W.; Crowe, B. J.; Crowell, A. S.; Cumberbatch, L. C.; Fallin, B.; Han, Z.; Howell, C. R.; Malone, R. M.; Markoff, D.; Tornow, W.; Witała, H.

    2016-03-01

    We provide an update on the development of an experiment at TUNL for determining the 1S0 neutron-neutron (nn) scattering length (ann) from differential cross-section measurements of three-body photodisintegration of the triton. The experiment will be conducted using a linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) and tritium gas contained in thin-walled cells. The main components of the planned experiment are a 230 Ci gas target system, a set of wire chambers and silicon strip detectors on each side of the beam axis, and an array of neutron detectors on each side beyond the silicon detectors. The protons emitted in the reaction are tracked in the wire chambers and their energy and position are measured in silicon strip detectors. The first iteration of the experiment will be simplified, making use of a collimator system, and silicon detectors to interrogate the main region of interest near 90° in the polar angle. Monte-Carlo simulations based on rigorous 3N calculations have been conducted to validate the sensitivity of the experimental setup to ann. This research supported in part by the DOE Office of Nuclear Physics Grant Number DE-FG02-97ER41033

  18. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  19. Innervation of the sinu-atrial node and neighbouring regions in two human embryos.

    PubMed Central

    Orts Llorca, F; Domenech Mateu, J M; Puerta Fonolla, J

    1979-01-01

    In human embryos of 20 to 23 mm (36 to 40 days) it is possible to identify on the right side a nerve that we may call the sinusal, which originates by several roots from the nervus vagus dexter (Figs. 1A, B, D), descending through the right ventrolateral face of the primary trachea and right bronchus (Fig. 2, arrows). Beaded in appearance, it gives a fine anastomotic branch which, passing in front of the arteria pulmonalis dextra, passes to the left side (Figs. 2B, C, D; AN). At this level it gives the large branch for the nodus sinoatrialis which, penetrating through the wall of the superior vena cava, provides a rich innervation for the nodus sinoatrialis which is already in an advanced stage of differentiation (Fig. 3, 2; Cy, D, AN). Afterwards it gives fine branches which, following the atrial fold, are distributed throughout the posterior face of the atrium dextrum (Fig. 3). It increases in diameter and, passing through the angle formed by the right pulmonary veins with the atrium dextrum, reaches the intrapericardial portion of the inferior vena cava in the vicinity of its outlet from the atrium (Fig. 3, arrows). The whole innervation is parasympathetic at the stages studied. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:438095

  20. Longleaf Pine Seed Dispersal

    Treesearch

    William D. Boyer

    1963-01-01

    Production and dispersal of longleaf pine (Pinus palustris Mill.) seeds were sampled in 1955, 1957, and 1958 on the Escambia Experimental Forest in southwest Alabama.Two transects of seed traps were established at right angles to each of four forest walls enclosing a rectangular 80-acre clearing. Walls were oriented in the cardinal...

  1. Computed tomography assessment of lateral pedicle wall perforation by free-hand subaxial cervical pedicle screw placement.

    PubMed

    Wang, Yingsong; Xie, Jingming; Yang, Zhendong; Zhao, Zhi; Zhang, Ying; Li, Tao; Liu, Luping

    2013-07-01

    To present the technique of free-hand subaxial cervical pedicle screw (CPS) placement without using intra-operative navigating devices, and to investigate the crucial factors for safe placement and avoidance of lateral pedicle wall perforation, by measuring and classifying perforations with postoperative computed tomography (CT) scan. The placement of CPS has generally been considered as technically demanding and associated with considerable lateral wall perforation rate. For surgeons without access to navigation systems, experience of safe free-hand technique for subaxial CPS placement is especially valuable. A total of 214 consecutive traumatic or degenerative patients with 1,024 CPS placement using the free-hand technique were enrolled. In the operative process, the lateral mass surface was decorticated. Then a small curette was used to identify the pedicle entrance by touching the cortical bone of the medial pedicle wall. It was crucial to keep the transverse angle and make appropriate adjustment with guidance of the resistance of the thick medial cortical bone. The hand drill should be redirected once soft tissue breach was palpated by a slim ball-tip prober. With proper trajectory, tapping, repeated palpation, the 26-30 mm screw could be placed. After the procedure, the transverse angle of CPS trajectory was measured, and perforation of the lateral wall was classified by CT scan: grade 1, perforation of pedicle wall by screw placement, with the external edge of screw deviating out of the lateral pedicle wall equal to or less than 2 mm and grade 2, critical perforation of pedicle wall by screw placement, large than 2 mm. A total of 129 screws (12.64 %) were demonstrated as lateral pedicle wall perforation, of which 101 screws (9.86 %) were classified as grade 1, whereas 28 screws (2.73 %) as grade 2. Among the segments involved, C3 showed an obviously higher perforating rate than other (P < 0.05). The difference between the anatomical pedicle transverse angle and the screw trajectory angle was higher in patients of grade 2 perforation than the others. In the 28 screws of grade 2 perforation verified by axial CT, 26 screws had been palpated as abnormal during operation. However, only 19 out of the 101 screws of grade 1 perforation had shown palpation alarming signs during operation. The average follow-up was 36.8 months (range 5-65 months). There was no symptom and sign of neurovascular injuries. Two screws (0.20 %) were broken, and one screw (0.10 %) loosen. Placement of screw through a correct trajectory may lead to grade 1 perforation, which suggests transversal expansion and breakage of the thinner lateral cortex, probably caused by mismatching of the diameter of 3.5 mm screws and the tiny cancellous bone cavity of pedicle. Grade 1 perforation is deemed as relatively safe to the vertebral artery. Grade 2 perforation means obvious deviation of the trajectory angle of hand drill, which directly penetrates into the transverse foramen, and the risk of vertebral artery injury (VAI) or development of thrombi caused by the irregular blood flow would be much greater compared to grade 1 perforation. Moreover, there are two crucial maneuvers for increasing accuracy of screw placement: identifying the precise entry point using a curette or hand drill to touch the true entrance of the canal after decortication, and guiding CPS trajectory on axial plane by the resistant of thick medial wall.

  2. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  3. 4. DETAIL VIEW OF CCCBUILT RIVERCOBBLE WING WALL ON DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF CCC-BUILT RIVER-COBBLE WING WALL ON DOWNSTREAM SIDE OF OUTLET WORKS AT DAM 87, LOOKING WEST - Upper Souris National Wildlife Refuge, Dam 87, Souris River Basin, Foxholm, Surrey (England), ND

  4. "Sack Time" pencil drawing on north wall of sack room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Sack Time" pencil drawing on north wall of sack room, northeast corner, facing north. - Camp Tulelake, Shop-Storage Building, West Side of Hill Road, 2 miles South of State Highway 161, Tulelake, Siskiyou County, CA

  5. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  6. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  7. Structural Diagnosis

    NASA Technical Reports Server (NTRS)

    1987-01-01

    All over the world, officials charged with preserving historical structures are faced with a problem of environmental contamination of building materials that cause structural deterioration. First requisite for preserving the structure is identification of the nature of contaminants. A "non-invasive"technique based on space technology has been developed and tested. It employs a neutron source and a gamma ray detector. Placed on one side of the wall to be examined, the source fires neutrons created by the decay of a radioactive isotope. As they pass through the wall, the neutrons collide with atoms and the atoms, depending on their type, emit various kinds of gamma rays. These rays are identified by the gamma ray detector on the other side of the wall. Energy of the rays shows the kind of element present. The intensity level indicates the quantity. Composition of the contaminants within the walls is determined by a multichannel analyzer.

  8. INTERIOR VIEW, WEST WALL OF NORTHWEST ATTIC CHAMBER. THIS SPACIOUS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, WEST WALL OF NORTHWEST ATTIC CHAMBER. THIS SPACIOUS ROOM INCLUDED A ROOF MONITOR FOR LIGHT AND VENTILATION AND A FIREPLACE FOR HEAT. THE WALL OPENING AND DOOR ON EITHER SIDE OF THE FIREPLACE GIVE ONTO A LARGE UNFINISHED SPACE LOCATED OVER THE HOUSE’S WEST WING - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  9. Coal fired fluid bed module for a single elevation style fluid bed power plant

    DOEpatents

    Waryasz, Richard E.

    1979-01-01

    A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

  10. Hygrothermal Anaylsis of Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Treesearch

    Samuel V. Glass

    2013-01-01

    This study uses a one-dimensional hygrothermal model to investigate the moisture performance of 10 residential wood-frame wall assemblies in a representative mixed-humid climate location of Baltimore, Maryland (climate zone 4A). All the assemblies include oriented strandboard (OSB) sheathing and vinyl siding. The walls differ in stud cavity thickness, level of cavity...

  11. 87. DETAIL OF THE WEST WALL OF THE WEST WING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. DETAIL OF THE WEST WALL OF THE WEST WING. SHOWS CONCRETE AND WOODEN WINDOWS. DRIP CAST IN THE EAVES. AND SEA OF DARKNESS TILE MOSAIC SET IN THE WALL. SAME VIEW AS PA-107-14. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  12. Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1995-01-01

    An experimental investigation was conducted to determine the aerodynamic characteristics of a store as it was separated from the lee side of a flat plate inclined at 15 deg to the free-stream flow at Mach 6. Two store models were tested: a cone cylinder and a roof delta. Force and moment data were obtained for both stores as they were moved in 0.5-in. increments away from the flat plate lee-side separated flow region into the free-stream flow while the store angle of attack was held constant at either 0 deg or 15 deg. The results indicate that both stores had adverse separation characteristics (i.e., negative normal force and pitching moment) at an angle of attack of 0 deg, and the cone cylinder had favorable separation characteristics (i.e., positive normal force and pitching moment) at an angle of attack of 15 deg. At an angle of attack of 15 deg, the separation characteristics of the roof delta are indeterminate at small separation distances and favorable at greater separation distances. These characteristics are the result of the local flow inclination relative to the stores as they traversed through the flat plate lee-side flow field. In addition to plotted data, force and moment data are tabulated and schlieren photographs of the stores and flat plate are presented.

  13. [The Effect of Intraoperative Screw Monitoring (Root Monitoring) with the INS-1 System (NUVASIVE) on the Radiological Outcome of Dorsal Instrumentation of the Lumbar Spine].

    PubMed

    Bernhardt, G; Awiszus, F; Meister, U; Heyde, C E; Böhm, H

    2016-06-01

    Transpedicular screw fixation of spinal segments has been described for a variety of surgical indications and is a key element in spinal surgery. The aim of transpedicular screw fixation is to achieve maximal stability. Screw malposition should be obviated to avoid neurological complications. There are published methods of applying evoked EMG to control screw position in relation to neural structures. These studies demonstrated that an intact bony pedicle wall acts as an electrical isolator between the screw and spinal nerve root. The aim of our study was to evaluate the impact of intraoperative pedicle screw monitoring on screw positioning. We enrolled 22 patients in this prospective randomised study, who underwent spinal instrumentation after being split into two equal groups. In the first group, dorsal instrumentation was supplemented with intraoperative nerve root monitoring using the INS-1-System (NuVasive, San Diego USA). In the second group, screws were inserted without additional pedicle monitoring. All patients underwent monosegmental instrumentation with "free hand implanted" pedicle screws. 44 screws were inserted in each group. The screw position was evaluated postoperatively using CT scans. The position of the screws in relation to the pedicle was measured in three different planes: sagittal, axial and coronal. The accuracy of the screw position was described using the Berlemann classification system. Screw position is classified in three groups: type 1 correct screw position, type 2 encroachment on the inner cortical wall, type 3 pedicle cortical perforation. Screw angulation and secondary operative criteria were also evaluated. The use of neuromonitoring did not influence the distance between the centre of the screws and the pedicle wall. Distances only depended on the implantation side (right and left) and the height of implantation (caudal or cranial screw). Because of the low number of cases, no conclusion could be reached about the influence of root monitoring on the correct positioning of the screws. There was at least a non-significant trend towards more frequent perforation of the pedicle in the monitor group. In the present study, we showed that root monitoring had a significant effect on the scattering of transversal angles. These were increased compared to the control group. Otherwise, the implantation angle was not shown to depend on the use of neuromonitoring. Neuromonitoring did not influence blood loss or operative time. The data did not permit any conclusion as to whether this technique can minimise the frequency of pedicle screw malposition. The four coronal plane distances did not depend on the use of neuromonitoring. The inclination angle was also unaffected by neuromonitoring. The only parameter for which we found any effect was the transverse angle. The mean values were similar in both groups, but the variances were not equal. The effect of monitoring on the only parameter which could not be evaluated by fluoroscopy is thus rather unfavourable. Georg Thieme Verlag KG Stuttgart · New York.

  14. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation

    PubMed Central

    DeVoria, Adam C.

    2017-01-01

    This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139

  15. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can bemore » decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.« less

  16. An Examination of a Pre-Service Mathematics Teacher's Mental Constructions of Relationships in a Right Triangle

    ERIC Educational Resources Information Center

    Koyunkaya, Melike Yigit

    2018-01-01

    Students need to construct strong knowledge of angles as well as relationships between angles and side lengths in a triangle to succeed in geometry. Although many researchers pointed out the importance of angles and angle-related concepts, students and teachers have had limited knowledge of these concepts. This study is a part of a larger study,…

  17. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  18. Failure Behavior of Elbows with Local Wall Thinning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak

    Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.

  19. Aerodynamic characteristics of NACA RM-10 missile in 8- by 6-foot supersonic wind tunnel at Mach numbers from 1.49 to 1.98 I : presentation and analysis of pressure measurements (stabilizing fins removed)

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W; Simon, Paul C

    1950-01-01

    Experimental investigation of flow about a slender body of revolution (NACA RM-10 missile) aligned and inclined to a supersonic stream was conducted at Mach numbers from 1.49 to 1.98 at a Reynolds number of approximately 30,000,000. Boundary-layer measurements at zero angle of attack are correlated with subsonic formulations for predicting boundary-layer thickness and profile. Comparison of pressure coefficients predicted by theory with experimental values showed close agreement at zero angle of attack and angle of attack except over the aft leeward side of body. At angle of attack, pitot pressure measurements in plane of model base indicated a pair of symmetrically disposed vortices on leeward side of body.

  20. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  1. Disk in a groove with friction: An analysis of static equilibrium and indeterminacy

    NASA Astrophysics Data System (ADS)

    Donolato, Cesare

    2018-05-01

    This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.

  2. Aerodynamic Loads on an External Store Adjacent to a 45 Degree Sweptback Wing at Mach Numbers from 0.70 to 1.96, Including an Evaluation of Techniques Used

    NASA Technical Reports Server (NTRS)

    Guy, Lawrence D; Hadaway, William M

    1955-01-01

    Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.

  3. Improved shallow trench isolation and gate process control using scatterometry based metrology

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Bradford, S. M.

    2005-05-01

    The ability to control critical dimensions of structures on semiconductor devices is essential to improving die yield and device performance. As geometries shrink, accuracy of the metrology equipment has increasingly become a contributing factor to the inability to detect shifts which result in yield loss. Scatterometry provides optical measurement that better enables process control of critical dimensions. Superior precision, accuracy, and higher throughput can be achieved more cost effectively through the use of this technology in production facilities. This paper outlines the implementation of Scatterometry based metrology in a production facility. The accuracy advantage it has over conventional Scanning Electron Microscope (SEM) measurement is presented. The Scatterometry tool used has demonstrated repeatability on the order of 3σ < 1 nm at STI-Etch-FICD for CD and Trench Depth (TD), and Side Wall Angle (SWA) measurements to within 0.1 degrees. Poly CD also shows 3σ < 1 nm, and poly thickness measurement 3σ < 2.5 Å. Scatterometry has capabilities which include measurement of CD, structure height and trench depth, Sidewall angle (SWA), and film thickness. The greater accuracy and the addition of in-situ Trench depth and sidewall angle have provided new measurement capabilities. There are inherent difficulties in implementing scatterometry in production wafer fabs. Difficulties with photo resist measurements, film characterization and stack set-up will be discussed. In addition, there are challenges due to the quantity data generated, in how to organize and store this data effectively. A comparison of the advantages and shortcomings of the method are presented.

  4. Pilot Overmyer on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On middeck port side, Pilot Overmyer, looks down at freefloating object. On his left, attached to port side wall, are a dessert package, a prepackaged meal, control panel ML86B, and water dispenser kit with water gun.

  5. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  6. TU-CD-207-10: Dedicated Cone-Beam Breast CT: Design of a 3-D Beam-Shaping Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, S; Shi, L; Karellas, A

    2015-06-15

    Purpose: To design a 3 -D beam-shaping filter for cone-beam breast CT for equalizing x-ray photon fluence incident on the detector along both fan and cone angle directions. Methods: The 3-D beam-shaping filter was designed as the sum of two filters: a bow-tie filter assuming cylindrical breast and a 3D difference filter equivalent to the difference in projected thickness between the cylinder and the real breast. Both filters were designed with breast-equivalent material and converted to Al for the targeted x-ray spectrum. The bow-tie was designed for the largest diameter cylindrical breast by determining the fan-angle dependent path-length and themore » filter thickness needed to equalize the fluence. A total of 23,760 projections (180 projections of 132 binary breast CT volumes) were averaged, scaled for the largest breast, and subtracted from the projection of the largest diameter cylindrical breast to provide the 3D difference filter. The 3 -D beam shaping filter was obtained by summing the two filters. Numerical simulations with semi-ellipsoidal breasts of 10–18 cm diameter (chest-wall to nipple length=0.75 x diameter) were conducted to evaluate beam equalization. Results: The proposed 3-D beam-shaping filter showed a 140% -300% improvement in equalizing the photon fluence along the chest-wall to nipple (cone-angle) direction compared to a bow-tie filter. The improvement over bow-tie filter was larger for breasts with longer chest-wall to nipple length. Along the radial (fan-angle) direction, the performance of the 3-D beam shaping filter was marginally better than the bow-tie filter, with 4%-10% improvement in equalizing the photon fluence. For a ray traversing the chest-wall diameter of the breast, the filter transmission ratio was >0.95. Conclusion: The 3-D beam shaping filter provided substantial advantage over bow-tie filter in equalizing the photon fluence along the cone-angle direction. In conjunction with a 2-axis positioner, the filter can accommodate breasts of varying dimensions and chest-wall inclusion. Supported in part by NIH R01 CA128906 and R21 CA134128. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

  7. Building C interior, looking north showing skylight and shared walls ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building C interior, looking north showing skylight and shared walls of Germantown Dyeworks Building E to the east (right side of photograph) - Hinckley Knitting Mills, Building C, 21-35 East Wister Street, Philadelphia, Philadelphia County, PA

  8. 10. VIEW SHOWING TWO BUTTRESSES ON THE NORTH ELEVATION, WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW SHOWING TWO BUTTRESSES ON THE NORTH ELEVATION, WHICH SUPPORT A DEEP CURVE IN THE LONGEST SECTION OF THE WALL, LOOKING SOUTH-SOUTHWEST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  9. CCC Stencil on center of east wall, interior of carpenter/blacksmith ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CCC Stencil on center of east wall, interior of carpenter/blacksmith shop, facing east. - Camp Tulelake, Shop-Storage Building, West Side of Hill Road, 2 miles South of State Highway 161, Tulelake, Siskiyou County, CA

  10. Impact Crater Identified on the Navajo Nation Near Chinle, Arizona

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.

    1995-09-01

    A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of the crater was scoured down to the Jeddito-Chinle contact across the center of the crater. Some of the Chinle was excavated by impact south of the center, as seen in the trench in the south wall. The original crater walls slope inward about 30 degrees on the east and west sides, about 20 degrees on the north, and about 45 degrees on the south. Beds are dragged up along the east, west, and south walls, but not along the north wall. The deformation is restricted to within about 0.5 m of the wall. From the asymmetry of shape and deformation in the walls, we believe that the impacting body struck at an oblique angle and was traveling from north to south. A small, magnetic, iron oxide fragment, about 1 mm across, was collected from material excavated from the south crater wall area. Analyses of this fragment by electron microprobe detected a significant nickel concentration of 5%. Two senior Navajo women (70-80 year age range) independently remember this crater as being much deeper during their childhood and both suggest that the impact was witnessed 3 to 4 generations ago. Interestingly, many persons in the Navajo community thought that this crater was of impact origin. Additional work is planned, including a broader aerial search for other possible impact sites.

  11. 46 CFR 172.065 - Damage stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...

  12. 46 CFR 172.065 - Damage stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...

  13. Sterically allowed configuration space for amino acid dipeptides

    NASA Astrophysics Data System (ADS)

    Caballero, Diego; Maatta, Jukka; Sammalkorpi, Maria; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic propensities for amino acids to be in particular backbone or side-chain conformations. This question has remained unsettled for years because of the discrepancies between different experimental approaches. To address it, I performed all-atom hard-sphere simulations of hydrophobic residues with stereo-chemical constraints and non-attractive steric interactions between non-bonded atoms for ALA, ILE, LEU and VAL dipeptide mimetics. For these hard-sphere MD simulations, I show that transitions between α-helix and β-sheet structures only occur when the bond angle τ(N -Cα - C) >110° , and the probability distribution of bond angles for structures in the `bridge' region of ϕ- ψ space is shifted to larger angles compared to that in other regions. In contrast, the relevant bond-angle distributions obtained from most molecular dynamics packages are broader and shifter to larger values. I encounter similar correlations between bond angles and side-chain dihedral angles. The success of these studies is an argument for re-incorporating local stereochemical constraints into computational protein design methodology.

  14. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  15. Quaternary low-angle slip on detachment faults in Death Valley, California

    USGS Publications Warehouse

    Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.

    2003-01-01

    Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.

  16. Destabilization of low-n peeling modes by trapped energetic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, G. Z.; Wang, A. K.; Mou, Z. Z.

    2013-06-15

    The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value β{sub c}{sup *}, which is sensitive to the pitch angle of trapped EPs. The dependence of β{sub c}{sup *} on the particle pitch angle is eventually determined by the bounce averagemore » of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs.« less

  17. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah; Turner, Neal J.

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less

  18. Head impact mechanisms of a child occupant seated in a child restraint system as determined by impact testing.

    PubMed

    Yoshida, Ryoichi; Okada, Hiroshi; Nomura, Mitsunori; Mizuno, Koji; Tanaka, Yoshinori; Hosokawa, Naruyuki

    2011-11-01

    In side collision accidents, the head is the most frequently injured body region for child occupants seated in a child restraint system (CRS). Accident analyses show that a child's head can move out of the CRS shell, make hard contact with the vehicle interior, and thus sustain serious injuries. In order to improve child head protection in side collisions, it is necessary to understand the injury mechanism of a child in the CRS whose head makes contact with the vehicle interior. In this research, an SUV-to-car oblique side crash test was conducted to reconstruct such head contacts. A Q3s child dummy was seated in a CRS in the rear seat of the target car. The Q3s child dummy's head moved out beyond the CRS side wing, moved laterally, and made contact with the side window glass and the doorsill. It was demonstrated that the hard head contact, which produced a high HIC value, could occur in side collisions. A series of sled tests was carried out to reproduce the dummy kinematic behavior observed in the SUV-to-car crash test, and the sled test conditions such as sled angle, ECE seat slant angle and velocity-time history that duplicated the kinematic behavior were determined. A parametric study also was conducted with the sled tests; and it was found that the impact angle, harness slack, chest clip, and the CRS side wing shape affected the torso motion and head contact with the vehicle interior.

  19. Multivariate modeling of acoustomechanical response of 14-year-old suppressed loblolly pine (Pinus taeda) to variation in wood chemistry, microfibril angle and density

    Treesearch

    Charles Essien; Brian K. Via; Qingzheng Cheng; Thomas Gallagher; Timothy McDonald; Xiping Wang; Lori G. Eckhardt

    2017-01-01

    The polymeric angle and concentration within the S2 layer of the softwood fiber cell wall are very critical for molecular and microscopic properties that influence strength, stiffness and acoustic velocity of wood at the macroscopic level. The main objective of this study was to elucidate the effect of cellulose, hemicellulose, lignin, microfibril angle and density on...

  20. Effect of attack angle on flow characteristic of centrifugal fan

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.

    2016-05-01

    In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.

Top