Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata
NASA Astrophysics Data System (ADS)
Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.
2016-08-01
In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.
NASA Astrophysics Data System (ADS)
Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.
2014-12-01
DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon. The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰. In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands. 1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively. We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.
Oxygen isotope fractionation in the siderite-water system between 8.5 and 62 °C
NASA Astrophysics Data System (ADS)
van Dijk, Joep; Fernandez, Alvaro; Müller, Inigo A.; Lever, Mark; Bernasconi, Stefano M.
2018-01-01
The oxygen isotope composition of siderites can be used to deduce the temperature and/or oxygen isotope composition of the fluids from which they precipitated. Previous siderite-water oxygen isotope fractionation calibrations are not well constrained at temperatures below 33 °C where most of the siderite forms at the Earth's surface. Moreover, the few experimental low temperature calibration points available are possibly inaccurate as the corresponding siderites may not have formed in equilibrium with the solution. In this study, we synthesized siderite in the laboratory from 8.5 to 62 °C, using both active-degassing experiments and microbial cultures. We used the enzyme carbonic anhydrase, which significantly reduces the equilibration time of oxygen isotopes among all dissolved inorganic carbon (DIC) species and water to minimize siderite formation out of equilibrium. Our calibration is based on many more data points than previous calibrations and significantly reduces the uncertainty in siderite-water oxygen isotope fractionation in natural siderites formed at low temperatures. The best fit equation is 1000 * ln α = 19.67 ± 0.42(103/T) -36.27 ± 1.34 where α (1000+δ18Osiderite/1000+δ18Owater) is the fractionation factor and T is the temperature in Kelvin.
Petrographic and Isotopic Evidence for Siderite Precursors to Iron Oxide Cements
NASA Astrophysics Data System (ADS)
Loope, D.
2015-12-01
The origin of iron oxide mineralization in the Navajo Sandstone on the Colorado Plateau is important because of the different forms of distinct self-organization exhibited by these systems, the potential importance of the cements as geochronometers, and their use as analogs for similar mineralization on other planets. We consider this mineralization to be the product of microbially mediated oxidation of siderite in evolving groundwater systems. Iron oxide grain coatings were dissolved and the iron precipitated as siderite during a reducing phase of diagenesis. Upon invasion by oxidizing waters, iron-oxidizing bacteria colonized the redox interface between siderite-cemented and porous sandstone. Precipitation of iron oxide at this interface generated acid that facilitated further siderite dissolution. One difficulty in testing this hypothesis is that siderite is destroyed by the cm-scale transport of iron during oxidation. There are two lines of evidence that support the presence of a siderite precursor in these systems. 1)Rhombic grains that we interpret to be iron oxide pseudomorphs after siderite occur where in-situ oxidation rather than dissolution of the siderite precursor has occurred. 2) The δ56Fe values of these iron oxide cements are typically negative. We have measured the δ56Fe value of Navajo Sandstone to be 0.2‰; a value in good agreement with previous workers (Chan et al., 2006; Busigny and Dauphas, 2007). Bleaching of the sandstones apparently results in near complete removal of Fe with little change in the δ56Fe values of the bulk sandstone. The δ56Fe values of iron oxide cements have a median value of -0.8‰; similar to the value we obtained from ferroan carbonate (-0.86‰). Iron oxide from samples that comprise largely rhombic grains has similar δ56Fe values (-0.5‰) to those obtained from cements produced by siderite dissolution and subsequent oxidation (-0.4‰). Our interpretation is that siderite precipitated from an aqueous solution in which the δ56Fe value was <0.2‰ yielding siderite with δ56Fe values that ranged upward from -1.4‰. Invasion of the Navajo by oxidizing waters resulted in microbially mediated oxidation of the siderite concretions. The strongly negative values of the Fe oxides result from the near-quantitative oxidation of the siderite in a closed system.
Mineral Magnetic Properties of Partially Oxidized Siderite
NASA Astrophysics Data System (ADS)
Dekkers, M. J.; Hanckmann, W. J. F.; Spassov, S.; Behrends, T.
2017-12-01
Siderite (FeCO3) is an important mineral in iron redox cycling in the subsurface. It is often characterized geochemically by means of various sequential extraction schemes. However, a mineralogical siderite determination remains rather tedious, particularly when dealing with trace amounts and very fine particles, often the rule in soils and sediments. Here we explore the suitability of the very sensitive magnetic methods to this end, exploiting siderite's magnetic properties at low temperature. The basic magnetic properties of siderite are surprisingly poorly characterized. To contribute to this issue, we have synthesized siderite with varying amounts of ferric iron in a chemostat, next to the magnetic characterization of several siderites from mineral collections. By slowly adding ferrous iron perchlorate to a carbonate solution the synthesis could be tweaked in order to deliver products as crystalline as possible. Synthesis products were verified with XRD; at pH below 7 siderite was the dominant phase, at higher pH the mineral chukanovite (Fe2(OH)2CO3) was found. The degree of oxidation was measured wet-chemically with the ferrozine method. Samples appeared to be oxidized between 1 and 80%, most samples between 1 and 6%. The sequence of low temperature magnetic measurements (on an MPMS3 system) included 1) cooling in a field of 15 mT to 5 K, 2) warming of a 5 T IRM given at 5 K in zero field to 300 K, 3) cooling in a field of 5 T to 5 K, and 4) warming of the field-cooled 5 T IRM in zero field to 300 K. For mineral collection siderite also hysteresis loops were determined at several temperatures to determine the exchange bias field. Conform literature data siderite was found to have a magnetic ordering temperature of 38 K. Oxidation appears to smear out the remanence warming curves while also shifting the ordering temperature upward. Specific magnetic moments were found to vary distinctly, being both lower and higher than reference values. We relate this tentatively to grain size effects that play up since siderite is an antiferromagnet and far from saturation in a 5 T field. Standard addition experiments indicated that one per mil siderite can be traced rock-magnetically, enabling a check on sequential extraction schemes designed to allocate iron to several redox-sensitive pools in natural samples.
NASA Astrophysics Data System (ADS)
Sánchez-Alcalá, I.; del Campillo, M. C.; Barrón, V.; Torrent, J.
2012-04-01
Key words: siderite, iron chlorosis, calcareous soil, goethite, lepidocrocite Nanosized siderite (FeCO3) prepared by mixing FeSO4 and K2CO3 solutions [either alone or in presence of phosphate (siderites SID and SIDP, respectively)] was used in our experiments. The products of oxidation of siderite in a calcite suspension were goethite or a mixture of goethite and lepidocrocite when phosphate was present. These iron oxides were nanosized and acid NH4oxalate-soluble, which suggested they could be a good source of iron (Fe) for plants sensitive to Fe deficiency yellowing (chlorosis). To evaluate the effectiveness and long-term effects of suspensions of siderite mixed with calcareous soil to prevent Fe chlorosis, a pot growth experiment was carried out with five consecutive crops: chickpea (twice), peanut (twice) and strawberry. Suspensions of siderites (SID and SIDP) were mixed with 220 g of soil at the beginning of the experiment at rates of 0.24, 0.46, 0.93 and 1.40 g siderite (0.12, 0.22, 0.45, and 0.67 g Fe) kg-1 soil. A control (no Fe added) and a positive control (Fe-chelate as FeEDDHA before each cropping) were included. The concentration of chlorophyll in the youngest leaves was estimated three times for chickpea and peanut, and five times for strawberry via the SPAD value (SPAD 502 portable chlorophyll meter). The SPAD for the control plants was lower than that for Fe-fertilized plants. For all crops, times and siderite types, SPAD tended to systematically increase with increasing siderite dose, and SID and SIDP had similar effectiveness. At harvest, the SPAD for the plants fertilized with the highest siderite dose (1.40 g kg-1) did not differ significantly from that for FeEDDHA-fertilized plants. Our results suggest in summary that siderite is effective in preventing iron chlorosis and has a long-lasting effect, as the likely result of the high specific surface and high solubility of the crystalline Fe oxides resulting from its oxidation. Futhermore, siderite is readily prepared in the field, not easily leached from the soil and environmentally safe, thus constituting a good Fe fertilizer. Acknowledgments: This work was funded by the Spain's Ministerio de Ciencia e Innovación and the European Regional Development Fund (Projects AGL 2005-06691-C02-01 and AGL 2008-05053-C02-02).
Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.
2010-01-01
Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of low-temperature siderite-water 18O fractionations. Investigations at the CCP site thus provide valuable information on the geochemical conditions under which siderite can form in modern soils, and thus insight on controls on siderite formation in ancient soils. Copyright ?? 2010, SEPM (Society for Sedimentary Geology).
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Haskin, L. A.; Jolliff, B. L.; Wang, A.; Korotev, R. L.
2002-01-01
Last year we reported on siderite in an Apollo 16 regolith particle. We ascribed this to vapor deposition on the surface of the Moon by cometary or meteorite impact. Subsequent experiments have shown the siderite to be terrestrial contamination. Additional information is contained in the original extended abstract.
Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate
NASA Astrophysics Data System (ADS)
Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian
2017-10-01
Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.
NASA Astrophysics Data System (ADS)
Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone
2017-07-01
We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic upper limit for the iron pulse in the Southern Alps, which would thus predate the Middle Triassic magmatism. Based on the overlap between hydrothermalism, extensional tectonics and, in part, magmatism, the genesis of siderite in the Southern Alps may be related to plutonic activity and/or magmatic underplating occurring since the Permian in a geodynamic scenario preluding the opening of the Neo-Tethys.
Mössbauer study of iron minerals transformations by Fuchsiella ferrireducens
NASA Astrophysics Data System (ADS)
Gracheva, M. A.; Chistyakova, N. I.; Antonova, A. V.; Rusakov, V. S.; Zhilina, T. N.; Zavarzina, D. G.
2017-11-01
Biogenic transformations of iron-containing minerals synthesized ferrihydrite, magnetite and hydrothermal siderite by anaerobic alkaliphilic bacterium Fuchsiella ferrireducens (strain Z-7101T) were studied by 57Fe Mössbauer spectroscopy. Mössbauer investigations of solid phase samples obtained after microbial transformation were carried out at room temperature and at 82 K. It was found that all tested minerals transformed during bacterial growth. In the presence of synthesized ferrihydrite, added as an electron acceptor, a mixture of large (more than 100 nm) and small (˜5 nm) particles of magnetically ordered phase and siderite was formed. Synthesized magnetite that contains both Fe3+ and Fe2+ forms could serve as electron acceptor as well as an electron donor for F.ferrireducens growth. As a result of its biotransformation, no siderite formation was observed while small particles of magnetite were formed. In the case of the addition of siderite as an electron donor formation of a small amount of a new phase containing Fe2+ caused by recrystallization of siderite during bacterial growth was detected.
NASA Astrophysics Data System (ADS)
Rodrigues, Amanda Goulart; De Ros, Luiz Fernando; Neumann, Reiner; Borghi, Leonardo
2015-06-01
Abundant early diagenetic siderites occur as spherulites and rhombohedral microcrystalline and macrocrystalline crystals in the cores of the 2-MU-1-RJ well, drilled in the Paraíba do Sul Deltaic Complex, Rio de Janeiro (Brazil). The host sediments of the siderites are siliciclastic, hybrid, and carbonate deposits. Intense pedogenetic processes affected the siliciclastic sediments immediately after deposition, comprising clay illuviation, plants bioturbation, feldspar dissolution, and iron oxide/hydroxide precipitation. Siderite and pyrite are the main diagenetic constituents. The other diagenetic products are kaolinite, smectite, argillaceous and carbonate pseudomatrix, quartz overgrowths, diagenetic titanium minerals, jarosite, and iron oxides/hydroxides. Early diagenetic siderites were separated into four groups based on their elemental and stable isotopic composition, as well as on their paragenetic relationships with the other constituents and with the host sediments. Spherulitic to macrocrystalline siderites from group 1 are almost pure (average: 94.7 mol% FeCO3; 1.2 mol% MgCO3; 2.3 mol% CaCO3; 1.8 mol% MnCO3) and precipitated from meteoric porewaters in continental siliciclastic rocks under suboxic conditions (δ18Ovpdb values range in - 10.28 to - 5.57‰ and the δ13Cvpdb values in - 12.68 to - 4.33‰). Microcrystalline rhombohedral siderites from group 2 have zonation due to substantial Ca and Mg substitution (core average: 78.5 mol% FeCO3; 4.2 mol% MgCO3; 15.7 mol% CaCO3; 1.6 mol% MnCO3; edge average: 74.0 mol% FeCO3; 9.2 mol% MgCO3; 15.6 mol% CaCO3; 1.1 mol% MnCO3), and δ13Cvpdb and δ18Ovpdb values of + 0.17‰ and - 1.96‰, precipitated from marine porewaters in packstones/wackestones under methanogenic conditions. The group 3 is represented by irregular spherulitic siderites with moderate Ca and Mg substitutions (average: 80.2 mol% FeCO3; 7.9 mol% MgCO3; 11.3 mol% CaCO3; 0.6 mol% MnCO3), with δ18Ovpdb values ranging from - 5.96 to - 7.61‰ and δ13Cvpdb values ranging from - 5.15 to - 10.41‰. The group 4 microcrystalline siderites are magnesium-rich (average: 57.3 mol% FeCO3; 31.4 mol% MgCO3; 9.6 mol% CaCO3; 1.7 mol% MnCO3; δ13Cvpdb + 1.43‰ and δ18Ovpdb - 14.09‰). The group 3 and 4 siderites were formed from brackish porewater under suboxic conditions in hybrid and siliciclastic rocks. These variations in siderites are probably related to the Paraíba do Sul River dynamics, to sea level changes and to climatic variations that took place during the Quaternary.
Ufnar, David F.; Ludvigson, Greg A.; Gonzalez, Luis A.; Brenner, Richard L.; Witzke, Brian J.
2004-01-01
Siderite-bearing pedogenic horizons of the Nanushuk Formation of the North Slope, Alaska, provide a critical high paleolatitude oxygen isotopic proxy record of paleoprecipitation, supplying important empirical data needed for paleoclimatic reconstructions and models of "greenhouse-world" precipitation rates. Siderite ??18O values were determined from four paleosol horizons in the National Petroleum Reserve Alaska (NPR-A) Grandstand # 1 Core, and the values range between -17.6??? and -14.3??? Peedee belemnite (PDB) with standard deviations generally less than 0.6??? within individual horizons. The ??13C values are much more variable, ranging from -4.6??? to +10.8??? PDB. A covariant ??18O versus ??13C trend in one horizon probably resulted from mixing between modified marine and meteoric phreatic fluids during siderite precipitation. Groundwater values calculated from siderite oxygen isotopic values and paleobotanical temperature estimates range from -23.0??? to -19.5??? standard mean ocean water (SMOW). Minor element analyses show that the siderites are impure, having enrichments in Ca, Mg, Mn, and Sr. Minor element substitutions and Mg/Fe and Mg/ (Ca + Mg) ratios also suggest the influence of marine fluids upon siderite precipitation. The pedogenic horizons are characterized by gleyed colors, rare root traces, abundant siderite, abundant organic matter, rare clay and silty clay coatings and infillings, some preservation of primary sedimentary stratification, and a lack of ferruginous oxides and mottles. The pedogenic features suggest that these were poorly drained, reducing, hydromorphic soils that developed in coal-bearing delta plain facies and are similar to modern Inceptisols. Model-derived estimates of precipitation rates for the Late Albian of the North Slope, Alaska (485-626 mm/yr), are consistent with precipitation rates necessary to maintain modern peat-forming environments. This information reinforces the mutual consistency between empirical paleotemperature estimates and isotope mass balance models of the hydrologic cycle and can be used in future global circulation modeling (GCM) experiments of "greenhouse-world" climates to constrain high latitude precipitation rates in simulations of ancient worlds with decreased equator-to-pole temperature gradients. ?? 2004 Geological Society of America.
Phase transformations of siderite ore by the thermomagnetic analysis data
NASA Astrophysics Data System (ADS)
Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.
2017-02-01
Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.
Phase transition of Fe oxides under reducing condition and its relation with the As behavior
NASA Astrophysics Data System (ADS)
Choi, S. H.; Kim, S. H.; Jeong, G. Y.; Kim, K.
2014-12-01
Fe oxides are very common in the earth's crust and easily transform into other minerals such as magnetite and siderite under reducing conditions by microbial reactions. It is well known that As concentrations in groundwater is strongly regulated by adsorption onto Fe oxides. Even though some studies have suggested that the formation of siderite can also control the As concentration, direct evidences are not sufficient. In this study, we performed microbial incubation experiments to see the phase transition of As-rich Fe oxides under anoxic condition and to see how the water As concentrations are controlled accordingly. Three experiments were performed by changing organic carbon concentrations. Natural groundwaters and yeast extracts were used for the sources of microorganisms and organic carbon. Seven reactors were prepared for each experiment and opened one by one to observe the changes of the water chemistry and solid phases for 60 days. The formation of magnetite was observed at the early stage of each experiment. Siderite was formed at the later stage only when the dissolved organic carbon concentrations were high (donor/accepter molar ratio = 1.5). Goethite and hematite, instead of siderite, were formed from the experiment using low organic carbon concentration (donor/accepter molar ratio = 0.75). It is likely that dissolved ferrous ion adsorbs onto the Fe oxides and recrystallizes into hematite and goethite when the DOC concentration was low. As concentrations were generally very low in the water (normally 10 ug/L) and we could not find any relations with the Fe minerals formed by anoxic microbial reactions, maybe due to high Fe oxide/water ratio of our experiments. The sequential extraction analysis indicated that most of the As in solids are mostly associated with Fe-oxides and organic matters. The As bound to carbonates were very low even in the precipitates containing siderite due to low As concentrations in the water where the siderite formed. Further experiments precipitating siderite in the water with high As concentrations are required.
NASA Astrophysics Data System (ADS)
Milesi, Vincent; Guyot, François; Brunet, Fabrice; Richard, Laurent; Recham, Nadir; Benedetti, Marc; Dairou, Julien; Prinzhofer, Alain
2015-04-01
Laboratory experiments were conducted to investigate the chemical processes governing the carbon speciation associated to hydrothermal decomposition of siderite. Experiments were carried out in sealed gold capsules using synthetic siderite and deionised water. The samples were reacted at 200 and 300 °C, under a pressure of 50 MPa. Siderite dissolved to reach the 3FeCO3 + H2O = Fe3O4 + 3CO2 + H2 equilibrium and magnetite, Fe3O4, was produced accordingly. The gas phase was dominated by CO2, H2 and CH4, the latter being in strong thermodynamic disequilibrium with CO2. Contrary to the other gas products, H2 concentration was found to decrease with run duration. TEM observations showed the occurrence of condensed carbon phases at the surfaces of magnetite and residual siderite grains. Thermodynamic calculations predict the formation of condensed carbon in the experiments according to the reaction: CO2 + 2H2 ⇒ C + 2H2O, which accounted for the observed H2 concentration decrease up to the point where H2 and CO2 activities were buffered by the graphite-siderite-magnetite assemblage. The well-organized structure of the carbon coating around magnetite emphasizes the high catalytic potential of magnetite surface for carbon reduction and polymerization. The formation of such C-rich phases may represent a potential source of CH4 by hydrogenation. On the other hand, the catalysis of Fischer-Tropsch type reactions may be poisoned by the presence of carbon coating on mineral surfaces. In any case, this study also demonstrates that abiotic H2 generation by water reduction, widely studied in recent years in ultrabasic contexts, can also occur in sedimentary contexts where siderite is present. We show that, in the latter case, natural H2 concentration will be buffered by a condensed carbon phase associated with magnetite.
Siderite concretions: indicators of early diagenesis in the Gammon shale (Cretaceous).
Gautier, D.L.
1982-01-01
The Gammon member of the Pierre shale of the northern Great Plains, USA, contains abundant siderite concretions. The relative depth and time of siderite precipitation can be inferred from the structure, mineralogy and isotopic composition of these concretions. Concretions that formed at shallow depths, early in the history of the sediment, contain a high percentage (75-85%) of carbonate, preserve uncompacted structures and have oxygen isotopic ratios similar to that of sea-water. In contrast, concretions that formed later and/or at greater depths have lower carbonate content and lower 18O/16O ratios. Concretions in rapidly deposited sediments formed at shallow depths (<10 m), and those in sediments that accumulated slowly formed at greater depths. These differences agree with the fossil evidence. Siderite did not form until nearly all the dissolved sulphur had been reduced and precipitated as pyrite; the excess organic matter produced methane at about the same time.-H.R.B.
NASA Astrophysics Data System (ADS)
Antoshkina, A. I.; Ryabinkina, N. N.
2018-02-01
Complex modern micro- and spectroscopic methods for study of siderite concretions in the Lower Carboniferous terrigenous strata on the Kozhym River (Subpolar Urals) have shown that its formation was caused by destruction of clay minerals due to the activity of bacterial communities. The abundance of these bacteria was caused by gas-fluid seeps and bacterial methanogenesis processes in bottom deposits. In basins with normal marine fauna, this led to local desalination, hydrogen sulfide contamination, mass collapse of primary organisms, and the development of element-specific bacteria. The occurrence of these bacteria caused the formation of specific authigenic mineralization in the concretion of sideritic bacteriolites: the framboidal pyrite, sphalerite, galenite, barite, sulfoselenides, and tellurides.
2011-02-01
cuprite [Cu2O], hematite [Fe2O3], ilmenite [FeTiO3], magnesite [MgCO3], malachite [Cu2(CO3)(OH)2], pyrite [FeS2], pyrolusite [MnO2], siderite [FeCO3...0.3 m2/g], malachite [3.65 ± 0.03 m2/g], pyrite [2.12 ± 0.01 m2/g], pyrolusite [1.39 ± 0.04 m2/g], siderite [6.8 ± 0.4 m2/g], willemite [1.8 ± 0.02 m2...0.4 0.6 0.8 1 0 10 20 30 40 50 60 Anatase Bauxite Calcite Cobaltite Control Cuprite Hematite Ilmenite Magnesite Malachite Pyrite Pyrolusite Siderite
Formation and decomposition of siderite for CO2 treatment
NASA Astrophysics Data System (ADS)
Y Mora, E.; Sarmiento, A.; Vera, E.; Drozd, V.; Durigyn, A.; Saxena, S.
2017-12-01
In this research work, we studied the conditions for formation and decomposition of siderite FeCO3 from hematite Fe2O3 along with carbon dioxide CO2 at suitable thermodynamic conditions. As reductant agents were used mixtures of two elements, metallic iron and graphite. Best levels of carbonation were found in mixtures with bigger amounts of metallic iron. It was demonstrated that CO2 capture capacity by hematite depends of temperature, CO2 pressure, and reaction time. Temperatures between 100 and 150°C, pressures between 10 and 30bar and reaction times between 1 and 4h were adjusted for analyse the carbonation behaviour; siderite formation was improved by increases of these three variables. There was no carbonation without water in the mixtures, due to kinetic limitations. CO2 capture capacity was calculated from Rietveld refinement results. Using vacuum system and Dielectric Barrier Discharge, DBD plasma, the siderite was decomposed at 300°C, and 320°C respectively. Techniques as X-ray diffraction, and surface area analysis were employed to study the material.
Pressure driven spin transition in siderite and magnesiosiderite single crystals.
Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max
2017-11-28
Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.
NASA Technical Reports Server (NTRS)
Bell, Mary Sue
2007-01-01
Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of siderite as well.
NASA Astrophysics Data System (ADS)
Baumann, Lydia; Birgel, Daniel; Wagreich, Michael; Peckmann, Jörn
2015-04-01
Carbonate concretions from two distinct settings have been studied for their petrography, stable carbon and oxygen isotopes, and lipid biomarker content. Carbonate concretions are in large part products of microbial degradation of organic matter, as for example by sulfate-reducing bacteria, iron-reducing bacteria, and methanogenic archaea. For these prokaryotes certain lipid biomarkers such as hopanoids, terminally-branched fatty acids (bacteria) and isoprenoids (archaea) are characteristic. Two different types of concretions were studied: a) Upper Miocene septarian calcite concretions of the southern Vienna Basin embedded in brackish sediments represented by partly bituminous calcareous sands, silts and clays; b) Paleocene-Eocene siderite concretions enclosed in marine, sandy to silty turbidites with varying carbonate contents and marl layers from the Upper Gosau Subgroup in northern Styria. Calcite concretions consist of abundant calcite microspar (80-90 vol.%), as well as detrital minerals and iron oxyhydroxides. The septarian cracks show beginning cementation with dog-tooth calcite to varying degrees. Framboidal pyrite occurs in some of the calcite concretions, pointing to bacterial sulfate reduction. Siderite concretions consist of even finer carbonate crystals, mainly siderite (40-70 vol.%) but also abundant ferroan calcite, accompanied by iron oxyhydroxides and detrital minerals. The δ13C values of the calcite concretions (-6.8 to -4.1o ) most likely reflect a combination of bacterial organic matter oxidation and input of marine biodetrital carbonate. The δ18O values range from -8.9 to -7.8o agreeing with a formation within a meteoric environment. The surrounding host sediment shows about 1-2o higher δ13C and δ18O values. The siderite δ13C values (-11.1 to -7.5o ) point to microbial respiration of organic carbon and the δ18O values (-3.5 to +2.2o ) agree with a marine depositional environment. In contrast to the calcite concretions, the stable isotope composition of the host sediment differs significantly from the siderite concretions. The δ13C values of the Gosau host sediment reflect marine conditions, whereas the oxygen isotope values are best explained by meteoric overprint. Lipid biomarkers have been extracted before and after dissolution of the concretions in order to assess their authenticity and to exclude recent surface contamination. In the following, only the biomarkers extracted after dissolution are discussed, since they are thought to be related to concretion formation. The calcite concretions comprise abundant plant wax derived long-chain n-alkanes, reflecting high terrestrial input. Bacterial, terminally-branched fatty acids were found, but in overall low abundance. The siderite concretions did not yield biomarkers due to their high maturity. No archaeal biomarkers were found in any of the concretions. Considering the presence of framboidal pyrite, the moderately low δ13C values, and the biomarker inventory, bacterial sulfate reduction apparently contributed to the formation of the calcite concretions in a brackish environment. In contrast, ongoing sulfate reduction and resultant hydrogen sulfide production inhibit siderite precipitation. Therefore, the low δ13C values of the siderite concretions are best explained by bacterial iron reduction.
Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.
2012-11-25
Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending upmore » to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.« less
NASA Technical Reports Server (NTRS)
Morris, RIchard V.
2002-01-01
A biogenic mechanism for formation of a subpopulation magnetite in Martian meteorite ALH84001 has been suggested [McKay et al., 1996; Thomas-Keprta, et al., 2000]. We are developing experimental evidence for an alternating working hypothesis, that the subpopulation was produced inorganically by the thermal decomposition of siderite [Golden et al., 2000].
Zodrow, E.L.; Lyons, P.C.; Millay, M.A.
1996-01-01
The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.
NASA Astrophysics Data System (ADS)
Zhao, Shiqiang; Yu, Yue; Wei, Shanshan; Wang, Yuxi; Zhao, Chenhao; Liu, Rui; Shen, Qiang
2014-05-01
Natural siderite is a valuable iron mineral composed of ferrous carbonate (FeCO3), which is commonly found in hydrothermal veins and contains no sulfur or phosphorus. In this paper, micro-sized FeCO3 crystallites are synthesized via a facile hydrothermal route, and almost all of them possess a rhombohedral shape similar to that of natural products. When applied as an anode material for lithium ion batteries, the synthetic siderite can deliver an initial specific discharge capacity of ∼1587 mAh g-1 with a coulombic efficiency of 68% at 200 mA g-1, remaining a reversible value of 1018 mAh g-1 over 120 cycles. Even at a high current density of 1000 mA g-1, after 120 cycles the residual specific capacity (812 mAh g-1) is still higher than the theoretical capacity of FeCO3 (463 mAh g-1). Moreover, a novel reversible conversion mechanism accounts for the excellent electrochemical performances of rhombohedral FeCO3 to a great extent, implying the potential applicability of synthetic siderite as lithium ion battery anodes.
Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories
Garcia, S.; Rosenbauer, Robert J.; Palandri, James L.; Maroto-Valer, M. Mercedes
2012-01-01
Iron oxyhydroxide, goethite (α-FeOOH), was evaluated as a potential formation mineral reactant for trapping CO2 in a mineral phase such as siderite (FeCO3), when a mixture of CO2-SO 2 flue gas is injected into a saline aquifer. Two thermodynamic simulations were conducted, equilibrating a CO2-SO2 fluid mixture with a NaCl-brine and Fe-rich rocks at 150 °C and 300 bar. The modeling studies evaluated mineral and fluid composition at equilibrium and the influence of pH buffering in the system. Results show siderite precipitates both in the buffered and unbuffered system; however, the presence of an alkaline pH buffer enhances the stability of the carbonate. Based on the model, an experiment was designed to compare with thermodynamic predictions. A CO2-SO2 gas mixture was reacted in 150 ml of NaCl-NaOH brine containing 10 g of goethite at 150 °C and 300 bar for 24 days. Mineralogical and brine chemistry confirmed siderite as the predominant reaction product in the system. Seventy-six mg of CO2 are sequestered in siderite per 10 g of goethite.
Structure of siderite FeCO[subscript 3] to 56 GPa and hysteresis of its spin-pairing transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavina, Barbara; Dera, Przemyslaw; Downs, Robert T.
2010-09-17
The structure of siderite, FeCO{sub 3}, was determined to 56 GPa, beyond the spin-pairing transition of its iron d electrons. Fe{sup 2+} in the siderite structure is in the high-spin state at low pressures and transforms to the low-spin (LS) state over a narrow pressure range, 44 to 45 GPa, that is concomitant with a shrinkage of the octahedral bond distance by 4%, and a volume collapse of 10%. The structural rearrangements associated with the electronic transition are nearly isotropic in contrast with other properties of siderite, which mostly are highly anisotropic. Robust refinements of the crystal structure from single-crystalmore » x-ray diffraction data were performed at small pressure intervals in order to accurately evaluate the variation in the interatomic distances and to define the geometry of the carbonate hosting LS-Fe{sup 2+}. Thermal vibrations are remarkably lowered in the LS-Sd as shown by atomic displacement parameters. The formation of like-spin domains at the transition shows a hysteresis of more than 3 GPa, compatible with a strong cooperative contribution of neighboring clusters to the transition.« less
NASA Technical Reports Server (NTRS)
McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.
2009-01-01
The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.
NASA Astrophysics Data System (ADS)
Vuillemin, Aurele; Kallmeyer, Jens; Wagner, Dirk; Kemnitz, Helga; Wirth, Richard; Luecke, Andreas; Mayr, Christoph
2016-04-01
Authigenic minerals in lacustrine settings can be formed in the water column and within the sediment, abiotically and/or triggered by biological activity. Such minerals have been used as paleosalinity and paleoproductivity proxies, reflecting trophic state, and/or early diagenetic conditions. They have also been considered as potential biosignatures of past and present microbial activity. Here we present a study from Lake Towuti, a deep tectonic basin in Sulawesi, Indonesia. Its geographic position makes it a prime location to record paleoclimatic changes in the tropical Western Pacific warm pool in its sedimentary sequence. The ultramafic rocks and surrounding lateritic soils in the catchment area supply considerable amounts of iron and other metals to the lake. These elements further restrain primary productivity along with the development of specific microbial metabolic pathways involved in early diagenesis. Lake Towuti is stratified with anoxic conditions below 130 m, allowing metal reduction processes to take place in the hypolimnion. The extreme scarcity of sulphate and nitrate/nitrite make Lake Towuti's bottom waters a modern analogue for the Archaean Ocean. It was therefore chosen as a drilling target by the International Continental Drilling Program (ICDP). In May to July 2015, the Towuti Drilling Project recovered a total >1000 m of sediment core from three drilling sites, including a 114 m long core drilled with a contamination tracer dedicated to geomicrobiological studies. Heavy mineral fractions were extracted from core catcher samples and siderite crystals (FeCO3) were selected from different depths. Characterization of their habitus was achieved via SEM and TEM imaging. Preliminary results show that siderites grow from amorphous into nanocrystalline phases and form twinned aggregates developing into mosaic monocrystals with depth. Gradual filling of vugs and microporosity were observed along with inclusions of magnetite nanocrystals. Work in progress includes parallel δ13C measurements on bulk organic matter (OM) surrounding the minerals and on the siderites themselves to trace organic to inorganic carbon transfer associated with microbial respiration of OM and infer possible relationships to methane oxidation processes. Analysis of δ56Fe compositions will complement this dataset to highlight the role of dissimilatory Fe (III) reduction in siderite formation. We hypothesize that sedimentary siderite is formed by precipitation from pore water due to saturation resulting from microbial OM and iron respiration processes. A similar approach will be applied to vivianite crystals (Fe3(PO4)3ṡ8H2O) that were found concomitantly with siderite in sedimentary horizons intercalated with tephra layers.
Kettler, R.M.; Rye, R.O.; Kesler, S.E.; Meyers, P.A.; Polanco, J.; Russell, N.
1992-01-01
The Pueblo Viejo district, located in the Cordillera Central of the Dominican Republic, contains large Au-Ag deposits associated with acid-sulfate alteration within spilites, conglomerates and carbonaceous sedimentary rocks that were deposited in a maar-diatreme complex. Much of the Au mineralization occurs in pyritic, carbonaceous siltstones of the Pueblo Viejo Maar-Diatreme Member of the Cretaceous Los Ranchos Formation. Pyrite is the only Fe-bearing phase in mineralized rock, whereas siderite is the dominant Fe-bearing phase in siltstones distal to mineralization. Disseminated pyrite occurs as framboids, cubes, pyritohedra, concretions and cement. Early framboids occur throughout the district. Au occurs as inclusions in later non-framboid disseminated pyrite (NFDP); an occurrence that is interpreted to be indicative of contemporaneous deposition. Pyrite framboids exhibit a wide range of ??34Scdt-values (-17.5 to +4.8???) and are interpreted to have formed during biogenic reduction of pore-water sulfate. The NFDP yield restricted ??34Scdt-values ( x ?? = -5.2???, s = ??2.4???, n = 43) similar to those obtained from later vein pyrite ( x ?? = -6.4???, s = ??1.5???, n = 12). Alunite and barite have ??34S-values ranging from +18.8 to +21.6???. The interpretation that the NFDP, vein pyrite, alunite and barite, and possibly even the framboidal pyrite share a common source of igneous sulfur is supported by the ??34S data. Siderite occurs as concretions and cement, contains abundant Mg (Fe0.75Mg0.19Mn0.03Ca0.02CO3) and has ??13Cpdb- and ??18Osmow-values ranging from -2.5 to +1.1%. and +14.6 to +19.5???, respectively. These data are consistent with the interpretation that the siderite formed in lacustrine sediments and that the carbonate in the siderite is probably methanogenic, although contributions from oxidation of organic matter during biogenic sulfate reduction, thermal decarboxylation of organic matter, or magmatic vapor cannot be ruled out. Disseminated Au mineralization in the sedimentary rocks formed when a hydrothermal fluid encountered reactive Fe2+ in diagenetic siderite. The ensuing pyrite deposition consumed H2S and destabilized the Au (HS)-2 complex, leading to precipitation of Au. The capacity of the sedimentary rocks to consume H2S and precipitate Au was controlled by the amount of non-pyrite Fe present as siderite. The abundance of siderite was controlled by the extent of pyrite formation during diagenesis. ?? 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sungtae; Marrs, Cassandra; Nemer, Martin
Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less
Kim, Sungtae; Marrs, Cassandra; Nemer, Martin; ...
2017-11-20
Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2(s)), hibbingite (Fe 2Cl(OH) 3(s)), siderite (FeCO 3(s)), and chukanovite (Fe 2CO 3(OH) 2(s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2(s) was observed in the experiments that were initiated with Fe 2Cl(OH) 3(s) in Na 2SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2COmore » 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2(s) and Fe 2Cl(OH) 3(s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3) 2 –2. Five Pitzer interaction parameters were derived in this paper: β (0), β (1), and C φ parameters for the species pair Fe +2/SO 4 –2; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).« less
Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts
NASA Astrophysics Data System (ADS)
Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore
2016-09-01
To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.
Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska
Dickinson, K.A.
1988-01-01
Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.
Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M
2016-11-01
Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ 34 S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ 13 C and δ 18 O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of 13 C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek. © 2016 John Wiley & Sons Ltd.
Experimental Shock Decomposition of Siderite to Magnetite
NASA Technical Reports Server (NTRS)
Bell, M. S.; Golden, D. C.; Zolensky, M. E.
2005-01-01
The debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures > 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.
NASA Technical Reports Server (NTRS)
Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.
1990-01-01
The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic sparites are most depleted in 13C. Carbonates in oxide-rich iron-formations are more depleted in 13C than those in siderite-rich iron-formation whereas the kerogens in oxide banded iron-formations (BIF) are more enriched. This implies that the siderite-rich iron-formations were not derived from oxide-rich iron-formation through reduction of ferric iron by organic matter. Organic matter oxidation by ferric iron did, however, decrease the abundance of kerogen in oxide-rich iron-formation and led to the formation of isotopically very light sparry carbonates. Siderite and calcmicrosparite both represent recrystallized primary micritic precipitates but differ in their 13C composition, with the siderites depleted in 13C by 4.6 per mil on average relative to calcmicrosparite. This means that the siderites were precipitated from water with dissolved inorganic carbon depleted in 13C by about 9 per mil relative to that from which the limestones precipitated. This implies an ocean system stratified with regard to total carbonate, with the deeper water, from which siderite-rich iron-formation formed, depleted in 13C. Iron-formations were deposited in areas of very low organic matter supply. Depletion of 13C may, therefore, derive not from degradation of organic matter but from hydrothermal activity, a conclusion which is supported by 18O composition of the carbonate minerals and trace element and rare earth element (REE) compositions of the iron-formations.
Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K.
Robie, R.A.; Haselton, H.T.; Hemingway, B.S.
1984-01-01
The heat capacities of rhodochrosite, (Mn0.994Fe0.005Mg0.001)CO3, and siderite, 171(Fe0.956Mn0.042Mg0.002)CO3, were measured between 5 and 550 K by combined cryogenic-adiabatic and differential scanning calorimetry. These new data were used to reanalyse the thermodynamic properties of these phases.-J.A.Z.
Hydrothermal alteration of felsic volcanic rocks at the Helen Siderite Deposit, Wawa, Ontario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, R.L.; Nebel, M.L.
1984-09-01
Felsic lavas and pyroclastic rocks, underlying the Archean Helen iron-formation, have been variably altered by hydrothermal solutions which, when discharged onto the sea floor, formed the Helen siderite deposit. Within the footwall volcanic sequence five chemically and mineralogically distinct alteration types have been defined: least altered, sericite, chlorite chloritoid, and ankerite. Based on mineralogy and chemistry of the altered rocks and on the geometry of the alteration zones, an alteration model is proposed.
NASA Astrophysics Data System (ADS)
Laenen, B.; De Craen, M.
2004-01-01
Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.
NASA Astrophysics Data System (ADS)
Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi
2017-07-01
The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.
Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides
Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.
2013-01-01
Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945
NASA Astrophysics Data System (ADS)
Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.
2015-10-01
Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Susana; Liu, Q.; Bacon, Diana H.
2014-08-26
Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changesmore » and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.« less
Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin
2014-01-01
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Ferric iron in sediments as a novel CO2 mineral trap: CO 2-SO2 reaction with hematite
Palandri, J.L.; Rosenbauer, R.J.; Kharaka, Y.K.
2005-01-01
Thermodynamic simulations of reactions among SO2-bearing CO 2-dominated gas, water and mineral phases predict that Fe III in sediments should be converted almost entirely to dissolved FeII and siderite (FeCO3), and that SO2 should simultaneously be oxidized to dissolved sulfate. The reactions are however, subject to kinetic constraints which may result in deviation from equilibrium and the precipitation of other metastable mineral phases. To test the prediction, a laboratory experiment was carried out in a well stirred hydrothermal reactor at 150??C and 300 bar with hematite, 1.0 m NaCl, 0.5 m NaOH, SO2 in quantity sufficient to reduce much of the iron, and excess CO2. The experiment produced stable siderite and metastable pyrite and elemental S. Changes in total dissolved Fe are consistent with nucleation of pyrite at ???17 h, and nucleation of siderite at ???600 h. Dissolution features present on elemental S at the conclusion of the experiment suggest nucleation early in the experiment. The experiment did not reach equilibrium after ???1400 h, as indicated by coexistence of hematite with metastable pyrite and elemental sulfur. However, the results confirm that FeIII can be used to trap CO2 in siderite if partly oxidized S, as SO2, is present to reduce the Fe with CO2 in the gas phase. ?? 2005 Elsevier Ltd. All rights reserved.
Earliest Life on Earth - New Data Call for Revision
NASA Astrophysics Data System (ADS)
van Zuilen, M.; Lepland, A.; Arrhenius, G.
2001-12-01
The highly metamorphosed 3.8 Ga old Isua Supracrustal Belt (ISB) in southern West Greenland contains the most widely studied example of ancient Archaean water-lain sediments that carry traces of ancient life. Carbonate deposits in the ISB were originally interpreted as primary platform deposits in a shallow marine environment. Graphite occurring in relatively high concentrations and associating with apatite in these rocks has been interpreted as a remnant of ancient biogenic matter, pointing to the existence of a vast microbial ecosystem in the early Archaean (1,2) Recent discoveries, however, cast considerable doubt on this scenario. The ISB metacarbonates are now found to be secondary deposits, resulting from extensive metasomatism (3,4). The apatite-associated occurrence of graphite, forming the basis for earlier biogenic interpretation, is entirely restricted to these metasomatic carbonate deposits, while true sediments like BIF's and metacherts contain virtually no graphite. Furthermore, within these metacarbonates graphite appears to be specifically associated with iron carbonate (siderite) and magnetite. Thermal decomposition of siderite; 6 FeCO3 ' 2Fe3O4 + 5CO2 + C, is the process seemingly responsible for the graphite formation (5,6). The cation composition (Fe, Mg, Mn, and Ca) of the carbonate minerals, carbon isotope analysis of carbonates and associated graphite and petrographic analysis of a suite of metacarbonates support the conclusion that multiple pulses of metasomatism affected the ISB, causing the deposition of siderite and subsequent partial degradation to graphite and magnetite. Equilibrium isotope fractionation between siderite and graphite in these rocks indicates a temperature of metasomatism between 500 and 600C, which coincides with other estimates of metamorphic temperature for the ISB. The siderite-graphite-apatite association in the ISB consequently appears to be an entirely abiogenic metasomatic feature, which does not point to traces of an ancient Early Archaean ecosystem. An exception to this general observation is a locality in the western part of the ISB, where isotopically light graphite occurs in sequences of graded beds, seemingly representing cyclic turbidites (7). The absence of siderite and/or magnetite makes it clear that inorganic formation of graphite by siderite dissociation can not be the source of carbon in these metasediments This particular formation is thus likely to contain the only currently verified remnant of Archaean life in the ISB with an age of 3.8 Ga. (1). Mojzsis,S.J, .Arrhenius,G., McKeegan, K.D.,.Harrison, T.M.,.Nutman, A.P & C.R.L.Friend.,1996. Nature 384: 55 (2) Schidlowski, M., Appel, P.W.U., Eichmann, R. & Junge, C.E., 1979. Geochim. Cosmochim. Acta 43: 189-190. (3). Rose, N.M., Rosing, M.T. & Bridgwater, D., 1996. Am. J. Sci. 296: 1004-1044. (4). Rosing, M.T.,Rose, N.M.,Bridgwater, D. & Thomsen, H.S., 1996. Geology 24: 43-46. (5). Perry, E.C. & Ahmad, S.N., 1977. Earth Planet. Sci. Lett. 36: 280-284. (6). Van Zuilen, M., Matthew, K., Marti,K., & Arrhenius,G.,1999. Abstract A173, AGU Fall Meeting, San Francisco, CA, Dec. 1999. (7). Rosing, M.T., 1999. Science 283: 674-676.
Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry
NASA Technical Reports Server (NTRS)
Bell, M. S.; Lin, I.-C.; McKay, D. S.
2000-01-01
Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx. 600 C experienced by ALH84001. Here, we report thermal and compositional characterization of unshocked siderite and its transition to magnetite. Additional information is contained in the original extended abstract.
Did an Impact Make the Mysterious Microscopic Magnetite Crystals in ALH 84001?
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2007-10-01
Fervent debate swirls around microscopic crystals of magnetite (Fe3O4) in Martian meteorite ALH 84001. Some investigators suggest that the crystals are evidence of past life on Mars, citing magnetite crystals of similar chemical compositions and sizes made by magnetotactic bacteria on Earth. Others cite assorted experiments and observations to argue that the important little crystals formed entirely by non-biological processes, hence say nothing about life on Mars. One of those processes is the decomposition of iron carbonate (the mineral siderite), which occurs in ALH 84001. Researchers argue that heating this mineral causes it to decompose into magnetite and CO2 gas. Experiments showing this were done by heating siderite and observing that it decomposed and formed magnetite, but nobody had shock-heated siderite to see if magnetite crystals formed. (Shock is a rapid, strong rise and fall in pressure. It happens under many circumstances, including meteorite impacts.) The lack of shock experiments has been solved by Mary Sue Bell (University of Houston and Jacobs Engineering). She experimentally shocked samples of siderite at the Experimental Impact Laboratory at the Johnson Space Center. She shows that magnetite crystals of the right size and composition formed when samples were shocked to 49 GPa (about 500,000 times the pressure at the Earth's surface). This is more evidence for a non-biological origin for the magnetite crystals in ALH 84001 and is consistent with what we know about the impact history of the rock. There seems to be growing evidence against a biological origin, but don't expect these results to completely settle the debate!
Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control
Morgan, J.W.; Wandless, G.A.
1980-01-01
Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambers, C.P.
1993-03-01
Sphalerite is associated with very well crystallized kaolinite (VWCK) in geodes, siderite nodules and coal cleats in the Illinois Basin and allows estimation of the temperature of formation of the VWCK using fluid inclusions. The approximate depth of kaolinite growth and the relative timing of coal fracturing can then be ascertained. Sphalerite associated with VWCK was extracted from Mississippian geodes collected near Keokuk, Iowa, and from Pennsylvanian siderite nodules and coal collected in SW Indiana. Inclusions in the sphalerite consist of VWCK; large, negative crystal, two-phase fluid inclusions; small, fracture-related, two-phase fluid inclusions; and organic inclusions. Homogenization temperatures of 89more » C [+-] 10, 115 C [+-] 15, 89 C [+-] 5 were measured for the two-phase inclusions in sphalerite from the geodes, siderite nodules and coal, respectively. Freezing temperatures of the inclusions in the geode and siderite nodule sphalerite were measured at [minus]13.5 C [+-] 0.5 and [minus]9.4 C [+-] 0.2, indicating moderate salinity. Using a geothermal gradient range of 23--36 C/km and an average surface temperature of 20 C, kaolinite and sphalerite probably grew at depths of about 1.9 to 4.1 km. In SW Indiana, VWCK occurs in vertical, non-penetrative joints in vitrinite layers. Penetrative joint sets rarely contain VWCK. At nearly all of the 28 sites studied, two sets of barren cleats occur oriented N10W to NSE and N80E to N95E. The orientation of barren, penetrative cleats shows that the maximum horizontal stress rotated CW from the earlier stress field. Rare VWCK in the late cleats suggests they also formed at depth after the thermal maxima.« less
NASA Astrophysics Data System (ADS)
van Dijk, J.; Fernandez, A.; Müller, I.; White, T. S.; Bernasconi, S. M.
2016-12-01
The Early Eocene (56 Ma) is the youngest period of Earth's history when CO2 concentrations in the atmosphere (600-1500 ppm) reached levels close to those predicted for future emission scenarios. Proxy-based climate reconstructions from this interval can therefore be used to gain insights on effects that anthropogenic emissions might have on the climate system. So far, Early Eocene climatic data is limited to the oceans, where proxies for temperature are abundant and relatively well understood. However, in order to get a complete picture of the Early Eocene climate, temperature and rainfall reconstructions on the continental paleo-surface are needed. Here, we present clumped and stable oxygen isotope measurements of siderite samples collected along a North-South transect in the North American Continent. These siderites formed in kaolinitic soils that developed globally under the extremely wet and warm conditions of the Early Eocene. They provide a record of both soil temperature and the δ18O composition of meteoric water, which can be used to unravel the regional paleo-precipitation rate. Both parameters were estimated using an elaborate in-house calibration constructed with synthetic siderite precipitated in the presence or absence of iron reducing bacteria. Measurements of δD on plant-derived N-alkanes present within the same soils align well with our δ18Owater data, confirming an Early Eocene meteoric water line similar to the present day. We provide an estimate of the meridional temperature gradient during the Early Eocene and offer constraints on the boundary conditions of the Earth's hydrologic cycle under high pCO2.
Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures
Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes
2011-01-01
Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.
NASA Astrophysics Data System (ADS)
Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.
2015-11-01
The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic compositions of C, O, and S in fluids and their REE patterns suggest that magmatic components are predominant. Metamorphic H2O, CO2, and occasionally CH4 are derived from the apical part of a hidden intrusion, whereas sulfur is delivered from country rocks as a result of heating.
Cravotta,, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.
1994-01-01
A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate with concentrations of total sulfur in spoil. This lack of correlation could indicate that total sulfur concentrations in spoil do not reflect the amount of reactive pyrite or that oxidation rates can be controlled more by rates of O2 diffusion than the amount of pyrite. Hence, if placed in O2-rich zones near the land surface, even small amounts of disseminated pyritic material can be relatively significant sources of acid and mineralized water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.
2013-04-01
Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotopemore » mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.« less
Rividi, Nicolas; van Zuilen, Mark; Philippot, Pascal; Ménez, Bénédicte; Godard, Gaston; Poidatz, Emmanuel
2010-04-01
Stromatolite structures in Early Archean carbonate deposits form an important clue for the existence of life in the earliest part of Earth's history. Since Mars is thought to have had similar environmental conditions early in its history, the question arises as to whether such stromatolite structures also evolved there. Here, we explore the capability of Raman spectroscopy to make semiquantitative estimates of solid solutions in the Ca-Mg-Fe(+Mn) carbonate system, and we assess its use as a rover-based technique for stromatolite characterization during future Mars missions. Raman microspectroscopy analysis was performed on a set of carbonate standards (calcite, ankerite, dolomite, siderite, and magnesite) of known composition. We show that Raman band shifts of siderite-magnesite and ankerite-dolomite solid solutions display a well-defined positive correlation (r(2) > 0.9) with the Mg# = 100 x Mg/(Mg + Fe + Mn + Ca) of the carbonate analyzed. Raman shifts calibrated as a function of Mg# were used in turn to evaluate the chemical composition of carbonates. Raman analysis of a suite of carbonates (siderite, sidero-magnesite, ankerite, and dolomite) of hydrothermal and sedimentary origin from the ca. 3.2 Ga old Barite Syncline, Barberton greenstone belt, South Africa, and from the ca. 3.5 Ga old Dresser Formation, Pilbara Craton, Western Australia, show good compositional agreement with electron microprobe analyses. These results indicate that Raman spectroscopy can provide direct information on the composition and structure of carbonates on planetary surfaces.
NASA Astrophysics Data System (ADS)
Liang, Wen; Yin, Yuan; Li, Zeming; Li, Rui; Li, Lin; He, Yu; Dong, Haini; Li, Zengsheng; Yan, Shuai; Zhai, Shuangmeng; Li, Heping
2018-03-01
Single crystals of impurity-free siderite were grown successfully using high-temperature-pressure annealing. The size of crystals ranged up to 100 µm, and they exhibited a rhomboid shape upon cleavage along the (101) plane. The composition of Fe0.9988±0.0011CO3 was quantified using electron probe analysis. Accurate crystalline structural data were investigated by means of single crystal X-ray diffraction (XRD) and the unit cell dimensions obtained in the rhombohedral symmetry of the R\\bar {3}c space group were a = 4.6861(3) and c = 15.362(2), and the final R = 0.0499. Using in situ synchrotron XRD, the high-pressure behavior of impurity-free siderite was investigated up to 20 GPa at ambient temperature. The pressure-volume (P-V) EoS was fitted by a third-order Birch-Murnaghan equation, and the isothermal bulk modulus was K 0 = 97.5(11) GPa for K 0' = 4. High-pressure Raman spectroscopy was performed at up to 30 GPa at ambient temperature, and the Raman bands shifted as the increase of pressure ({{d/ν _i}}{{{d}P}} ) was determined. In combination with the high-pressure Raman results and the bulk modulus K 0, the mode Grüneisen parameters of each vibration were calculated. Meanwhile, high-temperature Raman spectroscopy was carried out at up to 300 °C and the Raman band shift ({{d/ν _i}}{{{d}t}} ) was also quantified.
Iron isotope fractionation during hydrothermal ore deposition and alteration
NASA Astrophysics Data System (ADS)
Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas
2006-06-01
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.
MN Carbonates in the Martian Meteorite Nakhla: Possible Evidence of Brine Evaporation
NASA Technical Reports Server (NTRS)
Bailey, J. V.; McKay, D. S.; Wentworth, S. J.
2003-01-01
The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of 170 C.
d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M
2013-12-17
The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.
NASA Astrophysics Data System (ADS)
Lavina, B.; Dera, P. K.; Downs, R. T.
2009-12-01
Phases in the Fe-C-O system are of interest for the deep carbon cycle, they might play an important role in buffering the mantle fO2. Carbon is also common in the fluid phases that greatly influence the Earth’s processes. The study of the high pressure behavior of siderite and of the phases synthesized after laser heating offers a good opportunity to illustrate the advantages and importance of single crystal diffraction in the high pressure science. The structure of siderite, FeCO3, has been refined up to 54 GPa across the spin pairing transition. Splitting of the diffraction peaks at the transition pressure provides unequivocal evidence of the sharpness of the spin crossover and of the absence of any intermediate volume and therefore of an intermediate spin state at ambient temperature. Diffraction intensities were collected in about 30 minutes at a bending magnet station (HPCAT, APS) and in about one minute at an insertion device station (GSECARS, APS). The quality of the refinement is unvaried in the investigated range, and the results obtained from the two different radiation and detectors are consistent. The refinements provide an accurate and robust determination of the dependence of bond distances and angles with pressure. Subtle structural rearrangements associated with the collapse of the octahedral cation size will be discussed. In situ laser heating is a very powerful method to study minerals at the actual P-T of the Earth’s deep interior. Overcoming the kinetic barriers required for bond breaking and atom diffusion, high pressure-high temperature phases may be synthesized. The analysis of high-pressure phases is very challenging. Diffraction patterns are usually of moderate quality and resolution, furthermore in addition to the sample, the pattern contains the contribution of other phases such as those used to insulate the anvils, to provide a pressure medium and a pressure marker. In several cases after laser heating, we observed phase transitions and growth of large crystallites, here the contribution of different phases could be better distinguished by analyzing the 3-dimensional distribution in the reciprocal space of the diffraction peaks. Laser heating experiments in the Fe-C-O system were conducted in the pressure range 20-140 GPa. The siderite stability field seems narrower than the previous investigations suggested. At least one of the extracted single crystal phases provides evidence of oxidation-reduction reactions.
NASA Astrophysics Data System (ADS)
Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor
2018-02-01
The majority of hydrothermal vein systems of economic interest occur at relatively shallow crustal levels, although many of them formed at significantly greater depths. Their present position is a consequence of uplift and erosion. Although, many aspects of their formation are well constrained, the temporal chemical evolution of such systems during uplift and erosion is still poorly understood. These vein minerals comprise calcite, dolomite-ankerite, siderite-magnesite, anhydrite and gypsum forming the last gangue assemblages in Jurassic and Tertiary sulphide-fluorite-quartz-barite veins of the Schwarzwald mining district, SW Germany. Mineral textures of samples from nine localities reveal that in these sequences, mineral precipitation follows a recurring pattern: early calcite is followed by anhydrite or gypsum, siderite and/or dolomite. This succession may repeat up to three times. In-situ (LA-ICP-MS) U-Pb age dating of 15 carbonates from three subsequent generations of the late-stage vein assemblage yield robust ages between 20 and 0.6 Ma. Each mineral sequence forms in a distinctive period of about 2-5 Ma. These ages clearly relate these late-stage mineral phases to the youngest geological episode of the Schwarzwald, which is associated with the Cenozoic Rhine Graben rifting and basement uplift. Based on thermodynamic modelling, the formation of the observed mineral assemblages required an deeply sourced Mg-, Fe- and SO4-rich fluid (b), which was episodically mixed with a shallow crustal HCO3-rich fluid (a). As a consequence of fluid mixing, concentrations of Mg, Fe and SO4 temporarily increased and initiated the formation of the observed sulphate-carbonate mineral sequences. This discontinuous large-scale vertical fluid mixing was presumably directly related to episodes of active tectonics associated with the Cenozoic strike-slip regime of the Upper Rhine Graben. Analogously, episodic fluid mixing is a major key in the formation of older (Jurassic to early Tertiary) Pb-Zn-fluorite-quartz-barite assemblages in the same specific vein systems, albeit involving different fluid compositions. Late-stage hydrothermal (∼20-70 °C) vein assemblages reported in this study record the transition from deep (>2 km) to very shallow (0-1 km) crustal conditions. As a consequence of successive uplift, increasing proportions of shallower and cooler (∼50-70 °C) fluids could take part in such mixing processes. Associated changes in the fluid composition caused the vein mineralogy to change from sulphide-quartz-fluorite-barite to calcite-anhydrite/gypsum-siderite-dolomite, as the system passively ascended closer to the surface.
Impact of dissolution and carbonate precipitation on carbon storage in basalt
NASA Astrophysics Data System (ADS)
Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.
2016-12-01
The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture opening 100 μm wide within 4-6 weeks.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Onoue, T.; Horie, K.; Sakamoto, R.; Teraji, S.; Aihara, Y.
2012-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The Dixon Island (3195+15 Ma) - Cleaverville (3108+13 Ma) formations formed volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling as DXCL1 at 2007 and DXCL2 at 2011, lithology was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. These sequences formed coarsening and thickening upward black shale-BIF sequences. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. Especially, CL3 core, which drilled through the Iron formation, shows siderite-chert beds above black shale identified before magnetite lamination bed. The magnetite bed formed very thin laminated bed with siderite lamination. This magnetite bed was covered by black shale beds again. New U-Pb SHRIMP data of the pyroclastic in black shale is 3109Ma. Estimated 2-8 cm/1000year sedimentation rate are identified in these sequences. Our preliminary result show that siderite and chert layers formed before magnetite iron sedimentation. The lower-upper sequence of organic carbon rich black shales are similar amount of organic content and 13C isotope (around -30per mill). So we investigate that the Archean iron formation, especially Cleaverville iron formation, was highly related by hydrothermal input and started pre-syn iron sedimentation at anoxic oceanic condition.
Geology and mineral deposits of the Hekimhan-Hasancelebi iron district, Turkey
Jacobson, Herbert S.; Kendiro'glu, Zeki; ,; Celil, Bogaz; ,; Onder, Osman; Gurel, Nafis
1972-01-01
An area of 210 sq km was investigated in the Hekimhan-Hasancelebi district. of central Turkey as part of the Maden Tetkik ve Arama Institusu(MTA)-U. S. Geological Survey(USGS) mineral exploration and training project to explore for iron deposits and to provide on-.the-job training for MTA geologists. The rocks of the area are Cretaceous and Tertiary sedimentary and volcanic rocks intruded by syenite and a serpentinized mafic and ultramafic complex and overlain unconformably by late .Tertiary basalt. The base of the section is a thick mafic volcanic-sedimentary sequence with diverse rocks that include conglomerate, sandstone, shale, tuff, limestone, and basalt. The upper part of the sequence is metasomatized near syenite contacts. The sequence is conformably overlain by trachyte and unconformably overlain by massive limestone. Overlying the limestone is a Tertiary sedimentary sequence which is dominantly conglomerate and sandstone with local limestone and volcanic rocks. This series is in turn overlain by olivine basalt. Mineral deposits are associated with the two types of intrusive rocks. Hematite-magnetite in the Karakuz mine area and in the Bahcedami-Hasancelebi area is related to the syenite, and siderite in the Deveci mine area is possibly related to the mafic-ultramafic rocks. Significant iron resources are found, only in the Karakuz and Deveci areas. In the Karakuz area disseminations, veins, and replacements consisting of hematite and magnetite are present. Most of the material is low grade. In the Deveci mine area a large deposit of siderite apparently is a replacement of carbonate beds adjacent to serpentinized igneous rock. The upper part of the siderite deposit is weathered and enriched to a mixture of iron and manganese oxides of direct shipping ore grade. Additional investigation of both the Karakuz and .Deveci mine areas is recommended including: 1. A detailed gravity and magnetic survey of part of the Karakuz area. 2. Diamond drilling at both the Karakuz and Deveci areas.
NASA Astrophysics Data System (ADS)
Tseng, Y.; Lin, S.; Hsieh, I. C.; Lien, K. L.
2016-12-01
Tsanyao mud volcano is a 400 meters high, 5 kilometers in diameter, a center crater of 50 meters width activing venting mud diapir. The gigantic size of mud volcano indicate massive transportation of material, i.e., gas, fluid, and breccia from deep to the sea floor in building up the mud volcano. The mud volcano is located at the upper slope of the accretionary wedge with a surrounding water depth of about xx m, offshore Southwestern Taiwan. On shore, a series of active mud volcanos also exist in a trend similar to those found offshore. In order to understand sources of gas, fluid, solid materials and the effect of gas migration and associate authigenic mineral formation, we have obtained multibeam bathymetry, water column echo sounding, together with sediment XRD and SEM and pore water composition of methane, sulfide, sulfate, chloride, potassium, lithium, boron, and water O-18 at the study mud volcano. We have observed more than 30 flares around the main cone within a perimeter of 10 square miles. δ13C values of methane in the pore water ranged from -30 to -50 ‰. The lower C13 ratios, together with high C2+/C1 ratios demonstrated that vent gas is mostly thermogenic in origin. Higher thermal gradient and water temperature indicated that cone top is unfavorable for gas-hydrate formation, however, gas hydrate may exist at a deeper part of the mud volcano system. High concentration of sulfide presence right near the sulfate-methane interface, a result of anoxic methane oxidation. However, low concentrations of pyrite in sediments indicated that AOM did not favor pyrite formation at depth. In addition, abundant siderite were found in the sediments collected in the mud volcano cone. Rapid consumption of sulfate through AOM reaction generated a condition favor the siderite fomation, instead of the typical pyrite formation commonly observed.
2005-12-01
with a set of expected powder diffraction rings for siderite (JCPDS Card 8-133). The diffraction rings correspond to the d-spacing values (and hkl ...Bender et al., Geochim. Cos- 33j. E. Kostka and K. H. Nealson, in Techniques in Microbial Ecology, mochim. Acta 43(7), 1075 (1979). edited by R. S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, G.C.
The Mazon Creek biota (Westphalian D) is composed of plants and animals from terrestrial fresh water and marginal marine habitats. Fossil animals, including jellyfish, worms, crustaceans, holothurians, insects, chordates, and problematica occur in sideritic concretions on spoilpiles of more than 100 abandoned coal mines in a five county region (Mazon Creek area) of northeast Illinois. These fossils record rapid burial and early diagenesis in a muddy, delta-influenced coastal setting submerged during marine transgression.
NASA Astrophysics Data System (ADS)
Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd
2016-03-01
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
A laser GC-IRMS technique for in situ stable isotope analyses of carbonates and phosphates
NASA Astrophysics Data System (ADS)
Sharp, Z. D.; Cerling, T. E.
1996-08-01
A technique is described whereby in situ carbon and oxygen isotope analyses of carbonates and organic phosphates can be made with the use of a CO 2 laser. The CO 2 gas generated by thermal decarbonation from the laser is entrained in a helium carrier gas, passes through a chromatographic column (GC), and is admitted directly into the isotope ratio mass spectrometer (IRMS). No vacuum systems, pumps, or cryogenic traps are used. All carbonates and biogenic phosphates can be analyzed, no special sample preparation is required and analyses can be made every 3 minutes. The use of a helium carrier gas allows for extremely small samples to be analyzed and the GC column effectively separates CO 2 from any other potential contaminating gases (e.g., SO 2 which is a particular problem in organic apatite). The average reproducibility of calcite, dolomite, magnesite, rhodochrosite, siderite, and smithsonite (ZnCO 3) is 0.29‰ for oxygen and 0.1‰ for carbon (1σ); the most "homogeneous" samples are reproducible to better than 0.1‰ for carbon and 0.2‰ for oxygen. The difference between the laser and conventional values for carbon isotope ratios [Δ 13C (laser-conv)] is 0.05 ± 0.30‰ for all carbonates (excluding siderite). The Δ 18O(laser-conv) value varies from carbonate to carbonate and may be related to the electronegativities of the cations, grain size (or crystallinity), formation of CO and O 2, and reaction with included organic matter. For calcite and rhodochrosite, the Δ 18O(laser-conv) value is 0.3 ± 0.4‰; for siderite, magnesite, and dolomite, the Δ 18O(laser-conv) value is 1.7 ± 0.3‰. The δ 13C values of tooth enamel are the same as those obtained by conventional acid digestion. The laser δ 18O values are equal to the δ 18O values of the phosphate, and approx. 7‰ lighter than the "carbonate" oxygen. The carbonate group in the apatite (equiv. 7.6% oxygen) exchanges with the (PO 4=)-bound oxygen to produce CO 2 with a δ 18O equal to the phosphate oxygen. The laser technique provides a rapid alternative to the difficult phosphate extraction technique for oxygen isotope measurements in tooth enamel.
Putative fossilized fungi from the lithified volcaniclastic apron of Gran Canaria, Spain.
Ivarsson, Magnus; Broman, Curt; Holmström, Sara J M; Ahlbom, Marianne; Lindblom, Sten; Holm, Nils G
2011-09-01
We report the discovery of fossilized filamentous structures in samples of the lithified, volcaniclastic apron of Gran Canaria, which were obtained during Leg 157 of the Ocean Drilling Program (ODP). These filamentous structures are 2-15 μm in diameter and several hundred micrometers in length and are composed of Si, Al, Fe, Ca, Mg, Na, Ti, and C. Chitin was detected in the filamentous structures by staining with wheat germ agglutinin dye conjugated with fluorescein isothiocyanate (WGA-FITC), which suggests that they are fossilized fungal hyphae. The further elucidation of typical filamentous fungal morphological features, such as septa, hyphal bridges, and anastomosis and their respective sizes, support this interpretation. Characteristic structures that we interpreted as fossilized spores were also observed in association with the putative hyphae. The fungal hyphae were found in pyroxene phenocrysts and in siderite pseudomorphs of a basalt breccia. The fungal colonization of the basalt clasts occurred after the brecciation but prior to the final emplacement and lithification of the sediment at ∼16-14 Ma. The siderite appears to have been partially dissolved by the presence of fungal hyphae, and the fungi preferentially colonized Fe-rich carbonates over Fe-poor carbonates (aragonite). Our findings indicate that fungi may be an important geobiological agent in subseafloor environments and an important component of the deep subseafloor biosphere, and that hydrothermal environments associated with volcanism can support a diverse ecosystem, including eukaryotes.
Corrosion in drinking water pipes: the importance of green rusts.
Swietlik, Joanna; Raczyk-Stanisławiak, Urszula; Piszora, Paweł; Nawrocki, Jacek
2012-01-01
Complex crystallographic composition of the corrosion products is studied by diffraction methods and results obtained after different pre-treatment of samples are compared. The green rusts are found to be much more abundant in corrosion scales than it has been assumed so far. The characteristic and crystallographic composition of corrosion scales and deposits suspended in steady waters were analyzed by X-ray diffraction (XRD). The necessity of the examination of corrosion products in the wet conditions is indicated. The drying of the samples before analysis is shown to substantially change the crystallographic phases originally present in corrosion products. On sample drying the unstable green rusts is converted into more stable phases such as goethite and lepidocrocite, while the content of magnetite and siderite decreases. Three types of green rusts in wet materials sampled from tubercles are identified. Unexpectedly, in almost all corrosion scale samples significant amounts of the least stable green rust in chloride form was detected. Analysis of corrosion products suspended in steady water, which remained between tubercles and possibly in their interiors, revealed complex crystallographic composition of the sampled material. Goethite, lepidocrocite and magnetite as well as low amounts of siderite and quartz were present in all samples. Six different forms of green rusts were identified in the deposits separated from steady waters and the most abundant was carbonate green rust GR(CO(3)(2-))(I). Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonen, Martin A.
2014-12-22
The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO 2 (scCO 2) and scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO 2 with commingled aqueous solutions containing H 2S and/or SO 2 under conditions simulating the environment near the injection pointmore » (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO 2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.« less
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Hausrath, E. M.; Morris, R. V.; Niles, P. B.; Achilles, C. N.; Ross, D. K.; Cooper, B. L.; Gonzalex, C. P.; Mertzman, S. A.
2012-01-01
The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.
NASA Astrophysics Data System (ADS)
Peters, Meike; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt mineralization. These vein-hooks are characterized by a dip direction to the W, which is opposite to the plunge of F1-folds. The vein-hooks are interpreted to have formed during oblique normal faulting. The compilation of historical mining and mineralogical information in combination with 3-D ore body modeling provides new insights into the structural evolution of mineralization and can be used to evaluate further mineral potential of the area, especially in currently non-explored depth levels. The 3-D ore body model is also vital for resource calculation and the design of a brown-fields drilling program. References Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z. dt. geol. Ges. 129, 229-247 Hein, U.F. (1993). Min. Mag. 57, 451-476 Hellmann, A., Wagner, T. and Meyer, F.M. (2012). Conference proceedings GB 2012. http://www.geologicabelgica.be/PDF/GB/S13/S13_8_Hellmann.pdf Peters, M., Hellmann A. and Meyer, F.M. (2012). Conference proceedings GeoHannover 2012. Series of paper of the German Society of Geosciences, Vol. 80, 387.
Methane production from hydrothermal transformation of siderite to magnetite
NASA Astrophysics Data System (ADS)
Muratbayev, T.; Schroeder, C.; Kappler, A.; Haderlein, S.
2012-12-01
Mumma et al. (2009) observed a methane (CH4) plume above the Nili Fossae region on Mars, a region rich in carbonate minerals. Morris et al. (2010) suggest this to be (Mg,Fe)-carbonate. McCollom (2003) demonstrated that the hydrothermal transformation of siderite (FeCO3), to magnetite (Fe3O4) produces CH4. This reaction may thus contribute to the formation of methane on Mars, but is also relevant in the context of such diverse topics as diagenesis of Precambrian banded iron formations, sources of prebiotic organic compounds on early Earth, oil and gas accumulations in Earth's crust, or geological sequestration and storage of CO2. However, neither the thermodynamics of this reaction nor the conditions of maximum CH4 yield have been investigated to date. In order to estimate how pressure and temperature influence CH4 yield we derived a thermodynamic model with a numerical solution implemented in MATLAB. We used the equation 12FeCO3 + 2H2O → 4Fe3O4 + 11CO2 + CH4 (Frost et al. 2007) and thermodynamic calculations of the stability field of FeCO3 by Thoms-Keprta et al. (2009) as a template. At 1 bar pressure, the Gibbs energy turns negative (favorable reaction conditions) at a temperature of 200°C. Increasing pressure to 1000 bar changes that temperature to 250°C. An increase in temperature has a larger effect on shifting the Gibbs energy to more negative values. We therefore chose ambient pressure and temperatures of 300°C, 400°C, and 500°C as experimental conditions. We added 100 mg of either natural or synthetic FeCO3 and 25 μL of MilliQ water into long tip Pasteur pipettes inside an anoxic glove box to avoid contamination by free oxygen. The Pasteur pipettes were sealed with butyl stoppers and then melted shut outside of the glove box. The glass capsules were heated for 48 hours in a muffle furnace at 300°C, 400 0C or 5000C. The composition of the gas phase and the formation of methane in particular were analyzed using gas chromatography with a flame ionization detector. We used Mössbauer spectroscopy, X-ray diffraction, X-ray fluorescence, and scanning electron microscopy with Energy-Dispersive X-ray spectroscopy to investigate changes in the solid phase. Synthetic FeCO3 was completely transformed to Fe3O4 and sometimes the further oxidized phases maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Natural FeCO3 was not completely transformed, which can be explained by its larger particle size and therefore reduced reactivity. Methane yield was consequently higher from synthetic siderite. Our results show that hydrothermal activity invoked by either impact or volcanic activity could have transformed siderite and thereby released at least some of the CH4 observed on Mars. On Earth, long-term underground storage of CO2 as carbonate minerals has to avoid hydrothermal conditions. Otherwise not only CO2 will be released again, but some of it will potentially be transformed into the more potent greenhouse gas methane. References Frost et al., Contrib. Mineral. Pet. 153 (2006) 211; McCollom, Geochim. Cosmochim. Ac. 67 (2003) 311; Morris et al., Science 329 (2010), 421; Mumma et al., Science 323 (2009) 1041; Thomas-Keprta et al., Geochim. Cosmochim. Ac. 73 (2009) 6631, EA-4
NASA Astrophysics Data System (ADS)
Otake, T.; Sakamoto, Y.; Itoh, S.; Yurimoto, H.; Kakegawa, T.
2012-12-01
*Otake, T. totake@eng.hokudai.ac.jp Div. of Sustainable Resources Engineering, Hokkaido Univ., Sapporo, Japan Sakamoto, Y. yu.sakamoto12@gmail.com Dep. of Earth Science, Tohoku Univ., Sendai, Japan Itoh, S. sitoh@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Yurimoto. H. yuri@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Kakegawa, T. kakegawa@m.tohoku.ac.jp Dep. of Earth Science, Tohoku Univ., Sendai, Japan Geochemical data from ferruginous chemical sedimentary rocks (e.g., Banded Iron Formation: BIF) have been used to reconstruct the surface environments of early Earth. However, only a few studies have investigated the geochemical characteristics of BIFs deposited in a shallow water environment during the Archean, which may have differed from those deposited in a deep water environment. Therefore, we investigated geological, petrographic and geochemical characteristics of ferruginous rocks deposited in a shallow water environment in the Moodies group, in the Barberton Greenstone Belt, South Africa. We obtained ferruginous rock samples in the Moodies group from both an outcrop and underground gold mine, and compared the characteristics of these samples. The 70 sedimentary rock samples were divided into groups based on the dominant Fe minerals they contain: Hematite-rich jaspilite (HM group), Magnetite-rich iron formation/shale/sandstone (MT group), and Siderite-rich sandstone (SD group). Samples in the HM group are predominantly composed of fine-grained quartz (< 20 μm) and hematite (< 5 μm), which are interpreted to be chemical precipitates. Samples in the MT group contain quartz, magnetite, siderite, ankerite, chlorite, biotite and chromite. The grain size of magnetite is much larger (20-150 μm) than that of hematite in the HM group. The magnetite is interpreted as a secondary mineral transformed from hematite during early diagenesis. Results of in situ oxygen isotope analysis by SIMS showed that magnetite in the Moodies group has similar δ18O values to those in the least metamorphosed BIFs. All chromite observed in the MT group is overgrown by magnetite. Samples in the SD group contain quartz, siderite, chlorite, biotite, and chromite; the chromite is included in Mg-rich siderite or silicate minerals (e.g., chlorite and biotite). Oxygen isotope compositions indicate that chromite in both the MT and SD groups, was hydrothermally altered. Results of geochemical analyses of the bulk outcrop samples showed that FeTotal/Ti and Cr/Ti ratios of outcrop samples increase concordantly in the ferruginous zone, particularly in the MT group. The Cr/Ti ratios of the underground samples also increase with increasing the Fetotal/Ti ratios. On the other hand, Th/U ratios of both the outcrop and underground samples decrease with increasing FeTotal/Ti ratios. The correlations of Fetotal/Ti ratios with U/Th and Cr/Ti ratios indicate that dissolved Cr and U species in the ocean were coprecipitated with ferric (hydr)oxides during the formation of ferruginous rocks of the Moodies Group. These results suggest that Cr and U were chemically mobile, possibly as oxidized species, in the Earth's surface environment at ~3.2 Ga.
Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization
NASA Astrophysics Data System (ADS)
Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang
2014-01-01
Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.
Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao
2017-02-01
High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haliuc, Aritina; Brauer, Achim; Dulski, Peter; Engels, Stefan; Lane, Christine
2015-04-01
Annually laminated sediments are unique continental archives holding essential paleoenvironmental and paleoclimatic information providing the opportunity (i) to evaluate the climate variability at inter-annual to decadal scale and (ii) to construct independent and reliable chronologies. Lake Haemelsee in northern Germany (19.5 m a.s.l) is a key site for tracing high-resolution climatic and environmental evolution in W Europe because of its partly varved sediments. Here, we apply lithostratigraphical, geochemical and micro-facies analyses for the bottom sediments (~1700 to 1300 cm sediment depth) in order to investigate the driving mechanisms, timing and amplitude of Lateglacial abrupt climate changes to the onset of the Holocene warming. Detailed investigation includes micro-facies analyses on petrographic thin sections combined with high-resolution µ-XRF element scanning on both fresh sediment core halves (200 µm resolution) and impregnated sediment blocks (50µm resolution). Based on these analyses, the sediment composite profile (378 cm) has been divided in ten lithozones, each exhibiting different sedimentation modes in response to regional and local climatic and environmental changes. Micro-facies analyses revealed that sediments consist of organic matter, siderite, calcite, clay/silt and sand. The basal sediments consist of glacio-fluvial material. Fine laminations are best preserved in lithozone 5 (1522-1573 cm), where minima in element proxies for detrital sediments (Ti, K, Si) and maxima in Fe and Mn indicate the prevalence of anoxic meromictic conditions. Three different varve facies types were distinguished: i) the clastic-organic varves are specific for the intervals 1571-1573 cm and 1536-1541 cm; ii) calcite/siderite-organic varves appear between 1568-1571 and 1541-1545 cm; iii) the siderite-organic varves are characteristic for the middle of the lithozone 5 spanning from 1545-1568 cm. These changes in varve facies reflect the complex answer of sedimentary conditions to climatic changes during Allerød and Allerød/Younger Dryas transition. An increased detrital sediment flux characterizes lithozone 6 and, most probably reflects the Younger Dryas cold interval. This interpretation is supported by the late Allerød Laacher See Tephra, an important chronostratigraphic marker horizon to link the floating 625 varve year chronology for the Allerød interstadial to an absolute time scale. Also, the preliminary pollen data provided the biostratigraphical information for establishing the lateglacial boundaries. Poorly preserved organic laminas are characteristic for lithozone 7 (1445-1474 cm). Our preliminary results demonstrate that the lake system responded sensitively to rapid and short-term climatic changes and these responses are well-expressed in sedimentological and geochemical variability.
Poppe, L.J.; Commeau, R.F.; O'Leary, Dennis W.
1988-01-01
The calcite/ankerite concretions were formed in a hot, seasonally arid, caliche-prone environment of early Raritan age; the pyrite, marcasite, and siderite concretions precipitated in sediments deposited in low-energy, marshy, estuarine environments of late Raritan age. The phosphate concretions formed in a middle to inner shelf environment. The goethite and lepidocrocite concretions are secondary oxidation or alteration products of the prexistent Cretaceous concretions that were excavated during the Pleistocene and incorporated into the glacial drift. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, A.; McDowell, R.; Matchen, D.
1992-01-01
The Granny Creek field (approximately 6 sq. miles in area), located in Clay and Roane counties, West Virginia, produces oil from the Big Injun sandstone (Lower Mississippian). Analysis of 15 cores, 22 core analyses, and approximately 400 wireline logs (gamma ray and bulk density) show that the Big Injun (approximately 12 to 55 feet thick) can be separated into an upper, coarse-grained sandstone and a lower, fine-grained sandstone. The Big Injun is truncated by an erosional unconformity of Early to Middle Mississippian age which removes the coarse-grain upper unit in the northwest portion of the field. The cores show nodulesmore » and zones (1 inch to 6 feet thick) of calcite and siderite cement. Where the cements occur as zones, porosity and permeability are reduced. Thin shales (1 inch to 1 foot thick) are found in the coarse-grained member of the Big Injun, whereas the bottom of the fine-grained, lower member contains intertongues of dark shale which cause pinchouts in porosity at the bottom of the reservoir. Calcite and siderite cement are recognized on wireline logs as high bulk density zones that form horizontal, inclined, and irregular pods of impermeable sandstone. At a 400 foot well spacing, pods may be confined to a single well or encompass as many as 30 wells creating linear and irregular barriers to flow. These pods increase the length of the fluid flow path and may divide the reservoir into discrete compartments. The combination of sedimentologic and diagenetic features contribute to the heterogeneity observed in the field.« less
Brown, D A; Kamineni, D C; Sawicki, J A; Beveridge, T J
1994-09-01
The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites.
Brown, D. Ann; Kamineni, D. Choudari; Sawicki, Jerzy A.; Beveridge, Terry J.
1994-01-01
The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites. Images PMID:16349374
Schlegel, Michel L; Bataillon, Christian; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy
2010-02-15
To understand the process governing iron corrosion in clay over centuries, the chemical and mineralogical properties of solids formed by free or anodically activated corrosion of iron in water-saturated clay at 90 degrees C over 4 months were probed using microscopic and spectroscopic techniques. Free corrosion led to the formation of an internal discontinuous thin (<3 microm thick) magnetite layer, an external layer of Fe-rich phyllosilicate, and a clay transformation layer containing Ca-doped siderite (Ca(0.2)Fe(0.8)CO(3)). The thickness of corroded iron equaled approximately 5-7 microm, consistent with previous studies. Anodic polarization resulted in unequally distributed corrosion, with some areas corrosion-free and others heavily corroded. Activated corrosion led to the formation of an inner magnetite layer, an intermediate Fe(2)CO(3)(OH)(2) (chukanovite) layer, an outer layer of Fe-rich 7 A-phyllosilicate, and a transformed matrix layer containing siderite (FeCO(3)). The corroded thickness was estimated to 85 microm, less than 30% of the value expected from the supplied anodic charge. The difference was accounted for by reoxidation at the anodically polarized surface of cathodically produced H(2)(g). Thus, free or anodically activated corroding conditions led to structurally similar interfaces, indicating that anodic polarization can be used to probe the long-term corrosion of iron in clay. Finally, corrosion products retained only half of Fe oxidized by anodic activation. Missing Fe probably migrated in the clay, where it could interact with radionuclides released by alteration of nuclear glass.
NASA Astrophysics Data System (ADS)
Dyja, Vanessa; Tarantola, Alexandre; Hibsch, Christian; Boiron, Marie-Christine; Cathelineau, Michel
2013-04-01
Marine and continental intramountaineous basins developed during the Neogene orographic evolution of the Betico-rifan orogenic wedge, as well as the related uplifted ranges within the Sierra Almagrera Metamorphic Core Complexes (MCC). The NNE-SSW striking trans-Alboran transcurrent fault system crosscuts the MCC post-dating the extensional exhumation stages recorded in the metamorphic fabric. Iron ores (± Pb, Cu, Zn) are encountered either as stratabound ore deposits in the Neogene basins or as vein networks crosscutting the metamorphic fabric of graphitic phyllites from the Sierra Almagrera. These Late Miocene ore deposits are related to the activity of the N-S striking Palomares fault segment of the Trans-Alboran fault system. Three sets of quartz veins (Vα, Vαβ and Vβ) and one set of mineralized vein (Vγ, siderite, barite) are distinguished. The Vα and Vαβ respectively are totally or partially transposed into the foliation. The Vβ and Vγ veins are discordant to the foliation. The problem addressed in this study concerns the nature of the fluids involved in the metal deposits and their relationships with the main reservoir fluids, e.g. the deep metamorphic fluids, the basinal fluids, and eventually the recharge meteoric fluids. This study focuses thus on the evolution of the fluids at different stages of ductile-brittle exhumation of the metamorphic ranges (Sierras) and their role during the exhumation and later on in relation with the hydrothermalism and metal deposition at a regional scale. Paleofluids were studied as inclusions in quartz, siderite and barite from veins by microthermometry and Raman spectroscopy, and a stable isotope study is in progress. Earliest fluids recorded in (Vαβ) quartz veins are H2O- NaCl + CaCl2 (17 wt. %) - (traces of CO2, CH4, N2) metamorphic brines trapped at the ductile brittle transition at a minimum trapping temperatures (Th) of 340 °C. Older metamorphic fluids in (Vα) veins were lost during the complete recrystallization of the original quartz grains during transposition. The second fluid type is characterized by very low salinity inclusions (1.2 wt.% NaCl) found in veins discordant to the foliation (Vβ), and precedes brines (23 wt. % NaCl + CaCl2 with Th of 320 °C) trapped in transgranular fluid inclusion planes (FIP). The NW-SE to N-S directions of these FIP appears coherent with shortening directions related to Tortonian and Messinian basin development (Montenat, 1990). The halogen signatures of the latest brines confirm that they derive from primary brines issued from sea water evaporation. Fluid inclusions in barites and siderites from (Vγ) veins display a Br/Cl ratio more typical of secondary brines and a rather large range of salinities, this indicating distinct fluid movements and the dissolution of evaporates by dilute fluids may be of meteoric origin. Fluids in siderites show the lowest trapping temperature conditions around 190 °C. The existence of a sea water component in fluids was previously mentioned by Morales Ruano et al. (1995) indicate a δ34S of 22,1-23.9 ‰ for barite from Sierra Almagrera. In conclusion, during the Neogene multistage evolution of the Almagrera MCC, fluids of different origins e.g. basinal, meteoric and metamorphic fluids have circulated within the crust, and locally interacted with evaporites. The resulting brines formed Fe-(Ba, Pb, Cu) ores in discontinuities affecting both the metamorphic and sedimentary rocks. Morales Ruano, S., Both, R., and Fenoll Hach-Ali, P., 1995, Fluid evolution and mineral deposition in the Aguilas - Sierra Almagrera base metal ores, southeastern Spain.: Mineral Deposits, p. 365-368. Montenat, C., 1990, Les Bassins néogènes du domaine bétique oriental (Espagne), Documents et Travaux IGAL n°12-13, 392 p.
Merewether, E.A.; Gautier, Donald L.
2000-01-01
Unusual, concretion-bearing mudrocks of early Late Cretaceous age, which were deposited in an early Cenomanian epeiric sea, have been recognized at outcrops in eastern Wyoming and in adjoining areas of Montana, South Dakota, Nebraska, and Colorado. In Johnson County, Wyo., on the western flank of the Powder River Basin, these strata are in the lower part of the Belle Fourche Member of the Frontier Formation. At a core hole in south-central Johnson County, they are informally named Unit 2. These strata are about 34 m (110 ft) thick and consist mainly of medium- to dark-gray, noncalcareous, silty shale and clayey or sandy siltstone; and light-gray to grayish-red bentonite. The shale and siltstone are either bioturbated or interlaminated; the laminae are discontinuous, parallel, and even or wavy. Several ichnogenera of deposit feeders are common in the unit but filter feeders are sparse. The unit also contains marine and continental palynomorphs and, near the top, a few arenaceous foraminifers. No invertebrate macrofossils have been found in these rocks. Unit 2 conformably overlies lower Cenomanian shale in the lowermost Belle Fourche Member, informally named Unit 3, and is conformably overlain by lower and middle Cenomanian shale, siltstone, and sandstone within the member, which are informally named Unit 1. The mineral and chemical composition of the three Cenomanian units is comparable and similar to that of shale and siltstone in the Upper Cretaceous Pierre Shale, except that these units contain more SiO2 and less CaO, carbonate carbon, and manganese. Silica is generally more abundant and CaO is generally less abundant in river water than in seawater. The composition of Unit 2 contrasts significantly with that of the underlying and overlying units. Unit 2 contains no pyrite and dolomite and much less sulfur than Units 1 and 3. Sulfate is generally less abundant in river water than in seawater. Unit 2 also includes sideritic and calcitic concretions, whereas Units 1 and 3 contain neither concretions nor siderite and only sparse calcite. Carbon-sulfur-iron chemistry for the concretions suggests that sulfate availability was the limiting factor in pyrite formation and sulfide incorporation in Unit 2. Isotopic compositions of the carbon and oxygen in siderite and calcite from several concretions are variable and suggest cementation during early diagenesis in a variety of microenvironments. The isotopic composition of these carbonate minerals differs from that of Upper Cretaceous marine limestones. When considered in conjunction with the proportions of sulfur, organic carbon, and iron in Unit 2, major-element and micropaleontological data suggest that the composition of the original pore waters and of overlying waters in the late early Cenomanian sea was brackish to fresh. The mudrocks of Units 3 and 2, and a lower part of Unit 1, accumulated on a shelf at low to moderate rates of sedimentation in association with variable but generally weak current action. In Unit 2 and laterally equivalent rocks of the region, the sideritic and calcitic concretions probably indicate the extent of a body of brackish to fresh and oxygen-deficient water. Rates of precipitation in this region during the mid-Cretaceous could have been unusually high and the precipitation probably was seasonal. The organic matter in Unit 2 is humic-rich and would have been derived from continental environments. If the epeiric sea was brackish to fresh in the region of eastern Wyoming and contiguous areas, meteoric runoff from the adjoining lowlands must have been periodically large and the seaway north of the region probably was constricted. Seasonal changes in salinity might have been accompanied by changes in water temperature and oxygen content. The lower part of the Frontier Formation (Units 3, 2, and 1) in Wyoming records an intermittently and easterly prograding shoreline during late early and early middle Cenomanian time. Laterally equivalent strata in Nebraska
The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution
NASA Astrophysics Data System (ADS)
Gaunt, Jonathan Mark
The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite and siderite. The veins, which are often spatially associated with faults, exhibit a variety of morphologies, and are largely hosted by hydraulic shear fractures. Compositional variations between the different vein carbonates occur with time and the calcites, baroque dolomites, baroque ankerites and siderites are interpreted to have had several different fluid sources. Fluids precipitating siderite, baroque dolomite and baroque ankerite may have been produced by clay mineral transformations and decarboxylation of organic matter within the calcareous strata. The multiple vein calcite generations belong to three MnO:FeO compositional classes, each occupying a specific paragenetic position. The trend from ferroan to manganoan calcite with time may be a consequence of calcite-forming fluids being derived from successively shallower depths within the sedimentary succession, or of increased permeation by meteoric fluids. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Wu, Xudong; Wang, Yong; Bian, Liu; Shen, Ji
2016-09-01
Post-depositional reductive diagenesis usually results in partial or entire cleansing of the pristine palaeomagnetic signal, therefore, its intensity is important to be assessed for sediments that are in the purpose of retrieving palaeomagnetic information. Grain size, rock magnetic and geochemical studies on the entire core, along with scanning electron microscope observations and X-ray diffraction analyses for representative samples were carried out on a Holocene sediment core retrieved from the deep water part of Huguangyan maar lake (HGY), southeast China. The pristine magnetic mineral assemblage of the studied core is domianted by superparamagnetic (SP) and stable single domain titanomagnetite, and high coercivity minerals are not detectable. Based on down-core variations of the average grain size (MZ), total organic carbon (TOC), detrital elements (Al, Ti, Fe and Mn) and the concentration and mineralogy of magnetic minerals, the studied core could be divided into three subsections. The uppermost subsection is the least affected by diagenesis, with detrital titanomagnetite as the dominant magnetic mineral. This is owing to low TOC contents, but high detrital input generated by weak Asian summer monsoon intensity during the late Holocene. The intermediate subsection shows down-core progressively enhanced dissolution of detrital titanomagnetite, and concomitant formation of authigenic pyrite and siderite, which indicates down-core progressively enhanced diagenesis generated by down-core progressive increasing TOC content, but decreasing detrital input as the result of down-core progressively strengthened Asian summer monsoon intensity. The pristine magnetic mineral assemblage has been profoundly modified in the lowermost subsection. At certain positions of the lowermost subsection, detrital titanomagnetite has been even completely dissolved via diagenesis, giving place to authigenic pyrite and siderite. High TOC content, but low detrital input generated from strong Asian summer monsoon intensity during the early Holocene are accountable for intensive diagenesis in the lowermost subsection. Complete erasing of detrital magnetic input signal at certain positions of the lowermost subsection, and considerable formation of authigenic siderite indicate that palaeomagnetic records of the studied core have been significantly compromised. The studied core has relatively higher TOC content, lower detrital matter content, calmer sedimentary environments, and less DO available at its water-sediment interface than the cores retrieved at relatively shallower water depths, which all contribute to its relatively stronger diagenesis. Progressive thickening of the upper two subsections with increasing water depth is owing to progressive increase in sedimentation rate with increasing water depth, which is the key factor in determining the thickness of each diagenetic subsection of cores from HGY. It would be better that lake sediments for palaeomagnetic investigations collected at a water depth shallower than the depth of its thermocline.
Review of the inorganic geochemistry of peats and peatland waters
NASA Astrophysics Data System (ADS)
Shotyk, William
1988-06-01
The major floristic and geochemical differences between bogs, fens, and swamps are summarized, and the most common peat types described. This is followed by a critical, historical review of the literature. The methods used to measure the pH of peatland (mire) waters are examined, and the pH range of various peatland types is reported. In addition, horizontal and vertical pH variations are illustrated, and factors affecting the pH of these waters reviewed. The cause of the low pH of surface waters of Sphagnum bogs (approximately pH 4) is critically investigated, and the relative importance of dissolved CO 2 and other inorganic acids, and organic acids to the low pH is assessed. Cation exchange on the surfaces of Sphagnum mosses is found to be a relatively unimportant acidification mechanism, but important to the chemical ecology of the plants. The redox chemistry of mire waters is described in terms of the geochemistry of such redox indicators as O 2, CO 2, CH 4, CO, H 2, H 2S, SO 42-, native Cu, and siderite (FeCO 3). Published studies of Eh in peatlands are cited, and the problems of Eh measurement and interpretation are explored. The chemical composition of mire waters (major and trace metals, and nonmetallic species) is examined, and factors affecting their composition reported. The abundance and distribution of mineral matter in peats is described, and the occurrence and formation of minerals of Fe (pyrite and other sulphides, siderite, vivianite), Cu (chalcopyrite, native Cu, covellite) and Zn (smithsonite and wurtzite) investigated. The abundance and distribution of major elements (Si, Al, Na, K, Mg, Ca) and trace metals (Ni, V, Cr, Fe, Mn, Cu, U, Zn, Pb) is described, and factors affecting their solubility examined.
Almost a spider: a 305-million-year-old fossil arachnid and spider origins.
Garwood, Russell J; Dunlop, Jason A; Selden, Paul A; Spencer, Alan R T; Atwood, Robert C; Vo, Nghia T; Drakopoulos, Michael
2016-03-30
Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid, Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca 305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids and I. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group's success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies. © 2016 The Authors.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Yang, Yuanfeng; Joshi, Gaurav R.; Akid, Robert
2015-01-01
The aim of this research was to investigate the influence of metallurgy on the corrosion behaviour of separate weld zone (WZ) and parent plate (PP) regions of X65 pipeline steel in a solution of deionised water saturated with CO2, at two different temperatures (55 °C and 80 °C) and at initial pH~4.0. In addition, a non-electrochemical immersion experiment was also performed at 80 °C in CO2, on a sample portion of X65 pipeline containing part of a weld section, together with adjacent heat affected zones (HAZ) and parent material. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion behaviour of the separate weld and parent plate samples. This study seeks to understand the significance of the different microstructures within the different zones of the welded X65 pipe in CO2 environments on corrosion performance; with particular attention given to the formation of surface scales; and their composition/significance. The results obtained from grazing incidence X-ray diffraction (GIXRD) measurements suggest that, post immersion, the parent plate substrate is scale free, with only features arising from ferrite (α-Fe) and cementite (Fe3C) apparent. In contrast, at 80 °C, GIXRD from the weld zone substrate, and weld zone/heat affected zone of the non-electrochemical sample indicates the presence of siderite (FeCO3) and chukanovite (Fe2CO3(OH)2) phases. Scanning Electron Microscopy (SEM) on this surface confirmed the presence of characteristic discrete cube-shaped crystallites of siderite together with plate-like clusters of chukanovite.
2007-01-01
niningerits.Blue phyllosililcates (near the sulfldes), represented here by the smectite nontronite. (b) Spectrum after subtraction of the best-fit silicate...1.70 Smectite nontrmite 0.14 2.3 496 0.07 340 3.76 Nasn3Fe2(Si.AjMO 0j(OH)2-3H20 Carbonats Mageuile (MgC0 3 ) 0.030 3.1 84 0.11 340 1.30 Siderite...any other comet, was optically thick near the nucleus due to its Phyllosilicates (as represented by the smectite nontron- huge rate of emission of
Bethke, P.M.; Rye, R.O.
1979-01-01
The hydrogen isotopic composition of fluids responsible for formation of the near-surface silver-base metal vein deposits at Creede was measured by direct analysis of inclusion fluids in sphalerite, quartz, and rhodochrosite and was estimated from analyses of illite and chlorite. The oxygen isotopic composition was determined directly on inclusion fluids in sphalerite and was estimated from analyses of quartz, illite, rhodochrosite, siderite, and adularia. The carbon isotopic composition was estimated from analyses of rhodochrosite and siderite. The ranges in isotopic composition for water and CO2 in the fluids associated with the formation of each of the minerals is given below (number of determinations given in parentheses):Mineral delta D (sub H2) O ppm delta 18 O (sub H2) O ppm delta 13 C (sub CO2) ppmSphalerite -81 to -54 (4) -10.1 to -4.5 (4)Quartz -97 to -86 (4) -5.9 to 1.8 (18)Illite -62 to -50 (8) -1.6 to 1.2(7)Chlorite -64 to -55 (10) -2.2 to 0.8 (10)Adularia 4.2 (1)Rhodochrosite -82 to -78 (2) 4.2 to 9.4 (9) -5.7 to -4.2 (9)Siderite 4.9 to 9.9 (6) -6.9 to -2.7 (6)The delta D (sub H2) O and delta 18 O (sub H2) O values of fluids associated with the formation of sphalerite, quartz, illite/chlorite, and carbonate minerals differ substantially from one another, and these differences appear to have been maintained throughout the depositional history, regardless of the positions of the minerals in the paragenetic sequence.The data suggest that waters from three coexisting reservoirs fed the vein system alternately and episodically during vein formation, and apparently there was little mixing of the fluids from the different reservoirs. The hydrogen, oxygen, and carbon isotope data suggest that the carbonate waters were deep seated, probably dominantly magmatic, in origin. The sphalerite and illite/chlorite waters must have been dominantly meteoric in origin and substantially oxygen shifted by exchange with the volcanic country rocks. The quartz waters were also oxygen shifted meteoric waters but were some 40 per mil lower in deuterium content than the sphalerite and illite/chlorite waters.We propose that the quartz fluids entered the vein system from reservoirs beneath the mountainous areas to the north in the vicinity of the present Continental Divide, but that the sphalerite and illite/chlorite fluids entered the vein system from a topographically low area to the south along the structural moat of the Creede caldera. The difference in delta D between the two meteoric waters may reflect differences in altitude of the recharge areas for the two reservoirs or may be clue to isotopic evolution of the closed-basin lake and interstitial waters in the moat surrounding the Creede caldera.
Leach, D.L.; Hofstra, A.H.; Church, S.E.; Snee, L.W.; Vaughn, R.B.; Zartman, R.E.
1998-01-01
New 40Ar/39Ar age spectra on sericite and lead isotope data on tetrahedrite, siderite, galena, bournonite, and stibnite, together with previously published isotopic, geochemical, and geologic studies provide evidence for two major vein-forming events in the Coeur d'Alene district and surrounding area of the Belt basin. The data suggest that the zinc- and lead-rich veins (e.g., Bunker Hill and Star-Morning mines) formed in the Proterozoic (1.0 Ga), whereas the silver-rich veins (e.g., Silver belt mines), antimony veins (e.g., US Antimony mine), and gold-bearing quartz veins (Murry subdistrict) formed in Late Cretaceous to early Tertiary time.
Single-crystal diffraction at megabar conditions by synchrotron radiation
NASA Astrophysics Data System (ADS)
Merlini, Marco; Hanfland, Michael
2013-08-01
Crystal structure determination at extreme pressures is currently possible at synchrotron beamlines optimized for such a purpose. We report the description of the experimental setup available at European Synchrotron Radiation Facility ID09 beamline (Grenoble, France) and, with two examples, we illustrate the state-of-the-art experiments currently performed at third-generation synchrotrons. The first example concerns the determination of the equation of state and the structural behavior of low-spin Fe-bearing siderite in the megabar pressure range. Siderite, in fact, undergoes a first-order isosymmetric transition at 45 GPa, and, above this pressure, it features Fe2+ in electronic low-spin configuration. The local configuration of Fe coordination polyhedra, determined by structural refinements, significantly deviates from a regular octahedron. Nevertheless, no further structural transition is detected up to the maximum pressure reached in our experiments, 135 GPa. The analysis of the Fe-O bond length extrapolated to ambient pressure, which indicates that the difference in ionic radii between the high- and the low-spin state of Fe2+ is 0.172 Å, in excellent agreement with the tabulated data by Shannon and Prewitt [Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969;B25:925-946]. The second example concerns the determination and refinement of the oP8 structure adopted by sodium in the pressure interval 118-125 GPa, using an experimental dataset collected at 118 GPa. The orthorhombic [a=4.7687(15) Å, b=3.0150(6) Å, c=5.2423(7) Å, V=75.4(3) Å3] oP8 structure is topologically related to the MnP structure, with two non-equivalent atoms in the unit cell. Despite the weak scattering factor of Na atoms, the quality of the data also allows meaningful displacement parameters refinements (R1=4.6%, 14 parameters, 190 diffractions, and 105 unique) demonstrating that the current accuracy of diffraction data at extreme pressures can be comparable with ambient condition measurements.
Process for Making Single-Domain Magnetite Crystals
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.
2004-01-01
A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.
Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt
Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.
2012-01-01
Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.
NASA Astrophysics Data System (ADS)
Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael
2012-10-01
The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.
2006-01-01
Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.
Corrosion of Submerged Artifacts and the Conservation of the USS Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Desmond C.; Peterson, Curtiss E.
2005-04-26
The USS Monitor, the first ironclad warship to be constructed in the United States, was built in 1862 to serve in the American Civil War. It took part in the infamous battle of Hampton Roads, Virginia with the iron covered Confederate frigate, CSS Virginia. The USS Monitor eventually sank at sea in a storm in 1862, and following its discovery in 1973 many important pieces have been recovered. In order to evaluate the extent of degradation of the iron artifacts due to prolonged seawater submersion, a spectroscopic study of the corrosion products and marine sediments attached to the artifacts hasmore » begun, with some of the early findings being reported in this document. It has been determined that under anaerobic, aqueous and high chloride exposure, the predominant rust component formed on the wrought iron artifacts was Corrosion Magnetite, an unstable compound whose Moessbauer signature is different to that of the pure, natural and synthetic forms. The Corrosion Magnetite changed with time of exposure in air, with its oxidation forming non-stoichiometric maghemite. No akaganeite was detected in the anaerobically formed rust, but was identified if the iron artifact was allowed to dry in air. This is an important finding for archaeologists since formation of akaganeite indicates significant effort may be required to remove the insoluble chlorides from an artifact. Analysis of some ocean sediments trapped between wrought iron plates has shown that the pH is low, and the composition is mainly calcite and siderite, with the latter forming as a result of the rusting iron. The sulfur content was high at 1.5 weight percent, indicating the potential presence of microbial activity. Rusticles formed on iron surfaces of the USS Monitor have been identified as a solid outer casing of siderite, lepidocrocite and goethite, and a liquidous inner core of unstable Corrosion Magnetite having a low pH of about 3.« less
Is a 'one size fits all' taphonomic model appropriate for the Mazon Creek Lagerstätte?
NASA Astrophysics Data System (ADS)
Clements, Thomas; Purnell, Mark; Gabbott, Sarah
2017-04-01
The Late Carboniferous Mazon Creek Lagerstätte (Illinois, USA) is a world renowned fossil deposit with a huge diversity of preserved flora and fauna. It is widely considered to represent the most complete Late Carboniferous river delta ecosystem because researchers have identified that the deposit preserves organisms from multiple habitats including coastal swamps, brackish lagoons and oceanic environments. Often these fossils have exquisite soft tissue preservation yielding far more information that the 'normal' skeletal fossil record, while some soft bodied animals, such as the notorious Tully Monster (Tullimonstrum gregarium), are only known from this locality. However, constraining a 'one-size fits all' taphonomic model for the Mazon Creek is difficult because of our poor understanding of sideritic concretionary formation or preservation (i.e. the presence of large numbers of unfossiliferous concretions), the large geographical area, the influences of fresh, brackish and saline waters during burial and the subsequent complicated diagenetic processes. To determine the preservational pathways of Mazon Creek fossils, we have compiled data of the mode of preservation of morphological characters for all major groups of fossil organisms found in this Lagerstätte. This data can be used to test for variance in mode of preservation between taxa and also between specific tissue types. Furthermore, experimental decay data is used to constrain the impact of decay prior to fossilisation. Our analysis indicates that there are variations in preservation potential of specific characters shared by taxa. Modes of preservation, however, seem to be consistent across the majority of taxa dependant on locality. This quantitative approach is being utilised as part of a larger ongoing investigation which combines taphonomy with geochemical analysis of siderite concretions from across the vast geographical area of the Mazon Creek. Together this approach will allow us to elucidate the preservation pathways of organisms and will lead to better understanding of taphonomic biases operating in this Lagerstätte.
NASA Astrophysics Data System (ADS)
Anikina, E. Yu.; Bortnikov, N. S.; Klubnikin, G. K.; Gamyanin, G. N.; Prokof'ev, V. Yu.
2016-05-01
The succession of mineral assemblages, chemistry of gangue and ore minerals, fluid inclusions, and stable isotopes (C, O, S) in minerals have been studied in the Mangazeya silver-base-metal deposit hosted in terrigenous rocks of the Verkhoyansk Fold-Thrust Belt. The deposit is localized in the junction zone of the Kuranakh Anticlinorium and the Sartanga Synclinorium at the steep eastern limb of the Endybal Anticline. The deposit is situated at the intersection of the regional Nyuektame and North Tirekhtyakh faults. Igneous rocks are represented by the Endybal massif of granodiorite porphyry 97.8 ± 0.9 Ma in age and dikes varying in composition. One preore and three types of ore mineralization separated in space are distinguished: quartz-pyrite-arsenopyrite (I), quartz-carbonate-sulfide (II), and silver-base-metal (III). Quartz and carbonate (siderite) are predominant in ore veins. Ore minerals are represented by arsenopyrite, pyrite, sphalerite, galena, fahlore, and less frequent sulfosalts. Three types of fluid inclusions in quartz differ in phase compositions: two- or three-phase aqueous-carbon dioxide (FI I), carbon dioxide gas (FI II), and two-phase (FI III) containing liquid and a gas bubble. The homogenization temperature and salinity fall within the ranges of 367-217°C and 13.8-2.6 wt % NaCl equiv in FI I; 336-126°C and 15.4-0.8 wt % NaCl equiv in FI III. Carbon dioxide in FI II was homogenized in gas at +30.2 to +15.3°C and at +27.2 to 29.0°C in liquid. The δ34S values for minerals of type I range from-1.8 to +4.7‰ (V-CDT); of type II, from-7.4 to +6.6‰; and of type III, from-5.6 to +7.1‰. δ13C and δ18O vary from-7.0 to-6.7‰ (V-PDB) and from +16.6 to +17.1 (V-SMOW) in siderite-I; from-9.1 to-6.9‰ (V-PDB) and from +14.6 to +18.9 (V-SMOW) in siderite-II; from-5.4 to-3.1‰ (V-PDB) and from +14.6 to +19.5 (V-SMOW) in ankerite; and from-4.2 to-2.9‰ (V-PDB) and from +13.5 to +16.8 (V-SMOW) in calcite. The data on mineral assemblages, fluid inclusions, and ratios of stable isotopes allow us to speak about the formation of the Mangazeya deposit in relation to the activity of the hydrothermal-magmatic system. The latter combines emplacement of subvolcanic granitic stocks and involvement of fluids variable in salinity and temperature in ore deposition zone. The fluids released from crystallizing felsic magma and were formed in a convective cell by heating of meteoric and marine waters. The mechanism of ore deposition is related to phase separation (boiling) and mixing of fluids.
Ufnar, David F.; Ludvigson, Greg A.; Gonzalez, L.; Grocke, D.R.
2008-01-01
Stable isotope mass-balance modeling results of meteoric ??18O values from the Cenomanian Stage of the Cretaceous Western Interior Basin (KWIB) suggest that precipitation and evaporation fluxes were greater than that of the present and significantly different from simulations of Albian KWIB paleohydrology. Sphaerosiderite meteoric ??18O values have been compiled from the Lower Tuscaloosa Formation of southwestern Mississippi (25??N paleolatitude), The Dakota Formation Rose Creek Pit, Fairbury Nebraska (35??N) and the Dunvegan Formation of eastern British Columbia (55??N paleolatitude). These paleosol siderite ??18O values define a paleolatitudinal gradient ranging from - 4.2??? VPDB at 25??N to - 12.5??? VPDB at 55??N. This trend is significantly steeper and more depleted than a modern theoretical siderite gradient (25??N: - 1.7???; 65??N: - 5.6??? VPDB ), and a Holocene meteoric calcite trend (27??N: - 3.6???; 67??N: - 7.4??? VPDB). The Cenomanian gradient is also comparatively steeper than the Albian trend determined for the KWIB in the mid- to high latitudes. The steep latitudinal trend in meteoric ??18O values may be the result of increased precipitation and evaporation fluxes (amount effects) under a more vigorous greenhouse-world hydrologic cycle. A stable-isotope mass-balance model has been used to generate estimates of precipitation and evaporation fluxes and precipitation rates. Estimates of Cenomanian precipitation rates based upon the mass-balance modeling of the KWIB range from 1400??mm/yr at 25??N paleolatitude to 3600??mm/yr at 45??N paleolatitude. The precipitation-evaporation (P-E) flux values were used to delineate zones of moisture surplus and moisture deficit. Comparisons between Cenomanian P-E and modern theoretical siderite, and Holocene calcite latitudinal trends shows an amplification of low-latitude moisture deficits between 5-25??N paleolatitude and moisture surpluses between 40-60??N paleolatitude. The low-latitude moisture deficits correlate with a mean annual average heat loss of 48??W/m2 at 10??N paleolatitude (present, 8??W/m2 at 15??N). The increased precipitation flux and moisture surplus in the mid-latitudes corresponds to a mean average annual heat gain of 180??W/m2 at 50??N paleolatitude (present, 17??W/m2 at 50??N). The Cenomanian low-latitude moisture deficit is similar to that of the Albian, however the mid-latitude (40-60??N) precipitation flux values and precipitation rates are significantly higher (Albian: 2200??mm/yr at 45??N; Cenomanian: 3600??mm/yr at 45??N). Furthermore, the heat transferred to the atmosphere via latent heat of condensation was approximately 10.6?? that of the present at 50??N. The intensified hydrologic cycle of the mid-Cretaceous greenhouse warming may have played a significant role in the poleward transfer of heat and more equable global conditions. Paleoclimatological reconstructions from multiple time periods during the mid-Cretaceous will aid in a better understanding of the dynamics of the hydrologic cycle and latent heat flux during greenhouse world conditions.
Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology
Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.
1998-01-01
Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented meteoric calcite lines, which we define here as meteoric sphaerosiderite lines. Meteoric sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.
NASA Astrophysics Data System (ADS)
Sø, Helle Ugilt; Postma, Dieke; , Mai Lan, Vi; Pham, Thi Kim Trang; Kazmierczak, Jolanta; Dao, Viet Nga; Pi, Kunfu; Koch, Christian Bender; Pham, Hung Viet; Jakobsen, Rasmus
2018-03-01
Water-sediment interactions were investigated in arsenic contaminated Holocene aquifers of the Red River floodplain, Vietnam, in order to elucidate the origin of the spatial variability in the groundwater arsenic concentration. The investigated aquifers are spread over an 8 × 13 km field area with sediments that varied in burial age from <1 kyr to 11 kyr. The groundwater age ranged from less than 2 yr, up to a maximum near 90 yr. Groundwater As concentrations are between 0 and 6.5 μM and there are no simple correlations between the As concentration and groundwater age or aquifer sediment burial age. The aquifers are anoxic with up to 2 mM CH4 and up to 0.5 mM DOC. The downward advective DOC flux is too small to support both methanogenesis and the reduction of As-containing Fe-oxides and sedimentary carbon is therefore considered the main carbon source for the redox processes. The groundwater H2 concentration ranged between 0.1 and 4 nM. These values are intermediate between ranges characteristic for Fe-oxide reduction and methanogenesis and suggest that both processes take place simultaneously. The groundwater pe was calculated from the H2/H+ and CH4/CO2 redox couples, giving almost similar results that apparently reflects the pe of the bulk groundwater. The pe calculated for the As(III)/As(V) redox couple was found in disequilibrium with the other redox couples. Using the pe calculated from the CH4/CO2 redox couple we show that the groundwater has a reducing potential towards Fe-oxides ranging from ferrihydrite to poorly crystalline goethite, but not for well crystalline goethite or hematite. Hematite and poorly crystalline goethite were identified as the Fe-oxides present in the sediments. Reductive dissolution experiments identify two phases releasing Fe(II); one rapidly dissolving that also contains As and a second releasing Fe(II) more slowly but without As. The initial release of Fe and As occurs at a near constant As/Fe ratio that varied from site to site between 1.2 and 0.1 mmol As/mol Fe. Siderite (FeCO3) is the main sink for Fe(II), based on saturation calculations as well as the identification of siderite in the sediment. Most of the carbonate incorporated in siderite originates from the dissolution of sedimentary CaCO3. Over time the CaCO3 content of the sediments diminishes and FeCO3 appears instead. No specific secondary phases that incorporate arsenite could be identified. Alternatively, the amount of arsenic mobilized during the dissolution of reactive phases can be contained in the pool of adsorbed arsenite. Combining groundwater age with aquifer sediment age allows the calculation of the total number of pore volumes flushed through the aquifer. Comparison with groundwater chemistry shows the highest arsenic concentration to be present within the first 200 pore volumes flushed through the aquifer. These results agree with reactive transport modeling combining a kinetic description of reductive dissolution of As-containing Fe-oxide with adsorption and desorption of arsenite. Understanding variability in groundwater arsenic concentration requires appreciating the coupling of the chemical processes to both sedimentary and hydrogeological cycling.
New observations on the Ni-Co ores of the southern Arburese Variscan district (SW Sardinia, Italy)
NASA Astrophysics Data System (ADS)
Naitza, Stefano; Secchi, Francesco; Oggiano, Giacomo; Cuccuru, Stefano
2015-04-01
Among the European Variscan regions, the Arburese district, located in the Paleozoic basement of SW Sardinia (Italy) is remarkable for its metallogenic complexity, and offers good opportunities to investigate time/space and genetic links between post-collisional Variscan intrusive magmatism and mineral deposits. The district hosts a large variety of mineral deposits and occurrences, which include the Pb-Zn (Cu, Ag) mesothermal veins of the Montevecchio Lode System, one of the largest and richest Variscan hydrothermal ore deposit of Europe, now exhausted. Ore deposits are genetically related to the emplacement of the Late Variscan (304±1 Ma) Arbus Pluton, a granitoid composite intrusion ranging from monzogabbroic to granodioritic and to peraluminous leucogranitic rock-types. After more than a century of geological studies in the area, several metallogenic issues are still unresolved; among them, the occurrence in the southern sectors of little known polymetallic Ni-Co-(Pb-Zn-Cu-Ag-Bi) veins, a kind of mineralization quite unusual for the Sardinian basement. These hydrothermal deposits are hosted by very low-grade metamorphic rocks at short distance from the intrusion, where contact effect generate also hornfels. Spatial, structural and textural characters of the hydrothermal system are coherent and in apparent continuity with those of the Montevecchio Lode System. Ni-Co ores are hosted by a system of parallel, 1-2 m thick high-angle veins that discontinuously follow the southwestern and southern contacts of the Arbus Pluton for about 7 km. They constantly dip SSW, sideways with respect to the pluton contact, and show a prevalence of fracture infilling (banded and brecciated) textures, with alternating quartz and siderite bands, cockades and frequent inclusions of wallrock fragments. Wallrocks are usually silicified, bleached and/or sericitized. Systematic studies of ore textures and parageneses from different veins along the system have been performed by standard ore microscopy and SEM-EDS. Ore minerals associations include Ni-Co (Fe, Sb) arsenides/sulfoarsenides (nickeline, rammelsbergite, skutterudite, safflorite, gersdorffite, breithauptite, lollingite, cobaltite), Pb-Zn-Cu-Ag-Bi sulfides (galena, sphalerite, chalcopyrite, tetrahedrite/freibergite, bismuthinite, proustite/pyrargirite, stephanite), native Bi and native Ag. Ore textures and mineral phases relationships allow to envisage the following paragenetic sequence: 1) deposition of quartz (I) and a Ni monoarsenide (nickeline), and antimonide (breithauptite) followed by 2) Ni-,Ni-Co, Co- and Fe- di-, tri- arsenides and sulfoarsenides (rammelsbergite, skutterudite, safflorite, löllingite, cobaltite), with bismuthinite and native Bi; 3) deposition of abundant siderite, with quartz (II), Pb-Zn-Cu-Ag sulfides and sulfosalts and rare native Ag, followed at last by 4) calcite. This sequence depicts a polyphased evolution with alternating gradual and abrupt changes of the physicochemical parameters of a mesothermal fluid initially characterized by Ni-As-(Sb) contents, subsequently evolved to higher contents of As, Co and Bi, and, finally, enriched in S, allowing Pb, Zn, Cu deposition as sulfides and sulfosalts.Thus, the fine alternating rims of pure nickeline (NiAs) and breithauptite (NiSb) in nickeline individuals, detected by SEM-EDS, may be explained by repeated compositional re-equilibrations due to variable As and Sb contents of the fluids; increases in As, and, moreover, the sudden appearance of siderite and sulfides after brecciations indicate further re-opening of the system, related to hydrothermal fracturing and syn-depositional tectonics.
Pauluhn, Jürgen; Wiemann, Martin
2011-11-01
The two poorly soluble iron containing solid aerosols of siderite (FeCO₃) and magnetite (Fe₃O₄) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100 mg/m³. The particle size distributions were essentially identical (MMAD ≈1.4 μm). The iron-based concentrations were 12 or 38 and 22 or 66 mg Fe/m³ for FeCO₃ and Fe₃O₄, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (μl PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO₃ caused a more pronounced and sustained inflammation as compared to Fe₃O₄. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO₃ at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO₃ and Fe₃O₄ particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased dissolution and/or bioavailability of redox-active iron.
The Lake Ohrid Drilling Project: initial interpretations of stable isotope data over the last 640 ka
NASA Astrophysics Data System (ADS)
Lacey, J. H.; Leng, M. J.; Francke, A.; Sloane, H. J.; Milodowski, A. E.; Vogel, H.; Baumgarten, H.; Wagner, B.
2015-12-01
Lake Ohrid (Macedonia/Albania) is an ancient European lake with a unique biodiversity and a site of global significance to study the influence of climate, geological and tectonic events on the biological evolution of taxa. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from sediment cores spanning 640 ka recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Previous work on cores from the lake (up to 15 m, <140 ka) indicated that the Total Inorganic Carbon (TIC) content of sediments was highly sensitive to climate change during the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18Oc and δ18Os, reconstruct δ18O of lakewater (δ18Olw). Glacials are observed to have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from neighbouring Lake Prespa. The isotope data suggest Lake Ohrid experienced a period of overall stability through Marine Isotope Stage (MIS) 15 to 13, highlighting MIS 14 as a particularly warm glacial, and MIS 9 was isotopically freshest. Following MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. These findings provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on endemic speciation within the lake.
NASA Astrophysics Data System (ADS)
Lacey, J. H.; Leng, M. J.; Francke, A.; Sloane, H. J.; Milodowski, A.; Vogel, H.; Baumgarten, H.; Wagner, B.
2015-08-01
Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within the lake.
Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Archer, P. D., Jr.
2017-01-01
While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments. The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars. The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. 20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 degC to 500 degC at 20 degC/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy. Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).
Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Dame, Rudger H.; Archer, Paul Douglas; Hogancamp, Joanna C.
2017-10-01
While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments.The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars.The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. ~20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 °C to 500 °C at 20 °C/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy.Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).
NASA Astrophysics Data System (ADS)
Li, Jiwei; Peng, Xiaotong; Bai, Shijie; Chen, Zhiyan; Van Nostrand, Joy D.
2018-02-01
Authigenic carbonates are one type of conspicuous manifestation in seep environments that can provide long-term archives of past seepage activity and methane cycling in the oceans. Comprehensive investigations of the microbial community functional structure and their roles in the process of carbonate formation are, however, lacking. In this study, the mineralogical, geochemical, and microbial functional composition were examined in seep carbonate deposits collected from the west slope of the northern section of the Okinawa Trough (OT). The aim of this work was to explore the correspondence between the mineralogical phases and microbial metabolism during carbonate deposit formation. The mineralogical analyses indicated that authigenic carbonate minerals (aragonite, magnesium-rich calcite, dolomite, ankerite and siderite) and iron-bearing minerals (limonite, chlorite, and biotite) were present in these carbonate samples. The carbon and oxygen isotopic values of the carbonate samples varied between -51.1‰ to -4.7‰ and -4.8‰ to 3.7‰, respectively. A negative linear correlation between carbon and oxygen isotopic compositions was found, indicating a mixture of methane-derived diagenetic (low δ13C/high 18O) carbonates and detrital origin (high δ13C/low 18O) carbonates at the OT. GeoChip analyses suggested that various metabolic activities of microorganisms, including methanogenesis, methane oxidation, sulfite oxidation, sulfate reduction, and metal biotransformations, all occurred during the formation process. On the basis of these findings, the following model for the methane cycle and seep carbonate deposit formation in the sediment column at the OT is proposed: (1) in the upper oxidizing zone, aerobic methane oxidation was the main way of methane consumption; (2) in the sulfate methane transition zone, sulfate-dependent AOM (anaerobic oxidation of methane) consumes methane, and authigenic minerals such as aragonite, magnesium-calcite, and sulfide minerals precipitate; (3) in the underlying sulfate depleted zone, the presence of iron-oxides supplied by hydrothermal fluids and terrestrial inputs created thermodynamically favorable conditions for Fe-dependent AOM to consume methane, and dolomite and siderite/ankerite precipitate in this zone.
NASA Astrophysics Data System (ADS)
Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.
2015-12-01
The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the sodium carbonate solution issuing in Ikka Fjord.
2012-01-01
Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt. PMID:22697910
Coeval Formation of Aqueous Minerals on Mars
NASA Astrophysics Data System (ADS)
Fairen, A.; Uceda, E.; Gil, C.; Palmero Rodriguez, A.; Gago-Duport, L.
2015-12-01
Understanding the geochemical conditions on early Mars requires an explanation for the presence of sulfates and phyllosilicates, which must be also consistent with the absence of widespread sedimentary carbonates. In addition, sulfates and phyllosilicates do not generally occur together on Mars, which has been interpreted as a marker for detached mineral formation due to differing planetary environmental conditions separated dramatically, either in time or in space. Here, thermodynamic equilibrium calculations are used to determine the stability boundaries for phyllosilicates, ferrous and ferric sulfates, carbonates and iron oxyhydroxides precipitation on early Mars, at different atmospheric CO2 pressures and both under reducing and oxidizing conditions. Results suggest that phyllosilicates formed in mildly acidic to alkaline aqueous solutions, with a pH>4 for nontronite and a pH>6 for other smectites with low content in Fe and Mg (montmorillonite, saponite). Sulfate deposition dominates in solutions moderately to highly acidic, with a pH<6 conducive to the synthesis of kieserite. In the overlapping phyllosilicates/sulfates pH range, between 4 and 6, a competition for Mg between nontronite and kieserite is expected, and the formation of nontronite would be favored in areas where SiO2 activity in surface waters was high as a result of intense weathering of the early basaltic crust. Carbonates formed at pH>6, overlapping with the synthesis of low-Fe-Mg smectites. Model calculations anticipate the co-precipitation of smectites and siderite or any alteration product that could have resulted from the later substitution of Fe in siderite, such as Mg- or Mn-carbonate, triggering a competition for Mg between magnesite and low-Fe-Mg smectites. As expected, the model does not predict coeval synthesis of carbonates and sulfates. Goethite and other oxyhydroxides precipitate at pH below 2, a range at which jarosite and goethite are the expected iron-bearing phases. These results suggest that the major water-alteration products on the Martian surface were deposited simultaneously in space and in time, creating diverse geochemical conditions over the entire surface of a cold Mars during the wet Noachian/Hesperian times.
Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature
NASA Astrophysics Data System (ADS)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Goncharov, Alexander F.
2016-09-01
The ability of Earth's mantle to conduct heat by radiation is determined by optical properties of mantle phases. Optical properties of mantle minerals at high pressure are accessible through diamond anvil cell experiments, but because of the intense thermal radiation at T > 1000 K such studies are limited to lower temperatures. Accordingly, radiative thermal conductivity at mantle conditions has been evaluated with the assumption of the temperature-independent optical properties. Particularly uncertain is the temperature-dependence of optical properties of lower mantle minerals across the spin transition, as the spin state itself is a strong function of temperature. Here we use laser-heated diamond anvil cells combined with a pulsed ultra-bright supercontinuum laser probe and a synchronized time-gated detector to examine optical properties of high and low spin ferrous iron at 45-73 GPa up to 1600 K in an octahedral crystallographic unit (FeO6), one of the most abundant building blocks in the mantle. Siderite (FeCO3) is used as a model for FeO6-octahedra as it contains no ferric iron and exhibits a sharp optically apparent pressure-induced spin transition at 44 GPa, simplifying data interpretation. We find that the optical absorbance of low spin FeO6 increases with temperature due to the partially lifted Laporte selection rule. The temperature-induced low-to-high spin transition, however, results in a dramatic drop in absorbance of the FeO6 unit in siderite. The absorption edge (Fe-O charge transfer) red-shifts (∼1 cm-1/K) with increasing temperature and at T > 1600 K and P > 70 GPa becomes the dominant absorption mechanism in the visible range, suggesting its superior role in reducing the ability of mantle minerals to conduct heat by radiation. This implies that the radiative thermal conductivity of analogous FeO6-bearing minerals such as ferropericlase, the second most abundant mineral in the Earth's lower mantle, is substantially reduced approaching the core-mantle boundary conditions.
Jew, Adam D.; Dustin, Megan K.; Harrison, Anna L.; ...
2017-03-06
Hydraulic fracturing of unconventional hydrocarbon reservoirs is critical to the United States energy portfolio; however, hydrocarbon production from newly fractured wells generally declines rapidly over the initial months of production. One possible reason for this decrease, especially over time scales of several months, is the mineralization and clogging of microfracture networks and pores proximal to propped fractures. One important but relatively unexplored class of reactions that could contribute to these problems is oxidation of Fe(II) derived from Fe(II)-bearing phases (primarily pyrite, siderite, and Fe(II) bound directly to organic matter) by the oxic fracture fluid and subsequent precipitation of Fe(III)-(oxy)hydroxides. Here,more » the extent to which such reactions occur and their rates, mineral products, and physical locations within shale pore spaces are unknown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jew, Adam D.; Dustin, Megan K.; Harrison, Anna L.
Hydraulic fracturing of unconventional hydrocarbon reservoirs is critical to the United States energy portfolio; however, hydrocarbon production from newly fractured wells generally declines rapidly over the initial months of production. One possible reason for this decrease, especially over time scales of several months, is the mineralization and clogging of microfracture networks and pores proximal to propped fractures. One important but relatively unexplored class of reactions that could contribute to these problems is oxidation of Fe(II) derived from Fe(II)-bearing phases (primarily pyrite, siderite, and Fe(II) bound directly to organic matter) by the oxic fracture fluid and subsequent precipitation of Fe(III)-(oxy)hydroxides. Here,more » the extent to which such reactions occur and their rates, mineral products, and physical locations within shale pore spaces are unknown.« less
Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal
NASA Astrophysics Data System (ADS)
Krylov, Alexey A.; Hachikubo, Akihiro; Minami, Hirotsugu; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.; Krzhizhanovskaya, Mariya G.; Poort, Jeffrey; Khlystov, Oleg M.
2018-02-01
Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss the first finding of rhodochrosite concretions (Mn carbonate) discovered in the near-bottom sediments of the gas hydrate-bearing seepage structure St. Petersburg-2 in the deep water environment of the Central Baikal Basin. The crystal lattice of rhodochrosite contains iron and calcium substituting to manganese. Based on pore water geochemistry and of δ 13C values of rhodochrosite (- 23.3 and - 29.4‰), carbon dioxide (+ 3.8 to - 16.1‰) and methane (- 63.2 to - 67.8‰), we show that carbonate crystallization most likely occurred during microbial anaerobic oxidation of organic matter, and that part of the oxygen making up the rhodochrosite seems to be derived from the 18O-rich water released from dissociating gas hydrates.
Measurement of Cohesion in Asteroid Regolith Materials
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Gaier, James R.; Waters, Deborah L.; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick
2017-01-01
A study has been initiated to examine cohesive forces in asteroid materials to contribute to a better understanding of low density bodies such as asteroids and Phobos, and assist in exploration missions involving interaction with their surface material. The test specimen used in this study was a lightly weathered CM2 meteorite which is spectroscopically similar to Type C (carbonaceous) asteroids, and thought to have representative surface chemistry. To account for sample heterogeneity, adhesion forces were measured between the CM2 sample and its five primary mineral phase components. These adhesive forces bound the range of cohesive force that can be expected for the bulk material. All materials were characterized using a variety of optical and spectroscopic methods. Adhesive forces on the order of 50 to 400 µN were measured using a torsion balance in an ultrahigh vacuum chamber. The mineral samples exhibited clearly different adhesive strengths in the following hierarchy: Serpentine > Siderite > Bronzite > Olivine ˜ Fe-Ni.
Mössbauer study of the inorganic sulfur removal from coals
NASA Astrophysics Data System (ADS)
Reyes Caballero, F.; Martínez Ovalle, S. A.
2014-01-01
Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.
NASA Astrophysics Data System (ADS)
Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus
2016-12-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.
NASA Astrophysics Data System (ADS)
Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.
2013-12-01
The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron formation (eg. Hamersley BIF). So we investigate that the Cleaverville iron formation, which is one of the best well known Mesoarchean iron formation, was already started cyanobacteria oxygen production system to used pre-syn iron sedimentation at anoxic oceanic condition.
Wade, M L; Agresti, D G; Wdowiak, T J; Armendarez, L P; Farmer, J D
1999-04-25
Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.
Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2016-01-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210
NASA Technical Reports Server (NTRS)
Wade, M. L.; Agresti, D. G.; Wdowiak, T. J.; Armendarez, L. P.; Farmer, J. D.
1999-01-01
Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.
NASA Astrophysics Data System (ADS)
Murdock, Kathryn J.
Two lakes were studied in detail for rock magnetic properties: Lake El'gygytgyn, a crater lake formed 3.6Ma in the Far Eastern Russian Arctic, and Heimerdalsvatnet, a Holocene coastal lake located in the Lofotens off the coast of northern Norway. These two lakes have vastly different environmental histories, the former a terrestrial lake formed from a meteor impact and never covered by continental ice sheets whereas the latter went from a coastal marine setting to a completely lacustrine environment due to isostatic rebound and sea level fluctuations. Their differences are considerable, however they provide the opportunity to compare Arctic lake systems to discern similarities and differences in their magnetic properties for application to future climatic investigations. Paleomagnetic measurements and down-core magnetic susceptibility were performed at the GFZ German Research Centre for Geosciences in Potsdam for Lake El'gygytgyn and at the Laboratoire de paleomagnetisme sedimentaire at ISMER for Heimerdalsvatnet. Rock magnetic properties were measured at the University of Massachusetts Amherst, Institute of Rock Magnetism, and/or Trinity College. These measurements included: magnetic susceptibility, hysteresis parameters, Curie temperatures, and low-temperature magnetic behavior. Imaging of magnetite grains was also performed. Magnetic susceptibility measurements in Lake El'gygytgyn suggested a correlation between glacials (interglacials) and low (high) susceptibility. The large range in susceptibility indicated there could be magnetite dissolution. The first study supported this hypothesis with evidence at low temperatures (10-35K) of minerals such as siderite, rhodochrosite, and/or vivianite which could form from iron released during dissolution. Marine Isotope Stage 31 was investigated for rock magnetic properties that could continue to support or oppose findings from the first study. It was determined the presence of siderite only occurred in interglacial periods whereas its absence (and probably presence of vivianite) related to glacial periods, indicating more reduced environments during glacials versus interglacials. Heimerdalsvatnet paleomagnetic data from the marine environment (lower part of the core) revealed scattered directions whereas data from the upper part of the core (lacustrine environment) showed better consistency. Rock magnetic measurements showed some variation downcore, however the measurements are not dependable since the amount of paramagnetic material was overwhelming compared to any ferromagnetic mineral present.
NASA Astrophysics Data System (ADS)
Wohlgemuth, Christoph; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland District is located in the fold-and-thrust-belt of the Rhenish Massif and hosts various syn- late orogenic vein-hosted hydrothermal mineralization types. Peak-metamorphism and deformation occurred at 312-316 ± 10 Ma (Ahrendt et al., 1978) at pT-conditions of 280 - 320 °C and 0.7 - 1.4 kbar (Hein, 1993). The district is known for synorogenic siderite-quartz mineralization formed during peak-metamorphic conditions. At least 4 syn-late orogenic mineralization types are distinguished: Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au and hematite-digenite-bornite mineralization (Hellmann et al., 2012b). Co-Ni-Cu-Au mineralization of the Siegerland District belongs to the recently defined class of metasediment hosted synorogenic Co-Cu-Au deposits (i.e. Slack et al, 2010). Ore minerals are Fe-Co-Ni sulpharsenides, bearing invisible gold, chalcopyrite, and minor As-bearing pyrite. The gangue is quartz. The alteration mineralogy comprises chlorite, illite-muscovite and quartz. The epigenetic quartz veins are closely related to the formation of reverse faults (Hellmann et al., 2011a). Microthermometric studies of fluid inclusions concerning the relationship between mineralization and microstructures have not been done so far for this deposit-class and this will be addressed here. Fluid inclusions are investigated in hydrothermally formed vein-quartz, selected from Co-Ni-Cu-Au mineralization bearing veins showing only minor overprints by later mineralization types. Two quartz generations are distinguished: subhedral quartz-I showing growth zonation and fine grained, recrystallized- and newly formed quartz-II grains forming irregular masses and fracture fillings in quartz-I. Co-Ni-Fe sulpharsenides and chalcopyrite are closely intergrown with quartz-II, implying their contemperaneous formation. However, fluid inclusions in quartz-II are often small, therefore fluid inclusions in quartz-I have been mostly investigated. In total, 180 inclusions from 4 different deposits have been studied. The fluid inclusions are located on healed intragranular trails in quartz-I grains and subordinate in quartz-II. The inclusions are 5-20 μm in size and are aqueous biphase (L+V) showing a constant L/V ratio of 4. Homogenization is always to the liquid with Th (L) = 170-250°C (202°C mean). The salinity is moderate, with a range in Tm between -8 to -3°C, corresponding to 5 - 10 mass-% NaCl eq. (8.2 mass-% mean). There is no difference between fluid inclusions investigated in quartz-I and quartz-II. Despite the common occurrence of siderite in synorogenic siderite-quartz-veins, carbonate is absent in the alteration assemblage, implying a low CO2-activity in the fluids. Isochore calculations, combined with the paleo-geothermal gradient deduced for peak metamorphic conditions (Oncken, 1991) shows that the trapping temperature of the fluid is likely in the range between 220-300°C. The study shows that Co-Ni-Cu-Au mineralization has formed at the district scale from a relative homogeneous, aqueous fluid of moderate salinity, which may have been derived from the devolatilization of the sedimentary pile in deeper crustal regions. Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z.dt.geol.Ges.129, 229-247. Hein, U.F. (1993). Min. Mag. 57, 451-476. Hellmann, A., Wagner, T., Meyer, F.M. (2012b). Tagungsband Geologica Belgica 2012. Hellmann, A., Meyer F.M., Cormann, A., Peters, M. (2011a). Referate-Band MinPet 2011, 40. Oncken, O (1991). Annales de la Société géologique de Belgique 2, 139-159. Slack, J.F., et al. (2010). USGS Open File Report 2010-2012, 13 pp.
NASA Technical Reports Server (NTRS)
Toulmin, P., III; Rose, H. J., Jr.; Christian, R. P.; Baird, A. K.; Evans, P. H.; Clark, B. C.; Keil, K.; Kelliher, W. C.
1977-01-01
The current status of geochemical, mineralogical, petrological interpretation of refined Viking Lander data is reviewed, and inferences that can be drawn from data on the composition of Martian surface materials are presented. The materials are dominantly fine silicate particles admixed with, or including, iron oxide particles. Both major element and trace element abundances in all samples are indicative of mafic source rocks (rather than more highly differentiated salic materials). The surface fines are nearly identical in composition at the two widely separated Lander sites, except for some lithologic diversity at the 100-m scale. This implies that some agency (presumably aeolian processes) has thoroughly homogenized them on a planetary scale. The most plausible model for the mineralogical constitution of the fine-grained surface materials at the two Lander sites is a fine-grained mixture dominated by iron-rich smectites, or their degradation products, with ferric oxides, probably including maghemite and carbonates (such as calcite), but not such less stable phases as magnesite or siderite.
Mössbauer study of Fe mineralogy with respect to rank, type and Colombian carboniferous zone
NASA Astrophysics Data System (ADS)
Caballero, F. Reyes; Martínez Ovalle, S. A.; Díaz Lagos, M.; Gómez, O. P.; Blandón, A.
2017-11-01
The transmission mode of Fe-57 Mössbauer spectroscopy was used to identify iron bearing minerals and establish relationships between and among these minerals and the ranks and types of various carboniferous zones in Colombia. Maceral and mineral compositions vary significantly among Colombian carboniferous zones. These variations determine some of the final characteristics and potential uses of coal, and therefore significantly contribute to defining coal quality. A comparison of spectroscopy results shows that the thermal maturity of the Colombian coals ranges from lignite to semianthracite. Similarities and differences exist with respect to conventional parameters. The coals of Córdoba and Cauca have higher sulfur contents > 2 % ash contents. Iron bearing minerals identified included pyrite, which was, found everywhere, and illite, ankerite, siderite, iron sulfates were found in particular areas. Coals from Valle del Cauca, Córdoba, Caldas and Santander are characterized by oxidation of pyrite and its transformation into ferrous or ferric sulfate.
2018-01-01
A sandstone outcrop exposed to freshwater seepage supports a diverse assemblage of photosynthetic microbes. Dominant taxa are two cyanophytes (Oscillatoria sp., Rivularia sp.) and a unicellular green alga (Palmellococcus sp.). Less abundant taxa include a filamentous green alga, Microspora, and the desmid Cosmarium. Biologic activity is evidenced by measured levels of chlorophyll and lipids. Bioassay methods confirm the ability of these microbes to dissolve and metabolize Fe from ferruginous minerals. Chromatographic analysis reveals citric acid as the likely chelating agent; this low molecular weight organic acid is detectable in interstitial fluid in the sandstone, measured as 0.0756 mg/mL. Bioassays using a model organism, Synechoccus elongates strain UTEX 650, show that Fe availability varies among different ferruginous minerals. In decreasing order of Fe availability: magnetite > limonite > biotite > siderite > hematite. Biotite was selected for detailed study because it is the most abundant iron-bearing mineral in the sandstone. SEM images support the microbiologic evidence, showing weathering of biotite compared to relatively undamaged grains of other silicate minerals. PMID:29342973
Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H
2010-08-01
Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.
Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids
NASA Astrophysics Data System (ADS)
Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti
2017-03-01
Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.
A model for the biological precipitation of Precambrian iron-formation
NASA Technical Reports Server (NTRS)
Laberge, G. L.
1986-01-01
A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.
NASA Astrophysics Data System (ADS)
Myers, K. D.; Tice, M. M.; Bostick, B. C.
2016-12-01
Microbial arsenic (As) redox cycling is hypothesized to have been widespread in oxygen-free Archean environments, yet our understanding of Archean As cycles is hindered by a poor sedimentary record of As. Concentrations of up to 1.6 wt % As were discovered in chert clasts of a fan delta conglomerate sourced from shallow-water coastal environments in the 3.26-3.23 Ga Fig Tree Group of the Barberton Greenstone Belt, South Africa. Arsenic is associated at the outcrop-scale with Fe-bearing conglomerate pebbles and underlying banded ferruginous cherts, whereas low-Fe chert clasts, underlying low-Fe banded black and white cherts, bedded barites, and overlying ash deposits lack As. Bulk As and Fe K-edge X-ray absorption spectroscopy and 1-100 μm scale μ-X-ray fluorescence mapping were used to determine the abundance, oxidation state, and mineralogy of As in relation to sedimentary textures and bulk Fe mineralogy. Arsenic concentration is strongly linked to lithology: hematite (Fe2O3)-rich pebbles contain higher Fe:As ratios ( 10:1-100:1) than sideritic pebbles with little to no Fe2O3 (Fe:As 1:1-10:1). Arsenopyrite (FeAsS), orpiment (As2S3), As(III), and As(V) line pre-erosional textures and early dewatering structures. Significantly, As(V) is associated with hematite, pyrite, and siderite but not with products of recent oxidative weathering such as goethite. These results are best explained by As(V) adsorption to Fe-oxide phases during deposition or very early diagenesis, prior to silicification. Microbially-mediated SO42- and As(V) reduction led to As2S3 precipitation, known to occur in modern reducing and arsenic-bearing aquifers. Later metamorphic alteration of As2S3 led to partial replacement, likely isomorphously, with FeAsS. The presence of minerals formed during different stages of As(V) reduction associated with early sedimentary textures show that a complete biogeochemical As redox cycle was possible by 3.2 Ga. The As(V)/As(III) pair has a more positive reduction potential than the Fe(III)/Fe(II) pair, and As(V) is not produced in significant abundance by photochemical processes at seawater pH. The Fig Tree As cycle must therefore have been driven by photosynthetic bacteria, either indirectly through O2 production, or more likely directly by As(III)-oxidizing anoxygenic phototrophs.
Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.
Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases includingmore » Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.« less
3D numerical model of the southern polar giant impact for the formation of the Martian dichotomy
NASA Astrophysics Data System (ADS)
Leone, Giovanni; Tackley, Paul J.; Gerya, Taras; May, David A.; Zhu, Guizhi
2013-04-01
Lack of volcanism and/or crustal flows in the northern lowlands poses serious problems to the hypothesis of formation of the Borealis basin by giant impact in the Northern Polar region of Mars. We use numerical modeling integrated with a geologic and volcanologic study of the surface of Mars to investigate an alternative process of formation that involves a giant impact on the South Pole, resulting in a hemispherical magma pond and resulting thicker crust. We have performed 3D simulations of Martian evolution from the immediate post-impact stage to the present day for different combinations of impactor sizes and compositions, ranging from 900 km radius and sideritic composition (up to 80% radius iron) to 1750 km radius and mesosiderite-type composition (50% radius iron; nickel neglected at the moment). The main reason for considering siderites is the presence of M-type asteroids like 16 Psyche (and several others) in the asteroid belt, the likely remnants of larger parent bodies in the 1-2 AU range which then migrated to their current position after giant impacts with protoplanets. We assume an impactor speed similar to the escape velocity of the target body, consistent with N-body simulations. Our results show that this is a viable formation hypothesis for the southern highlands. Our preferred scenario is of a lunar sized impactor of 1600 km radius with a 70% iron (by radius) fraction, hitting the south Pole at a speed of 5 km/s (the escape velocity of Mars), melting much of the interior and 1/2 of the planetary surface with the creation of a magma ocean that formed the highlands upon cooling and solidification. Regarding timing, we find that this should have happened after 4 Ma after CAI, because before this the strong heating from short-lived radiogenic elements coupled with the thermal anomaly generated by the giant impact would erase by re-melting any newly formed crust. Using a combination of I3ELVIS (immediate post-impact and core formation) and STAGYY (long-term) thermo-mechanical codes, we are now studying the long-term consequences of such a giant impact: a) thermal and compositional effect on core formation; b) triggering of a transient magnetic field, traces of which have been detected on both the hemispheres; c) start-up of migrating mantle plumes from the southern polar region to the equator following two preferential paths, northwest to Tharsis and northeast to Elysium.
Modelling Iron-Bentonite Interactions
NASA Astrophysics Data System (ADS)
Watson, C.; Savage, D.; Benbow, S.; Wilson, J.
2009-04-01
The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite alteration products. This, together with inclusion of processes of iron corrosion and diffusion, has enabled investigation of a representative model of the alteration of bentonite in a typical EBS environment. Simulations with fixed mineral surface areas show that berthierine dominates the solid product assemblage, with siderite replacing it at simulation times greater than 10 000 years. Simulations with time-dependent mineral surface areas show a sequence of solid alteration products, described by: magnetite -> cronstedtite -> berthierine -> chlorite. Using plausible estimates of mineral-fluid interfacial free energies, chlorite growth is not achieved until 5 000 years of simulation time. The results of this modelling work suggest that greater emphasis should be placed upon methods to up-scale the results of laboratory experiments to timescales of relevance to performance assessment.
How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?
NASA Astrophysics Data System (ADS)
Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György
2017-04-01
Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an unexpectedly high proportion of total amount of CO2. Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO2 mineral trapping process.
NASA Technical Reports Server (NTRS)
Evans, Michael E.
2015-01-01
The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from five Ordinary Chondrite (OC) meteorites collected in Antarctica. These samples were identified and requested from NASA based upon their size, alteration history, and collection proximity to known Martian meteorites. They are also assumed to be carbonate-free before falling to Earth. This research addresses two questions involving Mars carbonates: 1) characterize terrestrial, secondary carbonate isotope values to apply to Martian meteorites for isolating in-situ carbonates, and 2) increase understanding of carbonates formed in cold and arid environments with Antarctica as an analog for Mars. Two samples from each meteorite, each approximately 0.5 grams, were crushed and dissolved in pure phosphoric acid for 3 sequential reactions: a) R times 0 for 1 hour at 30 degrees Centigrade (fine calcite extraction), b) R times 1 for 18 hours at 30 degrees Centigrade (course calcite extraction), and c) R times 2 for 3 hours at 150 degrees Centigrade (siderite and/or magnesite extraction). CO (sub 2) was distilled by freezing with liquid nitrogen from each sample tube, then separated from organics and sulfides with a TRACE GC using a Restek HayeSep Q 80/100 6 foot 2 millimeter stainless column, and then analyzed on a Thermo MAT 253 Isotope Ratio Mass Spectrometer (IRMS) in Dual Inlet mode. This system was built at NASA/JSC over the past 3 years and proof-tested with known carbonate standards to develop procedures, assess yield, and quantify expected error bands. Two distinct species of carbonates are found: 1) calcite, and 2) non-calcite carbonate (future testing will attempt to differentiate siderite from magnesite). Preliminary results indicate the terrestrial carbonates are formed at approximately sigma (sup 13) C equal to plus 5 per mille, which is consistent with atmospheric CO (sub 2) sigma (sup 13) C equal to minus 7 per mille and fractionation of plus12 per mille based upon polar temperature of -20 degrees Centigrade. The oxygen values fractionate sigma (sup 18) O equal to minus 10-20 per mille lighter between the R times 0 and R times 1 reactions at 30 degrees Centigrade. The carbonate oxygen isotope measurements are consistently heavier than expected with meteoric water and temperatures from Antarctica, perhaps due to secondary carbonate formation during curation in Houston, TX.
NASA Astrophysics Data System (ADS)
Bačík, P.; Uher, P.; Dikej, J.; Puškelová, Ľ.
2018-02-01
Tourmaline is an important gangue mineral in a large number of Cretaceous siderite-quartz-sulphide hydrothermal veins in the Gemeric Unit, Slovak Ore Mountains, Slovakia, such as Dobšiná, Vlachovo, Rožňavské Bystré, Hnilčík, Rakovnica, Novoveská Huta, Gretla, Rudňany, and Bindt. In this study we combine by electron microprobe analysis, powder X-ray diffraction, Mössbauer and optical emission spectroscopy to determine the range of tourmaline compositions in the deposits and constrain the mechanisms of its precipitation. Selected samples from the mentioned deposits belong mostly to the alkali group, schorl to dravite series, rarely dominant X-site vacant foititic tourmaline (Vlachovo and Bindt) and oxy-dravite compositions (Hnilčík) were detected. Rim zones of some schorlitic tourmalines show high concentrations of Ti (up to 2.35 wt.% TiO2, 0.30 apfu; Rožňavské Bystré). The chemical composition is mostly controlled by alkali-deficient X □AlNa-1(Mg,Fe2+)-1 and proton-deficient AlO(Mg,Fe2+)-1(OH)-1 substitutions. Titanium is incorporated into the structure by Y Ti Y (Mg,Fe) Y Al-2, Y Ti Z Mg Y Al-1 Z Al-1, Y TiO( Y AlOH), and X Ca Y Ti Z MgO2 X □-1 Y,Z Al-2(OH)-2 substitutions. Along trace elements, Sr and V attain concentrations of 80-450 and 70-320 ppm, respectively. The unit-cell parameter a varies between 15.960 and 15.985 Å; variations in c are larger, between 7.177 and 7.236 Å indicating the presence of Fe3+ and Mg2+ at Z site. Mössbauer spectroscopy has shown variable Fe3+ proportions (0.17 -0.55 apfu) in all samples. The gathered dataset suggests some qualitative considerations on the mechanisms controlling tourmaline compositions at the regional scale. The highest Fe3+ concentrations occur in samples from Rudňany and Gretla in the external part of Gemeric unit, suggesting higher oxidation during longer transport of fluids. We propose that the determined XFe in the samples are correlated with the compositions of the host rocks, as schorlitic to foititic tourmalines occur in veins located in the meta-rhyolites host, and tourmalines with the highest Mg contents occur in metabasalts.
Dumoulin, Julie A.; White, Tim
2005-01-01
Micromorphologic evidence indicates the presence of paleosols in drill-core samples from four sedimentary units in the Red Dog area, western Brooks Range. Well-developed sepic-plasmic fabrics and siderite spherules occur in claystones of the Upper Devonian through Lower Mississippian(?) Kanayut Conglomerate (Endicott Group), the Pennsylvanian through Permian Siksikpuk Formation (Etivluk Group), the Jurassic through Lower Cretaceous Kingak(?) Shale, and the Lower Cretaceous Ipewik Formation. Although exposure surfaces have been previously recognized in the Endicott Group and Kingak Shale on the basis of outcrop features, our study is the first microscopic analysis of paleosols from these units, and it provides the first evidence of subaerial exposure in the Siksikpuk and Ipewik Formations. Regional stratigraphic relations and geochemical data support our interpretations. Paleosols in the Siksikpuk, Kingak, and Ipewik Formations likely formed in nearshore coastal-plain environments, with pore waters subjected to inundation by the updip migration of slightly brackish ground water, whereas paleosols in the Kanayut Conglomerate probably formed in a more distal setting relative to a marine basin.
Use of bioassays for testing soils and/or sediments contaminated by mining activities
NASA Astrophysics Data System (ADS)
Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; García-Lorenzo, M. L.; Molina, J.
2009-04-01
Ecotoxicity tests measure the bioavailability of the contaminants and the effects of the chemically not measured toxic compounds on the members of the soil community. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. They are solid phase tests based on terrestrial methods and tests performed on water extracts using aquatic test protocols. The extent and degree of heavy metal contamination around mines may vary depending on geochemical characteristics, the mineralization of tailings, physico-chemical conditions and the processes used to extract metals. Portman Bay was subject to mining from the time of the Roman Empire to 1991 when the activity ceased. Since 1957, the wastes from mining operations were discharged directly into the sea. These wastes mainly consisted of clay, quartz, siderite, magnetite, remains of sphalerite, pyrite and galena and residues of the chemical reagents used in floatation. In our study two methods of environmental toxicological tests were compared and applied to sediments of the Portman Bay (SE, Spain): the standardized toxicological test based on inhibition of luminescence employing Microtox
Modes of occurrence of potentially hazardous elements in coal: levels of confidence
Finkelman, R.B.
1994-01-01
The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.
Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation
NASA Astrophysics Data System (ADS)
Zeng, Zhirui; Tice, Michael M.
2018-01-01
Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.
The Origin of Magnetite Crystals in ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K., Jr.
2012-01-01
Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.
New Insights into the Origin of Magnetite Crystals in ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keptra, Katie L.; Clemett, S. J.; Wentworth S. J.; Mckay, D. S.; Gibson, E. K., Jr.
2010-01-01
Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose ori gins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated: that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded [1]. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.
Origin of Magnetite Crystals in Martian Meteorite ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K.L.; Clemett, S.J.; McKay, D.S.; Gibson, E. K.; Wentworth, S. J.
2010-01-01
Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded [1]. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from our thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios.
Preliminary zoning for risk assessment and remediation purposes in Portman Bay.
NASA Astrophysics Data System (ADS)
Pérez-Sirvent, Carmen; Martínez-Sanchez, MJose; Garcia-Lorenzo, MariLuz; Hernandez-Cordoba, Manuel; Molina, Jose; Gonzalez, Eva; Perez-Espinosa, Victor
2014-05-01
Portman bay is a singular point of mining impact in the Mediterranean area. The site is located in the province of Murcia, south-eastern Spain, and was completely inundated with more than 63 million tonnes of mining waste discharged through a huge washing plant. Wastes from mining activities mainly consisted of ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials were submitted to a concentration process by floatation with sea water and as a result of the discharge, the whole of the bay was filled up with wastes which also extended into the Mediterranean Sea. In the last years of activity, wastes were even poured alternatively in the sea or over the sediments filling the bay. These actions have produced a very high heterogeneity in the sediments. Although after the end of the discharges it has been possible to reach a certain degree of balance, the sediments, especially those closest to the sea, are subjected to marine dynamics and the effects of rainfall and runoffs. In 2007, a recuperation pilot project was developed and financed by the Spanish Government. In the first step of this project, the complete physical, chemical and mineralogical characterization of sediments, both in surface and at depth was carried out. Twenty surface samples were collected (<1 m) and twelve sediment cores were also collected at the same time. To determine the total trace element content, zinc and iron levels were determined by flame atomic absorption spectrometry, while lead, cadmium and copper levels were determined by electrothermal atomization atomic absorption spectrometry. The arsenic content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer. The reliability of the results was verified by analyzing standard reference materials. The mineralogical composition was determined using Cu-Kα radiation with an X-ray Diffractometer and appropriate software. Data for metal leached, Acid-volatile sulphide (AVS) and simultaneously extracted metals (SEM) were also obtained. The results allowed two types of materials to be differentiated. The first one with a fine particle size, is related with the direct discharge of wastes and contains jarosite and other minerals resulting of supergenic alteration. The pH is low and both the level of heavy metals and chemical reactivity are high. The second, different material is black sand, a sediment of coarse texture in which stable minerals, phylosilicates, iron oxides and hydroxides, siderite, pyrite and quartz predominate. The pH is close to neutrality and despite a high heavy metals level, the chemical reactivity is low. The data allowed a preliminary zoning of the risk in the area to be established, and this was the starting point to outline the remediation project.
A model for late Archean chemical weathering and world average river water
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-01-01
Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the composition Na+-Ca2+-Fe2+-Mg2+-Cl--HCO-3-SiO2,aq. The pH of the water was 6.3 and it is much richer in HCO-3, and in Mg + Fe relative to Ca + Na, compared to present-day WARW. At higher pH2,g (e.g. 10-4.0 bars) organic acid anions could be metastable. Our results are consistent with the thermodynamic stability of Fe(II)-clays, pyrite, uraninite, and, under some conditions, siderite during weathering and riverine transport. Overall, our results provide a basis for assessing the formation of organic hazes and the mobility of trace elements and nutrients due to fluctuations of the late Archean atmosphere.
NASA Astrophysics Data System (ADS)
Evans, M. E.; Niles, P. B.
2016-12-01
This study finds that 1) Martian Nakhlite meteorites contain insitu carbonates with distinctive δ13C from terrestrial carbonates formed on Antarctic Ordinary Chondrites (OCs), and 2) Martian carbonate formation δ18O values for atmospheric CO2 and meteoric water can be predicted with a mixing model created from Antarctic OC carbonate data. Nakhlite and OC meteorites collected in Antarctica contain both calcites and non-calcite carbonates. Rock samples were crushed, dissolved in pure phosphoric acid, and allowed to react at the following conditions: 1 hr@30°C (Rx0, fine calcite), 18 hr@30°C (Rx1, course calcite), and 3 hr@150°C (Rx2, siderite and/or magnesite). The collected CO2 was purified with a Thermo Trace GC and analyzed on a Thermo MAT 253 IRMS in dual inlet mode. Ten OC meteorite samples collected from three different Antarctic regions (RBT, ALH, MIL) were analyzed. These samples had no pre-terrestrial aqueous alterations, yet evaporite minerals were visible on the fusion crust. It is deduced these OC carbonates were completely terrestrial. These calcites have δ13C=+6‰ and are consistent with equilibrium formation to Earth atmospheric CO2 δ13C=-7‰ at 0°C to 10°C. Siderite or magnesite fractionation may create slightly heavier δ13C as seen in the Rx2 results. The range of δ18O from +3‰ to +30‰ is heavier than expected if carbonate forms in equilibrium with only meteoric water. A δ18O mixing model is created with Earth atmospheric CO2 and meteoric water as end members. This model predicts the OC calcites form with 60%-90% contribution from atmospheric CO2 at 0°C, and the non-calcites form with 40-60% contribution from atmospheric CO2. Four martian Nakhlites collected from the Antarctic Miller Range were analyzed. These samples contain low carbonate concentrations (avg. 0.007% by weight) with distinctly heavier δ13C = +7‰ to +59‰. In general, these carbonates are lighter than expected if formed in equilibrium with the modern martian atmosphere (δ13Ccalcite ≈+60); however they may reflect formation values with an ancient (<1.3 Ga) martian atmosphere. If the martian carbonates formed with oxygen contribution ratios similar to the OC terrestrial carbonates, then the mixing model parametrically provides Mars δ18O for atmospheric CO2 and meteoric water that creates the measured values.
Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu
2013-01-01
High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically heavy Fe(II) produced by microbially mediated reduction of Fe(III) oxides led to further enrichment of isotopically light Fe in groundwater (up to −3.4‰ of δ56Fe) in anoxic–suboxic conditions. Arsenic re-adsorption was expected to occur along with Fe(II) re-adsorption, decreasing groundwater As concentrations. In strongly reducing conditions, precipitation of isotopically light Fe-pyrite and/or siderite increased groundwater δ56Fe values, reaching +0.58‰ δ56Fe, with a subsequent decrease in As concentrations via co-precipitation. The mixed effect of those pathways would regulate As and Fe cycling in most groundwaters.
NASA Astrophysics Data System (ADS)
Snæbjörnsdóttir, Sandra Ó.; Gislason, Sigurdur R.; Galeczka, Iwona M.; Oelkers, Eric H.
2018-01-01
Results from injection of 175 tonnes of CO2 into the basaltic subsurface rocks at the CarbFix site in SW-Iceland in 2012 show almost complete mineralisation of the injected carbon in less than two years (Matter et al., 2016; Snæbjörnsdóttir et al., 2017). Reaction path modelling was performed to illuminate the rate and extent of CO2-water-rock reactions during and after the injection. The modelling calculations were constrained by the compositions of fluids sampled prior to, during, and after the injection, as reported by Alfredsson et al. (2013) and Snæbjörnsdóttir et al. (2017). The pH of the injected fluid, prior to CO2 dissolution was ∼9.5, whereas the pH of the background waters in the first monitoring well prior to the injections was ∼9.4. The pH of the sampled fluids used in the modelling ranged from ∼3.7 at the injection well to as high as 8.2 in the first monitoring well. Modelling results suggest that CO2-rich water-basalt interaction is dominated by crystalline basalt dissolution along a faster, high permeability flow path, but by basaltic glass dissolution along a slower, pervasive flow path through which the bulk of the injected fluid flows. Dissolution of pre-existing calcite at the onset of the injection does not have a net effect on the carbonation, but does contribute to a rapid early pH rise during the injection, and influences which carbonate minerals precipitate. At low pH, Mg, and Fe are preferentially released from crystalline basalts due to the higher dissolution rates of olivine, and to lesser extent pyroxene, compared to plagioclase and glass (Gudbrandsson et al., 2011). This favours the formation of siderite and Fe-Mg carbonates over calcite during early mineralisation. The model suggests the formation of the following carbonate mineral sequences: siderite at pH < 5, Mg-Fe-carbonates and Ca-Mg-Fe-carbonates at pH > 5, and calcite at higher pH. Other minerals forming with the carbonates are Al- and Fe-hydroxides and chalcedony, and zeolites and smectites at elevated pH. The most efficient carbonate formation is when the pH is high enough for formation of carbonates, but not so high that zeolites and smectites start to form, which compete with carbonates over both cations and pore space. The results of reaction path modelling at the CarbFix site in SW-Iceland indicate that this ;sweet spot; for mineralisation of CO2 is at pH from ∼5.2 to 6.5 in basalts at low temperature (20-50 °C).
Volatiles in the deep Earth: An experimental study using the laser-heated diamond cell
NASA Technical Reports Server (NTRS)
Li, Xiaoyuan; Jeanloz, Raymond; Nguyen, Jeffrey H.
1994-01-01
Experiments with the laser-heated diamond cell show that H2O and CO2 can be stabilized within crystalline mineral structures of the lower-mantle, and hence can be present at relatively non-volatile components of the Earth's deep interior. Samples quenched from high pressures and temperatures document that the MgCO3-FeCO3 magnesite-siderite solid-solution is stable and coexists with (Mg,Fe)SiO3 perovskite at 30-40 GPa and approximately 1500-2000 K. In contrast, H2O combines with the silicate to form (Mg,Fe)SiH2O4 phase D, coexisting with (Mg,Fe)SiO3 perovskite at these conditions. If enough water is present, phase D can become the predominant phase in the MgSiO3-H2O system at lower-mantle conditions. Our work extends previous studies to Fe-bearing compositions and to the pressures of the mid-lower mantle. Thus, the results of high-pressure experiments suggest that both H2O and CO2 can be abundant in the Earth's lower mantle, being present in stable hydroxisilicate and carbonate phases.
NASA Astrophysics Data System (ADS)
Roh, Y.; Oh, J.; Seo, H.; Rhee, S.
2007-12-01
The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyoncu, R.S.; Boyer, J.P.; Snyder, M.J.
Partial data on the characterization of Well 0-1 (Christian County, Kentucky) shales were first reported in the Fifth Quarterly Technical Progress Report on January 1978. This report presents all the characterization data and its analysis on the 0-1 shales. Coring of Well 0-1 was accomplished in October 1976. A total of 17 samples were obtained, 13 for Battelle and 4 for other DOE Contractors. Methane is almost the sole hydrocarbon gas present in these shales, with higher chain hydrocarbon gases nearly nonexistent. An apparent increase in hydrocarbon gas contents with shale depth is observed. Other organic contents (in the formmore » of carbon and hydrogen) also show an increase with increasing shale depth. An increase in hydrocarbon gas contents with carbon and hydrogen contents is also noticeable. Natural gas, carbon and hydrogen contents all vary inversely with bulk densities. 0-1 shales show low mercury intrusion porosities and very low to negligible gas permeabilities. Lithology of these shales is very similar to those previously reported, quartz being the most abundant single mineral. Illite and kaolin are the major clay minerals with a number of carbonates (nahcolite, sortite, siderite) present in moderate quantities. Pyrite is also observed in significant quantities.« less
A preliminary study of the phycological degradation of natural stone masonry.
Welton, Ryan G; Cuthbert, Simon J; Mclean, Roger; Hursthouse, Andrew; Hughes, John
2003-03-01
For many years it has been realised that the weathering of stone is not merely determined by physical and chemical factors but also by biological agents. When the stone in question is a historic building or monument, the damage done constitutes an irretrievable loss of our heritage and history. Laboratory studies have commenced in Paisley to study the effect of photoautotrophs on the major sedimentary rock forming minerals, with a view to expanding this work to study the overall effect of these micro-organisms on heritage masonry. Tests were carried out on Albite, Calcite, Dolomite, Orthoclase, Siderite and Quartz, using axenic cultures of the following: Chlorella vulgaris, Chlorococcum tetrasporum, Scenedesmus obliquus, Oocystis marsonii, Stichococcus bacillaris. The rock chips were immersed in either water or bolds basal media and exposed to a mix of the micro-organisms listed above and then tested weekly for their pH, fortnightly for the waters chemical composition using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and visually utilising the university's SEM facilities. Work so far has revealed biologically mediated etching of minerals, a well-defined pH profile over a period of 90 days, as well as a variety of elemental release patterns for the different minerals.
Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.
Zeng, Zhirui; Tice, Michael M
2018-01-01
Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.
Carbon Dioxide Cycling, Climate, Impacts, and the Faint Young Sun
NASA Technical Reports Server (NTRS)
Zahnle, K. J.; Sleep, H. H.
1999-01-01
Evidence for relatively mild climates on ancient Earth and Mars has been a puzzle in light of the faint early sun. The geologic evidence, although far from conclusive, would appear to indicate that the surfaces of both planets were, if anything, warmer ca. 3-4 Ga than they are now. The astrophysical argument that the sun ought to have brightened approx. 30% since it reached the main sequence is hard to refute. There results a paradox between the icehouse we expect and the greenhouse we think we see. The usual fix has been to posit massive CO2 atmospheres, although reduced gases (e.g., NH3 or CH4 ) have had their partisans. Evidence against siderite in paleosols dated 2.2-2.75 Ga sets a rough upper limit of 30 PAL (present atmospheric levels) on pCO2 at that time. This is an order of magnitude short of what is needed to defeat the fainter sun. We present here an independent argument against high pCO2 on early Earth that applies not only to the Archean but yet more forcefully to the Hadean era. Additional information is contained in the original extended abstract.
Photosynthetic microbial mats in the 3,416-Myr-old ocean.
Tice, Michael M; Lowe, Donald R
2004-09-30
Recent re-evaluations of the geological record of the earliest life on Earth have led to the suggestion that some of the oldest putative microfossils and carbonaceous matter were formed through abiotic hydrothermal processes. Similarly, many early Archaean (more than 3,400-Myr-old) cherts have been reinterpreted as hydrothermal deposits rather than products of normal marine sedimentary processes. Here we present the results of a field, petrographic and geochemical study testing these hypotheses for the 3,416-Myr-old Buck Reef Chert, South Africa. From sedimentary structures and distributions of sand and mud, we infer that deposition occurred in normal open shallow to deep marine environments. The siderite enrichment that we observe in deep-water sediments is consistent with a stratified early ocean. We show that most carbonaceous matter was formed by photosynthetic mats within the euphotic zone and distributed as detrital matter by waves and currents to surrounding environments. We find no evidence that hydrothermal processes had any direct role in the deposition of either the carbonaceous matter or the enclosing sediments. Instead, we conclude that photosynthetic organisms had evolved and were living in a stratified ocean supersaturated in dissolved silica 3,416 Myr ago.
Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra
2009-08-01
Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex.
Arsenopyrite weathering under conditions of simulated calcareous soil.
Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel
2016-02-01
Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.
Photosynthetic microbial mats in the 3,416-Myr-old ocean
NASA Astrophysics Data System (ADS)
Tice, Michael M.; Lowe, Donald R.
2004-09-01
Recent re-evaluations of the geological record of the earliest life on Earth have led to the suggestion that some of the oldest putative microfossils and carbonaceous matter were formed through abiotic hydrothermal processes. Similarly, many early Archaean (more than 3,400-Myr-old) cherts have been reinterpreted as hydrothermal deposits rather than products of normal marine sedimentary processes. Here we present the results of a field, petrographic and geochemical study testing these hypotheses for the 3,416-Myr-old Buck Reef Chert, South Africa. From sedimentary structures and distributions of sand and mud, we infer that deposition occurred in normal open shallow to deep marine environments. The siderite enrichment that we observe in deep-water sediments is consistent with a stratified early ocean. We show that most carbonaceous matter was formed by photosynthetic mats within the euphotic zone and distributed as detrital matter by waves and currents to surrounding environments. We find no evidence that hydrothermal processes had any direct role in the deposition of either the carbonaceous matter or the enclosing sediments. Instead, we conclude that photosynthetic organisms had evolved and were living in a stratified ocean supersaturated in dissolved silica 3,416Myr ago.
NASA Astrophysics Data System (ADS)
2018-05-01
The main reactions considered in OM mineralization during early diagenesis of sediment are listed in Table 1. Under oxidant-depleted conditions, fermentation of metabolizable OM of general formula CxHyOz can yield acetate, CO2 and H2 (r1). Note that reaction r1 takes into account any source of CO2 during fermentation including the partial degradation of high molecular weight OM (HMW OM) into lower molecular weight OM (LMW OM; Corbett et al., 2013; Corbett et al., 2015). The products of this reaction yield CH4 via either acetate fermentation (r2) or hydrogenotrophy (r3). In addition, when electron acceptors (EAs), i.e., Fe(III), SO42-, and partially oxidized HS, are present, CH4 (r4) and OM (r5) can be oxidized to produce CO2. Here, nitrate and Mn oxyhydroxides were not considered as oxidants, owing to the very low concentration of the former (<2 μmol L-1) over the whole sampling interval and because Mn oxyhydroxides do not form under the slightly acidic conditions prevailing in these porewaters (Chappaz et al., 2008). In addition, we neglected precipitation and dissolution of carbonate minerals except for siderite precipitation (r6) due to its positive SI values (SI ≥ 0.5).
Lund, Anders L.; Slater, Lee D.; Atekwana, Estella A.; Ntarlagiannis, Dimitrios; Cozzarelli, Isabelle M.; Bekins, Barbara A.
2017-01-01
Conventional characterization and monitoring of hydrocarbon (HC) pollution is often expensive and time-consuming. Magnetic susceptibility (MS) has been proposed as an inexpensive, long-term monitoring proxy of the degradation of HC. We acquired repeated down hole MS logging data in boreholes at a HC-contaminated field research site in Bemidji, MN, USA. The MS data were analyzed in conjunction with redox conditions and iron availability within the source zone to better assess whether MS can serve as a proxy for monitoring HC contamination in unconsolidated sediments. The MS response at the site diminished during the sampling period, which was found to coincide with depletion of solid phase iron in the source zone. Previous geochemical observations and modeling at the site suggest that the most likely cause of the decrease in MS is the transformation of magnetite to siderite, coupled with the exhaustion of ferrihydrite. Although the temporal MS response at this site gives valuable field-scale evidence for changing conditions of iron cycling and stability of iron minerals it does not provide a simple proxy for long-term monitoring of biodegradation of hydrocarbons in the smear zone.
Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.
2009-01-01
Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulut, Y.; Karayigit, A.I.
The coal-bearing Soma basin is one of the most productive lacustrine coal basins of western Anatolia-Turkey. This study mainly focuses on petrography of the feed coals (FCs) in the Soma power plant. A total of 16 feed coal samples were systematically collected once a week over an eight-week period from both group boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity. The most abundant maceral group of FCs is huminite, in which texto-ulminite, eu-ulminite, attrinite, densinite are rich. Liptinite group macerals in FCs include mainly sporinite, resinite, and liptodetrinite, which are considerably higher than the other identifiedmore » liptinite macerals. In the inertinite group, fusinite and inertodetrinite are more abundant. Identifiable minerals with petrographical studies are pyrite, siderite, other minerals (e. g., carbonates, clay minerals, quartz, feldspar, etc.), and fossil shells. This study shows that FCs used are subbituminous in rank with mean random ulminite reflectance of 0.43% Rr oil from B1-4 units and 0.39% Rr oil from B5-6 units. This indicates that coal rank is slightly higher in the central mines (southern Soma) than in the Denis mines (northern Soma).« less
NASA Astrophysics Data System (ADS)
San Liou, Ying; Liu, Yi Chang
2017-04-01
Ancient glass beads with different colors, shapes, and stylistics unearthed from the archaeological sites of eastern Taiwan, dating back to approximately 1850-310 BP, have been investigated. It is generally known that glass bead is alien to invade into Taiwan along with metal ware, glass, agate, etc. since the Metal Age of Taiwan. Nevertheless, souring provenance and trade routes still remain controversial. Micro-Raman spectroscopy and μ-XRF have been applied on fifty-six ancient glass beads to reveal the mineralogical and chemical compositions and to help decipher the raw materials used and souring provenance. Micro-Raman measurements indicate the presence of hematite, zincite, siderite, sphalerite, lead tin yellow type II, quartz, feldspar, anatase, rutite, ankerite, graphite, calcite, etc. Among them, hematite, zincite, siderite, sphalerite, lead tin yellow type II, and rutile were found to be colorants/opacifiers. Moreover, crystalline phases such as lead tin yellow type II (PbSn1-xSixO3), zincite (ZnO), tricalcium diphosphate (Ca2(PO4)2), sphalerite ((Zn, Fe)S) and ankerite (Ca(Fe, Mg, Mn)(CO3)2) were detected in ancient glass beads unearthed from Taiwan for the first time. The chemical results obtained by μXRF show SiO2, Al2O3, Na2O, K2O, MgO, CaO, and PbO as the most abundant oxides. Na2O, K2O, Al2O3, MgO, and PbO could be the main/minor fluxes and colorants. In general, results of mineralogical and chemical analyses are compatible. According to chemical results, ancient glass beads can be classified as mineral soda alumina glass (m-Na-Al glass), soda plant ash glass (v-Na-Ca glass), lead silicate glass, and some less well known types. Mineral soda alumina and soda plant ash glass beads, as well as lead silicate glass beads are generally believed to be the distinct phases of production and exchange in Southeast Asia and China, respectively. In terms of chronology of glass bead, beads excavated from sites of 1850-930 BP are mineral soda alumina glass (m-Na-Al glass) and soda plant ash glass (v-Na-Ca glass). On the other hand, beads from sites of <930 BP are belonging to lead silicate glass. It is indicated that the souring provenance of ancient beads of eastern Taiwan is probably a multiple sources, i.e., in earlier time, glass beads were brought into Taiwan through the maritime exchange and/or trade activities between Taiwan and Southeast Asia; at the later period, lead silicate glass beads were imported from China. However, some mineral soda alumina and soda plant ash glass beads were found in a later period, it might be attributed to glass beads reuse or trade route between Taiwan and Southeast Asia is successive since ca. 1850 BP.
The Raman spectrum of Ca-Mg-Fe carbonates; Applications in geobiology
NASA Astrophysics Data System (ADS)
van Zuilen, M. A.; Rividi, N.; Ménez, B.; Philippot, P.
2012-04-01
Carbonates form a very important mineral group in geobiological studies. They are a common mineral matrix for putative carbonaceous microfossils in Archean greenstone belts, form an important chemical deposit in seafloor hydrothermal systems, and are a common product in biomineralization processes. In many geobiological studies there is a specific need for simple characterization of carbonate composition while avoiding complex sample preparation or sample destruction. Raman spectroscopy is a highly versatile non-destructive technique enabling in-situ characterization of minerals and carbonaceous materials. It can be combined with confocal microscopy enabling high-resolution Raman mapping of entire rock thin sections, or can be integrated in submersibles and potentially Mars-rovers for direct field-based mineral identification. It is thus important that well-established spectral databases exist which enable unambiguous identification of a wide variety of carbonate minerals. The most common carbonates in the Ca-Mg-Fe system include the CaCO3 polymorphs calcite, aragonite, and vaterite, as well as the solid solutions CaMg(CO3)2-CaFe(CO3)2 (dolomite-ankerite) and MgCO3-FeCO3 (magnesite-siderite). Although various carbonate end-members have been studied exhaustively by Raman spectroscopy, a simple protocol for rapid distinction of various carbonate solid solutions is still lacking. Here we present a detailed study of Raman shifts in various carbonate standards of known composition in the Ca-Mg-Fe system. Carbonates with rhombohedral symmetry display a Raman spectrum with six characteristic vibrational modes - four of these represent vibrations within the (CO3)2- unit and two represent external vibrations of the crystal lattice. We show that Raman band shifts of internal mode 2ν2 (range 1725-1765 cm-1), and external modes T (range 170-215 cm-1) and L (range 285-330 cm-1) for siderite-magnesite and ankerite-dolomite solid solutions display distinct and well defined positive correlations with Mg number (Mg/Mg+Fe+Mn+Ca). Raman shifts calibrated as a function of Mg number were used in turn to evaluate the chemical composition of natural carbonate samples. In particular it is shown that detailed micron-resolution Raman maps can be generated of carbonate crystal-zonation in hydrothermally altered sedimentary deposits from Archean greenstone belts. Large spectral-range analysis (140-2000 cm-1) in static-mode (centered at 1150 cm-1) allows for combined Raman mapping of both carbonate-composition (2ν2, T, L modes) as well as kerogen structural ordering (D1-D4 and G modes in the range 1100-1700 cm-1), and therefore allows for simultaneous characterization of putative organic microfossils and associated carbonate matrix in metamorphosed Archean rock samples. Finally, it will be shown that these carbonate solid solutions can be distinguished from other end-member carbonates such as calcite, vaterite and the orthorhombic polymorph aragonite.
Chemical properties of ground water and their corrosion and encrustation effects on wells
Barnes, Ivan; Clarke, Frank Eldridge
1969-01-01
Well waters in Egypt, Nigeria, and West Pakistan were studied for their chemical properties and corrosive or encrusting behavior. From the chemical composition of the waters, reaction states with reference to equilibrium were tested for 29 possible coexisting oxides, carbonates, sulfides, and elements. Of the 29 solids considered, only calcite, CaCO3, and ferric hydroxide, Fe(OH)3, showed any correlation with the corrosiveness of the waters to mild steel (iron metal). All 39 of the waters tested were out of equilibrium with iron metal, but those waters in equilibrium or supersaturated with both calcite and ferric hydroxide were the least corrosive. Supersaturation with other solid phases apparently was unrelated to corrosion. A number of solids may form surface deposits in wells and lead to decreased yields by fouling well intakes (screens and gravel packs) or increasing friction losses in casings. Calcite, CaCO3; ferric hydroxide, Fe(OH)3; magnetite, Fe3O4; siderite, FeCO3; hausmannite, Mn304 (tetragonal); manganese spinel, Mn3O4 (isometric); three iron sulfides mackinawite, FeS (tetragonal); greigite, Fe3S4 (isometric); and smythite, Fe3S4 (rhombohedral)-copper hydroxide, Co(OH)2; and manganese hydroxide, Mn(OH)2, were all at least tentatively identified in the deposits sampled. Of geochemical interest is the demonstration that simple stable equilibrium models fail in nearly every case to predict compositions of water yielded by the wells studied. Only one stable phase (calcite) was found to exhibit behavior approximately predictable from stable equilibrium considerations. No other stable phase was found to behave as would be predicted from equilibrium considerations. All the solids found to precipitate (except calcite) are metastable in that they are not the least soluble phases possible in the systems studied. In terms of metastable equilibrium, siderite and ferric hydroxide behave approximately as would be predicted from equilibrium considerations, but both are metastable and the presence of neither would be anticipated if only the most stable phases were considered. The behaviors of none of the other solids would be predictable from either stable or metastable equilibrium considerations. An unanswered problem raised by the study reported here is how, or by what paths, truly stable phases form if first precipitates are generally metastable.The utility of the findings in well design and operation is in no way impaired by the general lack of equilibrium. Conditions leading to either corrosion (which is related to lack of supersaturation with protective phases), or encrustation (supersaturation with phases that were found to precipitate), or both, apparently can be identified. The application of the methods described can be of great importance in developing unexploited ground-water resources in that certain practical problems can be identified before extensive well construction and unnecessary well failure.
NASA Astrophysics Data System (ADS)
Liu, C.; Jiang, S. Y.; Su, X.
2017-12-01
Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.
NASA Astrophysics Data System (ADS)
Jang, J. J. H.; Kim, S.; Burton, H.; Knox, J.; Marrs, C.; Sisk-Scott, C.
2017-12-01
The long-term effectiveness of an underground waste repository relies on understanding the chemical reaction products between intrusive brine and the reactive media in the repository. One such component of the stored media, iron, forms mineral precipitates in brine through anoxic corrosion. Chukanovite, Fe2CO3(OH)2(s), could be one of the precipitates and not much is known regarding its formation and thermodynamic stability. Thus, we have investigated eight mixtures of FeCl2 and NaHCO3 with NaOH for the synthesis of chukanovite in an anoxic glovebox. X-ray diffraction (XRD) scans of ten-month aged samples showed the paragenesis of three ferrous iron minerals in all tested conditions; siderite (FeCO3(s)), ferrous iron hydroxide (Fe(OH)2(s)), and chukanovite. Chukanovite was present alongside the two other minerals in between the pH values of 6 and 11. Comparison of relative intensities of major XRD peak heights of three minerals illustrated that the highest phase purity of chukanovite was achieved when the solution pH was approximately 9. XRD and solubility analysis will be performed periodically to determine when the experiments in the eight conditions reach steady state. Solid samples will be further characterized using Mossbauer and Raman spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.; McDowell, R.R.; Matchen, D.L.
1997-06-01
Since discovery in 1924, Granny Creek field in central West Virginia has experienced several periods of renewed drilling for oil in a fluvial-deltaic sandstone in the Lower Mississippian Price Formation. Depositional and diagenetic features leading to reservoir heterogeneity include highly variable grain size, thin shale and siltstone beds, and zones containing large quantities of calcite, siderite, or quartz cement. Electrofacies defined through cluster analysis of wireline log responses corresponded approximately to facies observed in core. Three-dimensional models of porosity computed from density logs showed that zones of relatively high porosity were discontinuous across the field. The regression of core permeabilitymore » on core porosity is statistically significant, and differs for each electrofacies. Zones of high permeability estimated from porosity and electrofacies tend to be discontinuous and aligned roughly north-south. Cumulative oil production varies considerably between adjacent wells, and corresponds very poorly with trends in porosity and permeability. Original oil in place, estimated for each well from reservoir thickness, porosity, water saturation, and an assumed value for drainage radius, is highly variable in the southern part of the field, which is characterized by relatively complex interfingering of electrofacies and similar variability in porosity and permeability.« less
Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A
2018-05-01
Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.
Ba'id al Jimalah tungsten prospect, Najd region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Lofts, P. G.
The Ba'id al Jimalah tungsten prospect is located in the NE of the Arabian Shield, at 25°09'N, 42°41'E. Mineralization is associated with a late-Proterozoic, porphyritic microgranite emplaced in folded, fine-grained clastic rocks of the Murdama group, within an aureole of biotite-rich hornfels. The microgranite forms a 30 m-thick sill and numerous smaller sills and dikes cropping out along two low, sub-parallel ridges and several small hills in an area 700 m square. The form of the intrusion at depth is uncertain. It is slightly to intensely sericitized, in places greisenized, and is enriched in Li, F and Rb. Wolframite occurs with minor cassiterite, scheelite and sulfides in quartz veins cutting both microgranite and hornfelsed wall-rock. The veins have a dominant trend of 110-115°, and are thicker and more numerous in the microgranite. Gangue minerals include plagioclase and potassium feldspar, muscovite, sericite, fluorite and minor siderite. A major Najd fault trending 130-135° probably controlled magma emplacement and subsequent hydrothermal and pneumatolytic activity. A percussion drilling program, restricted to the outcrop of the sill on the north ridge, has outlined 800,000 tonnes grading 0.10% WO 3 and 0.01% Sn.
Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
NASA Astrophysics Data System (ADS)
Omaña, Lourdes; González-Arreola, Celestina; Núñez-Useche, Fernando
2017-12-01
A section from the lower part of the Taraises Formation located in the central-east part of Durango State, northern Mexico was studied. The succession consists of a grey and reddish limestone interstratified with marl levels. The calcareous strata provide a microfossil assemblage that consists of calpionellids, planktonic and benthonic foraminifera, and radiolarians. Based on the first appearance of Calpionellites darderi the Berriasian-Valanginian boundary was defined for the first time from the Taraises Formation. Also, the zones and subzones of this interval were described, the Calpionellopsis Zone, Oblonga Subzone and Praecalpionellites murgeanui Subzone for the late Berriasian and the Calpionellites Zone, Darderi and Major Subzones for the early Valanginian. The paleoenvironmental changes in the studied section are documented from the microfaunal association and mineralogical composition. The abundant occurrence of radiolarians in the early Valanginian might suggest an increase in nutrient input. In addition, the presence of tiny barite crystals, ankerite, siderite and dolomite rhombs confirms high fertility, implying oxygen-depleted conditions that could be considered a prelude of the mid-Valanginian Weissert Event. The predominant wackestone texture along with the occurrence of calpionellids and planktonic foraminifera indicate a pelagic basin environment. The microfaunal association is characteristic of the Tethys Realm.
Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain)
NASA Astrophysics Data System (ADS)
Bernabé, J. M.; Carretero, M. I.; Galán, E.
The mineralogy of atmospheric particles at the confluence of the Tinto and Odiel rivers, south of Huelva (a highly industrialized city in the SW Spain), was characterized in view to identify source origins. In spite of the small amount of sample collected, mineralogical characterization was performed by X-ray diffraction, polarized light microscopy and scanning electron microscopy with EDS analysis system, using an adequate sample preparation methodology. Sedimentable (SP) and aerosols particles were sampled an one-week basis every two months for one year. Quartz, calcite and feldspars were found to be the major minerals in both fractions, and phyllosilicates, dolomite and gypsum were also identified in lower content. Minor mineral particles included barite, apatite, sphalerite and pyrite. SEM studies revealed the additional presence of chalcopyrite in both SP and aerosols, and of chalcocite-covellite, halite and sylvite in the latter. Siderite, hematite and ankerite were only detected in the SP fraction. The concentrations of the previous minerals increased in summer by effect of the limited rain and the resulting scarcity of atmosphere washing. Non-mineral particles detected by SEM in SP and aerosol fractions included spherical, biological and compositionally complex particles. The main source of mineral particles was found to be the soil suspension in addition to the metallurgical and fertilizer production industries in the area.
Stanford, Ray; Lockley, Martin G; Tucker, Compton; Godfrey, Stephen; Stanford, Sheila M
2018-01-31
A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA's Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m 2 ). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world's two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record.
Hydrogeochemical investigations in a drained lake area: the case of Xynias basin (Central Greece).
Charizopoulos, Nikos; Zagana, Eleni; Stamatis, Georgios
2016-08-01
In Xynias drained Lake Basin's area, central Greece, a hydrogeochemical research took place including groundwater sampling from 30 sampling sites, chemical analysis, and statistical analysis. Groundwaters present Ca-Mg-HCO3 as the dominant hydrochemical type, while their majority is mixed waters with non-dominant ion. They are classified as moderately hard to hard and are characterized by oxidizing conditions. They are undersaturated with respect to gypsum, anhydrite, fluorite, siderite, and magnesite and oversaturated in respect to calcite, aragonite, and dolomite. Nitrate concentration ranges from 4.4 to 107.4 mg/L, meanwhile 13.3 % of the samples exceed the European Community (E.C.) drinking water permissible limit. The trace elements Fe, Ni, Cr, and Cd present values of 30, 80, 57, and 50 %, respectively, above the maximum permissible limit set by E.C. Accordingly, the majority of the groundwaters are considered unsuitable for drinking water needs. Sodium adsorption ratio values (0.04-3.98) and the electrical conductivity (227-1200 μS/cm) classify groundwaters as suitable for irrigation uses, presenting low risk and medium soil alkalization risk. Factor analysis shows that geogenic processes associated with the former lacustrine environment and anthropogenic influences with the use of fertilizers are the major factors that characterized the chemical composition of the groundwaters.
Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results
Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James
2012-01-01
Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.
NASA Astrophysics Data System (ADS)
Magnall, J. M.; Gleeson, S. A.; Blamey, N. J. F.; Paradis, S.; Luo, Y.
2016-11-01
At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry. Reduced sulphur generation via thermochemical reduction of Late Devonian seawater sulphate produced positive δ34S values in sulphide minerals (+7.5‰ to +19.5‰), coupled with a suite of volatile components (CO2, CH4, C1-C4 hydrocarbons, N2) trapped in Stage 2 quartz. Many of these geochemical features developed during the final stages of fluid ascent, in a system where the fluid cooled close to the site of mineralisation. Using this information, we have modelled the metal transporting capacity of the deep hydrothermal fluid, which even at modest salinities (6 wt.% NaCl) was high (≫100 ppm Pb, Zn), owing to the combined effects of high temperature and low pH (⩽4.5). Therefore in SHMS systems, enhanced geothermal gradients and rapid fluid ascent (with minimal fluid cooling) are considered to be the most important factors for transporting high concentrations of base metals to the site of mineralisation.
Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin
Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex
2016-01-01
The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics. Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma).Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma).Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics.Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sulfide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals.
Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology
NASA Astrophysics Data System (ADS)
Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno
2013-01-01
Reliable methods for direct dating of biogenic apatite from pre-Pleistocene fossils are currently not available, and recent attempts using the Lu-Hf decay system yielded highly inaccurate ages for both bones and teeth. The geological processes accounting for this poor accuracy of Lu-Hf chronometry are not yet understood. Here we explore Lu-Hf systematics in fossil bones and teeth in detail, by applying five different sample digestion techniques that are tested on bones and composites of bone and sediment. Our current dataset implies that dissolution methods only slightly affect the resulting Lu-Hf ages, while clear differences between the individual digestion techniques became apparent for element concentrations. By analysing the insoluble leftovers from incomplete sample dissolution, four main reservoirs of Hf in fossil bones were identified: (1) a radiogenic end-member associated with apatite; (2) an unradiogenic end-member represented by the authigenic minerals or the embedding sediment; (3) a highly unradiogenic end-member that can be attributed to detrital zircon; and (4) a moderately soluble phase (probably a Zr(Hf)-phosphate) that yielded very low Lu/Hf but a highly radiogenic Hf isotope composition at the same time. This Zr(Hf)-phase must have been precipitated within the fossil bone sample at a late stage of burial history, thereby incorporating radiogenic 176Hf released from apatite surfaces over geological timescales. A second focus of our study is the effect of different sediment matrices and of crystal size on the preservation of pristine Lu-Hf isotope compositions in bioapatite. Because near-depositional Lu-Hf ages of phosphate fossils have previously been reported for the London Clay (England) and a calcareous marl from Tendaguru (Tanzania), we herein investigate specimens fossilised in carbonate matrices (calcareous marl from Oker, Germany; carbonate concretions from the Santana Formation, Brazil; carbonate from the Eifel, Germany) and argillaceous matrices with low permeability (oil shale of Messel, Germany; Posidonienschiefer of Holzmaden, Germany). Materials analysed from these localities include bones, teeth, conodonts, as well as coproliths and diagenetic minerals (siderite, montgomeryite and messelite). Near-depositional Lu-Hf ages were obtained for a bony fish sample (Notelops brama) encapsulated in an early diagenetic carbonate concretion from the Early Cretaceous Santana Formation, Brazil and for conodonts from a Middle Devonian carbonate from the Eifel, Germany. Low 176Lu/177Hf ratios in all materials from the Middle Eocene Messel oil shale (e.g., bones, fish scales, sediment, siderite) result in poor age precision and an age that is near-depositional due to this large analytical error. In agreement with previous results, all other ages determined here for both bones and teeth are by far younger than respective chronostratigraphic ages. A model illustrating the behaviour of Lu and Hf over time, with respect to the fossilisation process is presented, which accounts both for the formation of a late diagenetic radiogenic Zr(Hf) phase and long term open system behaviour. The continuous Lu-Hf element exchange between the fossils and the embedding sediment is probably related to the nm-scale crystal size of fossil bones, dentine and also of enamel that generate large surface areas facilitating sorption/desorption processes and open system behaviour.
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Okazaki, K.; Niwa, H.; Arai, T.; Murayama, H.; Kurahashi, T.; Ito, Y.
2017-12-01
Time-dependent tunnel deformation is one of remaining geological problems for mountain tunneling. As a case study of time-dependent tunnel deformation, we investigated petrographical, mineral and chemical compositions of boring core samples and seismic exploration along a tunnel that constructed into Neogene volcanic rock sequence of andesite to dacite pyroclastic rocks and massive lavas with mafic enclaves. The tunnel has two zones of floor heaving that deformed time-dependently about 2 month after the tunnel excavation. The core samples around the deformed zones are characterized secondary mineral assemblages of smectite, cristobalite, tridymite, sulfides (pyrite and marcasite) and partially or completely reacted carbonates (calcite and siderite), which were formed by hydrothermal alteration under neutral to acidic condition below about 100 °C. The core samples also showed localized deterioration, such as crack formation and expansion, which occurred from few days to months after the drilling. The deterioration could be explained as a result of the cyclic physical and chemical weathering process with the oxidation of sulfide minerals, dissolution of carbonate mineral cementation and volumetric expantion of smectite. This weathering process is considered as a key factor for time-dependent tunnel deformation in the hydrothermally altered volcanic rocks. The zones of time-dependent deformation along a tunnel route can be predicted by the variations of whole-rock chemical compositions such as Na, Ca, Sr, Ba and S.
NASA Astrophysics Data System (ADS)
Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid
2018-01-01
Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).
Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.
2016-01-01
Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912
O'Reilly, S Erin; Watkins, Janet; Furukawa, Yoko
2005-01-01
Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III).
Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.
2005-01-01
Increasing interest in environmental geochemistry has led to the recognition that crystals with sizes in the nanometer range (e.g., colloids and nanoscale precipitates) and poorly crystalline compounds (e.g., ferrihydrites) may comprise the majority of reactive mineral surface area near the Earth s surface. When the diameters of individual particles are in the range of 100 nm or less, the surface energy contribution to the free energy modifies phase stability. This results in stabilization of polymorphs not normally encountered in the macrocrystal domain. These phases potentially have very different surface-site geometries, adsorptive properties, and growth mechanisms, and exhibit size-dependent kinetic behavior. Thus nanophases dramatically modify the physical and chemical properties of soils and sediments. In a more general sense, the characteristics of nanocrystals are of intense technological interest because small particle size confers novel chemical, optical, and electronic properties. Thus, nanocrystalline materials are finding applications as catalytic substrates, gas phase separation materials, and even more importantly in the field of medicine. This is an opportune time for mineral physicists working on nanocrystalline materials to develop collaborative efforts with materials scientists, chemists, and others working on nanophase materials of technological interest (e.g., for magnetic memories). Our objective in this study was to synthesize submicron (<200 nm) magnetite and to study their thermal and particle size properties.
Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong
2016-01-01
To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burghardt, D.; Simon, E.; Knöller, K.; Kassahun, A.
2007-12-01
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in Eh, a pH increase and H 2 evolution. Decreasing sulphate concentrations and 34S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.
Groundwater geochemistry in the Seminole Well Field, Cedar Rapids, Iowa
Boyd, Robert A.
1999-01-01
The City of Cedar Rapids obtains its municipal water supply from four well fields in an alluvial aquifer along the Cedar River in east-central Iowa. Since 1992, the City and the U.S. Geological Survey have cooperatively studied the groundwater-flow system and water chemistry near the well fields. The geochemistry in the alluvial aquifer near the Seminole Well Field was assessed to identify potentially reactive minerals and possible chemical reactions that produce observed changes in water chemistry. Calcite, dolomite, ferrihydrite, quartz, rhodochrosite, and siderite were identified as potentially reactive minerals by calculating saturation indexes. Aluminosiicate minerals including albite, Ca-montmorillonite, gibbsite, illite, K-feldspar, and kaolinite were identified as potentially reactive minerals using hypothetical saturation indexes calculated with an assumed dissolved aluminum concentration of 1 microgram per liter. Balanced chemical equations derived from inverse-modeling techniques were used to assess chemical reactions as precipitation percolates to the water table. Calcite dissolution was predominate, but aluminosilicate weathering, cation exchange, and redox reactions also likely occurred. Microbial-catalyzed redox reactions altered the chemical composition of water infiltrating from the Cedar River into the alluvial aquifer by consuming dissolved oxygen, reducing nitrate, and increasing dissolved iron and manganese concentrations. Nitrate reduction only occurred in relatively shallow (3 to 7 meters below land surface) groundwater near the Cedar River and did not occur in water infiltrating to deeper zones of the alluvial aquifer.
NASA Astrophysics Data System (ADS)
Badejo, S. A.; Muxworthy, A. R.; Fraser, A.
2017-12-01
Pyrolysis experiments show that magnetic minerals can be produced inorganically during oil formation in the `oil-kitchen'. Here we try to identify a magnetic proxy that can be used to trace hydrocarbon migration pathways by determining the morphology, abundance, mineralogy and size of the magnetic minerals present in reservoirs. We address this by examining the Tay formation in the Western Central Graben in the North Sea. The Tertiary sandstones are undeformed and laterally continuous in the form of an east-west trending channel, facilitating long distance updip migration of oil and gas to the west. We have collected 179 samples from 20 oil-stained wells and 15 samples from three dry wells from the British Geological Survey Core Repository. Samples were selected based on geological observations (water-wet sandstone, oil-stained sandstone, siltstones and shale). The magnetic properties of the samples were determined using room-temperature measurements on a Vibrating Sample Magnetometer (VSM), low-temperature (0-300K) measurements on a Magnetic Property Measurement System (MPMS) and high-temperature (300-973K) measurements on a Kappabridge susceptibility meter. We identified magnetite, pyrrhotite, pyrite and siderite in the samples. An increasing presence of ferrimagnetic iron sulphides is noticed along the known hydrocarbon migration pathway. Our initial results suggest mineralogy coupled with changes in grain size are possible proxies for hydrocarbon migration.
Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.
Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas
2013-12-17
Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.
Xin, Jia; Tang, Fenglin; Yan, Jing; La, Chenghong; Zheng, Xilai; Liu, Wei
2018-06-01
In this study, long-term column experiments were conducted in three media (Milli-Q water, fresh groundwater and saline groundwater) to evaluate the trichloroethylene (TCE) removal performance, electron efficiency (EE), and permeability loss of a microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) under different field conditions. A potential scenario of in situ contamination plume remediation was simulated by adding a TCE-containing influent to columns filled with mixed mZVI particles and silica sand at a flow rate of 4 mL h -1 for 6 months. Results showed that, over the course of 100 pore volumes (PV) for 6 months, mZVI displayed the lowest TCE breakthrough rate (0.0026 PV -1 ) and highest TCE removal capacity (43.72 mg) but the poorest EE value (25-40%) in saline groundwater. Mineral characterization (SEM, XRD), ion concentration analysis, and geochemical modeling corroborated that different dominant solid precipitates (magnetite, siderite, dolomite/magnetite) were identified inside the three columns. The column containing saline groundwater experienced the greatest porosity loss, approximately 30.23 mL over the course of 100 PVs. This study illustrates that, to improve designs of mZVI-IRZs, EE as well as hydraulic conductivity should be taken into consideration for predictive evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A.; Duchesne, J., E-mail: josee.duchesne@ggl.ulaval.ca; Fournier, B.
Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damagedmore » concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.« less
Roh, Yul; Liu, Shi V; Li, Guangshan; Huang, Heshu; Phelps, Tommy J; Zhou, Jizhong
2002-12-01
Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60 degrees C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe(3)O(4)), siderite (FeCO(3)), rhodochrosite (MnCO(3)), and uraninite (UO(2)). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.
High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier
Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.
2015-01-06
In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less
NASA Astrophysics Data System (ADS)
Franzolin, E.; Schmidt, M. W.; Poli, S.
2009-12-01
At convergent margins volatile components, most notably CO2 and H2O, stored in oceanic sediments and MORB are recycled into the mantle. Mafic protoliths become enriched in CO2 and H2O, stored in carbonates and hydrous phases, by hydrothermal alteration. As carbonates are more refractory than hydrous phases, CO2 is more likely to survive in the oceanic lithosphere beyond sub-arc depths [1,2]. Despite the main role of carbonates on cycling crustal and atmospheric CO2 into the mantle, experimental data within the system CaCO3-MgCO3-FeCO3 are scarce. To bridge this gap, piston-cylinder experiments have been performed at 35 kbar, 900-1100 °C to determine subsolidus relations, and up to 1300 °C to constrain melting relations. Pure synthetic calcite, natural magnesite and synthetic siderite have been mixed in different proportions in double Pt-C capsules, to avoid major siderite oxidation. Subsolidus experiments reveal the presence of two miscibility gaps at 900 °C: the solvus dolomite-calcite, which closes at XMgCO3 ~ 0.7, and the solvus dolomite-magnesite, which ranges to the Fe-side of the ternary. Increasing the temperature, the two miscibility gaps became narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 at 1100 °C, and between CaCO3-FeCO3 at 1000 °C, are observed. The system is characterized by strong compositional asymmetry, thermodynamically described with a van Laar macroscopic formalism [3], and by R-3<=>R-3c phase transitions due to cation disordering, treated by redefining the compositional space with an independent set of end-members that describe both composition and states of ordering. The result is a solid solution model able to reproduce both the phase relations experimentally observed at 35 kbar and those experimentally determined and naturally observed at lower pressure [4-5]. Our model can be reliable extended to pressures of the breakdown of dolomite, e.g. 5-6 GPa, 600-1000 °C. Melting experiments carried out at 1250 °C along the join CaCO3-MgCO3, yield an eutectic at a slightly lower temperature at XCa ~ 0.7; the eutectic temperature decreases with the Fe content in the bulk. The 2-phase field calcite (XCa~0.75) + liquid, broadens with the increase of XFe in the system. Along the join CaMg(CO3)2-CaFe(CO3)2, melting takes place at XFe ~ 0.2, producing Ca enriched melt + Mg enriched dolomite. The new subsolidus and melting data and the ternary thermodynamic solid solution model, have been combined to predict the fate of FeO and CO2 rich systems (i.e. BIF associated with Fe-shale, high-Fe altered basalts and Fe-enriched carbonated metapelites), recycled back into the mantle during the history of the Earth. [1] Kerrick&Connolly, EPSL, 2001, 189, 19-29. [2] Poli et al., EPSL, 2009, 278, 350-360. [3] Holland&Powell, Contr. Min. Pet., 2003, 145, 492-501. [4] Goldsmith et al., Journ. of Geol., 1962, 70, 659-688. [5] Rosenberg, Am. Min., 1967, 52, 787-796.
Effect of thermal decarbonation on the stable isotope composition of carbonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durakiewicz, T.; Sharp, Z. D.; Papike, J. J.
2001-01-01
The unusual texture and stable isotope variability of carbonates in AH84001 have been used as evidence for early life on Mars (Romanek et al., 1994; McKay et al., 1996). Oxygen and carbon isotope variability is most commonly attributed to low-temperature processes, including Rayleigh-like fractionation associated with biological activity. Another possible explanation for the isotopic variability in meteoritic samples is thermal decarbonation. In this report, different carbonates were heated in a He-stream until decomposition temperatures were reached. The oxygen and carbon isotope ratios ({delta}{sup 18}O and {delta}{sup 13}C values) of the resulting gas were measured on a continuous flow isotope ratiomore » mass spectrometer. The aim of this work is to evaluate the possibility that large isotopic variations can be generated on a small scale abiogenically, by the process of thermal decarbonation. Oxygen isotope fractionations of >4{per_thousand} have been measured during decarbonation of calcite at high temperatures (McCrea, 1950), and in excess of 6{per_thousand} for dolomite decarbonated between 500 and 600 C (Sharma and Clayton, 1965). Isotopic fractionations of this magnitude, coupled with Rayleigh-like distillation behavior could result in very large isotopic variations on a small scale. To test the idea, calcite, dolomite and siderite were heated in a quartz tube in a He-stream in excess of 1 atmosphere. Simultaneous determinations of {delta}{sup 13}C and {Delta}{sup 18}O values were obtained on 250 {micro}l aliquots of the CO{sub 2}-bearing He gas using an automated 6-way switching valve system (Finnigan MAT GasBench II) and a Finnigan MAT Delta Plus mass spectrometer. It was found that decarbonation of calcite in a He atmosphere begins at 720 C, but the rate significantly increases at temperatures of 820 C. After an initial light {delta}{sup 18}O value of -14.1{per_thousand} at 720 C associated with very early decarbonation, {delta}{sup 18}0 values increase to a constant -11.8{per_thousand}, close to the accepted value of -12.09{per_thousand} (PDB). After 10 minutes at 820 C, the {delta}{sup 18}O values and signal strength both begin to decrease linearly to a {delta}{sup 18}O value of -14.75 and very low amounts of CO{sub 2} (Fig. 1). In contrast, the {delta}{sup 13}C values are extremely constant (0.12 {+-} 0.25{per_thousand}) for all measurements, in very good agreement with accepted values of 0.33{per_thousand} (PDB). There is much less isotopic variability during dolomite decarbonation. CO{sub 2} is first detected at 600 C. The signal strength increases by an order of magnitude between 670 and 700 C and again at 760 C. Both {delta}{sup 13}C and {delta}{sup 18}O values are nearly constant over the entire temperature range and sample size. For oxygen, the measured {delta}{sup 18}O values averaged -20.9 {+-} 0.7{per_thousand} (n = 30). Including only samples over 700 C, the average is -21.2 {+-} 0.2{per_thousand} compared to the accepted value of -21{per_thousand}. Carbon is similarly constant. The average {delta}{sup 13}C value is -2.50{per_thousand} compared to the accepted value of -2.62{per_thousand}. Far more variability is seen during the decomposition of siderite. Two samples were analyzed. In both samples, the initial {delta}{sup 18}O values were far lower than expected.« less
The Deep Carbon Cycle and CO2 Sequestration
NASA Astrophysics Data System (ADS)
Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.
2009-12-01
Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V.G., Gormley, Deirdre, Nunez, Ryan, Carpenter, R.W., Squires, Kyle, Wolf, George, 2006, Carbon Sequestration via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation, Environ. Sci. Technol., Vol. 40, pp 4802-4808 3. Wolf, George H., Chizmeshya, Andrew V. G., Diefenbacher, Jason, McKelvy, Michael J., 2004, In Situ Observation of CO2 Sequestration Reactions Using a Novel Microreaction System, Environmental Science & Technology, Vol.38, No.3, pp 932-936 4. O’Connor, W. K., Dahlin, D. C., Nilsen, D.N., Rush, G.E., Walters, R.P., and Turner, P. C., 2000, “CO2 Storage in Solid Form: A Study of Direct Mineral Carbonation,” Proc. of the 5th International Conference on Greenhouse Gas Technologies, Cairns, Australia, August 14-18, pp. 1-7 5. Isshiki, Maiko, Irifune, Tetsuo, Hirose, Kei, Ono, Shigeaki, Ohishi, Yasuo, Watanuki, Tetsu, Nishibori, Eiji, Takata, Masaki, Sakata, Makoto, 2004, Stability of magnesite and its high-pressure form in the lowermost mantle, Nature, Vol. 427, pp. 60-63 6. Kawano, Jun, Miyake, Akira, Shimobayashi, Norimasa, Kitamura, Masao, 2009, Molecular dynamics simulation of the phase transition between calcite and CaCO3-II , Journal of Physics: Condensed Matter, Vol. 21, pp. 1-11
NASA Astrophysics Data System (ADS)
Boch, Ronny; Wang, Xianfeng; Kluge, Tobias; Kurz, Walter; Leis, Albrecht; Lin, Ke; Pluch, Hannes; Mittermayr, Florian; Dietzel, Martin
2017-04-01
The ore deposit "Erzberg" represents the worldwide largest FeCO3 occurrence and is amongst Austria's most prominent geological places due to its historic, economic and scientific value. The iron-ore (siderite/ankerite) bearing Devonian carbonates of the open pit mine locally host sequential aragonite-calcite precipitates infilling vertical fractures. These typically laminated carbonates are referred to as erzbergite in mineral collections. To study their formation conditions we recovered samples on-site, i.e. from the rare veins being cm to dm in horizontal and tenths of meters in vertical extension. Additionally, samples from our university collection and private collectors were investigated. Some of the fractures filled with aragonite/calcite further exhibit cataclastic sediments, damage zones and slickenside striations. Modern water samples were collected from fractures currently accessible to conduct hydrochemical analyses and modeling. Selected precipitates were analyzed applying microscopic techniques, XRD, electron microprobe elemental mapping, stable and clumped isotopes, and 238U-234U-230Th radiometric dating. Erzbergite veins show either uni- or bidirectional growth, i.e. on one or both fracture/fault planes toward complete infilling depending on vadose water flow. The laminated precipitates are dominated by aragonite relative to pristine as well as partially diagenetic (Mg)-calcite. Intercalated and recurrent brownish Fe-rich layers consisting of goethite, quartz, muscovite are probably of detrital origin. Stable C and O isotopes of the precipitates reveal pronounced spatiotemporal variations in which low δ18O values (-10.4 to -5.1 ‰ VPDB) reflect a meteoric origin and low temperatures of the erzbergite depositing solutions. Carbonate clumped isotope measurements verify formation temperatures ≤25 °C. High δ13C values (-0.7 to +6.8 ‰ VPDB) of the precipitates indicate an origin from dissolution of local ankerite and limestone, without a significant proportion from soil CO2. Prominently high δ13C in DIC (≤+3.8 ‰) were also measured in modern fracture waters next to elevated sulfate (up to 226 mg/l) and high total dissolved solid contents (up to 1273 mg/l). These results suggest intense water-rock interaction based on sulfide oxidation and sulfuric acid evolution providing an efficient mechanism for host rock dissolution, mobilization and typically rapid aragonite-calcite mineralization. Sulfide accessories are widespread at Erzberg and the brownish Fe-rich layers within erzbergite could be explained by corrosion of Fe-sulfides and/or Fe-carbonates. The aragonite-calcite lamination is interpreted as an event lamination (not annual), i.e. variable aqueous Mg2+/Ca2+ ratios and CaCO3 supersaturation states triggering the polymorphism. U-Th analyses yielded surprisingly young ages for erzbergite dated so far, i.e. late Pleistocene and mostly younger than the last glacial maximum. A 4 cm thick sample composed of aragonite exclusively and filling a tenths of meters extending fracture formed 10.4 ±0.2 (sample base, initiation) to 1.03 ±0.04 kyr BP (top, fracture filled). Another 25 cm laminated aragonite-calcite precipitate covers 14.2 ±0.2 to 5.0 ±0.2 kyr. Thus, the precipitates support geologically young and rather short time intervals of infilling and we consider it unlikely that the fractures are much older. An intimate connection with neotectonic activity entailing new vadose water flow routes and fresh reaction surfaces in fractures would be in accordance with our hydrogeochemical and field observations.
Biologically induced initiation of Neoproterozoic snowball-Earth events.
Tziperman, Eli; Halevy, Itay; Johnston, David T; Knoll, Andrew H; Schrag, Daniel P
2011-09-13
The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO(2) greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO(2) concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased CN of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth.
Agrawal, Abinash; Ferguson, William J; Gardner, Bruce O; Christ, John A; Bandstra, Joel Z; Tratnyek, Paul G
2002-10-15
The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.
Low temperature magnetic behaviour near 35 K in unmetamorphosed claystones
NASA Astrophysics Data System (ADS)
Kars, Myriam; Aubourg, Charles; Pozzi, Jean-Pierre
2011-09-01
There is growing evidence that the magnetic assemblage of claystones, illustrated by low-temperature magnetic transitions at ˜120 K and ˜35 K, may be representative of the peak burial temperature in the so-called oil-window (60-150°C). In previous studies, it was proposed that this magnetic assemblage is characterized by fine-grained pyrrhotite (Fe7S8) and magnetite (Fe3O4). However, evidence of pyrrhotite was not so obvious and the magnetic transition near 35 K of fine-grained pyrrhotite has similarities with those of siderite (FeCO3) or rhodochrosite (MnCO3). Here, we propose some diagnostic tests to distinct <50 K behaviours by studying claystones from Netherlands borehole and Borneo Prism that experienced different peak burial temperatures. We perform magnetic susceptibility, temperature dependency of SIRM (ZFC, RT-SIRM) and field cooled hysteresis loops. On cooling of RT-SIRM (300 K to 10 K), we applied a magnetic field of 5 μT to enhance Néel type magnetic transition. It is found that our samples can be classified in two categories based on the shape of the RT-SIRM curve: one displaying an abrupt break-in-slope in the remanence at ˜30 K, called N-behaviour, and the other one characterized by a progressive increase of the remanent magnetization by 80 K, named P-behaviour. The first category contains essentially magnetite and Fe-Mn carbonates, the second one magnetite and probably iron sulphides.
NASA Astrophysics Data System (ADS)
Drysdall, Alan R.; Douch, Colin J.
A composite sill of mineralized and highly radioactive microgranite—microsyenite caps Jabal Tawlah, a low ridge in the extreme NW of the Arabian Shield. The leucocratic composition, distribution of quartz and low K 2O:Na 2O ratios indicate that deuteric processes, including separation of a silica-rich phase and albitization, played a major role. Mineralization is in the form of a disseminated enrichment in Nb, Ta, Sn, Th, Y, heavy REE and Zr. Four Y- and heavy REE-bearing minerals, gagarinite [NaCaY(F,Cl) 6], fergusonite [(Y,Er,Ce,Fe)(Nb,Ta,Ti)O 4], xenotime and yttrian fluorite, as well as zircon, columbite, thorite, sphalerite, galena, pyrite, ilmenite, hematite, limonite, magnetite, goethite, siderite, possible chrysocolla and an MnO-bearing mineral have been identified. The geochemical signature of the mineralization is similar to that which distinguishes alkali granites from other granitic rocks. Jabal az Zuhd, a major plutonic complex consisting largely of alkali granite, crops out only 5 km NW of Jabal Tawlah. However, there is no other evidence of possible derivation from a parental alkali granite magma. Reserves indicated by outcrop dimensions and three drill-hole intersections are 6.4 million tonnes to an average depth of 65 m below wadi level, grading 0.34% Nb, 0.52% Y, 0.47% Zn and approximately 4% zircon (plus 175 ppm Ta, 380 ppm Sn, 700 ppm Th and heavy REE).
NASA Astrophysics Data System (ADS)
Ortega, B.; Vazquez, G.; Rodriguez, A.
2007-05-01
Combined magnetic and geochemical analysis were conducted on laminated sediments from Santa Maria del Oro, a crater lake in Nayarit (Mexico), to build up a model of paleoenvironmental conditions for the late Holocene. The occurrence of a severe drought at the end of the archeological Classic period (100 - 900 AD) has been documented in sites of central Mexico (Zirahuen lake and Lerma basin), the Gulf of Mexico coast (Los Tuxtlas) and the Yucatan peninsula. The effects of this climatic event are considered to have stressed the social and political situation in the Yucatan area and other sites in Mesoamerica, and resulted in the "collapse" of the Maya civilization. Santa Maria del Oro sediments between ca. 600 - 1140 AD are characterized by repeated sequences of ocher silt laminae with high inorganic carbon content, authigenic siderite, and low concentration of SD magnetic minerals, followed upward by an increase of concentrations of fine grained SD and SP ferrimagnetic minerals in brown silt laminae. This sequence is considered to represent dissolution-precipitation cycles of magnetic minerals in low erosion, concentrated waters and anoxic water-sediment interface environments. Dissolution of magnetite occurs in reductive conditions, which are considered as warmer and dryer periods. Above the ocher silt, precipitation of fine grained magnetite occurs when conditions change to oxic environments. Ostracode C and O isotopy document a negative precipitation/evaporation balance during this time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan
2012-01-01
Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297
Ammonia on the prebiotic Earth: Iron(II) reduction of nitrite. [Abstract only
NASA Technical Reports Server (NTRS)
Summers, David P.; Chang, Sherwood
1994-01-01
Theories for the origin of life require the availability of reduced nitrogen. In the non-reducing atmosphere suggested by geochemical evidence, production in the atmosphere and survival of NH3 against photochemical destruction are problematic. Electric discharges and impact shocks would produce NO rather than HCN or NH3. Conversion of NO to nitrous and nitric acid (by way of HNO) and precipitation in acid rain would provide a source of fixed nitrogen to the early ocean. One solution to the NH3 problem may have been the reduction of nitrite/nitrate in the ocean with aqueous ferrous iron, Fe(2+): 6Fe(+2) + 7 H2O + NO2(-) yields 3Fe2O3 + 11 H(+) + NH3. We have measured the kinetics of this reaction as a function of temperature, pH, and concentrations of salts, Fe(+2), and NO2(-). Cations (Na(+), Mg(2+), K(+)) and anions (Cl(-), Br(-), SO4(2-)) increase the rate by factors of 4 to 8. Although a competing pathway yields N2, the efficiency of the conversion of nitrite to ammonia ranges from 25% to 85%. Nitrate reduction was not consistently reproducible; however, when it was observed, its rate was slower by at least 8X than that of nitrite reduction. If the prebiotic atmosphere contained 0.2 to 10 atmospheres CO2 as suggested by Walker (1985), the Fe(+2) concentration and the rate would have been limited by siderite (FeCO3) solubility.
Biologically induced initiation of Neoproterozoic snowball-Earth events
Tziperman, Eli; Halevy, Itay; Johnston, David T.; Knoll, Andrew H.; Schrag, Daniel P.
2011-01-01
The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO2 greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO2 concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased C∶N of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth. PMID:21825156
McCoy, V E; Asael, D; Planavsky, N
2017-09-01
The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.
Microbial transformations of arsenic: Mobilization from glauconitic sediments to water
Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.
2012-01-01
In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.
Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans
Roden, E.E.; Lovley, D.R.
1993-01-01
The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.
Rare earth elements in Hamersley BIF minerals
NASA Astrophysics Data System (ADS)
Alibert, Chantal
2016-07-01
Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.
NASA Astrophysics Data System (ADS)
Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina
2018-04-01
Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.
Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.
1993-01-01
Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.
SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.
This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenasemore » enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.« less
Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi
2016-12-15
Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Percak-Dennett, Elizabeth M; Roden, Eric E
2014-08-19
Pliocene-aged reduced lacustrine sediment from below a subsurface redox transition zone at the 300 Area of the Hanford site (southeastern Washington) was used in a study of the geochemical response to introduction of oxygen or nitrate in the presence or absence of microbial activity. The sediments contained large quantities of reduced Fe in the form of Fe(II)-bearing phyllosilicates, together with smaller quantities of siderite and pyrite. A loss of ca. 50% of 0.5 M HCl-extractable Fe(II) [5-10 mmol Fe(II) L(-1)] and detectable generation of sulfate (ca. 0.2 mM, equivalent to 10% of the reduced inorganic sulfur pool) occurred in sterile aerobic reactors. In contrast, no systematic loss of Fe(II) or production of sulfate was observed in any of the other oxidant-amended sediment suspensions. Detectable Fe(II) accumulation and sulfate consumption occurred in non-sterile oxidant-free reactors. Together, these results indicate the potential for heterotrophic carbon metabolism in the reduced sediments, consistent with the proliferation of known heterotrophic taxa (e.g., Pseudomonadaceae, Burkholderiaceae, and Clostridiaceae) inferred from 16S rRNA gene pyrosequencing. Microbial carbon oxidation by heterotrophic communities is likely to play an important role in maintaining the redox boundary in situ, i.e., by modulating the impact of downward oxidant transport on Fe/S redox speciation. Diffusion-reaction simulations of oxygen and nitrate consumption coupled to solid-phase organic carbon oxidation indicate that heterotrophic consumption of oxidants could maintain the redox boundary at its current position over millennial time scales.
Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration.
Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro E; Bates, David E
2011-10-01
The authors have utilized a recently developed compact Raman spectrometer equipped with an 85 mm focal length (f/1.8) Nikon camera lens and a custom mini-ICCD detector at the University of Hawaii for measuring remote Raman spectra of minerals under supercritical CO(2) (Venus chamber, ∼102 atm pressure and 423 K) excited with a pulsed 532 nm laser beam of 6 mJ/pulse and 10 Hz. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10× beam expander to a 1mm spot on minerals located at 2m inside a Venus chamber, it is possible to measure the remote Raman spectra of anhydrous sulfates, carbonates, and silicate minerals relevant to Venus exploration during daytime or nighttime with 10s integration time. The remote Raman spectra of gypsum, anhydrite, barite, dolomite and siderite contain fingerprint Raman lines along with the Fermi resonance doublet of CO(2). Raman spectra of gypsum revealed dehydration of the mineral with time under supercritical CO(2) at 423 K. Fingerprint Raman lines of olivine, diopside, wollastonite and α-quartz can easily be identified in the spectra of these respective minerals under supercritical CO(2). The results of the present study show that time-resolved remote Raman spectroscopy with a compact Raman spectrometer of moderate resolution equipped with a gated intensified CCD detector and low power laser source could be a potential tool for exploring Venus surface mineralogy both during daytime and nighttime from a lander. Copyright © 2011 Elsevier B.V. All rights reserved.
Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin
2018-02-01
Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Pelletier, Mia
2018-04-01
Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
NASA Astrophysics Data System (ADS)
Wiens, Roger C.; Rubin, David M.; Goetz, Walter; Fairén, Alberto G.; Schwenzer, Susanne P.; Johnson, Jeffrey R.; Milliken, Ralph; Clark, Ben; Mangold, Nicolas; Stack, Kathryn M.; Oehler, Dorothy; Rowland, Scott; Chan, Marjorie; Vaniman, David; Maurice, Sylvestre; Gasnault, Olivier; Rapin, William; Schroeder, Susanne; Clegg, Sam; Forni, Olivier; Blaney, Diana; Cousin, Agnes; Payré, Valerie; Fabre, Cecile; Nachon, Marion; Le Mouelic, Stephane; Sautter, Violaine; Johnstone, Stephen; Calef, Fred; Vasavada, Ashwin R.; Grotzinger, John P.
2017-06-01
Voids and hollow spheroids between ∼1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302-305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1-4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only one hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. Origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Although some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.
New Low-Temperature Magnetic Data Acquired on Synthetic Lepidocrocite
NASA Astrophysics Data System (ADS)
Guyodo, Y.; Bonville, P.; Ona-Nguema, G.; Carvallo, C.; Wang, Y.; Morin, G.
2007-12-01
Lepidocrocite (γ-FeOOH) is an iron oxyhydroxide commonly found in the environment, which is assumed to be antiferromagnetic with a small ferromagnetic-like behavior and a Néel temperature of about 50K (e.g., Hirt et al., 2002, JGR, 107, 10.1029/2001JB000242). It is currently used as starting material in bio- reduction experiments leading to the formation of Fe(II)-bearing minerals such as green rusts, magnetite, and siderite (e.g., Ona-Nguema et al., 2002, Environ. Sci. Technol., 36, 16-20). Both initial and resulting materials are being characterized using various techniques including low-temperature magnetic methods. At this meeting, results obtained on the initial synthetic lepidocrocite samples will be presented, which describe an unusual magnetic behavior. In particular, field cooled and zero field cooled induced magnetization curves (obtained using a 5mT magnetic induction) merge at a temperature around 150K (well above 50K). Below this temperature, the difference between the two curves can be qualified as a remanent magnetization, acquired during cooling of the sample in the presence of a magnetic field. As a consequence, some ferromagnetic-like behavior persists at temperatures above the admitted Néel temperature. The cooling/warming cycle of the room temperature remanent magnetization (acquired using a 2.5T magnetic induction) also indicates that some remanence can be acquired well above that temperature. Other types of measurement have been performed in order to better constrain the low-temperature magnetic behavior of these samples, in particular using a high-field VSM.
Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei
2017-11-01
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.
NASA Astrophysics Data System (ADS)
Benali, Omar; Abdelmoula, Mustapha; Refait, Philippe; Génin, Jean-Marie Robert
2001-06-01
Hydroxycarbonate green rust GR(CO 32-) has been synthesized by oxidation of aqueous suspensions of Fe(OH) 2 by aeration at the air-liquid interface, in the presence of HCO 3- ions at pH 7.5 to 9. During the oxidation of GR(CO 32-), ferrihydrite formed first and then turned into goethite by dissolution and precipitation. The oxidation of GR(CO 32-) in the presence of orthophosphate ions, which were added as Na 2HPO 4 · 7H 2O salt, also involved the formation of ferrihydrite but not that of goethite, because the dissolution of ferrihydrite is inhibited by the adsorption of phosphate ions on its surface. The oxidation was slowed down because of the suppression of the catalytic effect of iron(III) hydroxide on the oxidation of Fe(II). In anoxic conditions without phosphate, a mixture of GR(CO 32-), goethite, and ferrihydrite was observed to transform spontaneously into a mixture of siderite and magnetite. It is thermodynamically consistent, which shows that GR(CO 32-) is metastable with respect to the two-phase system FeCO 3-Fe 3O 4. In the presence of phosphate, this transformation was inhibited and GR(CO 32-) did not transform in anoxic conditions. Anionic phosphate species dissolved in solution did not give rise to a corresponding GR, i.e., phosphate species did not substitute for carbonate inside the interlayers of the GR. Moreover, iron phosphates did not appear, neither during the oxidation of GR(CO 32-) in the presence of oxygen nor in anoxic conditions.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
NASA Astrophysics Data System (ADS)
Dehnert, Andreas; Axel Kemna, Hans; Anselmetti, Flavio; Drescher-Schneider, Ruth; Graf, Hans Rudolf; Lowick, Sally; Preusser, Frank; Züger, Andreas; Furrer, Heinz
2010-05-01
As the major weather divide in Europe, the Alps represent one of the most interesting areas for understanding past climate change and its impact on continental environments. However, our knowledge of the Quaternary environmental history of the region is still rather limited, especially for the time preceding the last glaciation of the Alps. Geological and geophysical studies in the Wehntal, 20 km northwest of Zurich, Switzerland, in 2007 and 2008 have revealed the existence of a glacially overdeepened trough cut into Miocene molasse bedrock, which is today filled with ~90 to 180 m of Pleistocene sediments. In March 2009, a 93.6 m long sediment core (NW09/1) has been drilled east of the famous mammoth-site Niederweningen. This record is one of the very few sites in the northern Alpine Foreland that provides crucial insights into the timing of the erosion and infilling history of pre-Eemian glacially overdeepened troughs and also helps to understand the climate and environmental history. Based on chronological data deduced from the nearby, but shorter, 2007 core and on new multi-proxy data, the NW09/1 record is interpreted as: 4.1 m of in-situ molasse bedrock, overlain by 3.4 m of diamictic till. These glacial deposits were deposited by a Linth glacier lobe during Marine Isotope Stage (MIS) 6 (Rissian), although, the possibility that an even older glaciation was responsible cannot currently be excluded (e.g. MIS 8, luminescence dating, pollen interpretations, and palaeomagnetic studies in progress). It is suggested that this extensive ice advance, which once covered the entire Wehntal valley, caused the final erosion of the bedrock. The till is overlain by a 29.5 m thick sequence of laminated, carbonate-rich, fine-grained siliciclastic sediments that are interpreted as proglacial lake sediments. It is supposed that this unit was deposited in a proximal setting to a calving glacier-front confirmed by the presence of numerous dropstones. The damming of this Wehntal palaeolake was most likely caused by a terminal moraine located ~3 km to the northwest of the drill site. The overlying 37.9 m of fine-grained lake sediments are comparable to the former unit, but the absence of dropstones and the occurrence of multiple interstratified sand layers (up to 40 cm in thickness) indicate a more distal proglacial lake facies and thus, a melting of the feeding glacier lobe. The subsequent 9.5 m of fine-grained material are characterised by a striking drop in carbonate content (from ~50 to 20 wt%), which is interpreted as a decoupling of the Wehntal catchment from the Linth glacier system that originates in a carbonate-rich hinterland. Furthermore, the top of this unit documents the gradual infilling of the palaeolake and the onset of biological productivity due to climate warming. This is also documented by occurrence of pyrite and siderite concretions. The prominent environmental change culminates in the abrupt accumulation of peat (1.8 m) during the interglacial MIS 5e (late Eemian). Afterwards, the Wehntal was recaptured by a younger palaeolake after which the peat became flooded. The resulting 4.9 m of silty sediments have carbonate contents of ~25 wt% and also show post-sedimentary pyrite and siderite concretions. The source of sediment is interpreted as derived from the molassic Zurich Highlands and the Jurassic limestone of the Lägern mountain, which borders the Wehntal valley to the south. The cause of the rise in water level subsequent to deposition of the MIS 5e peat, however, has not yet been identified. Eventually, the younger palaeolake was filled, resulting in the accumulation of 0.7 m of fossil rich Middle Würmian peat (‘Mammoth peat'). This peat was finally covered with 2.0 m of post-Würmian-to-recent silts and sands.
Brown, C.J.; Misut, P.E.
2010-01-01
The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water with acceptably low concentrations of dissolved Fe could be extracted than was injected. Scenarios with larger amounts of pyrite in aquifer sediments generally resulted in less goethite precipitation, increased acidity, and increased concentrations of dissolved Fe in extracted water. In these pyritic scenarios, the lower amounts of goethite precipitated and the lower pH during the extraction phase resulted in decreased sorption of Fe2+ and a decreased amount of extractable water with acceptably low concentrations of dissolved Fe (5.4??10-6M). A linear decrease in recovery efficiency with respect to dissolved Fe concentrations is caused by pyrite dissolution and the associated depletion of dissolved O2 (DO) and increase in acidity. Simulations with more than 0.0037M of pyrite, which is the maximum amount dissolved in the baseline scenario, had just over a 50% recovery efficiency. The precipitation of ferric hydroxide minerals (goethite) at the well screen, and a possible associated decrease in specific capacity of the ASR well, was not apparent during the extraction phase of ASR simulations, but the model does not incorporate the microbial effects and biofouling associated with ferric hydroxide precipitation.The host groundwater chemistry in calcite-poor Cretaceous aquifers of the NYC area consists of low alkalinity and moderate to low pH. The dissolution of goethite in scenarios with unbuffered injectate indicates that corrosion of the well could occur if the injectate is not buffered. Simulations with buffered injectate resulted in greater precipitation of goethite, and lower concentrations of dissolved Fe, in the extracted water. Dissolved Fe concentrations in extracted water were highest in simulations of aquifers (1) in which pyrite and siderite in the aquifer were in equilibrium, and (2) in coastal areas affected by saltwater intrusion, where high dissolved-cation concentrations provide a greater exchange of Fe2+ (FeX2). Results indicate that ASR in pyrite-beari
Hower, James C.; Berti, Debora; Hochella, Michael F.; ...
2018-04-16
Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmmed, Bulbul; Appold, Martin S.; Fan, Tianguang
Numerical geochemical modeling was used to study the effects on pore-water composition and mineralogy from carbon dioxide (CO2) injection into the Pennsylvanian Morrow B Sandstone in the Farnsworth Unit in northern Texas to evaluate its potential for long-term CO2 sequestration. Speciation modeling showed the present Morrow B formation water to be supersaturated with respect to an assemblage of zeolite, clay, carbonate, mica, and aluminum hydroxide minerals and quartz. The principal accessory minerals in the Morrow B, feldspars and chlorite, were predicted to dissolve. A reaction-path model in which CO2 was progressively added up to its solubility limit into the Morrowmore » B formation water showed a decrease in pH from its initial value of 7 to approximately 4.1 to 4.2, accompanied by the precipitation of small amounts of quartz, diaspore, and witherite. As the resultant CO2-charged fluid reacted with more of the Morrow B mineral matrix, the model predicted a rise in pH, reaching a maximum of 5.1 to 5.2 at a water–rock ratio of 10:1. At a higher water–rock ratio of 100:1, the pH rose to only 4.6 to 4.7. Diaspore, quartz, and nontronite precipitated consistently regardless of the water–rock ratio, but the carbonate minerals siderite, witherite, dolomite, and calcite precipitated at higher pH values only. As a result, CO2 sequestration by mineral trapping was predicted to be important only at low water–rock ratios, accounting for a maximum of 2% of the added CO2 at the lowest water–rock ratio investigated of 10:1, which corresponds to a small porosity increase of approximately 0.14% to 0.15%.« less
The paleohydrology of Lower Cretaceous seasonal wetlands, Isle of Wight, southern England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, V.P.; Taylor, K.G.; Beck, V.H.
2000-05-01
The floodplain deposits of the Wealden Group (Lower Cretaceous) of the Isle of Wight, southern England, were formed in a seasonal wetland setting, a type of environment widespread today along higher-order tropical and subtropical river systems but rarely identified in the geological record. The unit consists of four main lithofacies: sheet sandstones with dinosaur footprint casts; green-gray mudstones with vertebrate remains, abundant lignite, pyrite, and siderite; spectacularly color-mottled mudstones with goethite and locally pseudo-anticlines; and red mudstones with pseudo-anticlines, hematite, and carbonate nodules. The sheet sandstones are interpreted as crevasse deposits; the green-gray mudstones were deposited in shallow ponds onmore » the floodplain, which acted as sinks for debris released by local floods following wildfires; the mottled mudstones represent surface-water gley soils formed in seasonally waterlogged areas; and the red mudstones resemble present-day Vertisols that formed on topographically elevated areas only intermittently flooded. These mudstones show vertical transitions from one to another, and although they could be interpreted as components of simple catenas, the absence of associated facies changes implies that topographic differences were not the only control. It is proposed that these three mudstone types formed as seasonal wetland catenas, in which differences in soil drainage conditions resulted from variations in the flooding hydroperiod affecting areas with minor relief differences, rather than drainage variability simply reflecting static topographic differences. Such seasonal wetland systems are rarely documented in the stratigraphic record despite being a widespread environment in present-day tropical regions, and the Wealden deposits are used to identify criteria for the recognition of this important environment in the rock record. These southern English wetlands are compared with other Lower Cretaceous wetlands from northern Spain, enabling hydrological factors which controlled deposition to be recognized.« less
Ground-water quality and geochemistry, Carson Desert, western Nevada
Lico, Michael S.; Seiler, R.L.
1994-01-01
Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...
2016-01-22
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
Wiens, Roger C.; Rubin, David M.; Goetz, Walter; ...
2017-02-21
Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less
Clarke, Frank Eldridge; Barnes, Ivan
1969-01-01
Seepage from rivers and irrigation canals has contributed to waterlogging and soil salinization problems in much of the Indus Plains of West Pakistan. These problems are being overcome in part by tube-well dewatering and deep leaching of salinized soils. The ground waters described here are anaerobic and some are supersaturated with troublesome minerals such as calcium carbonate (calcite) and iron carbonate (siderite). These waters are moderately corrosive to steel. Some wells contain sulfate-reducing bacteria, which catalyze corrosion, and pH-electrode potential relationships favorable to the solution of iron also are rather common. Corrosion is concentrated in the relatively active (anodic) saw slots of water-well filter pipes (screens), where metal loss is least tolerable. Local changes in chemical properties of the water, because of corrosion, apparently cause deposition of calcium carbonate, iron carbonate, and other minerals which clog the filter pipes. In some places well capacities are seriously reduced in very short periods of time. There appears to be no practicable preventive treatment for corrosion and encrustation in these wells. Even chemical sterilization for bacterial control has yielded poor results. Periodic rehabilitation by down-hole blasting or by other effective mechanical or chemical cleaning methods will prolong well life. It may be possible to repair severely damaged well screens by inserting perforated sleeves of plastic or other inert material. The most promising approach to future, well-field development is to use filter pipes of epoxy-resin-bonded fiber glass, stainless steel, or other inert material which minimizes both corrosion and corrosion-catalyzed encrustation. Fiberglass plastic pipe appears to be the most economically practicable construction material at this time and already is being used with promising results.
NASA Astrophysics Data System (ADS)
Soares, Emílio Alberto Amaral; D'Apolito, Carlos; Jaramillo, Carlos; Harrington, Guy; Caputo, Mario Vicente; Barbosa, Rogério Oliveira; Bonora dos Santos, Eneas; Dino, Rodolfo; Gonçalves, Alexandra Dias
2017-11-01
The Amazonas fluvial system originates in the Andes and runs ca. 6700 km to the Atlantic Ocean, having as the main affluent the Negro River (second largest in water volume). The Amazonas transcontinental system has been dated to the late Miocene, but the timing of origin and evolutionary processes of its tributaries are still poorly understood. Negro River alluvial deposits have been dated to the middle to late Pleistocene. Recently, we studied a number of boreholes drilled for the building of a bridge at the lower course of the Negro River. A thin (centimetric) sedimentary deposit was found, laterally continuous for about 1800 m, unconformably overlaying middle Miocene strata and unconformably overlain by younger Quaternary deposits. This deposit consists predominantly of brownish-gray sandstones cemented by siderite and with subordinate mudstone and conglomerate beds. Palynological, granulometric, textural and mineralogical data suggest that the initial Negro River aggradation took place in the deep incised valley under anoxic conditions and subsequently along the floodplain, with efficient transport of mixed origin particles (Andean and Amazonic). Angiosperm leaves, wood and pollen are indicative of a tropical continental palaeoenvironment. A well preserved palynoflora that includes Alnipollenites verus, Grimsdalea magnaclavata and Paleosantalaceaepites cingulatus suggests a late Pliocene to early Pleistocene (Piacenzian to Gelasian) age for this unit, which was an age yet unrecorded in the Amazon Basin. These results indicate that by the late Pliocene-early Pleistocene, large scale river activity was occurring in Central Amazonia linking this region with the Andean headwaters, and therefore incompatible with Central Amazonia barriers like the Purus arch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hower, James C.; Berti, Debora; Hochella, Michael F.
Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger C.; Rubin, David M.; Goetz, Walter
Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less
Geochemistry of precambrian carbonates. II. Archean greenstone belts and Archean sea water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veizer, J.; Hoefs, J.; Lowe, D.R.
1989-04-01
Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at {approximately}2.8 {plus minus} 0.2 and {approximately}3.5 {plus minus} 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon, Michipicoten and Uchi greenstone belts of Canada and the Upper Greenstones of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India.more » Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite {plus minus} ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with ({sup 87}Sr/{sup 86}Sr){sub o} of 0.7025 {plus minus} 0.0015 and 0.7031 {plus minus} 0.0008 for younger and older greenstones, respectively. The mineralogical and chemical attributes of Archean carbonates are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the mantle, that is, with the oceanic crust and the coeval ubiquitous volcanosedimentary piles derived from mantle sources.« less
Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality
NASA Astrophysics Data System (ADS)
Jiang, Lei; Worden, Richard H.; Yang, Changbing
2018-02-01
Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.
Geology and mineral deposits of the Minnie Moore and Bullion mineralized areas, Blaine County, Idaho
Link, Paul Karl; Worl, Ronald G.
2001-01-01
In the early 1880?s the discovery of rich ores in the Minnie Moore and Bullion mineralized areas sparked a rush to settle and develop the Wood River valley. Silver and lead discoveries in these areas spurred the boom in mining after completion of the Oregon Short Line Railroad to Hailey in 1883. In both areas the ore comprises galena, sphalerite, and tetrahedrite in a gangue of siderite, calcite, or quartz. Minor goldbearing quartz veins are also present. The ore is in fissure and replacement veins along fracture systems that formed in Late Cretaceous time, after intrusion of nearby granodiorite or quartz diorite stocks. The ore formed under mesothermal conditions and heat was supplied by the nearby plutons. In the Minnie Moore area, the mineralized veins are cut by low-angle normal faults that are of probable Eocene age. In the Minnie Moore mineralized area, the host rock is the middle part of the Devonian Milligen Formation, (the informal Lucky Coin limestone and Triumph argillite), which is the same stratigraphic level as the host ore in the rich Triumph mine northeast of Hailey. In the Bullion mineralized area, the ore is hosted by the lower member of the Middle Pennsylvanian to Lower Permian Dollarhide Formation. Rich ore was mined in several tunnels that reached the Mayflower vein, a northwest-striking mineralized shear zone. The deposits are thought to be mainly mesothermal veins that formed in association with Cretaceous magmatism. The syngenetic stratiform model of ore formation has often been applied to these deposits, however, no evidence of syngenetic mineralization was found in this study. Faulting has displaced most of the major orebodies and thus has made mining these deposits a challenge.
Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA
NASA Astrophysics Data System (ADS)
Haile, Estifanos; Fryar, Alan E.
2017-12-01
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ˜300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2- reduction to methanogenesis. In particular, decreasing SO4 2- and increasing δ34S of SO4 2- along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2- reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ethridge, F.G.; Saracino, A.M.; Burns, L.K.
The encompassing sandstones, siltstones, shales and thin conglomerates of the gasified G Coal seam at the North Knobs SDB-UCG site were deposited mainly in fluvial and poorly-drained swamp environments. These beds dip at 65/sup 0/ at the North Knobs site. Thin section and SEM analyses of the sandstones and coarse siltstones show that they are sublithic to subarkosic arenites cemented with clay minerals, calcite hematite, siderite and silica. The sandstones of Unit D directly above the coal seam have the highest concentration of calcite cement, the lowest mean grain size, and are best sorted in terms of quartz grain sizemore » variations; however, they are the worst sorted in terms of sieve size variations. Clay minerals in the sandstones are dominantly kaolinite and smectite with lesser amounts of illite and chlorite. These clays are of secondary origin. Heat alteration is present only in coals and overburden rock from cores that penetrated the cavity. Thermally altered rocks including hornfels, buchite, paralava rock and paralava breccia were found in the bottom of the dipping cavity near the injection well. The high temperature minerals of tridymite, cristobalite, mullite, cordierite, monoclinic pyroxene and high temperature plagioclase indicate that temperatures of at least 1200/sup 0/C to 1400/sup 0/C were attained in the lower part of the burn cavity. The mechanical test on the unaltered and altered overburden rock show that the most important lithologic property controlling rock strength and seismic wave velocity is the amount and type of cement in the rock. Other parameters measured were grain size, amount of clay cement, and porosity; sorting had a secondary effect on the rock strength and seismic wave velocity. There is a non-linear and direct relationship between mechanical strength and ultrasonic wave velocities for the rock tests. 30 references.« less
NASA Astrophysics Data System (ADS)
Vazquez, G.; Ortega, B.; Rodriguez, A.
2007-05-01
The lake is located near the Pacific coast of Mexico, at the western end of the Trans Mexican Volcanic Belt. It is a deep lake (ca. 65 m) with steep sides and only a small bay (Agua Caliente) has shallower water (ca. 12 m). Four parallel cores between 4 and 9 m long were recovered in March 2002 from this shallower area. Sediments are characterized by alternated laminations (few millimeters to 2 cm) of sand, brown silt, green silt, reddish silt, ochre silt, and peat. The 14-C dated sequence spans the last ca. 2,600 yrs. Given this age, it is possible that each set of laminations represent annual sedimentation cycles. The record is a potential high- resolution archive of environmental and climatic variability for western Mexico for late Holocene. Magnetic measurements of susceptibility along the cores show a high variability in the concentration of magnetic mineralogy. Different magnetic and non-magnetic properties show two sets of facies in relation to its magnetic mineralogy; one group composed by sand, brown silt, green silt and peat has the magnetite and Ti-magnetite as the principal magnetic phase; the second group, composed by reddish and ochre silt, has a low Ti magnetite component and siderite, as the principal paramagnetic component. The effects of climatic variations such as the drought occurred in the archeological Classic period (100 - 900 dC), the Medieval Warm Period (950 - 1350 dC), the Little Ice Age (1400 - 1800 dC), and the droughts over the last 700 years, documented in sites along central Mexico, are recognized in the magnetic mineralogy of Santa Maria del Oro.
Analysis of mineral matrices of planetary soil analogues from the Utah Desert
NASA Astrophysics Data System (ADS)
Kotler, J. M.; Quinn, R. C.; Foing, B. H.; Martins, Z.; Ehrenfreund, P.
2011-07-01
Phyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth-Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illite-smectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at ˜17 Å. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier-Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships between mineralogy and microbiology for planetary missions.
Azam, Hossain M; Finneran, Kevin T
2014-02-01
Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
Lunar and Planetary Science XXXVI, Part 12
NASA Technical Reports Server (NTRS)
2005-01-01
Topics discussed include: The Ancient Lakes in Hellas Basin Region as Seen Through the First Year of Mars Express HRSC-Camera; DISR Observations of Craters at Titan at the Huygens Landing Site: Insights Anticipated; The Sun s Dust Disk - Discovery Potential of the New Horizons Mission During Interplanetary Cruise; Evidence for Aqueously Precipitated Sulfates in Northeast Meridiani Using THEMIS and TES Data; Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals; Venusian Channel Formation as a Subsurface Process; Reexamination of Quartz Grains from the Permian-Triassic Boundary Section at Graphite Peak, Antarctica; Observations of Calcium Sulfate Deposits at High Latitudes by OMEGA/Mex at Km/Pixel Resolutions; Observations of the North Permanent Cap of Mars in Mid-Summer by OMEGA/MEX at km per Pixel Resolutions; Classification and Distribution of Patterned Ground in the Southern Hemisphere of Mars Genesis: Removing Contamination from Sample Collectors; Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite; Hydrogen Abundances in Metal Grains from the Hammadah Al Hamra (HaH) 237 Metal-rich Chondrite: A Test of the Nebular-Formation Theory; REE and Some Other Trace Elements Distributions of Mineral Separates in Atlanta (EL6); The Composition and Origin of the Dewar Geochemical Anomaly; Asteroid Modal Mineralogy Using Hapke Mixing Models: Testing the Utility of Spectral Lookup Tables; and The Huygens Mission at Titan: Results Highlights. (sup 182)Hf-(sup 182)W Chronometry and an Early Differentiation in the Parent Body of Ureilites Ground Penetrating Radar in Sedimentary Rocks Mars, Always Cold, Sometimes Wet: New Constraints on Mars Denudation Rates and Climate Evolution from Analog Studies at Haughton Crater, Devon Island, High Arctic Europa s Porous Ice Rheology and Implications for Ice-penetrating Radar Scattering Loss Surface Generated Cracks on Europa
Origins of Magnetite Nanocrystals in Martian Meteorite ALH84001
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Clemett, Simon J.; Mckay, David S.; Gibson, Everett K.; Wentworth, Susan J.
2009-01-01
The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of mag- netite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterized of the compo- sitional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the car- bonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
NASA Astrophysics Data System (ADS)
Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.
2015-12-01
Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the alteration process.
Palandri, J.L.; Kharaka, Y.K.
2005-01-01
We present a novel method for geologic sequestration of anthropogenic CO2 in ferrous carbonate, using ferric iron present in widespread redbeds and other sediments. Iron can be reduced by SO2 that is commonly a component of flue gas produced by combustion of fossil fuel, or by adding SO2 or H2S derived from other industrial processes to the injected waste gas stream. Equilibrium and kinetically controlled geochemical simulations at 120 bar and 50 and 100 ??C with SO2 or H2S show that iron can be transformed almost entirely to siderite thereby trapping CO2, and simultaneously, that sulfur can be converted predominantly to dissolved sulfate. If there is an insufficient amount of sulfur-bearing gas relative to CO2 as for typical flue gas, then some of the iron is not reduced, and some of the CO2 is not sequestered. If there is an excess of sulfur-bearing gas, then complete iron reduction is ensured, and some of the iron precipitates as pyrite or other solid iron sulfide, depending on their relative precipitation kinetics. Gas mixtures with insufficient sulfur relative to CO2 can be used in sediments containing Ca, Mg, or other divalent metals capable of precipitating carbonate minerals. For quartz arenite with an initial porosity of 21% and containing 0.25 wt.% Fe2O3, approximately 0.7 g of CO2 is sequestered per kg of rock, and the porosity decrease is less than 0.03%. Sequestration of CO2 using ferric iron has the advantage of disposing of SO2 that may already be present in the combustion gas. ?? 2005 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Leng, Melanie J.; Huggett, Jennifer M.; Minisini, Daniel; Ullmann, Clemens V.; Riding, James B.; Weijers, Johan W. H.; Storm, Marisa S.; Percival, Lawrence M. E.; Tosca, Nicholas J.; Idiz, Erdem F.; Tegelaar, Erik W.; Hesselbo, Stephen P.
2018-02-01
The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13 C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition.
Origin of the lethal gas burst from Lake Monoun, Cameroun
NASA Astrophysics Data System (ADS)
Sigurdsson, H.; Devine, J. D.; Tchua, F. M.; Presser, F. M.; Pringle, M. K. W.; Evans, W. C.
1987-03-01
On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe 2+ (˜600 mg/l) and HCO 3- (≥ 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe 2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO 2 with minor CH 4, having δ 13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO 2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO 3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO 2 in the deep water. The resultant ebullition of CO 2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO 2, and suffered skin discoloration from unidentified components.
Origin of the lethal gas burst from Lake Monoun, Cameroun
Sigurdsson, Haraldur; Devine, J.D.; Tchua, F.M.; Presser, F.M.; Pringle, M.K.W.; Evans, William C.
1987-01-01
On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe2+ (???600 mg/l) and HCO3- (??? 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO2 with minor CH4, having ??13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO2 in the deep water. The resultant ebullition of CO2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO2, and suffered skin discoloration from unidentified components. ?? 1987.
NASA Astrophysics Data System (ADS)
Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.
2017-11-01
Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.
NASA Astrophysics Data System (ADS)
Navarro, A.; Cardellach, E.
2009-02-01
We studied the mobility of silver, heavy metals and europium in waste from the Las Herrerías mine in Almería (SE Spain). The most abundant primary mineral phases in the mine wastes are hematite, hydrohematite, barite, quartz, muscovite, anorthite, calcite and phillipsite. The minor phase consisted of primary minerals including ankerite, cinnabar, digenite, magnesite, stannite, siderite and jamesonite, and secondary minerals such as glauberite, szomolnokite, thenardite and uklonscovite. The soils show high concentrations of Ag (mean 21.6 mg kg-1), Ba (mean 2.5%), Fe (mean 114,000 mg kg-1), Sb (mean 342.5 mg kg-1), Pb (mean 1,229.8 mg kg-1), Zn (mean 493 mg kg-1), Mn (mean 4,321.1 mg kg-1), Cd (mean 1.2 mg kg-1) and Eu (mean 4.0 mg kg-1). The column experiments showed mobilization of Ag, Al, Ba, Cu, Cd, Eu, Fe, Mn, Ni, Sb, Pb and Zn, and the inverse modelling showed that the dissolution of hematite, hausmannite, pyrolusite and anglesite can largely account for the mobilization of Fe, Mn and Pb in the leaching experiment. The mobility of silver may be caused by the presence of kongsbergite and chlorargyrite in the waste, while the mobility of Eu seems to be determined by Eu(OH)3, which controls the solubility of Eu in the pH-Eh conditions of the experiments. The mineralogy, pH, Eh and geochemical composition of the mine wastes may explain the possible mobilization of heavy metals and metalloids. However, the absence of contaminants in the groundwater may be caused by the carbonate-rich environment of “host-rocks” that limits their mobility.
Lunar and Planetary Science XXXV: Astrobiology
NASA Technical Reports Server (NTRS)
2004-01-01
The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.
Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less
Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A
2016-01-01
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.
Enzymatic iron and uranium reduction by sulfate-reducing bacteria
Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.
1993-01-01
The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.
NASA Astrophysics Data System (ADS)
Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.
2013-12-01
In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).
Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav
2013-11-01
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Markušovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (μ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation-equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 μg/L Cu, <0.1-0.3 μg/L Hg, 5.0-16 μg/L As, and 5.0-43 μg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.
Distinguishing "new" from "old" carbon in post mining soils
NASA Astrophysics Data System (ADS)
Vindušková, Olga; Frouz, Jan
2014-05-01
Introduction Soils developing on heaped overburden after open pit coal mining near Sokolov, Czech Republic, provide an exceptional opportunity to study sites of different ages (0-70 years) developing on similar substrate under relatively well-known conditions. Soil organic carbon (SOC) is an useful indicator of soil quality and represents an important global carbon pool. Post-mining soils would be a perfect model for long-term study of carbon dynamics. Unfortunately, quantifying SOC in Sokolov post-mining soils is quite complicated, since conventional quantification methods cannot distinguish between SOC derived from plant residues and fossil organic carbon derived from coal and kerogen present in the overburden. Moreover, also inorganic carbon may sometimes bias SOC quantification. Up to now, the only way to directly estimate recently derived SOC in these soils is radiocarbon dating (Rumpel et al. 1999; Karu et al. 2009). However, this method is costly and thus cannot be used routinely. The aim of our study is to find an accessible method to quantify recently derived SOC. We would highly appreciate ideas of other soil scientists, organic geochemists and sedimentologists on how to solve this challenge. Methods and hypotheses A set of 14 soil samples were analysed by radiocarbon (14C-AMS) analysis, near-infrared spectroscopy (NIRS), 13C CPMAS NMR spectroscopy, Rock-Eval and XRD. For calibration of NIRS, also 125 artificial mixtures were produced by mixing different amounts of claystone, coal and partially decomposed litter. NIRS (1000-2500 nm) as well as younger mid-infrared spectroscopy has been widely applied to soils (Janik et al. 2007; Vasques et al. 2009; Michel et al. 2009). When combined with multivariate chemometric techniques, it can be used to predict concentration of different compounds. No study has yet focused on NIRS application to soils where fossil carbon is found in two chemically different forms - whereas coal is rather aromatic, kerogen in our study area is highly aliphatic. 13C CPMAS NMR spectroscopy is an analytical technique used for structural characterization of soil organic matter (Preston 1996). Particular regions of NMR spectra can be assigned to alkyl C, O-alkyl C, aromatic C, and carboxylic C (Kögel-Knabner 2000). We hypothesize that recently derived and fossil organic matter will have different relative proportions of signals in these regions and this difference could be used to estimate recently derived SOC in unknown samples. Rock-Eval pyrolysis is a method used in oil exploration to evaluate the quantity, quality and thermal maturity of organic matter in sediments. Lately, is has been applied also to soils and can bring useful information about soil organic matter (Sebag et al. 2006; Disnar et al. 2003). Particularly, it allows to determine the total organic carbon content (TOC wt.%) and also provides Hydrogen and Oxygen Index values (HI and OI) which are known to correlate wit H/C and O/C ratios. Also, pyrolysis and oxidation products (hydrocarbons, CO and CO2) can be plotted against temperature and give us an idea of thermal stability of their source compounds. We hypothesize that recently derived and fossil organic matter will differ in thermal stability and also in the quantity and quality of pyrolysis products. These differences could allow to quantify both fractions in post-mining soils. XRD (X-ray diffraction) is an analytical technique used to identify minerals in rocks and soils and give a semi-quantitative estimate of their content. Carbonates (as an inorganic form of carbon, IC) can be source of bias in some organic carbon analyses. Carbonates can be removed from samples by acid treatment but the specific procedure that is required depends on the type (and solubility) of carbonates present in sample (Brodie et al. 2011). Up to now, other methods did not show a significant content of IC in Sokolov soils; however, previous XRD analyses of parent claystones in the area showed that siderite (FeCO3) represents a highly variable component of the overburden (Table 1 from Kříbek et al. 1998). Since siderite is known to be highly insoluble, it is possible it has not been detected by previous IC measurements in soils (Larson et al. 2008). Acknowledgments The financial support provided by the The Charles University Grant Agency (grant no. 922513) is gratefully acknowledged. References Brodie, C.R. et al., 2011. Evidence for bias in C and N concentrations and [delta]13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chemical Geology, 282(3-4), pp.67-83. Disnar, J.R. et al., 2003. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic Geochemistry, 34(3), pp.327-343. Janik, L.J. et al., 2007. The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Australian Journal of Soil Research, 45(2), p.73. Karu, H. et al., 2009. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 39(8), pp.1507-1517. Kögel-Knabner, I., 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31(7), pp.609-625. Kříbek, B. et al., 1998. Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic). International Journal of Coal Geology, 37(3-4), pp.207-233. Larson, T.E. et al., 2008. Pretreatment technique for siderite removal for organic carbon isotope and C:N ratio analysis in geological samples. Rapid communications in mass spectrometry: RCM, 22(6), pp.865-72. Michel, K. et al., 2009. Use of near- and mid-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils. Journal Of Plant Nutrition And Soil Science, 172(1), pp.63-70. Preston, C.M., 1996. Applications of NMR to soil organic matter analysis: history and prospects. Soil Science, 161(3), pp.144-166. Rumpel, C., Kögel-Knabner, I. & Hüttl, R., 1999. Organic matter composition and degree of humification in lignite-rich mine soils under a chronosequence of pine. Plant and Soil, 213(1), pp.161-168. Sebag, D. et al., 2006. Monitoring organic matter dynamics in soil profiles by "Rock-Eval pyrolysis": bulk characterization and quantification of degradation. European Journal of Soil Science, 57(3), pp.344-355. Vasques, G.M., Grunwald, S. & Sickman, J.O., 2009. Modeling of Soil Organic Carbon Fractions Using Visible-Near-Infrared Spectroscopy. Soil Science Society of America Journal, 73(1), pp.176-184.
NASA Astrophysics Data System (ADS)
Thompson, C.; Widener, C.; Schaef, T.; Loring, J.; McGrail, B. P.
2014-12-01
Capture and subsequent storage of CO2 in deep geologic reservoirs is progressively being considered as a viable approach to reduce anthropogenic greenhouse gas emissions. In the long term, injected CO2 may become permanently entrapped as silicate minerals react with CO2 enriched fluids to form stable carbonate minerals. Potassium feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. While the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on K-feldspar reactivity in the CO2-rich fluid. In this study, we used in situ infrared spectroscopy to investigate the carbonation reactions of natural microcline samples. Experiments were carried out at 50 °C and 91 bar by circulating dry or wet supercritical CO2 (scCO2) past a thin film of powdered sample. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 48 hours. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. However, in fully water-saturated scCO2, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.6% of the microcline was converted to a carbonate phase. Potassium carbonate is the most likely reaction product, but minor amounts of sodium carbonate and siderite may also have formed from minor sample impurities. The extent of reaction appears to be related to the thickness of the water film and is likely a consequence of the film's ability to solvate and transport ions in the vicinity of the mineral surface. Other features observed in the spectra correspond to microcline dissolution and precipitation of amorphous silica. Implications about the role of water in these reactions and the relative effectiveness of alkali feldspars for mineral trapping of CO2 will be discussed.
Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.; ...
2016-08-26
A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H 2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C).more » At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe 2O 3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe 3(PO 4) 2] and siderite (FeCO 3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. In conclusion, these distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov.« less
Zhang, Jiahua; Ren, D.; Zhu, Y.; Chou, C.-L.; Zeng, R.; Zheng, B.
2004-01-01
Mineralogy, coal chemistry and 21 potentially hazardous trace elements (PHTEs) of 44 coal samples from the Qianxi Fault Depression Area (QFDA) in southwestern Guizhou province, China have been systematically studied. The major minerals in coals studied are quartz, kaolinite, illite, pyrite, calcite, smectite, marcasite and accessory minerals, including rutile, dolomite, siderite, gypsum, chlorite, melanterite, apatite, collophane and florencite. The SiO2 content shows a broad variation (0.8-30.7%). A high SiO2 content in Late Permian coals reflects their enrichment in quartz. The Al2O3 content varies from 0.8% to 13.4%, Fe2O3 from 0.2% to 14.6%, CaO from Al>K>Ti>Na>Mg>Ca>Fe>S. A comparison with World coal averages shows that the Late Permian coals in QFDA are highly enriched in As, Hg, F and U, and are slightly enriched in Mo, Se, Th, V and Zn. The Late Triassic coals in QFDA are highly enriched in As and Hg, and are slightly enriched in Mo, Th and U. The concentrations of As, Hg, Mo, Se, Tl and Zn in the QFDA coal are higher than other Guizhou coal and Liupanshui coal nearby. The QFDA is an area strongly affected by the low-temperature hydrothermal activity during its geologic history (Yanshanian Age, about 189 Ma). The coals in QFDA are enriched in volatile PHTEs, including As, Hg, Se, Sb, Mo, among others. The regions where the coals are enriched in As, Hg and F have been mapped. The regions of coals enriched in volatile PHTEs overlap with the regions of noble metal ore deposits. These coals are located in the cores of anticline and anticlinorium, which are connected with the profound faults through the normal faults. Coals are enriched in volatile PHTEs as a result of the low-temperature hydrothermal activity associated with tectonic faulting. ?? 2003 Elsevier B.V. All rights reserved.
Potential for microbial oxidation of ferrous iron in basaltic glass.
Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E
2015-05-01
Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.
NASA Astrophysics Data System (ADS)
Nath, Bibhash; Chakraborty, Sudipta; Burnol, André; Stüben, Doris; Chatterjee, Debashis; Charlet, Laurent
2009-01-01
SummaryGroundwater and aquifer materials have been characterized geochemically at a field site located in the Chakdaha municipality of West Bengal, India. Sorption experiments were also carried out on a sandy aquifer material to understand the mobility of arsenic (As) in the sub-surface environments. The result shows that the areas associated with high groundwater As (mean: 1.8 μM) is typically associated with low Eh (mean: -129 mV), and high Fe (mean: 0.11 mM), where Fe 2+/Fe(OH) 3 couple is controlling groundwater redox potential. Analysis of the aquifer material total concentrations showed the dominance of As (range: 8.9-22 mg kg -1), Fe (range: 3.0-9.7% as Fe 2O 3) and Mn (range: 0.05-0.18% as MnO) in the silt-/clay-rich sediments; whereas fine-/medium-sand rich sediment contains considerably lower amount of As (<8.1 mg kg -1), Fe (range: 1.6-3.9% as Fe 2O 3) and Mn (range: 0.02-0.08% as MnO). The acid extractable As do not correlate with ascorbate extractable Fe-oxyhydroxide, however Fe-oxyhydroxide is generally high in the sediments from low groundwater As areas. Chemical speciation computations indicated Fe(II), Ca(II), Mg(II) and Mn(II) to be at equilibrium (with respect to calcite, dolomite and rhodochrosite) or slightly over-saturated (with respect to siderite). These carbonate minerals may therefore participate to the As immobilization. The measured total organic carbon (˜1%) and groundwater temperature (26-32 °C) coupled with sorption studies strongly favors microbially mediated Fe(III)-oxyhydroxide reduction as the dominant mechanism for the release of As in the groundwater. Oscillations of As, Mn and Fe concentrations with depth reflected pCO 2 oscillations consecutive to microbial respiration intensity.
Spatial Modeling of Iron Transformations Within Artificial Soil Aggregates
NASA Astrophysics Data System (ADS)
Kausch, M.; Meile, C.; Pallud, C.
2008-12-01
Structured soils exhibit significant variations in transport characteristics at the aggregate scale. Preferential flow occurs through macropores while predominantly diffusive exchange takes place in intra-aggregate micropores. Such environments characterized by mass transfer limitations are conducive to the formation of small-scale chemical gradients and promote strong spatial variation in processes controlling the fate of redox-sensitive elements such as Fe. In this study, we present a reactive transport model used to spatially resolve iron bioreductive processes occurring within a spherical aggregate at the interface between advective and diffusive domains. The model is derived from current conceptual models of iron(hydr)oxide (HFO) transformations and constrained by literature and experimental data. Data were obtained from flow-through experiments on artificial soil aggregates inoculated with Shewanella putrefaciens strain CN32, and include the temporal evolution of the bulk solution composition, as well as spatial information on the final solid phase distribution within aggregates. With all iron initially in the form of ferrihydrite, spatially heterogeneous formation of goethite/lepidocrocite, magnetite and siderite was observed during the course of the experiments. These transformations were reproduced by the model, which ascribes a central role to divalent iron as a driver of HFO transformations and master variable in the rate laws of the considered reaction network. The predicted dissolved iron breakthrough curves also match the experimental ones closely. Thus, the computed chemical concentration fields help identify factors governing the observed trends in the solid phase distribution patterns inside the aggregate. Building on a mechanistic description of transformation reactions, fluid flow and solute transport, the model was able to describe the observations and hence illustrates the importance of small-scale gradients and dynamics of bioreductive processes for assessing bulk iron cycling. As HFOs are ubiquitous in soils, such process-level understanding of aggregate-scale iron dynamics has broad implications for the prediction of the subsurface fate of nutrients and contaminants that interact strongly with HFO surfaces.
McMahon, P.B.; Dennehy, K.F.; Sandstrom, M.W.
1999-01-01
The hydraulic and geochemical performance of a 366 m long permeable reactive barrier (PRB) at the Denver Federal Center; Denver, Colorado, was evaluated. The funnel and gate system, which was installed in 1996 to intercept and remediate ground water contaminated with chlorinated aliphatic hydrocarbons (CAHs), contained four 12.2 m wide gates filled with zero-valent iron. Ground water mounding on the upgradient side of the PRB resulted in a tenfold increase in the hydraulic gradient and ground water velocity through the gates compared to areas of the aquifer unaffected by the PRB. Water balance calculations for April 1997 indicate that about 75% of the ground water moving toward the PRB from upgradient areas moved through the gates. The rest of the water either accumulated on the upgradient side of the PRB or bypassed the PRB. Chemical data from monitoring wells screened down-gradient, beneath, and at the ends of the PRB indicate that contaminants had not bypassed the PRB, except in a few isolated areas. Greater than 99% of the CAH mass entering the gates was retained by the iron. Fifty-one percent of the CAH carbon entering one gate was accounted for in dissolved C1 and C2 hydrocarbons, primarily ethane and ethene, which indicates that CAHs may adsorb to the iron prior to being dehalogenated. Treated water exiting the gates displaced contaminated ground water at a distance of at least 3 m downgradient from the PRB by the end of 1997. Measurements of dissolved inorganic ions in one gate indicate that calcite and siderite precipitation in the gate could reduce gate porosity by about 0.35% per year. Results from this study indicate that funnel and gate systems containing zero-valent iron can effectively treat ground water contaminated with CAHs. However, the hydrologic impacts of the PRB on the flow system need to be fully understood to prevent contaminants from bypassing the PRB.
NASA Astrophysics Data System (ADS)
Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.
2017-08-01
Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.
NASA Astrophysics Data System (ADS)
Vindušková, Olga; Frouz, Jan
2016-04-01
Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.
NASA Astrophysics Data System (ADS)
Solomatova, N. V.; Asimow, P. D.
2017-12-01
It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at 35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase [1,2]. Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO3)2 dolomite is more stable than previously reported structures [3]. In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO3 agrees well with experiments, whereas an internally-consistent U overestimates the spin transition pressure by 50 GPa. However, whether we use constant or internally-consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth's mantle. [1] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [2] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514. [3] Solomatova, N. V. and Asimow, P. D. (2017) American Mineralogist, 102, 210-215.
NASA Astrophysics Data System (ADS)
Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo
2017-11-01
Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.
Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals
NASA Astrophysics Data System (ADS)
Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.
2012-12-01
Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for heterogeneous catalysis in GCS systems.
Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.
2008-01-01
Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.
2017-12-01
Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.
NASA Technical Reports Server (NTRS)
Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen
2015-01-01
Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.
Similarity of nannobacterial lifeforms in cultures, in the human body, in minerals
NASA Astrophysics Data System (ADS)
Folk, R.
Nearly a dozen labs world-wide have succeeded in culturing minute organisms in the 50-200 nm size range, so the characterization of nannobacteria as some form of "life" is no longer arguable. Within the human body, they are found in blood, kidney stones, dental plaque, arterial disease and cataracts as shown by the Kajander group in Finland, and by our work with Mayo Clinic (e.g. Folk et al., 2001 GSA abs.). Nannobacteria can be concentrated in waters from hot springs, lakes, rivers and the sea. Their charged cell walls attract ions thus triggering precipitation of such varied authigenic minerals as aragonite, calcite, dolomite and siderite; sulfur, pyrite, chalcocite, chalcopyrite; phosphates; chalcedony quartz; and smectite, illite, kaolinite, chlorite and palygorskite clay. So it should be no surprise that on Mars, with reactive FeMg minerals, subsurface (and once surface) water, and internal heat, nannobacteria would be able to thrive both in vein-fill carbonates (McKay et al, 1996) and on the altered surfaces of unstable pyroxenes (Folk and Taylor, in press Met. &Plan. S i., 2002). Striking identities of sizes, shapes, and colonial affinitiesc are found between Martian nannobacteria and those in clays from Sicily and elsewhere (Folk and Lynch, 1997 SPIE). Extraterrestrial forms range from spheroids and ovoids of 30-80 nm, to worm- and caterpillar-shaped objects (40 X 150 nm) and chains of 40 nm beads. Even in the Allende carbonaceous chondrite, groups of 40- 150 nm bodies resembly earthly Streptococcus and Staphylococcus are found (Folk and Lynch 1998 SPIE). The highly-matured nature of the kerogen-like carbon in Allende demonstrates that it is not the result of earthly contamination; furthermore Allende contains clay minerals which demand the former presence of some water, a requirement for biology.The only objection to the claimed discovery of extraterrestrial life in the form of nannobacteria is the Old Testament view that God created life only on Earth and nowhere else.
NASA Astrophysics Data System (ADS)
Abrajevitch, A.; Oliva, B.; Peters, S.; Beehr, A.; van der Voo, R.
2006-12-01
Sediments of the Dunkard Gr. were deposited in the Appalachian foreland basin during the Pennsylvanian and Early Permian, an interval encompassing the long reverse polarity Kiaman chron. Lithofacies in the Dunkard Gr. in eastern Ohio and western West Virginia include lenticular and sheet-form cross-bedded micaceous sandstones, coal, mottled red and purple mudstones, gray laminated mudstones and argillaceous lime mudstones. They are indicative of deposition on a low-gradient, tropical wet-dry fluvial plain. Few lithofacies are laterally persistent over sufficiently long distances, so that correlation schemes are based largely on coal horizons, partly for historical economic reasons and partly because coal beds appear to be more laterally persistent than most other lithofacies. Magnetostratigraphy would therefore provide a powerful additional correlation tool in the Dunkard Gr, A short normal polarity interval has been reported in the Dunkard Gr. (Helsley, 1965), but to date such a change in magnetic field polarity has not been confirmed by later studies. To confirm the presence of the normal polarity subchron and to explore the possibility of using it as a correlation tool in the Dunkard Gr., we sampled 5 sections thought to straddle the Late Pennyslvanian-Early Permian boundary. Sampled lithofacies include red and mottled red-purple paleosols, grey mudstones containing siderite concretions, micaceous sandstones, and dark gray argillaceous limestones. Samples were demagnetized thermally and by AF. The remanent magnetic directions agree with those expected for the Early Permian. A change in polarity was detected in three of the studied sections. Magnetization is carried by several different magnetic minerals, mostly hematite in paleosols and iron sulfides in combination with magnetite in sandstones, marls and limestones. Although we have found good evidence for the normal polarity interval within Kiaman age rocks of the Dunkard Gr., additional magnetostratigraphic data are needed to validate the present lithology-based correlations and to determine the temporal extent of the normal polarity chron.
A modeling study of the long-term mineral trapping in deep saline marine sands aquifers (Invited)
NASA Astrophysics Data System (ADS)
Aagaard, P.; Pham, V.; Hellevang, H.
2009-12-01
Simulation of geochemical processes due to CO2 injection and storage are dependent on sediment petrography and the kinetics of mineral fluid reactions. Mineral trapping of CO2 in the Utsira sand and similar marine sand reservoirs have been revisited based on critical review of rate data and geochemical constraints on formation waters. Reaction paths calculations were done with the PHREEQC modeling software at relevant reservoir conditions covering a temperature range of 30-100 °C and corresponding reservoir pressures. Initial CO2 saturation was determined by the fluid fugacity corresponding with reservoir conditions. The mineral dissolution kinetics was expressed with a chemical affinity term (Aagaard & Helgeson,1982) while a critical super-saturation for mineral growth was included in the precipitation rate expression. The redox conditions and the H2S fugacity in the simulations were constrained by the acetic/propionic acid buffer trend and the magnetite-pyrite buffer (Aagaard et al. 2001) respectively. We used a revised mineralogical composition for the Utsira sand also performed a sensitivity analyses with respect to mineral content. The simulations were run over a period of 10000 years. The main simulation results included dissolution of glauconite, smectite, pyrite, muscovite and albite, with precipitation of the carbonates siderite, ankerite, and minor dawsonite, as well as kaolinite, silica (either chalcedony or quartz), and K-feldspar. The uncertainties in the simulations are specially connected with initial mineral abundances. The effect of critical super-saturation and reactive surface area for precipitation needs to be further evaluated and tested. Aagaard, P. and H.C. Helgeson (1982). Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions. I. Theoretical Considerations. Am. J. Sci., v. 282, p. 257-285. P. Aagaard, J. Jahren & S.N. Ehrenberg (2001) H2S controling reactions in clastic hydrocarbon reservoirs from the Norwegian Shelf and Gulf Coast, in Cidu, R.(ed) Water-Rock Interaction, WRI-10, Balkema, p. 129-132.
NASA Astrophysics Data System (ADS)
Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.
2017-06-01
The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the Aptian to Albian compressional tectonics of the Carpathians. The deepening of the Moldavide Basin from the Cenomanian is most probably linked to a significant sea-level rise.
NASA Astrophysics Data System (ADS)
Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli
2018-06-01
There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.
Detailed spectroscopic analysis of chloride salt deposits in Terra Sirenum, Mars
NASA Astrophysics Data System (ADS)
Osterloo, M. M.; Glotch, T. D.; Bandfield, J. L.
2015-12-01
Chloride salt-bearing deposits have been identified throughout the southern highlands of Mars [1] based on the lack of diagnostic spectral features of anhydrous chlorides in both the visible near infrared (VNIR) and middle infrared (MIR) wavelength ranges [1,2]. A puzzling aspect of martian chloride deposits is the apparent lack of other weathering or evaporite phases associated with most of the deposits. A global analysis over the chloride salt sites conducted by [3] found that only ~9% of the deposits they analyzed were associated with minerals such as phyllosilicates. Most of these occurrences are in Terra Sirenum where [4] noted that salt-bearing deposits lie stratigraphically above Noachian phyllosilicates. Although a variety of formation mechanisms have been proposed for these intriguing deposits, detailed geologic mapping by [5] suggests that surface water and evaporation played a dominant role. On Earth, evaporative settings are often characterized by a multitude of evaporite and phyllosilicate phases including carbonates, sulfates, and nitrates. [6] evaluated chemical divides and brine evolution for martian systems and their results indicate three pathways wherein late-stage brines favor chloride precipitation. In each case the pathway to chloride formation includes precipitation of carbonates (calcite, siderite, and/or magnesite) and sulfates (gypsum, melanterite, and/or epsomite). Here, we present the results of our detailed and systematic spectroscopic study to identify additional evaporite phases associated with salt/silicate mixtures in Terra Sirenum. [1] Osterloo et al. (2008) Science, 319, [2] Glotch, T. D. et al. (2013) Lunar and Planet. Sci. XLIV, abstract #1549 [3] Ruesch, O. et al. (2012), J. Geophys. Res., 117, E00J13 [4] Glotch, T. D. et al. (2010) Geophys. Res. Lett. 37, L16202, [5] Osterloo, M. M. and B. M Hynek (2015) Lunar and Planet. Sci XLVI. Abstract #1054 [6] Tosca, N. J. and S. M. McLennan (2006), Earth and Planet. Sci. Lett., 241.
Poppe, L.J.; Poag, C.W.; Stanton, R.W.
1992-01-01
The Conoco 145-1 exploratory well, located in the southeastern portion of the Georges Bank Basin, was drilled to a total depth of 4303 m below the sea floor. The oldest sedimentary rocks sampled are of Middle Jurassic age (Late Bathonian-Callovian). A dolomite-limestone-evaporite sequence dominates the section below 3917 m; limestone is the predominant lithology in the intervals of 3271-3774 m, 2274-3158 m, and 1548-1981 m. Siliciclastics dominate the remainder of the drilled section. Calcite tightly cements most of the rocks below 1548 m; dolomite, silica, siderite, and diagenetic clay cements are locally important. Restricted inner marine environments, representing lagoonal and tidal flat conditions, prevailed at the wellsite during much of the deposition recorded by the Callovian-Bathonian age Iroquois Formation. These environments gave way to a carbonate platform, which formed part of the > 5,000 km long Bahama-Grand Banks gigaplatform that lasted through the end of the Late Jurassic (encompassing the uppermost portion of the Iroquois Formation and the Scatarie Limestone and Bacarro Limestone Members of the Abenaki Formation). The absence of a skeletal-reef association and the dominance of muddy limestone fabrics are evidence that the 145-1 wellsite was located on the platform interior. Major periods of siticiclastic deposition interrupted carbonate deposition, and they are recorded by stratigraphic equivalents of the Mohican Formation, Misaine Shale Member of the Abenaki Formation, and the Mohawk and Mic Mac Formations. A series of sustained prograding delta systems, the earliest of which is preserved as the Missisauga Formation, buried the carbonate platform following its drowning in the Early Cretaceous (Berriasian-Valanginian). The sparser, primarily allochthonous lignite content and better-sorted, glauconite-bearing sands of the Missisauga strata at the 145-1 wellsite suggest that shallow marine or barrier-bar environments were more prevalent than the low delta-plain facies recorded farther shoreward at the COST G-1 wellsite.
NASA Astrophysics Data System (ADS)
Brundrett, M.; Yan, W.; Jackson, W. A.
2017-12-01
Studies have confirmed the presence of chlorate (ClO3-) and perchlorate (ClO4-) in terrestrial systems, lunar regolith, Martian surface soils, and meteorites [1, 2, 4]. A roughly equimolar ratio of ClO3- : ClO4- has been observed for most systems with the only major exceptions the Antarctica dry valley soils (MDV) and Martian surface material, where the ClO3- : ClO4- ratios are significantly less than 1 [3, 4]. All known ClO4- production mechanisms produce molar ratios of ClO3-: ClO4- equal to or greater than 1 [5]. Post depositional processes may explain the potential reduction of ClO3-. The objective of this study was to determine the potential abiotic transformation of ClO3- by Fe (II)-bearing minerals, similar to known reactions between NO3- and Fe (II) minerals. The presence of iron-derived minerals has been established in the MDV, Martian soils, and chondrite meteorites. Batch experiments were conducted by reacting four Fe (II)-bearing minerals (wustite, siderite, magnetite, and green rust) with ClO3- at various pH (4.5, 6.5, 8.9). Chlorate reduction was rapid (half-life on the order of hours to days) and generally ClO3- was quantitatively converted to Cl-. Results of this study will increase our understanding of surface reactions that produced and transformed oxy-chlorine compounds on Mars elucidating past and present Martian surface conditions. The study also has implications into the understanding of the evolutionary processes that previously or currently dictate the abiotic geochemical processing of oxy-chlorine anions through terrestrial systems. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Hecht et al. (2009) SCI 325, 64-67. [5] Rao et al. (2010) ES&T 44, 2961-2967.
Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tufano, K.J.; Benner, S.G.; Mayer, K.U.
There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less
Modern marine sediments as a natural analog to the chemically stressed environment of a landfill
Baedecker, M.J.; Back, W.
1979-01-01
Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.
NASA Astrophysics Data System (ADS)
Dreher, Ana M.; Xavier, Roberto P.; Taylor, Bruce E.; Martini, Sérgio L.
2008-02-01
The Igarapé Bahia Cu-Au deposit in the Carajás Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarapé Bahia Group. This group consists of a low greenschist grade unit of the Archean (˜2,750 Ma) Itacaiúnas Supergroup, in which other important Cu-Au and iron ore deposits of the Carajás region are also hosted. The orebody at Igarapé Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30-250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarapé Bahia is represented by late quartz-chalcopyrite-calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from -6.7 to -13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from -1.1 to 5.6 per mil with an outlier at -10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited contribution of reduced and oxydized sulfur is also evident. Oxygen isotopic ratios in magnetite, quartz, and siderite yield calculated temperatures of ˜400°C and δ18O-enriched compositions (5 to 16.5 per mil) for the ore-forming fluids that suggest a magmatic input and/or an interaction with 18O-rich, probably sedimentary rocks. The late veins of the Igarapé Bahia deposit area were formed from saline aqueous fluids (2 to 60 wt% NaCl + CaCl2 equiv) with δ18Ofluid compositions around 0 per mil that indicate contribution from meteoric fluids. With respect to geological features, Igarapé Bahia bears similarity with syngenetic, volcanic-hosted massive sulfide (VHMS)-type deposits, as indicated by the volcano-sedimentary geological context, stratabound character, and association with submarine volcanic flows, hyaloclastite, and exhalative beds such as BIF and chert. On the other hand, the highly saline ore fluids and the mineral assemblage, dominated by magnetite and chalcopyrite, with associated gold, U- and LREE-minerals and scarce pyrite, indicate that Igarapé Bahia belongs to the Fe oxide Cu-Au (IOCG) group of deposits. The available geochronologic data used to attest syngenetic or epigenetic origins for the mineralization are either imprecise or may not represent the main mineralization episode but a later, superimposed event. The C, S, and O isotopic results obtained in this study do not clearly discriminate between fluid sources. However, recent B isotope data obtained on tourmaline from the matrix of the fragmental rock ore unit (Xavier, Wiedenbeck, Dreher, Rhede, Monteiro, Araújo, Chemical and boron isotopic composition of tourmaline from Archean and Paleoproterozoic Cu-Au deposits in the Carajás Mineral Province, 1° Simpósio Brasileiro de Metalogenia, Gramado, Brazil, extended abstracts, CD-ROM, 2005) provide strong evidence of the involvement of a marine evaporitic source in the hydrothermal system of Igarapé Bahia. Evaporite-derived fluids may explain the high salinities and the low reduced sulfur mineral paragenesis observed in the deposit. Evaporite-derived fluids also exclude a significant participation of magmatic or mantle-derived fluids, reinforcing the role of nonmagmatic brines in the genesis of Igarapé Bahia. Considering this aspect and the geological features, the possibility that the deposit was generated by a hydrothermal submarine system whose elevated salinity was acquired by leaching of ancient evaporite beds should be evaluated.
Iron-ore resources of the United States including Alaska and Puerto Rico, 1955
Carr, Martha S.; Dutton, Carl E.
1959-01-01
The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these minerals are associated with other rock-forming minerals, the iron content of marketable ore has a lower range from 30 to 67 percent.Chemical constituents other than iron also are important in determining the marketability of iron ore. Although some iron ores can be used in the blast furnace as mined, others must first be improved either chemically by reduction of undesirable constituents, or physically by aggregation. Phosphorus and sulfur particularly are common deleterious elements; excessive silica is also undesirable but within certain limits can be controlled by additional flux. Lime and magnesia are beneficial in specified amounts because of their fluxing qualities, and a small amount of alumina improves the fluidity of slag. Manganese is especially desirable as a deoxidizing and desulfurizing agent. Titanium, chromium, and nickel must also be considered in the use of ore containing these elements.The principal iron-ore deposits in the United States have been formed by three processes. Hematite-bearing bedded deposits such as those at Birmingham, Ala., are marine sedimentary rocks which, except for weathering along the outcrop, have remained practically unaltered since deposition. Deposits of the Lake Superior region, also in sedimentary strata, originally had a slightly lower iron content than those at-Birmingham, but ore bodies of hematite and limonite were formed by removal of other constituents in solution after deposition of the beds, with a relative increase of iron content in the material remaining. Limestone adjacent to igneous intrusions has been replaced by magnetite deposits at Cornwall, Pa., and by hematite-magnetite deposits near Cedar City, Utah. Magnetite deposits in New Jersey and in the Adirondack Mountains of New York are generally believed to have been formed by replacement of grains of other minerals in metamorphic rocks. Iron-ore resources are made up of reserves of iron ore, material usable under existing economic and technologic conditions; and potential ore, material likely to become usable under more favorable conditions. The tonnage and grade of material of combined reserves and potential ore in each of the deposits known or believed to contain at least 200,000 long tons of iron-ore resources are tabulated in this report, and numerous sources of additional information are given in a selected bibliography. The total domestic iron-ore resources are estimated at approximately 75,000 million long tons of crude ore. About 10,000 million tons of the resources is reserves of crude ore that will probably yield 5,500 million tons of concentrates and direct-shipping ore. About 65,000 million tons is potential ore and may yield 25,000 million tons of concentrates and some direct-shipping ore.
Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H
2015-01-01
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.
Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings
Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.
2015-01-01
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID:26295582
Microbial Impacts on Clay Mineral Transformation and Reactivity
NASA Astrophysics Data System (ADS)
Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.
2006-05-01
Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction kinetics. These preliminary results have important implications for in-situ bioremediation efforts, where either chemically or biologically reduced clay minerals can be introduced into a contaminant site for removing heavy metals and radionuclides in groundwater aquifers.
Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China
NASA Astrophysics Data System (ADS)
Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun
2018-02-01
Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With decreasing temperature of the fluids, Pb2+ ions are incorporated along with Cu+, Sb3+, and As3+ ions into sulfosalt minerals, and Ag+ ions are coprecipitated with Cu+, Sb3+, and As3+ ions forming tetrahedrite series minerals or replacing earlier sulfides and sulfosalts.
Engineering Glass Passivation Layers -Model Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.
2011-08-08
The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting thatmore » the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.« less
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Dolansky, Lila; Piper, David J. W.
2005-07-01
The Lower Cretaceous fluvial sandstone-mudstone succession of the Chaswood Formation is the proximal equivalent of offshore deltaic rocks of the Scotian Basin that are reservoirs for producing gas fields. This study interprets the mineralogical consequences of Cretaceous weathering and early diagenesis in a 130-m core from the Chaswood Formation in order to better understand detrital and diagenetic minerals in equivalent rocks offshore. Mineralogy was determined by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The rocks can be divided into five facies associations: light gray mudstone, dark gray mudstone, silty mudstone and muddy sandstone, sorted sandstone and conglomerate, and paleosols. Facies transitions in coarser facies are related to deposition in and near fluvial channels. In the mudstones, they indicate an evolutionary progression from the dark gray mudstone facies association (swamps and floodplain soils) to mottled paleosols (well-drained oxisols and ultisols following syntectonic uplift). Facies transitions and regional distribution indicate that the light gray mudstone facies association formed from early diagenetic oxidation and alteration of the dark gray mudstone facies association, probably by meteoric water. Principal minerals in mudstones are illite/muscovite, kaolinite, vermiculite and quartz. Illite/muscovite is of detrital origin, but variations in abundance show that it has altered to kaolinite in the light gray mudstone facies association and in oxisols. Vermiculite developed from the weathering of biotite and is present in ultisols. The earliest phase of sandstone cementation in reducing conditions in swamps and ponds produced siderite nodules and framboidal pyrite, which were corroded and oxidized during subsequent development of paleosols. Kaolinite is an early cement, coating quartz grains and as well-crystallized, pore-filling booklets that was probably synchronous with the formation of the light gray mudstone facies association. Later illite and barite cement indicate a source of abundant K and Ba from formation water. This late diagenesis of sandstone took place when the Chaswood Formation was in continuity with the main Scotian Basin, prior to Oligocene uplift of the eastern Scotian Shelf. Findings of this study are applicable to other mid-latitude Cretaceous weathering and early diagenetic environments.
NASA Astrophysics Data System (ADS)
Dix, George R.; Parras, Ana
2014-06-01
A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive interval probably due to initial elevated metastability of reworked weathered silicates. Clay (illite)-cement is restricted to siliciclastic-rich intervals wherein skeletal carbonate did not buffer pore-water pH. Diagenetic carbonate geochemistry (Sr, Na, and δ18O and δ13C) shows that, with burial, the transgressive and highstand system tracts developed as distinct paleoaquifers resulting from different proximities to meteoric recharge zones.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon
2018-04-01
Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2 Location of all illustrated samples. Table S3 Monazite geochronology lab data. Table S4 Allanite geochronology lab data. Fig. S1 Monazite geochronology analytical spots. Fig. S2 Allanite geochronology analytical spots.
The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle
Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.
2002-01-01
A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining quantitative data regarding the mid-Cretaceous hydrologic cycle in the KWIB. Our goal is to encourage the incorporation of isotopic tracers into GCM simulations of the mid-Cretaceous, and to show how our empirical data and mass balance model estimates help constrain the boundary conditions. ?? 2002 Elsevier Science B.V. All rights reserved.
Arsenic in groundwaters of rural India: its geochemistry and mitigation approaches
NASA Astrophysics Data System (ADS)
Chatterjee, Debashis; Majumder, Santanu; Kundu, Amit; Barman, Sandipan; Chatterjee, Debankur; Bhattacharya, Prosun
2016-04-01
During the last few decades, arsenic (As) has been recognized as the most threatening contaminant in natural waters (especially groundwater). It has become a menace to the health of millions of people worldwide. Many large and small communities experience As contamination in groundwater and/or drinking water supplies in south-east Asia and the problem is grave in West Bengal and Bangladesh (Bengal Delta Plain, BDP) both in terms of human exposure as well as spatial coverage. It is frequently observed that As concentration in contaminated wells exceeds both WHO guideline value (10 mg/l) and stipulated National standard (50 mg/l) for both Bangladesh and India. Dissolved forms of As in the BDP water include arsenite (~50-70%), arsenate (~30-50%) and ultra-trace amount of monomethylarsonic acid and dimethylarsinic acid. Arsenite and arsenate species can interchange depending on redox potential (Eh), pH and biological processes. The prevailing local geomorphological features (surface water, sanitation, agricultural activity) can also influence the mobilization of As in addition to the dominant geological factors. Therefore, the local sedimentology and hydrogeology should also be given importance prior to implement or consider any policy to mitigate the As contamination of groundwater. Conventional treatment techniques to remove As from groundwater are costly and difficult to practice in rural areas of the BDP. There are several techniques available for groundwater As removal. Iron and Alum coagulation, softening [mediated by calcite or Mg(OH)2 formation], by reverse osmosis, using zero-valent iron and nanoparticulate zero-valent iron, several natural/synthetic metal oxides, naturally found minerals like siderite, hematite, using iron doped activated carbons, development of bio-physicochemical techniques, using granular TiO2 adsorbent are some of the many proposed removal techniques investigated by various researchers. Instead of using hazardous chemicals (e.g. chlorine, ozone in conventional method) As from groundwater can also be removed by exposure to sunlight (solar oxidation) in presence of dissolved iron (Fe) and a chelating agent (citrate, naturally available) followed by filtration with cloth or simple decantation. The technique is user friendly, low cost and easy to perform by the rural mass of the BDP.
NASA Astrophysics Data System (ADS)
Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.
2015-12-01
Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.
Nordstrom, D. Kirk
2008-01-01
The U.S. Geological Survey, in cooperation with the New Mexico Environment Department and supported by Molycorp, Inc (currently Chevron Minerals), has completed a 5-year investigation (2001-2006) to determine the pre-mining ground-water quality at Molycorp's Questa molybdenum mine in northern New Mexico. Current mine-site ground waters are often contaminated with mine-waste leachates and no data exists on premining ground-water quality so that pre-mining conditions must be inferred. Ground-water quality undisturbed by mining is often worse than New Mexico standards and data are needed to help establish closure requirements. The key to determining pre-mining conditions was to study the hydrogeochemistry of a proximal natural analog site, the Straight Creek catchment. Main rock types exposed to weathering include a Tertiary andesite and the Tertiary Amalia tuff (rhyolitic composition), both hydrothermally altered to various degrees. Two types of ground water are common in mineralized areas, acidic ground waters in alluvial debris fans with pH 3-4 and bedrock ground waters with pH 6-8. Siderite, ferrihydrite, rhodochrosite, amorphous to microcrystalline Al(OH)3, calcite, gypsum, barite, and amorphous silica mineral solubilities control concentrations of Fe(II), Fe(III), Mn(II), Al, Ca, Ba, and SiO2, depending on pH and solution composition. Concentrations at low pH are governed by element abundance and mineral weathering rates. Concentrations of Zn and Cd range from detection up to about 10 and 0.05 mg/L, respectively, and are derived primarily from sphalerite dissolution. Concentrations of Ni and Co range from detection up to 1 and 0.4 mg/L, respectively, and are derived primarily from pyrite dissolution. Concentrations of Ca and SO4 are derived from secondary gypsum dissolution and weathering of calcite and pyrite. Metal:sulfate concentration ratios are relatively constant for acidic waters, suggesting consistent weathering rates, independent of catchment. These trends, combined with lithology, mineralogy, and mineral solubility controls, provide useful constraints on pre-mining ground-water quality for the mine site where the lithology is known.
NASA Astrophysics Data System (ADS)
Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.
2016-12-01
The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface geochemical and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and geochemical composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results of these combined Raman-LIBS investigations will be presented and discussed. [1] Wiens R.C., et al. (2005) Spect. Acta A 61, 2324; [2] Sharma, S. K. et al. (2007) Spect. Acta A, 68 , 1036 (2007); [3] Clegg, S.M. et al. (2014) Appl. Spec. 68, 925; [4] Barsukov VL (1992) In Venus Geology, Geochemistry, and Geophysics, Univ. Arizona Press, pp. 165.
Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study
NASA Astrophysics Data System (ADS)
Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.
2001-05-01
Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As concentration. It is several times more toxic than As (V). The As (III) / As (V) and S (-II) / S (VI) ratios are not at equilibrium with the Eh measured in groundwater. The groundwater is at equilibrium with Ba(II) and Fe(II) arsenate minerals, barite and siderite. The reactive transport modeling of the data is explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strongin, Daniel
2014-12-31
Over the course of the scientific program, two areas of research were pursued: reactions of iron oxides with supercritical CO 2 and sulfide and surface reactivity of pyrite. The latter area of interest was to understand the chemistry that results when supercritical CO 2 (scCO 2 ) with H 2 S and/or SO 2 in deep saline formations (DFS) contacts iron bearing minerals. Understanding the complexities the sulfur co-injectants introduce is a critical step in developing CO 2 sequestration as a climate-mitigating strategy. The research strategy was to understand macroscopic observations of this chemistry with anmore » atomic/molecular level view using surface analytical techniques. Research showed that the exposure of iron (oxyhdr)oxides (which included ferrihydrite, goethite, and hematite) to scCO 2 in the presence of sulfide led to reactions that formed siderite (FeCO 3). The results have important implications for the sequestration of CO 2 via carbonation reactions in the Earth’s subsurface. An earlier area of focus in the project was to understand pyrite oxidation in microscopic detail. This understanding was used to understand macroscopic observations of pyrite reactivity. Results obtained from this research led to a better understanding how pyrite reacts in a range of chemical environments. Geochemical and modern surface science techniques were used to understand the chemistry of pyrite in important environmental conditions. The program relied on a strong integration the results of these techniques to provide a fundamental understanding to the macroscopic chemistry exhibited by pyrite in the environment. Major achievements during these studies included developing an understanding of the surface sites on pyrite that controlled its reactivity under oxidizing conditions. In particular sulfur anion vacancies and/or ferric sites were sites of reactivity. Studies also showed that the adsorption of phospholipid on the surface to selectively suppress the reactivity of these sites could of potential importance for suppressing acid mine drainage in the environment (a problem common to coal-mining sites). Biotic studies showed that microbial activity that promotes the oxidation of pyrite to produce AMD could also be suppressed by the adsorption of phospholipid.« less
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Halder, K.; Sarkar, S.
2017-12-01
A systematic comparative study of microfaunal assemblage and representative geochemical elements from two Cenozoic basins of India, Mangrol-Valia Lignite Mine section (21°30'52''N:73°12'20.5''E) of Cambay Shale Formation, western India and Jigni section (33°14'45"N:74°22'0"E) from Subathu Formation in northern India was undertaken to infer the paleoenvironment, palaeobathymetry and paleoclimate of these successions. Despite a gamut of work already carried out in these two basins, the sedimentary successions still await a correlative-detailed process-based facies, geochemical characterization and paleoenvironmental analysis. With a view to fulfill this gap, the present work was carried out by studying bulk rock XRD, XRF, clay mineralogy and analyzing calcareous microfossil foraminifera from samples at equivalent depth of these two basins which are situated thousands of kilometers apart and in different tectonic settings. The faunal assemblage of Eocene sediments of Mangrol-Valia section is indicative of shallow marine and inner shelf deposition with medium oxygen supply, while that of the Jigni section suggests primarily a shallow marine condition, which gradually changes to open marine condition with time. It is pertinent to note that the two basins of Cenozoic India started their lithosuccession with coal bearing strata. Well preserved pectin aragonite shells also indicate that primarily these two basins experienced low energy lagoonal environment. The fossil assemblage in both basins also suggests a tropical moist to terrestrial lowland environment. Geochemical analysis shows that the Mangrol-Valia section mineralogically comprises of kaolinite, siderite, quartz, smectite and kaolinite with higher abundance throughout the succession indicating chemical weathering of Deccan basement and high erosional environment. Calcite is the main constituent of Jigni section that indicates intracratonic rift settings. Medium to high quartz content and other detrital elements may support increased erosional power, manifested as a quantitative increase in detrital flux for both the basins. So the geochemical and paleontological studies of Subathu and Cambay Shale Formations reveal similar evolutionary history in spite of their different tectonic scenario.
NASA Astrophysics Data System (ADS)
Dong, Y.; Sanford, R. A.; Boyanov, M.; Kemner, K. M.; Flynn, T. M.; O'Loughlin, E. J.; George, S.; Fouke, K.; Fouke, B. W.
2016-12-01
Iron reduction by dissimilatory iron-reducing bacteria (DIRB), coupled with the oxidation of organic compounds or H2, causes formation of post-depositional (diagenetic) Fe(II)-containing minerals. Previous studies on the composition, distribution and precipitation rates of secondary minerals during microbial iron reduction have primarily focused on ferrihydrite reduction by Shewanella spp. However, comparatively little is known about these processes by a variety of other DIRB and the effect of specific environmental factors on Fe(II)-bearing mineral diagenesis. Here we examine how environmental conditions influence the reduction of ferric iron minerals by Orenia metallireducens strain Z6, a DIRB from the phylum Firmicutes. This includes the effects of: (1) pH at 6.5-8.5; (2) temperature at 22-50 °C; (3) salinity at 2-20% NaCl; (4) solution chemistry of phosphate and sulfate; (5) electron shuttles (e.g., anthraquinone-2,6-disulfonate (AQDS)); and (6) iron oxides, including ferrihydrite, lepidocrocite, goethite, hematite, and magnetite. For a total of 19 culturing conditions, we measured ferrous iron produced over time using the ferrozine assay and formation of secondary minerals using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-Ray Diffraction (XRD), and extended X-ray absorption fine structure spectroscopy (Fe-edge XANES and EXAFS). Results show that both the rate and extent of DIRB reduction of ferrihydrite and lepidocrocite vastly exceeded those of the more crystalline minerals. The microscopic and spectroscopic analyses indicate diversity in the composition and relative abundance of Fe(II)-containing minerals such as green rust, siderite, magnetite and/or vivianite under the different experimental conditions. However, the secondary mineralization products cannot be attributed to either the extent or kinetics of Fe(II) generation. Instead, the composition of these digenetic minerals resulted from the intricate interplay of precipitation dynamics, adsorption of Fe(II), and subsequent transformation (dissolution and reprecipitation). This study establishes the first mechanistic understanding of biomineralization of Fe(II) bearing minerals during microbial iron reduction under a broad range of environmental conditions.
Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min
2012-10-15
The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ramanathan, AL.
2018-01-01
A geochemical and speciation study of As, Fe, Mn, Zn, and Cu was performed using sequential extraction and statistical approaches in the core sediments taken at two locations—Rigni Chhapra and Chaube Chhapra—of the central Gangetic basin (India). A gradual increase in the grain size (varying from clay to coarse sands) was observed in both the core profiles up to 30.5 m depth. The concentrations of analyzed elements ranged as follows: 6.9–14.2 mg/kg for As, 13,849–31,088 mg/kg for Fe, 267–711 mg/kg for Mn, 45–164 mg/kg for Cu for Rigni Chhapra while for Chaube Chhapra the range was 7.5–13.2 mg/kg for As, 10,936–37,052 mg/kg for Fe, 267–1052 mg/kg for Mn, 60–198 mg/kg for Zn and 60–108 mg/kg for Cu. Significant amounts (53–95%) of all the fractionated elemental concentrations were bound within the crystal structure of the minerals as a residual fraction. The reducible fraction was the second most dominant fraction for As (7% and 8%), Fe (3%), Mn (20% and 26%), and Cu (7% and 6%) respectively for both the cores. It may be released when aquifers subjected to changing redox conditions. The acid soluble fraction was of most interest because it could quickly mobilize into the water system which formed the third most dominating among all three fractions. Four color code of sediments showed an association with total As concentration and did not show a relation with any fraction of all elements analyzed. The core sediment was observed enriched with As and other elements (Cu, Fe, Mn, and Zn). However, it fell under uncontaminated to moderately contaminate which might exhibit a low risk in prevailing natural conditions. X-ray diffraction analyses indicated the availability of siderite and magnetite minerals in the core sediments in a section of dark grey with micaceous medium sand with organic matter (black). PMID:29360767
Stable carbon isotope cycling in mobile coastal muds of Amapá, Brazil
NASA Astrophysics Data System (ADS)
Zhu, Zhongbin; Aller, Robert C.; Mak, John
2002-10-01
Approximately 10% of the sediment delivered by the Amazon River moves northwest along the coast of Amapá, Brazil, initiating the Guianas mobile mud belt. Amapá coastal muds generally have a two-layer transport structure and are characterized by highly non-steady-state sedimentation. Isotopic compositions of pore water ∑CO 2 and solid phase C org demonstrate that remineralization in the surficial mobile zone (˜0.3-1 m thick) is dominated by terrestrial sources at sites in proximity to the mangrove fringe (˜1-2 m water depth), and marine (plus possible carbonate dissolution) sources further offshore (˜21 km, ˜7 m depth). The net δ13C of ∑CO 2 produced and C org remineralized is ˜-26‰ and -25.9‰, respectively inshore, and ˜-14‰ and -18.6‰, respectively offshore (compared to average terrestrial and marine C org end members of -28‰ and -20‰). Efficient remineralization in the suboxic mobile zone lowers particle surface loading of C org from ˜0.35 mg C m -2 in the Amazon delta topset to ˜0.13-0.16 along Amapá. Sequential, temperature-dependent extractions were used to operationally fractionate inorganic C pools. Authigenic carbonates, mostly siderite and mixed Ca, Mg, Fe, Mn-carbonates, dominate sediment inorganic C (˜50-200 μmol g -1). The mass weighted δ13C of carbonates, ˜-15‰ to -19‰, is relatively restricted in range compared to pore water ∑CO 2, implying most precipitation in the reactive mobile surface sediments. Periodic mixing with bottom seawater and/or dissolution of biogenic carbonates in the surficial layer shift δ13C values of pore water to heavier values than C org reactant sources. At one offshore site (˜7 m), about 22% of pore water ∑CO 2 has undergone reduction during methanogenesis below the mobile surface zone, extracting ∑CO 2 with δ13C˜-90‰ and leaving a residual δ13C˜-0.37‰. Diagenetic processes in the suboxic mobile mud zone dominate C remineralization and storage along the coast of Amapá.
Quantification of Biogenic Magnetite by Synchrotron X-ray Microscopy During the PETM
NASA Astrophysics Data System (ADS)
Wang, H.; Wang, J.; Kent, D. V.; Chen-Wiegart, Y. C. K.
2014-12-01
Exceptionally large biogenic magnetite crystals, including spearhead-like and spindle-like ones up to 4 microns, have been reported in clay-rich sediments recording the ~56 Ma Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion (CIE) in a borehole at Ancora, NJ and along with magnetotactic bacteria (MTB) chains, were suggested [Schumann et al. 2008 PNAS; Kopp et al. 2009 Paleoceanography] to account for the distinctive single domain (SD) rock magnetic properties of these sediments [Lanci et al. 2002 JGR]. However, because uncalibrated magnetic extraction techniques were used to provide material for TEM imaging of the biogenic magnetite, it is difficult to quantitatively analyze their concentration in the bulk clay. In this study, we use a synchrotron transmission X-ray microscope to image bulk CIE clay. We first take mosaic images of sub-millimeter-sized bulk clay samples, in which we can identify many of the various types of giant biogenic magnetite crystals, as well as several other types of iron minerals, such as pyrite framboids, siderite, and detrital magnetite. However, limited by the instrument resolution (~50 nm), we are not able to identify MTB chains let alone isolated magnetic nanoparticles that may be abundant the clay. To quantitatively estimate the concentration of the giant biogenic magnetite, we re-deposited the bulk clay sample in an alcohol solution on a silicon nitride membrane for 2D X-ray scans. After scanning a total area of 0.55 mm2 with average clay thickness of 4 μm, we identified ~40 spearheads, ~5 spindles and a few elongated rods and estimated their total magnetization as SD particles to be less than about 10% of the mass normalized clay for the scanned area. This result suggests that the giant biogenic magnetite is not a major source of the SD signal for the clay and is in good agreement with rock magnetic analyses using high-resolution first-order reversal curves and thermal fluctuation tomography on bulk CIE clay showing that most of the magnetite occurs as isolated, near-equant SD particles [Wang et al. 2013 PNAS]. This would also exclude a significant contribution from MTB chains and points to a non-biogenic origin, such as a comet impact plume condensate, for the magnetic nanoparticles [Kent et al. 2003 EPSL] in the very rapidly deposited CIE clays [Wright & Schaller 2014 PNAS].
NASA Astrophysics Data System (ADS)
Terry, M.; Dahl, P.; Frei, R.
2003-04-01
The Homestake Deposit, located in the northern Black Hills and host for 40 million ounces of gold, shows evidence for extensive remobilization of gold related to regional metamorphism deformation associated with the Early Proterozoic assembly of supercontinent Laurentia. Field and petrographic evidence for gold remobilization includes the occurrence of abundant quartz veins associated with selvages of chlorite-siderite-ankerite-pyrrhotite-arsenopyrite-gold in the Homestake Fm. The deposit is located on the western limb of a major anticlinorium that coincides with a vertical N-S-striking garnet isograd, and garnet-biotite geothermometry of metapelites sampled across the anticlinorium indicates a steep metamorphic field gradient of 150^oC/km (east side warmer). This gradient is mirrored by a pronounced fractionation of oxygen isotopes observed in the vein quartz, with δ18O ranging from 10 to 18 ppm. The isograd is parallel with a major N-S-striking shear zone, and kinematic indicators predominantly indicate oblique sinistral motion with east-side up. Garnet was separated from a subsurface sample of the Homestake Fm. collected from the nose of the so-called "main ledge" synform and subjected to Pb stepwise leaching (PbSL) to determine the age of garnet growth and thus metamorphism. PbSL analysis revealed a 207Pb/206Pb age of 1746 ± 10 Ma (± 2σ). Recent work in the southern Black Hills indicates that almandine does not contain sufficient Pb to be dated directly by this method; instead, the PbSL result represents the bulk age of abundant allanite inclusions observed in the garnet. Thus, 1746 Ma is interpreted as a maximum age of prograde garnet growth during regional thermotectonism. Mineral assemblages from selvages in Main Ledge indicate that mineralization occurred at or after peak metamorph, which indicates that 1746 Ma also represents a maximum age for gold remobilization. A minimum 1715 Ma age of these events is indicated by published ages of post-tectonic leucogranite in the Black Hills. Regionally, the N-S orientation, 1746--1715 Ma timing, and sinistral-transpressive motion combine to suggest that this major shear zone in the northern Black Hills represents a northerly extension of the Hartville fault, which is exposed in SE Wyoming, ˜200 km SSW. Correlation of these shear zones would have important implications for Proterozoic terrane assembly in this part of Laurentia.
Reactive transport modeling of CO2 mineral sequestration in basaltic rocks
NASA Astrophysics Data System (ADS)
Aradottir, E. S.; Sonnenthal, E. L.; Bjornsson, G.; Jonsson, H.
2011-12-01
CO2 mineral sequestration in basalt may provide a long lasting, thermodynamically stable, and environmentally benign solution to reduce greenhouse gases in the atmosphere. Multi-dimensional, field scale, reactive transport models of this process have been developed with a focus on the CarbFix pilot CO2 injection in Iceland. An extensive natural analog literature review was conducted in order to identify the primary and secondary minerals associated with water-basalt interaction at low and elevated CO2 conditions. Based on these findings, an internally consistent thermodynamic database describing the mineral reactions of interest was developed and validated. Hydrological properties of field scale mass transport models were properly defined by calibration to field data using iTOUGH2. Reactive chemistry was coupled to the models and TOUGHREACT used for running predictive simulations carried out with the objective of optimizing long-term management of injection sites, to quantify the amount of CO2 that can be mineralized, and to identify secondary minerals that compete with carbonates for cations leached from the primary rock. Calibration of field data from the CarbFix reservoir resulted in a horizontal permeability for lava flows of 300 mD and a vertical permeability of 1700 mD. Active matrix porosity was estimated to be 8.5%. The CarbFix numerical models were a valuable engineering tool for designing optimal injection and production schemes aimed at increasing groundwater flow. Reactive transport simulations confirm dissolution of primary basaltic minerals as well as carbonate formation, and thus indicate in situ CO2 mineral sequestration in basalts to be a viable option. Furthermore, the simulations imply that clay minerals are most likely to compete with magnesite-siderite solid solutions for Mg and Fe leached from primary minerals, whereas zeolites compete with calcite for dissolved Ca. In the case of the CarbFix pilot injection, which involves a continuous injection of 1,100 tons CO2 in total for 6 months, the basalt hosted reservoir was estimated to have a 100% sequestering efficiency after 10 years. In the case of an upscaled 10 year long injection of 40,000 tons per year, sequestering efficiency of the same reservoir was estimated to be about 10% after 100 years. However, sequestering efficiency in the latter case has every potential of increasing substantially with time due to the vast amount of primary basaltic minerals in the reservoir.
P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study
NASA Astrophysics Data System (ADS)
Litasov, Konstantin D.; Shatskiy, Anton; Gavryushkin, Pavel N.; Bekhtenova, Altyna E.; Dorogokupets, Peter I.; Danilov, Boris S.; Higo, Yuji; Akilbekov, Abdirash T.; Inerbaev, Talgat M.
2017-04-01
Pressure-volume-temperature relations have been measured to 29 GPa and 1673 K for CaCO3 aragonite using synchrotron X-ray diffraction with a multianvil apparatus at the 'SPring-8' facility. A least-squares fit of the room-temperature compression data to the Vinet-Rydberg equation of state (EOS) yielded KT0 = 65.7 ± 0.8 GPa and KT' = 5.1 ± 0.1, with fixed V0 = 227.11 Å3. Further analysis of the high-temperature compression data led to the temperature derivative of the bulk modulus (∂KT/∂T)P = -0.016 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.98 (22) × 10-5 K-1 and a1 = 2.81(38) × 10-8 K-2. The Mie-Gruneisen-Debye approach revealed the Gruneisen parameter γ0 = 1.39 at a fixed Debye temperature θ0 = 516 K and the parameter q = 1. Analysis of axial compressibility and thermal expansion indicates that the c-axis is two times more compressible than the b-axis and four times more compressible than the a-axis, whereas zero-pressure thermal expansion of the a-axis (a0a = 2.6 × 10-5 K-1 and a1a = 2.3 × 10-8 K-2) is weaker than that of the b-axis axis (a0b = 6.3 × 10-5 K-1 and a1b = 0.1 × 10-8 K-2) and c-axis axis (a0c = 5.2 × 10-5 K-1 and a1c = 9.5 × 10-8 K-2). A full set of thermodynamic parameters (including heat capacity, enthalpy and free energy) for aragonite and updated equations of state for magnesite and siderite was obtained using the Kunc-Einstein approach. The new EOS parameters were used for thermodynamic calculations for aragonite decarbonation reactions. The present thermal EOS provides accurate calculations of aragonite density to deep mantle. Decarbonation of subducting oceanic crust containing 2 wt% aragonite would result in a 0.5% density reduction at 30 GPa and 1273 K. Aragonite becomes denser than magnesite at pressures about 16 GPa along the 1500 K isotherm and at 9 GPa along the 298 K isotherm.
Hydrogeochemical and mineralogical investigations of arsenic- and humic substance-enriched aquifers
NASA Astrophysics Data System (ADS)
Liu, Chen-Wuing; Lai, Chih-Chieh; Chen, Yen-Yu; Lu, Kuang-Liang
2013-08-01
This study investigated the hydrogeochemical and mineralogical characteristics of arsenic-contaminated and humic-substance-enriched aquifers in the Chianan Plain, Taiwan, which is an endemic area for blackfoot disease (BFD). Factorial analysis (FA) was used to evaluate the hydrochemical characteristics of 83 groundwater samples in the Chianan Plain, and 462 geological core samples obtained from 9 drilling wells were collected to analyze their arsenic and iron contents. The major mineral phases and chemical components were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy and energy dispersive spectrometry (SEM-EDS). Partition of arsenic among various hosting solids in sediments was determined by sequential extraction. The results of FA showed that the hydrochemical characteristics of the groundwater samples could be grouped by 4 factors: salinization, arsenic, sulfide, and iron. Arsenic was positively correlated with alkalinity, dissolved organic/inorganic carbon, and fluorescence intensity [humic acids, (HAs)]. As(V) has a higher chelating affinity with HAs than does As(III), resulting in higher As(V) concentrations distributed throughout the reducing environment. High levels and correlations of As and HAs may cause BFD in the Chianan Plain. No correlation was found between the measured and calculated redox potentials of the various redox couples. The As(III)/As(V) was under a chemical non-equilibrium condition. The vertical distribution of the sedimentary As (solid phase) typically increased with depth, but the aqueous As concentrations were higher in the second aquifer (depth of 80-120 m). Arsenic content (solid phase) was higher in the clay/silt sediments and marine formations. The major minerals identified by XPS and SEM-EDS were goethite, hematite, magnetite, pyrite, and siderite, agreeing with the SI values calculated by PHREEQC. Arsenic content was strongly correlated with sulfur (weight%; R2 = 0.76, p < 0.05), but was weakly correlated with iron (weight%). However, a moderate correlation (R2 = 0.44-0.75; p < 0.001) between As(s) and Fe(s) in the sediments was found in the transitions in the marine and non-marine formations, especially in the fine grains. The chelation of humic complex, competition for sorption sites of organic carbon, reduction dissolution of Fe oxides are mainly responsible for the groundwater As mobility in the Chianan Plain, especially for the marine sequence.
NASA Astrophysics Data System (ADS)
Del Carlo, P.; Panter, K. S.; Bassett, K. N.; Bracciali, L.; di Vincenzo, G.; Rocchi, S.
2009-12-01
We report results from the study of the uppermost 37 meters of the Southern McMurdo Sound (SMS) AND-2A drillcore, corresponding to the lithostratigraphic unit 1 (LSU 1), the most volcanogenic unit within the core. Nearly all of LSU 1 consists of volcanic breccia and sandstone that is a mixture of near primary volcanic material dominated by lava and vitric clasts with minor exotic material derived from distal basement sources. Lava clasts and glass are mafic and range from strongly alkaline (basanite, tephrite) to moderately alkaline (alkali basalt, hawaiite) compositions that are similar to nearby land deposits. 40Ar-39Ar laser step-heating analyses on groundmass separated from lava clasts yield Pleistocene ages (692±38 and 793±63, ±2σ internal errors). Volcanoes of the Dailey Island group, located ~13 km SW of the drillsite, are a possible source for the volcanic materials based on their close proximity, similar composition and age. A basanite lava flow on Juergens Island yields a comparable Pleistocene age of 775±22 ka. Yet there is evidence to suggest that the volcanic source is much closer to the drillsite and that the sediments were deposited in much shallower water relative to the present-day water depth of 384 mbsl. Evidence for local volcanic activity is based in part on the common occurrence of delicate vitriclasts (e.g. glass shards and Pele’s hair) and a minimally reworked ~2 meter thick monomict breccia that is interpreted to have formed by autobrecciating lava. In addition, conical-shaped seamounts and high frequency magnetic anomalies encompass the drillsite and extend south including the volcanoes of the Dailey Islands. Sedimentary features and structures indicate shallow water sedimentation for the whole of LSU 1. Rippled asymmetric cross-laminated sands and hummocky cross-stratification occur intermittently throughout LSU 1 and indicate water depths shallower than 100 meters. The occurrence of ooliths and layers containing siderite and Fe-rich cement, along with the occurrence of shallow water diatoms, all indicate deposition in shallow waters agitated by waves. These results contrast strikingly with the present water depth, and let us infer rapid recent tectonic subsidence within this segment of the Victoria Land Basin (Terror Rift).
NASA Astrophysics Data System (ADS)
Irfan, M. I.; Meisel, T.
2012-04-01
Concentration of nickel and chromium in any part of the ecosystem is important for environmental concerns in particular human health due to the reason that some species of them can cause health problem e.g. dermatitis and cancer. Sediment samples collected form a river Vordernberger Bach (Leoben, Austria) in an alpine region and soil samples collected in an area adjacent to steel production unit in same narrow valley were investigated. In previous studies a correlation between magnetic susceptibility values and concentration of nickel and chromium showed that a magnetic susceptibility meter can be used to point out the contaminated areas as in-situ device. The purpose of the whole study is to understand the real (point or diffuse, anthropogenic or geogenic) sources of contamination of soils, water and river sediments through heavy metal deposition. Unseparated, magnetic and non-magnetic fractions of soil samples were investigated for geochemical and mineralogical aspects with XRF, ICP-MS, EMPA, Multi-Functional Kappabridge (MFK1) and laser ablation coupled with ICP-MS. Mineralogical study of sediment samples for several sampling points with higher Ni and Cr content was performed. Sediment samples were sieved below 1.4 mm and then a concentrate of heavy minerals was prepared in the field through panning. Concentrated heavy minerals were then subjected for heavy liquid separation in the laboratory. Separated magnetic and non-magnetic fractions below 0.71/0.1 mm and density greater than 2.9 g/cm3 were selected for mineralogical investigation. The abundance of typical anthropogenic particles, e.g., spherical, tinder, roasted ores, iron and steel mill slag was observed under the microscope. Magnetite (mostly anthropogenic), maghemite, chromspinel, chromite (type I & II), (Ca,Al)-ferrite, wustite, apatite (anthropogenic), olivine mixed crystals, calcium silicate and spinel (anthropogenic) are found in magnetic fraction. Non-magnetic fractions contain hematite, siderite, ankerite, corundum (anthropogenic), garnet, chlorite, titanium oxide minerals (ilmenite, rutile, titanite) and amphibole etc. The observed significant increase in heavy metal content from the source region of the Vordernberger Bach at 1500 m above sea level to the confluence of the Vordernberger Bach with the Mur River at 540 m AMSL can be attributed to anthropogenic influence. As expected, the anthropogenic input is more pronounced in the vicinity of historic and current iron and steel production.
New insights to the formation of modern dolomite in a terrestrial low-temperature environment
NASA Astrophysics Data System (ADS)
Zünterl, Andrea; Baldermann, Andre; Boch, Ronny; Dietzel, Martin
2017-04-01
Although dolomite [CaMg(CO3)2] is a rock-forming mineral in ancient carbonate platforms, its occurrence in modern-marine carbonate-depositing settings and in particular in terrestrial, low-temperature environments is scarce - an enigma that is referred to as the "dolomite problem". At present, it is generally accepted that microbial activity, bacterially-mediated sulfate reduction, high aqueous Mg/Ca ratios and anoxic conditions favour the nucleation and crystal growth of dolomite; albeit the precise reaction paths causing the formation of dolomite at low temperatures remain questionable. Here, we present a novel study about the environmental controls and reaction mechanisms leading to the formation of authigenic Mg-Ca carbonates in (active) fault zones of the Erzberg (Styria, Austria) - Europe's largest iron ore opencast mine. Our petrographic and mineralogical results revealed the presence of ˜2-20 cm thick laminated successions of embedded needle-shaped, radiating aragonite and blocky low-Mg calcite (a repetitive sequence also-called "erzbergite") and subsequently deposited (Ca-rich) non-stoichiometric dolomite, which is clogging former voids and unconsolidated sediment in the heavily deteriorated fault zone. First U-Th age determinations of the respective aragonite layers indicate its formation at ˜19,000-13,000 years BP, also suggesting a "young" age of the sedimentary dolomite. Based on the combination of X-ray diffraction and electron microprobe analyses we identified two types of matrix-replacing dolomite: type 1 dolomite is nearly stoichiometric (˜51 mol% CaCO3) and shows a high degree of cation ordering (0.4-0.6), whereas type 2 dolomite is characterized by Ca-excess (˜55 mol% CaCO3) and a low degree of ordering (<0.3). Both types of dolomite grow on the extent of matrix minerals, such as detrital low-Mg calcite, ankerite, siderite, quartz, goethite, chlorite and illitic clay minerals, implying a low-temperature origin of the Ca-excess dolomite and its formation through replacement of CaCO3 precursor phases at high aqueous Mg/Ca ratios of the mineralizing (meteroric) fluids. Further analysis of the δ18O, δ13C, δ26Mg and clumped isotopic (Δ47) signatures of the authigenic Ca-Mg carbonates will give new insights to the physicochemical conditions and reaction paths causing dolomitization in such an exotic, terrestrial environment.
Carbon storage potential of Columbia River flood basalt
NASA Astrophysics Data System (ADS)
Wells, R. K.; Xiong, W.; Giammar, D.; Skemer, P. A.
2017-12-01
Basalt reservoirs are an important option for sequestering carbon through dissolution of host rock and precipitation of stable carbonate minerals. This study seeks to understand the nature of dissolution and surface roughening processes and their influence on the timing and spatial distribution of carbonation, in static experiments at 150 °C and 100 bar CO2. Intact samples and cores with milled pathways from Ca-rich and Fe-rich Columbia River flood basalt formations were reacted for up to 40 weeks. Experimental specimens were analyzed using SEM-EDS, microprobe, and μCT scanning, Raman spectroscopy, and 2D profilometer to characterize changes in composition and surface roughness. ICP-MS was used to examine bulk fluid chemistry. Initial dissolution of olivine grains results in higher Mg2+ and Fe2+ concentrations within the bulk solution in the first week of reaction. However, once available olivine grains are gone, Ca-rich pyroxene becomes the primary contributor of Ca2+, Mg2+, and Fe2+ within the bulk solution. The complete dissolution of olivine grains resulted in pits up to 200 μm deep. Dissolution of other minerals resulted in the formation of microscale textures, primarily along grain boundaries and fractures. The surface roughness increased by factors of up to 42, while surface area increased 20%. Based on these results, pyroxene is the sustaining contributor of divalent metal cations during dissolution of basalt, and the limited connectivity of olivine and pyroxene grains limits the exposure of new reactive surface areas. Within 6 weeks, aragonite precipitated in Ca-rich basalt samples, while Fe-rich samples precipitated of siderite. The highest concentration of carbonates occurs 1/3 into milled pathways, which simulate dead-end fractures, in low porosity basalts, and near the fracture tip in high porosity basalts. Even at elevated temperatures, the fractures are not blocked nor filled within 40 weeks of reaction. When vesicles are present, carbonates can precipitate within these pores even when the pores do not appear to connect to the main fracture pathway. Based on our experimental results, we estimate the carbon storage potential of the Ca-rich formations within the Columbia River flood basalt to be 47 kg CO2/m3, which could be reached in 38 years at a constant carbonation rate of 1.24 ± 0.54 kg CO2/m3yr.
NASA Astrophysics Data System (ADS)
Abarzua, Ana M.; Jarpa, Leonora; Martel, Alejandra; Vega, Rodrigo; Pino, Mario
2010-05-01
Multiproxy approach from Purén Lumaco Valley (38°S) describes the paleonvironmental history during the Last Maximum Glacial (LGM) in south-central Chile. Three sediment cores and severals AMS 14C dates were used to perform a complete pollen, diatoms, chironomids, and sedimentological records demonstrating the existence of a large and non profundal paleolake, between 25 and 20kyr BP. Some of these evidence are laminated silty-clay sediments (lacustrine rhythmites), associated with the presence of siderite mineral (FeCO3), besides biological proxies like Fragilaria construens and Stauroforma inermes (planctonic diatoms), and Dicrotendipes sp. and Tanytarsini tribe (littoral chironomids). The pollen ensemble reveals the first glacial refuge of Araucaria araucana forests in the low lands during the LGM. The lake was drained abruptly into a swamp/bog at 12kyr BP and colonized by Myrtaceae wet forest. This evidence suggest the dry/warm climate period of early Holocene in south-central Chile. Later, the sediments indicate variable lacustrine levels, and increase of charcoal particles, associated to current climatic conditions. The pollen spectrum dominated by Myrtaceae and Nothofagus contrasts with a strongly disturb current landscape. Actually, Purén-Lumaco valley constitutes a complex peat-bog system dominated by exotic grasses and forest species (Tritricum aestivum, Pinus radiata and Eucalyptus spp.). Some archaeological antecedents in the area document the human development at ca. 7yrs BP. The greatest archaeological characteristic present in the valley is the kuel, a Mapuche earth accumulation. The presence and extension of almost 300 kuel in the valley reflect the social/economic development, and partly explains why the region was the major resistance area for Spanish colonizer during XVI-XVII centuries. Also the archaeological findings reveal the presence of maize pollen (Zea mays) within their food consumption. The influence of climate and human impact in Holocene environments provide a better basis for understanding and managing the present landscape in Araucanian Region. Almost the absence of native forests in the area makes urgent strategies for the recovery and rehabilitation of a relict ecosystem that today represents their regional analog only in the tops of the Chilean Coastal Range. Acknowledgments: Universidad Austral de Chile (DID 2007-08, FORECOS P04-065-F), BSN-34567-04.
Ocurrence and genesis of kaolinite in sedimentary deposits from the Southern Iberian Range (Spain)
NASA Astrophysics Data System (ADS)
Bauluz, B.; Mayayo, M. J.; Yuste, A.; Fernández-Nieto, C.; González López, J. M.
2003-04-01
The kaolinite-rich clay deposits from the Southern Iberian Range (Spain) correspond to continental clay-sandy series developed during Lower Cretaceous times. The clay deposits are mined by ceramic industry nowadays, and are intercalated with coal levels (lignites) that are also mined for energetic purposes. We have characterized by XRD, optical, and electronic microscopy (SEM, TEM) the mineralogical composition of a set of 55 samples, emphasizing in the kaolinite features: texture, morphology, crystallinity, and composition. Studied rocks (lutites, limolites, and sandstones) are composed by different proportions of quartz, kaolinite, muscovite, and illite, with minor K-feldspar, pyrite and siderite. The XRD study shows that, in comparison to micaceous phases, kaolinite particles are preferentially concentrated in the finest fractions of the rocks, indicating a lower crystal size. In addition, electron microscopy observations show that kaolinite occurs in four distinct modes: (a) as subhedral-anhedral flakes (<20 μm) that are the major component of the lutites. This kaolinite shows a disordered type (XRD). Chemical composition of kaolinite and illite particles (TEM/AEM) show a broad compositional variation. Some of the particles correspond to kaolinite and illite compositions, but most of the analyses indicate intermediate compositions, suggesting the occurrence of submicroscopic intergrowths of kaolinite and illite. The detection of low Ca contents in some analyses indicate the presence of smectite phases in these intergrowths. Probably, this kaolinite was formed by alteration of aluminosilicates (micas and K-feldspars) in the source area of the sediments. (b) as flakes filling pyritized plants in some dark lutites. (c) as subhedral and hexagonal plates, up to 5 μm in size, in sandstones. They are replacing K-feldspar fragments with clear evidence of alteration under SEM. The kaolinites display a high degree of order. (d) as booklets of pseudo-hexagonal plates of kaolinite and muscovite-type mica. These aggregates, up to 30 μm thick, appears mainly in limolites. The growth of kaolinite between the cleavage layers of pre-existing detrital mica resulted in a net increase in volume of the original grain. The delicate fabrics of these intergrowths suggest an in situ origin. The modes (b), (c) and (d) would have an authigenic origin, being K-feldspar one of the source of components for their formation during the early stages of the diagenesis.
Walton, A.W.; Wojcik, K.M.; Goldstein, R.H.; Barker, C.E.
1995-01-01
Diagenesis of Upper Carboniferous foreland shelf rocks in southeastern Kansas took place at temperatures as high as 100-150?? C at a depth of less than 2 km. High temperatures are the result of the long distance (hundreds of kilometers) advection of groundwater related to collisional orogeny in the Ouachita tectonic belt to the south. Orogenic activity in the Ouachita area was broadly Late Carboniferous, equivalent to the Variscan activity of Europe. Mississippi Valley-type Pb-Zn deposits and oil and gas fields in the US midcontinent and elsewhere are commonly attributed to regional groundwater flow resulting from such collisional events. This paper describes the diagenesis and thermal effects in sandstone and limestone of Upper Carboniferous siliciclastic and limestone-shale cyclothems, the purported confining layer of a supposed regional aquifer. Diagenesis took place in early, intermediate, and late stages. Many intermediate and late stage events in the sandstones have equivalents in the limestones, suggesting that the causes were regional. The sandstone paragenesis includes siderite cement (early stage), quartz overgrowths (intermediate stage), dissolution of feldspar and carbonates, followed by minor Fe calcite, pore-filling kaolinite and sub-poikilotopic Ca ankerite (late stage). The limestone paragenesis includes calcite cement (early stage); megaquartz, chalcedony, and Fe calcite spar (intermediate stage); and dissolution, Ca-Fe dolomite and kaolinite (late stage). The Rm value of vitrinite shows a regional average of 0.6-0.7%; Rock-Eval TmaX suggests a comparable degree of organic maturity. The Th of aqueous fluid inclusions in late stage Ca-Fe-Mg carbonates ranges from 90 to 160?? and Tmice indicates very saline water (>200000 ppm NaCl equivalent); ??18O suggests that the water is of basinal origin. Local warm spots have higher Rm, Tmax, and Th. The results constrain numerical models of regional fluid migration, which is widely viewed as an artesian flow from recharge areas in the Ouachita belt across the foreland basin onto the foreland shelf area. Such models must account for heating effects that extend at least 500 km from the orogenic front and affect both supposed aquifer beds and the overlying supposed confining layer. Warm spots indicate either more rapid or more prolonged flow locally. Th and Tmice data show the highest temperatures coincided with high salinity fluids. ?? 1995 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Dávila Ordoñez, M. G.; Zahasky, C.; Crandall, D.; Druhan, J. L.
2017-12-01
Thus far, one million metric tons of CO2 have been injected into the lower Mt. Simon formation as part of the Decatur CO2 Capture and Storage Project. Micro-seismic events were observed within the CO2 plume both during and after pressurization associated with the primary injection. The Mt. Simon reservoir rock consists of 76.5 wt.% quartz, 2.1 wt.% calcite, 17.3 wt.% K-feldspar, 1.1 wt.% chlorite, 0.7 wt.% illite and lesser extents of siderite, kaolinite, dolomite and marcasite, and is thus anticipated to become geochemically altered by exposure to acidified CO2-rich brine. However, the extent to which the geochemical reactivity contributes to structural weakening is unknown. To explore relationships between the principle geochemical reactions, evolution of fluid transport properties and physical alteration, we performed a series of flow-through experiments using Mt. Simon core (5 cm diameter, ranging from 4.3 - 8.6 cm length) and fluids representative of acidified reservoir brine. Experiments were operated under P = 1450 bar, Pconfining = 1900 - 3000 bar and T = 53 ºC conditions, and flow rates varied from 0.08 to 5.00 mL h-1 over a period of 166 h. A 2D reactive transport code (Crunch-Tope) was used to simulate these experiments, constrained by measured time series aqueous concentrations of Ca, Mg, S, Si, K and Fe and pH during the CO2-rich brine interaction. The model domain was divided into 30 nodes in x at a spacing of 0.12 cm, and 40 nodes in y at a spacing of 0.22 cm, and initial permeability measured for the core was specified and allowed to evolve over the course of the simulation using measured flow rate as a constraint. All relevant kinetic and thermodynamic reaction parameters were obtained from the literature. Solute time series from both experiments and simulations indicated that the acidified brine introduced continuously into the column promoted dissolution of K-feldspar, chloride, illite, pyrite and calcite, and the precipitation of Ca-, Fe- and Si -bearing secondary phases, resulting in a net porosity increase at the inlet. Despite this opening of the inlet pore space, permeability decreased over the length of the column (kfinal/kinitial = 0.76), thus altering local resistance to fluid phase pressure gradients.
NASA Astrophysics Data System (ADS)
Pufahl, Peir K.; Grimm, Kurt A.; Abed, Abdulkader M.; Sadaqah, Rushdi M. Y.
2003-10-01
A record of sedimentary, authigenic, and biological processes are preserved within the Upper Cretaceous (Campanian) Alhisa Phosphorite Formation (AP) in central and northern Jordan. The AP formed near the eastern extremity of the south Tethyan Phosphorite Province (STPP), a carbonate-dominated Upper Cretaceous to Eocene "phosphorite giant" that extends from Colombia, North Africa to the Middle East. Multidisciplinary research of the AP and associated cherts, chalks, and oyster buildups indicate that phosphatic strata formed on a highly productive, storm-dominated, east-west trending epeiric platform along the south Tethyan margin. The onset of phosphogenesis and the accumulation of economic phosphorite coincided with a rise in relative sea level that onlapped peritidal carbonates of the Ajlun Group. Pristine phosphates are associated with well-developed micrite concretionary horizons and contain abundant non-keeled spiral planktic foraminifera and a low diversity benthic assemblage of Buliminacean foraminifera, suggesting that pristine phosphates are a condensed facies and phosphogenesis was stimulated by the effects of a highly productive surface ocean and the suboxic diagenesis of sedimentary organic matter. The bulk sediment composition and absence of Fe-bearing authigenic phases such as glauconite, pyrite (including pyrite molds), siderite, and goethite within pristine phosphates suggests that deposition and authigenesis occurred under conditions of detrital starvation and that "iron-pumping" played a minimal role in phosphogenesis. Authigenic precipitation of phosphate occurred in a broad array of sedimentary environments—herein termed a "phosphorite nursery"—that spanned the entire platform. This is a non-uniformitarian phenomenon reflecting precipitation of sedimentary apatite across a wide depositional spectrum in a variety of depositional settings, wherever the conditions were suitable for phosphogenesis. Sedimentologic data indicate that pristine phosphates were concentrated into phosphatic grainstones through storm wave winnowing, and storm-generated, shelf-parallel geostrophic currents. Economic phosphorites formed through the amalgamation of storm-induced event beds. Stratigraphic packaging of phosphatic strata indicates that temporal variations in storm frequency were a prerequisite for the formation of economic phosphorite. Syndepositional phosphogenesis, reworking, and amalgamation to form phosphorites contrasts sharply with the principles of "Baturin Cycling". A transgressive systems tract coupled with high surface productivity created detritally starved settings favourable for phosphogenesis; storm reworking of pristine phosphate facies produced granular phosphorite; and amalgamation of storm-generated granular event beds formed economic phosphorite in a single systems tract.
Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA
NASA Astrophysics Data System (ADS)
Losh, Steven; Rague, Ryan
2018-02-01
Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this mineralization is hypogene. The association of oxidation with epithermal conditions constrains the oxidation and subsequent mineralization to have taken place during the Precambrian, the only time when these rocks would have experienced the necessary temperatures. The mineralization at Fayal Reserve shows little supergene overprint: pyrite is largely unoxidized. Hydrothermal oxidation in both mines was likely produced by basinal fluids that were expelled during the 1.83-1.87 Ga Penokean Orogeny, and mixing with meteoric fluids along faults, although a 1.1 Ga rift-related fluid flow event is also possible. Later supergene overprinting of the iron formation was minor.
NASA Astrophysics Data System (ADS)
Makaroglu, O.; Nowaczyk, N. R.; Cagatay, M. N.; Acar, D.; Akcer On, S.; Orbay, N.
2016-12-01
We present the results of high resolution mineral magnetic and geochemical analyses from the 512 cm long Core KCL12P2, recovered from the deepest basin of Küçükçekmece Lagoon (40.98° N, 28.76° E), located north of the Sea of Marmara. According to the age-depth model based on radiocarbon, paleomagnetic and global proxy correlation, the core sedimentary section covers the last 3800 years and consists of three different lithologies, based on lithological variations and down core mineral magnetic composition. Lithology A is composed of grey to brown laminated sediment that is siderite-rich as evidenced by the thermomagnetic analysis. It has low to intermediate Ca and Sr, low Ca/Ti and high Br (organic carbon). This lithology was deposited during relatively humid periods with high organic productivity and high terrigeneous input, which occurred during 3150-1700 a BP, 3600-3350 a and 1500 a BP-present. Lithology B consists of homogeneous black sediments characterized by the predominance of single magnetic domain (SD) and the highest magnetic susceptibility (100-2200x10-6), S-ratios (0.95 - 0.99), HIRM (100-2400) and SIRM/κLF (58-100kAm-1) values producing distinct peaks. The thickness of this lithology varies in thickness between 5 and 10 cm in the core. The thermomagnetic and mineral magnetic parameters indicate the predominance of greigite in lithology B, which occurred during 1500, 3200 and 3600 a BP some decadal periods after each seawater intrusion and establishment of high sulphate concentrations in the lagoon following each dry period represented by lithology C in the sequence. Lithology C is a homogeneous grey mud with low S-ratio, high κLF and high HIRM values indicating an increase in the content of high coercivity magnetic minerals. It is also characterized by high Ca, Sr and Ca/Ti and low Br (low organic carbon). The magnetic and geochemical composition of lithology C indicate that it was deposited during dry periods with low fresh water, nutrient and terrigenous inputs. Such dry periods occurred during 1500-1700 a BP, 3200-3400 a BP and 3600-3800 a BP. Latest archaeological findings with discovery of the water supply canals in the catchment area of the Küçükçekmece Lagoon corresponding to the dry periods support our climate records.
NASA Astrophysics Data System (ADS)
Mahoney, C.; März, C.; Wagner, T.
2016-12-01
It is well known that for geochemical studies on ancient rocks, outcrop samples can be compromised by present-day weathering. This raises the fundamental question, if only outcrop samples are available, how reliable can paleoenvironmental reconstructions be? To answer this question, shale samples have been gathered from Cretaceous outcrops of the Eastern Cordillera of Colombia, and analysed by XRF and Fe speciation in order to investigate paleo-redox conditions in this margin basin of the Proto-Atlantic. The samples are consistently depleted (relative to average shale) in redox-related trace metals and in total Fe indicating oxic conditions, whereas Fe speciation (highly reactive over total Fe) indicates anoxic conditions. We ask if this depletion in trace metals and total Fe is due to a lack of primary supply from the depositional environment, or if is it caused by modern oxidative outcrop weathering in this tropical mountainous setting? Our results from artificial weathering experiments confirm that certain trace metals U, Zn and Mo are easily leached from the samples, whereas Fe is quantitatively retained in the samples due to conversion of pyrite and siderite to Fe oxides. Pristine samples from wells in the adjacent Middle Magdalena Valley Basin (MMV) also exhibit total Fe depletion, but are up to 2000-fold enriched in Mo. This combined evidence indicates that the depletion of trace metals may be due to contemporary weathering, but there has to be a paleoenvironmental reason behind the low total Fe signature. The Guiana Shield was the probable source of sediment to the Cretaceous basin. The Chemical Index of Alteration suggest the source of detrital material was initially highly weathered (average 83, maximum 95). Ancient laterites have been identified on the Guiana Shield, and retention of Fe in these laterites may explain the low Fe input into the Eastern Cordillera basin. These results confirm that trace metal-based redox proxies may be seriously affected by oxidative weathering in outcrops, and caution should be applied when using such samples. But it also appears that due to the extreme chemical weathering in the provenance area, the Eastern Cordillera basin (and adjacent MMV basin) was unusually Fe-depleted throughout the Cretaceous, and this geochemical signal is preserved even in weathered outcrop samples.
Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate
Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon
2015-01-01
Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In surface samples (0-35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts (e.g., ZnSO4·nH2O) were detected in the surficial sample. Taken together, these data suggest the bioaccessibility and lability of metal(loid)s are altered by mineral weathering, which results in both the downward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the surface. PMID:26549929
NASA Astrophysics Data System (ADS)
Yu, Jinjie; Che, Linrui; Wang, Tiezhu
2015-10-01
The Meishan deposit (338 Mt at 39 % Fe) comprises massive ores in the main orebody and stockwork and disseminated ores along the main orebody. Four stages of mineralization and related alteration have been identified. The second stage of mineralization, which was the main stage of iron mineralization, formed stringer, disseminated iron ores, as well as the main Meishan orebody. The fourth stage formed small pyrite and/or gold orebodies above or alongside the main magnetite orebody. Stage 2 apatites have homogenization temperatures of 257-485 °C and salinities of 7.3-11 wt% NaCleq. Calculated δ18Ofluid values of magnetite and apatite from the disseminated ores vary between 7.7 and 14.9 ‰, which is similar to values observed in the massive ores (8.1-12.9 ‰). The high-18O fluids at Meishan have been interpreted as being of magmatic-hydrothermal origin. These fluids are indicative of the boiling of ore-forming fluids. Quartz, occurring as cavity fillings, gives homogenization temperatures from 202 to 344 °C, with most values lying between 250 and 330 °C. Corresponding salinities are ˜5 wt% NaCleq. Calculated δ18Ofluid values are +6.4 to +6.8 ‰. These values indicate that the lower-temperature (250-330 °C) quartz was deposited from a cooling magmatic-hydrothermal fluid. Stage 3 siderites contain fluid inclusions that homogenized between 190 and 310 °C, mainly between 210 and 290 °C. Corresponding salinities are 4-8 wt% NaCleq. Stage 4 quartz-carbonate veinlets contain fluid inclusions that homogenized at moderate to low temperatures (150-230 °C) and exhibit low salinities (2-10 wt% NaCl eq). δ18Ofluid values of the mineralizing fluids for the quartz and calcite can be calculated to vary from -0.7 to +5.6 ‰ and +6.3 to +10.2 ‰, respectively. While there is some overlap, the δ18O values of the fluids are generally lower than those observed in the massive and disseminated magnetite ores. δD values for the quartz and calcite vary between -154 and -123 ‰ and -123 and -111 ‰, respectively. These values suggest late-stage input of a shallow-sourced, isotopically light meteoric fluid at the temperature of pyrite and gold deposition. The fluid inclusion and stable isotope data indicate a cooling magmatic-hydrothermal system that progressed from isotopically heavy to isotopically depleted fluids as it cooled. Such fluid evolution is comparable with those of other Kiruna-type deposits worldwide.
Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deo, Milind; Huang, Hai; Kweon, Hyukmin
2016-03-28
Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less
NASA Astrophysics Data System (ADS)
Antoshechkina, P. M.; Shorttle, O.
2016-12-01
The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite-siderite. Following GG15, we have adopted the CO2 fluid model of Duan & Zhang (2006) and added CO2 and CaCO3 species to the pMELTS liquid model. A key question that we hope to address during calibration is whether a Na2CO3 liquid species is justified instead of, or in addition to, CaCO3 for the range over which pMELTS is calibrated (1 < P < 4 GPa).
A New Carbonate Chemistry in the Earth's Lower Mantle
NASA Astrophysics Data System (ADS)
Boulard, E.; Gloter, A.; Corgne, A.; Antonangeli, D.; Auzende, A.; Perrillat, J.; Guyot, F. J.; Fiquet, G.
2010-12-01
The global geochemical carbon cycle involves exchange between the Earth’s mantle and the surface. Carbon (C) is recycled into the mantle via subduction and released to the atmosphere via volcanic outgassing. Carbonates are the main C-bearing minerals that are transported deep in the Earth’s mantle via subduction of the oceanic lithosphere [1]. The way C is recycled and its contribution to the lower mantle reservoir is however largely unknown [ e.g 2, 3]. In this respect, it is important to assess if carbonates can be preserved in the deep mantle, or if decarbonatation, melting or reduction play a role in the deep carbon cycle. To clarify the fate of carbonates in the deep mantle, we carried out high-pressure and high-temperature experiments up to 105 GPa and 2850 K. Natural Fe-Mg carbonates or oxide mixtures of (Mg,Fe)O + CO2 were loaded into laser heated diamond anvil cells. In situ characterizations were done by X-ray Diffraction (XRD) using synchrotron radiation at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility. A focused ion beam technique was then used to prepare the recovered samples for electron energy loss spectroscopy in a dedicated scanning transmission electron microscope (EELS-STEM) and scanning transmission X-ray microscopy (STXM). In situ XRD clearly shows the transformation of the initial carbonate phase into a new Mg-Fe high pressure carbonate phase at lower mantle conditions. We also provide direct evidence for recombination of CO2 with (Mg,Fe)O to form this new carbonate structure. In addition, subsequent EELS-STEM and STXM spectroscopies carried out on recovered samples yields C K-edge and stoechiometry characteristic to this new carbonate structure. This new high pressure phase concentrates a large amount of Fe(III), as a result of redox reactions within the siderite-rich carbonate. The oxidation of iron is balanced by partial reduction of carbon into CO groups and/or diamond. These reactions may provide an explanation for the coexistence of oxidized and reduced C species observed on natural samples [4, 5], but also a new diamond formation mechanism at lower mantle conditions. [1] Sleep, N. H., and K. Zahnle (2001) J. Geophys. Res.-Planets 106(E1), 1373-1399. [2] Javoy, M. (1997) Geophys. Res. Lett. 24(2), 177-180. [3] Lecuyer et al. (2000) Earth Planet. Sci. Lett. 181(1-2), 33-40. [4] Brenker et al. (2007) Earth Planet. Sci. Lett. 260(1-2), 1-9. [5] Stachel et al. (2000) Contrib. Mineral. Petrol. 140(1), 16-27.
Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.
2011-01-01
This study aims to investigate the global hydrologic cycle during the mid-Cretaceous greenhouse by utilizing the oxygen isotopic composition of pedogenic carbonates (calcite and siderite) as proxies for the oxygen isotopic composition of precipitation. The data set builds on the Aptian-Albian sphaerosiderite ??18O data set presented by Ufnar et al. (2002) by incorporating additional low latitude data including pedogenic and early meteoric diagenetic calcite ??18O. Ufnar et al. (2002) used the proxy data derived from the North American Cretaceous Western Interior Basin (KWIB) in a mass balance model to estimate precipitation-evaporation fluxes. We have revised this mass balance model to handle sphaerosiderite and calcite proxies, and to account for longitudinal travel by tropical air masses. We use empirical and general circulation model (GCM) temperature gradients for the mid-Cretaceous, and the empirically derived ??18O composition of groundwater as constraints in our mass balance model. Precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback are adjusted to generate model calculated groundwater ??18O compositions (proxy for precipitation ??18O) that match the empirically-derived groundwater ??18O compositions to within ??0.5???. The model is calibrated against modern precipitation data sets.Four different Cretaceous temperature estimates were used: the leaf physiognomy estimates of Wolfe and Upchurch (1987) and Spicer and Corfield (1992), the coolest and warmest Cretaceous estimates compiled by Barron (1983) and model outputs from the GENESIS-MOM GCM by Zhou et al. (2008). Precipitation and evaporation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation and evaporation fluxes. Balancing the model also requires relative humidity in the subtropical dry belt to be significantly reduced. As expected calculated precipitation rates are all greater than modern precipitation rates. Calculated global average precipitation rates range from 371mm/year to 1196mm/year greater than modern precipitation rates. Model results support the hypothesis that increased rainout produces ??18O-depleted precipitation.Sensitivity testing of the model indicates that the amount of water vapor in the air mass, and its origin and pathway, significantly affect the oxygen isotopic composition of precipitation. Precipitation ??18O is also sensitive to seawater ??18O and enriched tropical seawater was necessary to simulate proxy data (consistent with fossil and geologic evidence for a warmer and evaporatively enriched Tethys). Improved constraints in variables such as seawater ??18O can help improve boundary conditions for mid-Cretaceous climate simulations. ?? 2011 Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.; Schulze, D
2010-01-01
The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethitemore » ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from solution. Despite the elevated levels of Cd in the soil, no specific Cd phases were identified. The complex mineralogy has important implications for risk assessment and the design of in-situ remediation strategies for this and similar metal-contaminated sites.« less
Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars
Marion, G.M.; Catling, D.C.; Kargel, J.S.
2003-01-01
Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Sanuel M; Barefield, James E; Humphries, Seth D
2010-12-13
The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. PLS analysis suggests that the major element compositions can be determined with root mean square errors ca. 5% (absolute) for SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}(total), MgO, and CaO, and ca. 2% or less for TiO{sub 2}, Cr{sub 2}O{sub 3}, MnO, K{sub 2}O, and Na{sub 2}O. Finally, the Raman experiments have been conducted under supercritical CO{sub 2} involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. The Raman data have shown that the individual minerals can easily be identified individually or in mixtures.« less
Derivation of the midinfrared (5.0-25.0 micron) optical constants of hydrous carbonate and sulfate
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Orenberg, James B.; Pollack, James B.
1993-01-01
There is ample theoretical and observational evidence suggesting liquid water was once stable at the surface of Mars. Because water is essential to the evolution of life, it is important to understand the types of environments in which the liquid water was present. For example, if water were present early in Mars' history, then this raises the possibility that biological activity may have evolved only to eventually become extinct as liquid water became scarce. Alternatively, if liquid water were stable only later in Mars' history, then it becomes problematic to envision mechanisms by which biological activity evolved and remained viable without water until more favorable conditions existed. Even without biological activity, atmospheric carbon dioxide dissolved in water can assist the chemical weathering of primary igneous minerals producing common secondary phases such as hydartes, carbonates, and sulfates. While the identification of hydrates, carbonates, and sulfates on Mars cannot provide direct evidence of biological activity, it can provide significant information regarding the presence and duration of an environment that would support the presence of liquid water at the surface. The specific mineralogy of these secondary phases can provide insight into the environments of their formation. For example, the slow precipitation that occurs in large standing bodies of water, e.g. oceans or lakes, commonly results in the formation of calcite, magnesite, dolomite, siderite, and rhodochrosite. Rapid precipitation that occurs in ephemeral bodies of water, e.g. hypersaline lakes or playas, can result in the formation of all of the above phases as well as aragonite, vaterite, hydrated carbonates, alkali carbonates, bicarbonates, and other poorly ordered phases. Absorption features identified in recent near-infrared spectra of Mars have been interpreted as being due to bicarbonate and bisulfate located in the mineral scaplite. Spectral data returned by the Mariner 6 and 7 spacecraft have been inerpreted as remaining consistent with the presence of hydrated carbonates. Additional, airborne thermal infrared spectra of Mars have been interpreted as implying the presence of carbonates, sulfates, and hydrates. Modeling of the thermal infrared data relied upon the optical constants of calcite anhydrite and a mixture of water in basalt because of their availability. The derived abundances of carbonate and sulfate were 1-3 percent and 10-15 percent by volume. However, the observed complexity and positions of the bands suggested other carbonate-, and sulfate-bearing species. We have already derived optical constants for hydrous and anhydrous silicates, and we are now applying these techniques to the derivation of the optical constants of hydrous carbonate and sulfate.
NASA Astrophysics Data System (ADS)
Lerouge, C.; Grangeon, S.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Guerrot, C.; Widory, D.; Fléhoc, C.; Wille, G.; Ramboz, C.; Vinsot, A.; Buschaert, S.
2011-05-01
The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ 34S (-38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (-38‰ to -22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ 34S values (-14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ 34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/ 86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ 18O consistent with a marine environment. Its δ 13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ 18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ 18O values (˜+19‰), suggesting that they precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. This transition appears to be driven by compaction of the sediment, which inhibited movement of bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or sulphates.
Fe Isotope Composition of Neoproterozoic Post-Glacial "Cap Dolostones"
NASA Astrophysics Data System (ADS)
Halverson, G. P.
2005-12-01
The largest variations in the Fe isotope composition in the geological record are found in sedimentary rocks, presumably as the result of redox transformations of iron during mineral precipitation, microbial processing, and diagenesis (Johnson et al., Cont. Min. Petrol., 2003). Systematic trends in the variability of the Fe isotope composition of sulfide minerals formed in ancient marine black shales broadly mirror patterns in sulfur isotope data (Δ33S, Δ34S), which are consistent with geological and other geochemical evidence for the progressive oxidation of the earth's surface during the Precambrian (Rouxel et al., Science, 2005). Therefore, the record of the Fe isotope composition of minerals formed in the marine environment appears to be a promising proxy for the redox evolution of the ocean. We have developed a method to extract the marine Fe isotope composition from carbonates in an attempt to establish higher resolution records of changes in marine redox changes than permitted by black shale geochemistry. We have applied this method to the study of ca. 635 Ma iron-rich dolostones, which are found in Neoproterozoic successions worldwide and immediately post-date a purported snowball (Marinoan) glaciation during which time the deep ocean is thought to have become anoxic (Hoffman et al., Science, 1998), allowing its Fe isotopic composition to evolve towards the composition of relatively light (δ57Fe vs. IRMM-14 ~ -0.6‰) hydrothermal iron (Beard et al., Geology, 2003). Fe isotope compositions were measured relative to IRMM-14 in medium-resolution mode on a Neptune MC-ICP-MS with a long-term external (2σ) reproducibility of < 0.04‰/amu. Preliminary data on dolomite samples from Svalbard, northern Namibia and northwest Canada show a range in δ57Fe values from -0.65 to 0.04‰, similar to the range found in siderite and Fe-rich dolomite in ancient BIFs (Johsnon et al., 2003) and to values for the Namibian cap dolostone reported by Leighton et al. (Goldschmidt abstract, 2005), but distinctly lower than altered dolostones (δ57Fe = 0.10 - 1.02‰) in a Jurassic, organic-rich mudstone (Matthews et al., GCA, 2004). It is difficult to conclude at this time whether or not the relatively low δ57Fe composition of the cap dolostones is consistent with the Beard et al. (Geology, 2003) hypothesis due to large uncertainties in the solution-mineral fractionation factors for carbonates, the potential effects of diagenesis and biological influences on dolomite precipitation, and the possibility that the Marinoan deep ocean was euxinic.
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper
2017-04-01
Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the cfd functions are used to put random reaction capacity variables into the hydrological voxel model. Here, the distribution can be conditioned on two variables. Two important variables are clay content and depth. The first is valid because more dense data is available for clay content than for geochemical variables as pyrite and probabilistic, lithological models are also built at TNO Geological Survey. The second is important to account for locally different depths at which the redox cline between NO3-rich and Fe(II)-rich groundwater occurs within the first tens of meters of the subsurface. An extensive data-set of groundwater quality analyses is used to derive criteria for depth variability of the redox cline. The result is a unique algoritm in order to obtain heterogeneous geochemical reaction capacity models of the entire groundwater compartment of the Netherlands.
NASA Astrophysics Data System (ADS)
Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen
2010-05-01
A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water. Unaltered minerals (phylosilicates, quartz, sulphides and magnetite) as well as those resulting of oxidation and carbonatation processes (iron oxihydroxides, hematite, siderite and jarosite) are identified. The results showed that the fraction of metals dissolved by the in vitro procedure is less than 100% in the gastric solution. The solubility of each metal under synthetic fluids depends on its chemical speciation and binding capacity to different soil and sediment materials The data here obtained can be incorporated to the general protocol of risk analysis by ingestion applied to contaminated sites. This could be of interest since when risk assessments are adjusted to account for lower site-specific bioavailability, the resulting increase in cleanup levels can substantially reduce the cost of remediation in some cases
Data Processing and Experimental Design for Micrometeorite Impacts in Small Bodies
NASA Technical Reports Server (NTRS)
Jensen, E.; Lederer, S.; Smith, D.; Strojia, C.; Cintala, M.; Zolensky, M.; Keller, L.
2014-01-01
Comets and asteroids have been altered from their original "pristine" state by impacts occurring throughout their 4.5 billion year lives: [1]. Proof of shock deformation has been detected in the crystal structure of several Stardust samples from Comet Wild 2 [2, 3]. Analyses indicated that the planar dislocations in the crystal structure of the minerals had been imparted by impacts sustained during their lives, and not due to the aerogel capture process. Distortions to crystal structure also affect the ideal absorption spectra in the infrared, and [4], thus providing indirect evidence of its impact history and a means of remotely investigating the impact history of small bodies through comparing laboratory spectra with spectra observed by telescopes or spacecraft. -The effects of impacts propagating shock waves through minerals were investigated through laboratory impact experiments. Utilizing NASA Johnson Space Center's Experimental Impact Laboratory, projectiles were fired from the vertical gun at velocities ranging from 2.0 to 2.8 km/sec, projected impact velocities between Kuiper Belt Objects. Two types of projectiles were used, including spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted. The target materials chosen for testing included: OLIVINES forsterite (Mg2SiO4) and fayalite, Fe2SiO4); PYROXENES enstatite (Mg2Si2O6) and diopside (MgCaSi2O6); and CARBONATES magnesite (MgCO3) and siderite (FeCO3). Targets were impacted at either 25 C or cooled to -20 C to examine the effects of temperature, if any, on lattice distortions during the shock propagation. As comets and asteroids can undergo a wide range of temperatures in their orbital lifetimes, the effect of temperature on the equation of state of minerals being shocked needs to be examined for interpreting the results of these experiments. The porosity of the target mineral is varied by either grinding it into a powder/granular texture or as whole mineral rocks to investigate the differences in shock propagation when voids are present. By varying velocity, ambient temperature, and porosity, we can investigate different variables affecting impacts in the solar system. -Data indicates that there is a non-linear relationship between peak shock pressure and the variation in infrared spectral absorbances by the distorted crystal structure. The maximum variability occurs around 37 GPa in enstatite and forsterite. The particle size distribution of the impacted material similarly changes with velocity/peak shock pressure. -The experiments described above are designed to measure the near- to mid-IR effects from these changes to the mineral structure. See Lederer et al., this meeting for additional experimental results.
A subtle diagenetic trap in the Cretaceous Glauconite Sandstone of Southwest Alberta
Meshri, I.D.; Comer, J.B.
1990-01-01
Despite the long history of research which documents many studies involving extensive diagenesis, there are a few examples of a fully documented diagenetic trap. In the context of this paper, a trap is a hydrocarbon-bearing reservoir with a seal; because a reservoir without a seal acts as a carrier bed. The difficulty in the proper documentation of diagenetic traps is often due to the lack of: (a) extensive field records on the perforation and production histories, which assist in providing the depth of separation between hydrocarbon production and non-hydrocarbon or water production; and (b) the simultaneous availability of core data from these intervals, which could be studied for the extent and nature of diagenesis. This paper provides documentation for the existence of a diagenetic trap, based on perforation depths, production histories and petrologic data from the cored intervals, in the context of the geologic and stratigraphic setting. Cores from 15 wells and SP logs from 45 wells were carefully correlated and the data on perforated intervals was also acquired. Extensive petrographic work on the collected cores led to the elucidation of a diagenetic trap that separates water overlying and updip from gas downdip. Amoco's Berrymore-Lobstick-Bigoray fields, located near the northeastern edge of the Alberta Basin, are prolific gas producers. The gas is produced from reservoir rock consisting of delta platform deposits formed by coalescing distributary mouth bars. The overlying rock unit is composed of younger distributary channels; although it has a good reservoir quality, it contains and produces water only. The total thickness of the upper, water-bearing and lower gas-bearing sandstone is about 40 ft. The diagenetic seal is composed of a zone 2 to 6 ft thick, located at the base of distributary channels. This zone is cemented with 20-30% ankerite cement, which formed the gas migration and is also relatively early compared to other cements formed in the water zone. In addition to this barrier to vertical flow, a barrier to lateral flow is formed by the merging of the upper sandstone containing 14% kaolinite and the lower sandstone containing 20% siderite. The measured core permeabilities in these zones vary from 0.0002 to 0.001 milli-darcies. This spatial configuration of diagenetic cements causing porous and non-porous zones is a result of the process of geochemical self-organization. The spatial and temporal patterns of diagenesis are a complex result of coupling of natural processes involving fluid flow, fluid composition, mineral composition and mineral dissolution rates under the conditions of varying pressure and temperature in the subsurface. ?? 1990.
The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers
Swarzenski, P.; Campbell, P.; Porcelli, D.; McKee, B.
2004-01-01
Natural concentrations of 238U and ??234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land-sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates. On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0-16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (???1 m) zones of Fe(III) - and, to a lesser degree, Mn(IV) - reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in ??234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the ??234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched ??234U values represent a riverine surface complexation product that is actively involved in Mn-Fe diagenetic cycles and surface complexation reactions. In the Fly River estuary, 238U appears to exhibit a reasonably conservative distribution as a function of salinity. The absence of observed U removal does not necessarily imply non-reactivity, but instead may record an integration of concurrent U removal and release processes. There is not a linear correlation between ??234U vs. 1/ 238U that would imply simple two component mixing. It is likely that resuspension of bottom sediments, prolonged residence times in the lower reaches of the Fly River, and energetic particle-colloid interactions contribute to the observed estuarine U distribution. The supply of uranium discharged from humid, tropical river systems to the sea appears to be foremost influenced by particle/water interactions that are ultimately governed by the particular physiographic and hydrologic characteristics of an estuary. ?? 2004 Elsevier Ltd. All rights reserved.
Petrology, mineralogy and geochemistry of mined coals, western Venezuela
Hackley, Paul C.; Warwick, Peter D.; González, Eligio
2005-01-01
Upper Paleocene to middle Miocene coal samples collected from active mines in the western Venezuelan States of Táchira, Mérida and Zulia have been characterized through an integrated geochemical, mineralogical and petrographic investigation. Proximate, ultimate, calorific and forms of sulfur values, major and trace element, vitrinite reflectance, maceral concentrations and mineral matter content have been determined for 16 channel samples from 14 mines. Ash yield generally is low, ranging from < 1 to 17 wt.% (mean = 5 wt.%) on a dry basis (db). Total sulfur content is low to moderate, ranging from 1 to 6 wt.%, db (average = 1.7 wt.%). Calorific value ranges from 25.21 to 37.21 MJ/kg (10,840–16,000 Btu/lb) on a moist, mineral-matter-free basis (average = 33.25 MJ/kg, 14,300 Btu/lb), placing most of the coal samples in the apparent rank classification of high-volatile bituminous. Most of the coal samples exhibit favorable characteristics on the various indices developed to predict combustion and coking behavior and concentrations of possible environmentally sensitive elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Th and U) generally are similar to the concentrations of these elements in most coals of the world, with one or two exceptions. Concentrations of the liptinite maceral group range from < 1% to 70 vol.%. Five samples contain > 20 vol.% liptinite, dominated by the macerals bituminite and sporinite. Collotelinite dominates the vitrinite group; telinite was observed in quantities of ≤ 1 vol.% despite efforts to better quantify this maceral by etching the sample pellets in potassium permanganate and also by exposure in an oxygen plasma chamber. Inertinite group macerals typically represent < 10 vol.% of the coal samples and the highest concentrations of inertinite macerals are found in distantly spaced (> 400 km) upper Paleocene coal samples from opposite sides of Lago de Maracaibo, possibly indicating tectonic controls on subsidence related to construction of the Andean orogen. Values of maximum reflectance of vitrinite in oil (Ro max) range between 0.42% and 0.85% and generally are consistent with the high-volatile bituminous rank classification obtained through ASTM methods. X-ray diffraction analyses of low-temperature ash residues indicate that kaolinite, quartz, illite and pyrite dominate the inorganic fraction of most samples; plagioclase, potassium feldspar, calcite, siderite, ankerite, marcasite, rutile, anatase and apatite are present in minor or trace concentrations. Semiquantitative values of volume percent pyrite content show a strong correlation with pyritic sulfur and some sulfide-hosted trace element concentrations (As and Hg). This work provides a modern quality dataset for the western Venezuela coal deposits currently being exploited and will serve as the foundation for an ongoing coal quality research program in Venezuela.
Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer
Zachara, John M.; Kukkadapu, Ravi K.; Glassman, Paul L.; Dohnalkova, Alice; Fredrickson, Jim K.; Anderson, Todd
2004-01-01
The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens-like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy.All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments.
Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA
NASA Astrophysics Data System (ADS)
Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.
2009-12-01
At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2. Comparison between preinjection and postinjection fluid analyses also shows little difference. It suggests that CO2 injection has not induced significant mineral-water reactions to change water chemistry. In October 2009, CO2 will be injected into the down-dip, non-productive Tuscaloosa Formation on the east side of the same field. In-situ fluid and gas samples will be collected using downhole U-tube. Fluid chemistry data through time will reveal mineral reactions during and after injection and confine timescales of the interactions. This project was funded thought the National Energy Technology Laboratory Regional Carbon Sequestration Partnership Program as part of the Southeast Regional Carbon Sequestration Partnership.
Sanford, Robert A.; Boyanov, Maxim I.; Kemner, Kenneth M.; O'Loughlin, Edward J.; Chang, Yun-juan; Locke, Randall A.; Weber, Joseph R.; Egan, Sheila M.; Mackie, Roderick I.; Cann, Isaac; Fouke, Bruce W.
2016-01-01
ABSTRACT A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H2 as the electron donor. Strain Z6 actively reduced ferrihydrite over broad ranges of pH (6 to 9.6), salinity (0.4 to 3.5 M NaCl), and temperature (20 to 60°C). At pH 6.5, strain Z6 also reduced more crystalline iron oxides, such as lepidocrocite (γ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe2O3). Analysis of X-ray absorption fine structure (XAFS) following Fe(III) reduction by strain Z6 revealed spectra from ferrous secondary mineral phases consistent with the precipitation of vivianite [Fe3(PO4)2] and siderite (FeCO3). The draft genome assembled for strain Z6 is 3.47 Mb in size and contains 3,269 protein-coding genes. Unlike the well-understood iron-reducing Shewanella and Geobacter species, this organism lacks the c-type cytochromes for typical Fe(III) reduction. Strain Z6 represents the first bacterial species in the genus Orenia (order Halanaerobiales) reported to reduce ferric iron minerals and other metal oxides. This microbe expands both the phylogenetic and physiological scopes of iron-reducing microorganisms known to inhabit the deep subsurface and suggests new mechanisms for microbial iron reduction. These distinctions from other Orenia spp. support the designation of strain Z6 as a new species, Orenia metallireducens sp. nov. IMPORTANCE A novel iron-reducing species, Orenia metallireducens sp. nov., strain Z6, was isolated from groundwater collected from a geological formation located 2.02 km below land surface in the Illinois Basin, USA. Phylogenetic, physiologic, and genomic analyses of strain Z6 found it to have unique properties for iron reducers, including (i) active microbial iron-reducing capacity under broad ranges of temperatures (20 to 60°C), pHs (6 to 9.6), and salinities (0.4 to 3.5 M NaCl), (ii) lack of c-type cytochromes typically affiliated with iron reduction in Geobacter and Shewanella species, and (iii) being the only member of the Halanaerobiales capable of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes. PMID:27565620
Geology of the Copper King Mine area, Prairie Divide, Larimer County, Colorado (Part 1)
Sims, Paul Kibler; Phair, George
1952-01-01
The Copper King mine, in Larimer County, Colo., in the northern part of the Front Range of Colorado, was operated for a short time prior to World War II for copper and zino, but since 1949, when pitchblende was discovered on the mine dump, it has been worked for uranium. The bedrock in the mine area consists predominantly of pre-Cambrian (Silver Plums) granite with minor migmatite and metasediments--biotite-quartz-plagioclase gneiss, biotite schist, quartzite, amphibolite, amphibole skarn, and biotite skols. The metasediments occur as inclusions that trend northeast in the granite. This trend is essentially parallel to the prevailing foliation in the granite. At places the metasediments are crosscut sharply by the granite to form angular, partly discordant, steep-walled bodies in the granite. Faults, confined to a narrow zone that extends through the mine, cut both the pre-Cambrian rocks and the contained sulfide deposits. The Copper King fault, a breccia zone, contains a deposit of pitchblende; the other faults are believed to be later than the ore. The two types of mineral deposits--massive sulfide and pitchblende deposits--in the mine area, are of widely different mineralogy, age, and origin. The massive sulfide deposits are small and consist of pyrite, sphalerite, chalcopyrite, pyrrhotite, and in places magnetite in amphibole skarn, mice skols, and quartzite. The deposit at the Copper King mine has yielded small quantities of high-grade sphalerite ore. The massive sulfides are pyrometasomatic deposits of pre-Cambrian age. The pitchblende at the Copper King mine is principally in the Copper King vein, a tight, hard breccia zone that cuts through both granite and the massive sulfide deposit. A small part of the pitchblende is in small fractures near the vein and in boxwork pyrite adjacent to the vein; the post-ore faults, close to their intersection with the Copper King vein, contain some radioactive material, but elsewhere, so far as is known, they are barren. The pitchblende in the deposit forms a steeply plunging ore shoot that has a horizontal length of more than 50 feet and a vertical height of about 85 feet. The thickness of the ore shoot averages about 2 feet, but it ranges from a feather edge to about 4 feet. The hard pitch-blende is intimately intergrown with siderite; other gangue minerals include pyrite, quartz, and finely comminuted fragments of the wall rocks. The vein was repeatedly reopened during mineral deposition as shown by several stages of brecciation and recommended by the vein matter. The pitchblende deposit probably formed at intermediate temperatures and depths and, according to the Pb/U ratio, is about 60 million years old--an early Tertiary age.
Evolution of the Bucium Rodu and Frasin magmatic-hydrothermal system, Metaliferi Mountains, Romania
NASA Astrophysics Data System (ADS)
Iatan, Elena Luisa; Berbeleac, Ion; Visan, Madalina; Minut, Adrian; Nadasan, Laurentiu
2013-04-01
The Miocene Bucium Rodu and Frasin maar-diatreme structures and related Au-Ag epithermal low sulfidation with passing to mesothermal mineralizations are located in the Bucium-Rosia Montana-Baia de Aries metallogenetic district, within so called the "Golden Quatrilaterum", in the northeastern part of the Metaliferi Mountains. These structures are situated at about 5 km southeast from Rosia Montana, the largest European Au-Ag deposit. The total reserves for Bucium Rodu-Frasin are estimated at 43.3 Mt with average contents of 1.3 g/t Au and 3 g/t Ag. The Miocene geological evolution of Bucium Rodu and Frasin magmatic-hydrothermal system took place in closely relationships with tectonic, magmatic and metallogenetic activity from Bucium-Rosia Montana-Baia de Aries district in general, and adjacent areas, in special. The hydrothermal alteration is pervasive; adularia followed by phyllic, carbonatization and silicification alterations, usually show a close relationship with the mineralizations. Propylitic alteration occurs dominantly towards the depth; argillic alteration shows a local character. The mineralization occurs in veins, breccias, stockworks and disseminations and is hosted within two volcanic structures emplaced into a sequence of Cretaceous sediments in closely genetically relations with the Miocene phreatomagmatic fracturing and brecciation events. Within Rodu maar-diatreme structure the mineralizations follow especially the contact between the diatreme and Cretaceous flysch. The vein sets with low, moderately and near vertical dippings, cover 400x400m with N-S trend. The most important mineralization style is represented by veins, accompanied by hydrothermal breccias and disseminations. The veins spatial distribution relives as "en echelon" tension veins. They carry gold, minor base metal sulphides (pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, arsenopyrite). Gangue is represented by carbonates (calcite, dolomite, ankerite, siderite, rhodochrosite) and quartz. In contrast, in Frasin maar-diatreme structure, the mineralizations are focused especially along the northeastern contact between the andesite dome and polimictic breccias. Stockwork is the main style of mineralization and consists of pyrite, small amounts of chalcopyrite, sphalerite, galena, arsenopyrite and gold within a gangue of quartz and carbonates similar to Rodu mineralizations. The ore minerals deposition from hydrothermal fluids have pulsated character with a three stage evolution and mineral assemblages: 1) magnetite (hematite) - pyrite (marcasite) - quartz in the first stage, epithermal low sulfidation with passing to mesothermal; 2) arsenopyrite (Au) - (-base metal sulfides) - quartz, "Chinga" (pyrite (Au)-quartz-adularia) - carbonates (calcite, aragonite, dolomite, ankerite, ± rhodochrosite ± kutnahorite) - quartz - adularia in the second stage, epithermal low sulfidation and 3) pyrite - marcasite - carbonates - quartz, (Au) - carbonates (dominant rhodochrosite) - quartz - adularia and alabandite - rhodochrosite - quartz in the third stage, epithermal low sulfidation. The mineralizing hydrothermal fluids had near neutral pH with the gold transported probably as a bisulfide complex; boiling seems to be the main way of gold precipitation.
NASA Astrophysics Data System (ADS)
Horneman, A.; van Geen, A.; Kent, D. V.; Mathe, P. E.; Zheng, Y.; Dhar, R. K.; O'Connell, S.; Hoque, M. A.; Aziz, Z.; Shamsudduha, M.; Seddique, A. A.; Ahmed, K. M.
2004-09-01
This study reexamines the notion that extensive As mobilization in anoxic groundwater of Bangladesh is intimately linked to the dissolution of Fe oxyhydroxides on the basis of analyses performed on a suite of freshly collected samples of aquifer material. Detailed sediment profiles extending to 40 to 70 m depth below the surface were obtained at six sites where local groundwater As concentrations were known to span a wide range. The sediment properties that were measured include (1) the proportion of Fe(II) in the Fe fraction leached in hot 1.2 N HCl, (2) diffuse spectral reflectance, and (3) magnetic susceptibility. In parallel with local concentrations of dissolved As ranging from <5 to 600 μg/L, Fe(II)/Fe ratios in shallow (gray) Holocene sands tended to gradually increase with depth from values of 0.3 to 0.5 to up to 0.9. In deeper (orange) aquifers of presumed Pleistocene age that were separated from shallow sands by a clay layer and contained <5 μg/L dissolved As, leachable Fe(II)/Fe ratios averaged ˜0.2. There was no consistent relation between sediment Fe(II)/Fe and dissolved Fe concentrations in groundwater in nearby wells. The reflectance measurements indicate a systematic linear relation (R 2 of 0.66; n = 151) between the first derivative transform of the reflectance at 520 nm and Fe(II)/Fe. The magnetic susceptibility of the shallow aquifer sands ranged from 200 to 3600 (x 10 -9 m 3/kg SI) and was linearly related (R 2 of 0.75; n = 29) to the concentrations of minerals that could be magnetically separated (0.03 to 0.79% dry weight). No systematic depth trends in magnetic susceptibility were observed within the shallow sands, although the susceptibility of deeper low-As aquifers was low (up to ˜200 × 10 -9 m 3/kg SI). This set of observations, complemented by incubation results described in a companion paper by van Geen et al. (this volume), suggests that the release of As is linked to the transformation of predominantly Fe (III) oxyhydroxide coatings on sand particles to Fe(II) or mixed Fe(II/III) solid phases with a flatter reflectance spectrum such as siderite, vivianite, or magnetite, without necessarily resulting in the release of Fe to groundwater. The very low As/Fe ratio of magnetically separated minerals compared to the As/Fe of bulk acid leachate (2 vs. 40 10 -6, respectively) suggests that such a transformation could be accompanied by a significant redistribution of As to a mobilizable phase on the surface of aquifer particles.
NASA Astrophysics Data System (ADS)
Martínez-Sanchez, Maria Jose; Garcia-Lorenzo, Mari Luz; Martínez, Salvadora; Gonzalez, Eva; Molina, Jose; Hernández, Carmen; Pérez-Sirvent, Carmen
2013-04-01
The aim of this work was to assess the suitability of limestone-based technosols for decreasing the toxicity of the leachates caused by rain in sites contaminated by heavy metals. For such a purpose, 64 technosols were prepared in containers of 0.75m3, filled with 4 types of sediments collected from Portman Bay and subjected to different stabilizer proportions (limestone filler), different thickness of a drainage layer and presence/absence of a topsoil cover. The technosols were then submitted to different humidity/dryness cycles simulating the usual rain conditions in the zone. Portman bay is situated close to the mining region of La Unión. The entire area around the bay was subject to mining from the time of the Roman Empire to 1991. Since 1957, the wastes from mining operations were discharged directly into the sea in the inner part of the bay, while later on, they were also discharged to sea at a distance of the shore. These wastes mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. The pH and the electrical conductivity (EC) was determined in obtained percolates, together with major ion content, determined by ionic chromatography. The Zn, Pb, Cd and Cu content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was measured by atomic fluorescence spectrometry. In addition, the mineralogical composition was determined in the evaporated samples by X-Ray diffraction. A battery of bioassays was applied for the ecotoxicological screening of obtained percolates . Particularly, the toxicity was evaluated by using three assays: microtox bioassay (Vibrio fischeri), embryogenesis assay in sea urchin (Paracentrotus lividus) and survival in estuarine amphipods (Gammarus aequicauda). The obtained results suggest that selected remediation technique reduces significantly the toxicological effect of the percolate to the tested organisms. The ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. In addition, the use of a battery of bioassays allows diminishing problems related to false positive results. The use of limestone filler constitutes an excellent option in sediments polluted by trace elements, because of risk for human health or ecosystems does not exist after the intervention. in addition, the designed experience allow to optimize stabilizer quantities, and may suppose a big cost-saving project in areas affected by mining activities.
NASA Astrophysics Data System (ADS)
Leng, Melanie; Lacey, Jack; Francke, Alexander; Wagner, Bernd; Zanchetta, Giovanni
2015-04-01
The SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project is an international research initiative to study the influence of major geological/environmental events on the biologic evolution of taxa. The target site for this study is Lake Ohrid, which is considered to be the oldest lake with continuous existence in Europe and which has more than 200 endemic species. The recovery of long sediment successions from Lake Ohrid is the basis for obtaining more precise information about the age and origin of the lake, and about the climatic and environmental history of the region including the history of Italian volcanic eruptions. The main SCOPSCO drilling campaign was carried out in 2013, and here we describe data from a 569 m core taken from centre of the lake. Initial data from borehole logging, core logging and geochemistry indicate that the sediment succession from this site covers more than 1.2 million years of Earth's history. Total carbon (TC) and Total Inorganic Carbon (TIC) content show that the amount of TIC is a proxy for short-term and long-term climate change (Vogel et al., 2010; Wagner et al., 2010). TIC is high during interglacials and primarily originates from calcite precipitated in the spring-summer in the epilimnion, when photoautotropic organisms assimilate CO2 utilising the Ca and bicarbonate from the karstic springs. During the glacials, carbonate is almost absent except from discrete siderite layers. TOC is very low throughout both the glacial and interglacial periods and reflects the oligotrophic conditions in the lake. The oxygen and carbon isotope composition of the endogenic carbonate has been shown to be a function of the balance between freshwater input by rivers and springs and evaporation of the lake water (Leng et al., 2010). Variations both within and between interglacials show climate variability including periods of exceptional aridity and potentially very low lake levels. These early findings suggest that the record from Lake Ohrid will substantially improve the knowledge of long-term environmental change in the northern Mediterranean region, which forms the basis to better understand the influence of major environmental events on the evolution of organisms within the lake. Leng, M.J., Baneschi, I., Zanchetta, G., Jex, C.N., Wagner, B., and Vogel, H. 2010. Late Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences, 7, 3109-3122. Vogel, H., Wagner, B., Zanchetta, G., Sulpizio, R., and Rosén, P.2010. A paleoclimate record with tephrochronological age control fort he last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Paleolimnology, 44, 295-310. Wagner, B., Vogel, H., Zanchetta, G., and Sulpizio, R. 2010. Environmental change within the Balkan region during the past ca. 50 ka recorded in the sediments from lakes Prespa and Ohrid. Biogeosciences, 7, 3187-3198.
NASA Astrophysics Data System (ADS)
Hallis, L.; Ishii, H.; Bradley, J. P.; Taylor, J.
2012-12-01
As with the other nakhlites, MIL 090032 contains iddingsite-like alteration veins in the olivine phenocrysts that reportedly originated on Mars[1]. These 'iddingsite' veins have been analysed in a number of the nakhlite meteorites[2], and the presence of hydrous silicate gel, smectite clays, siderite, Fe-oxides, gypsum and carbonate have been reported. The presence and proportion of these phases in the different nakhlites appears to relate to the composition and concentration of the martian brine that flowed through each, thus supporting the theory that the nakhlite secondary alteration phases were produced by an evaporation sequence on the surface of Mars[3]. We analyzed these martian 'iddingsite' veins in MIL 090032 with the aim of placing it and its three paired meteorites within the nakhlite alteration sequence. By expanding our knowledge of this alteration sequence, we will gain extra insight into the conditions on the martian surface at the time these 'iddingsite' veins formed (<1.3 Ga). We utilized the 80-300 kV aberration-corrected FEI Titan (Scanning) Transmission Electron Microscope (S-TEM) system at Lawrence Livermore National Laboratory to analyse a ~15×8μm Focused Ion Beam (FIB) section of an 'iddingsite' vein in MIL 090032. To allow the electrons to be transmitted through the FIB section, it was milled down to ~150 nm thickness. Our initial TEM data indicate this FIB section contains hydrous amorphous silicate gel towards the center, with areas of phyllosilicate (possibly nontronite) interspersed within this central zone. Towards the outer edge of the vein jarosite and then gypsum sulfates were present. At the very edge only partially broken down olivine was observed. The presence of phyllosilicate and silicate gel in this vein suggests the 'iddingsite' in MIL 090032 was produced by water-rich brine, and the abundance of sulfates suggests the brine was enriched in sulfur. This assemblage of minerals is most in line with that of the 'iddingsite' veins in the meteorite Lafayette, which is thought to have been exposed to the most aqueous brine in the nakhlite alteration sequence[2,3]. MIL 090032 is a meteorite find, and contains areas of terrestrially derived sulfate-rich alteration which appear to have similar compositions to the martian 'iddingsite' veins (although texturally the two are easily distinguishable). Therefore, in addition to our analysis of the above 'iddignsite' FIB section, we aim to analyze a similar FIB section of this terrestrial sulfate-rich alteration and compare the two. This comparison could not only determine if terrestrial weathering has affected the mineralogy and petrology of the pre-terrestrial alteration, but also whether the conditions on the martian surface were similar to those in the Antarctic valleys at the time the 'iddingsite' veins formed. [1]Gooding et al. (1991) Meteoritics 26, 135-143. [2]Changela and Bridges (2011) MAPS 45, 1847-1867. [3]Bridges et al. (2001) Space Sci. Rev. 96, 365-392.
Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.
1998-01-01
Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.
Thorium and rare earth minerals in the Powderhorn district, Gunnison County, Colorado
Olson, Jerry C.; Wallace, Stewart R.
1954-01-01
Thorium has been found since 1949 in at least 33 deposits in an area 6 miles wide and 20 miles long in the Powderhorn district, Gunnison County, Colo. The district is composed largely of pre-Jurassic metamorphic and igneous rocks, which are chiefly if not entirely pre-Cambrian in age. The metamorphic and igneous rocks are overlain by sandstone of the Morrison formation of Jurassic age, and by volcanic rocks of the Alboroto group and Hinsdale formation of Miocene and Pliocene (?) age, respectively. The thorium deposits occur in or near alkalic igneous rocks in which such elements as titanium, rare earths, barium, strontium, and niobium occur in greater-than-average amounts. The greatest mass of the alkalic igneous rocks the Iron Hill composite stoc,- occupies an area of 12 square miles in the southeastern part of the district. The age of the thorium deposits, like that of the alkalic igneous rocks, is not known other than pre-Jurassic. The thorium veins and mineralized shear zones range from a few inches to 18 feet in thickness and from a few feet to 3,500 feet in length. The veins are composed of calcite,.dolomite, siderite, ankerite, quartz, barite, pyrite, sphalerite, galena, goethite,. apatite, alkali feldspar, and many other minerals. The thorium occurs at least partly in thorite or hydrothorite. Sparse xenotime has been tentatively identified in one deposit. Several minerals containing rare earths of the cerium group as major constituents are found in carbonate veins near Iron Hill. Bastnaesite has been identified by X-ray methods, and cerite and synchisite are probably present also.The fluorapatite in some veins and in parts of the carbonate rock mass that occupies 2 square miles in the central part of the Iron Hill complex contains rare earths of the cerium group, generally in amounts of a fraction of a percent of the rock. The radioactivity of the deposits appears to be due almost entirely to thorium and its daughter products The ThO2 content of selected highgrade samples from the Little Johnnie vein is as much as 4 percent. The ThO2 content of the veins is generally less than 1 percent, however, and is only 0.05 to 0.1 percent in many of the veins studied. The little Johnnie vein, which was mapped in detail, can be traced discontinuously for a distance of more than 3,500 feet. The thoriumbearing material occurs as irregular veinlets and thin films introduced into the fault zone. The mineralized shear zone ranges from less than 6 inches to 5 feet in thickness. Near its west end the vein is broken by many faults in a zone that marks the edge of a roughly circular fault block, 11/2.miles in diameter, that has dropped 1,000 feet or more since the deposition of Miocene volcanic-rocks that now floor the Milkranch basin.
NASA Astrophysics Data System (ADS)
Kalugin, Ivan; Darin, Andrey; Babich, Valery; Markovich, Tatiana; Meydan, Feray
2017-04-01
As it well known, recent quantitative estimations of high-resolution environmental variability are based on geochemical records in lake sediments. Naturally, annually laminated sediments (varves) are the best objects for paleoclimatic study, because they allow to investigate seasonal variability for understanding long-term environmental pattern. Also, varved sediments seem to be applied as the model for identification of element-indicators for non-laminated sediments. The XRF scanner on Synchrotron Radiation provides big geochemical dataset for next mathematic treatment, including time series construction. XRF scanning realizes rapid and non-destructive determinations more than 30 trace elements in a range of concentration from 1 up to 10000 ppm in annual layers. That makes sedimentary cores comparable with tree-rings. Geochemical and physicochemical investigation of lake sediments provides basic information to identify geochemical signals with paleoclimate. In general, sediment consists of mineral component, organics and carbonates. The proportions between these components are affected by environmental parameters, because measured element content or their combinations show correlation with meteodata on instrumental time interval. That allows applying geochemical variability to reconstruct the environmental parameters in the form of time series. The proportions between main components are controlled by temperature, atmospheric precipitation, water salinity and other external forcings. So, layered structure of lake bottom sediments and detectable elements content variability both represent a continuous record of environmental history. Element composition and it's climatic response. Bottom sediments represent conditions of physical weathering, temperate bioproductivity and aridity, which concern to mountain lakes within extra tropical zone. The numerical values of the parameters can be computed by software of physical-chemical modeling for gas+water+rock multisystems. Mineral matter responses to runoff. Mineral clastic part is correlated with x-ray density. It includes "clastic" rock-forming - Si, Al , Ti, Fe, Mg, Ca, K and trace elements such as Sr, Rb, Y, Zr, REE etc. Organic component of sediment more reflects temperature by means of productivity in the catchment and waterbody. Organophillic elements are Br, I, U and others soluble elements correlated with organic Carbon or LOI<500oC. Bio-chemogenic component is more characteristic for saline lakes, where Ca-, Mg- and Sr- carbonates precipitated in dependence of temperature, aridity and water salinity. Separate geochemical indicators are directly used for paleo- environmental evaluation. For example, elements with changing valency may be a proxy of outer conditions. Fe is strictly connected with sulfur in sulphide under anoxic conditions. And also Fe forms siderite in carbonate ion saturated, but calcium poor, water in the sedimentation system. Mn-enriched layers, crusts and nodules mark usually a long - term pauses of sedimentation in oxic systems. Mo/Mn ratio is good correlated with anoxic atmosphere. And so on. The work is supported by grants RFBR 16-05-00641, 16-05-00657, 15-55-46001.
Fault Frictional Stability in a Nuclear Waste Repository
NASA Astrophysics Data System (ADS)
Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano
2016-04-01
Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the friction coefficient decreased from a peak value of μpeak,sat = 0.45 to μss,sat = 0.34. Additionally, it has been observed that the weakening distance Dw is smaller under fluid- saturated conditions (˜4 mm) compared to dry conditions (˜6 mm). Results showed a linear decrease of both peak friction and steady state friction when normal stress increases. When fluid- saturation degree of gouges is reduced, gouge samples underwent a transition from velocity strengthening to velocity weakening behaviour, thus indicating a potentially unstable frictional behaviour of the fault. Furthermore, under both saturated and dry conditions, the frictional healing rate showed a low recovery of the friction coefficient under different holding times. Our experiments indicate that the frictional behaviour of Opalinus Clay is characterized by complex processes depending upon normal stress, sliding velocity, and saturation degree of the samples. This complexity highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.
NASA Astrophysics Data System (ADS)
Beukes, N. J.; Smith, A.
2013-12-01
Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy in slightly oxygenated cold deep ocean water. Ferrihydrite, precipitated along the oxic-anoxic interface along the bottom of the buoyant plume could then settle to the floor of the basin without interference of dissolved ferrous iron. This model requires that oxygen, derived from photosynthesis in shallow water, circulated down to deep water creating a slightly oxygenated ocean basin system invaded by buoyant anoxic ferrous plumes. In areas where these plumes came in contact with the basin floor, magnetite and/or carbonate facies iron formation formed; the latter in areas of highest organic carbon influx. Extensive glacial diamictites in the Witwatersrand-Mozaan basin argues for climatic zonation in the Mesoarchean driving deep ocean currents. This model may explain why the rise of oxygen in the atmosphere was so long delayed after development of oxygenic photosynthesis; simply because in the dynamic ocean system oxygen could come into contact with much larger volumes of reduced species in the water column and along the ocean floor than in a static stratified system. It also impacts on reconstruction of microbial communities in Archean oceans.
NASA Astrophysics Data System (ADS)
Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.
2010-12-01
Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2 alone, at which those with silicate phases have a lower pH (between 2 and 3) than experiments with carbonates. Fluid-mineral-interactions using scCO2-SO2 are thus much stronger and the concentrations of SO4 and cations in the reacting fluids are generally much higher, especially for Fe, Si and Al of silicates. However, intensity and rate of reactions are controlled by the availability of SO2 and apparently buffered by dissolution and precipitation processes. EMPA and Raman spectroscopy analyses are in progress to identify possible precipitated secondary products on mineral surfaces.
NASA Astrophysics Data System (ADS)
Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van
2018-03-01
We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia age can be regarded as recording a prograde stage of metamorphism under conditions lower than 600 °C and 0.7 GPa. Our new data provide the following geological and tectonic constraints: 1) the eruption of basalt occurred before the Permian, possibly related to subduction of the Paleo-Tethys Plate beneath the Indochina craton near the paleo-equator in the Devonian-Carboniferous; 2) strong weathering transformed the basalt to bauxite before the late Permian; 3) the uppermost continental crust, including the bauxites, was subducted in the late Permian due to the collision of the Indochina and South China cratons, leading to eclogite-facies metamorphism; 4) the rocks were then exhumed; and 5) shearing-related thermal events took place until the Paleogene.
Higher Flux from the Young Sun as an Explanation for Warm Temperatures for Early Earth and Mars
NASA Technical Reports Server (NTRS)
Sackmann, I.-Juliana
2001-01-01
Observations indicate that the Earth was at least warm enough for liquid water to exist as far back as 4 Gyr ago, namely, as early as half a billion years after the formation of the Earth; in fact, there is evidence suggesting that Earth may have been even warmer then than it is now. These relatively warm temperatures required on early Earth are in apparent contradiction to the dimness of the early Sun predicted by the standard solar models. This problem has generally been explained by assuming that Earth's early atmosphere contained huge amounts of carbon dioxide (CO2), resulting in a large enough greenhouse effect to counteract the effect of a dimmer Sun. However, recent work places an upper limit of 0.04 bar on the partial pressure of CO2 in the period from 2.75 to 2.2 Gyr ago, based on the absence of siderite in paleosols; this casts doubt on the viability of a strong CO2 greenhouse effect on early Earth. The existence of liquid water on early Mars has been even more of a puzzle; even the maximum possible CO2 greenhouse effect cannot yield warm enough Martian surface temperatures. These problems can be resolved simultaneously for both Earth and Mars, if the early Sun was brighter than predicted by the standard solar models. This could be accomplished if the early Sun was slightly more massive than it is now, i.e., if the solar wind was considerably stronger in the past than at present. A slightly more massive young Sun would have left fingerprints on the internal structure of the present Sun. Today, helioseismic observations exist that can measure the internal structure of the Sun with very high precision. The task undertaken here was to compute solar models with the highest precision possible at this time, starting with slightly greater initial masses. These were evolved to the present solar age, where comparisons with the helioseismic observations could be made. Our computations also yielded the time evolution of the solar flux at the planets - a key input to the climates of early Earth and Mars. Early solar mass loss is not the only influence that can alter the internal structure of the present Sun. There are minor uncertainties in the physics of the solar models and in the key observed solar parameters that also affect the present Sun's internal structure. It was therefore imperative to obtain an understanding of the effects of these other uncertainties, in order to disentangle them from the fingerprints that might be left by early solar mass loss. From these considerations, our work was divided into two parts: (1) We first computed the evolution of standard solar models with input parameters varied within their uncertainties, to determine their effect on the observable helioseismic quantities; (2) We then computed non-standard solar models with higher initial masses to test against the helioseismological observations.
NASA Astrophysics Data System (ADS)
Seitz, Hans-Michael; Brey, Gerhard P.; Harris, Jeffrey W.; Durali-Müller, Soodabeh; Ludwig, Thomas; Höfer, Heidi E.
2018-05-01
The most remarkable feature of the inclusion suite in ultradeep alluvial and kimberlitic diamonds from Sao Luiz (Juina area in Brazil) is the enormous range in Mg# [100xMg/(Mg + Fe)] of the ferropericlases (fper). The Mg-richer ferropericlases are from the boundary to the lower mantle or from the lower mantle itself when they coexist with ringwoodite or Mg- perovskite (bridgmanite). This, however, is not an explanation for the more Fe-rich members and a lowermost mantle or a "D" layer origin has been proposed for them. Such a suggested ultra-deep origin separates the Fe-rich fper-bearing diamonds from the rest of the Sao Luiz ultradeep diamond inclusion suite, which also contains Ca-rich phases. These are now thought to have an origin in the uppermost lower mantle and in the transition zone and to belong either to a peridotitic or mafic (subducted oceanic crust) protolith lithology. We analysed a new set of more Fe-rich ferropericlase inclusions from 10 Sao Luiz ultradeep alluvial diamonds for their Li isotope composition by solution MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry), their major and minor elements by EPMA (electron probe micro-analyser) and their Li-contents by SIMS (secondary ion mass spectrometry), with the aim to understand the origin of the ferropericlase protoliths. Our new data confirm the wide range of ferropericlase Mg# that were reported before and augment the known lack of correlation between major and minor elements. Four pooled ferropericlase inclusions from four diamonds provided sufficient material to determine for the first time their Li isotope composition, which ranges from δ7Li + 9.6 ‰ to -3.9 ‰. This wide Li isotopic range encompasses that of serpentinized ocean floor peridotites including rodingites and ophicarbonates, fresh and altered MORB (mid ocean ridge basalt), seafloor sediments and of eclogites. This large range in Li isotopic composition, up to 5 times higher than `primitive upper mantle' Li-abundances, and an extremely large and incoherent range in Mg# and Cr, Ni, Mn, Na contents in the ferropericlase inclusions suggests that their protoliths were members of the above lithologies. This mélange of altered rocks originally contained a variety of carbonates (calcite, magnesite, dolomite, siderite) and brucite as the secondary products in veins and as patches and Ca-rich members like rodingites and ophicarbonates. Dehydration and redox reactions during or after deep subduction into the transition zone and the upper parts of the lower mantle led to the formation of diamond and ferropericlase inclusions with variable compositions and a predominance of the Ca-rich, high-pressure silicate inclusions. We suggest that the latter originated from peridotites, mafic rocks and sedimentary rocks as redox products between calcite and SiO2.
Johnson, C.A.; Skinner, B.J.
2003-01-01
The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly buried sediments is uncertain. The iron deposits formed at interfaces between anoxic and oxygenated waters. The Furnace magnetite bed resulted from seawater oxidation of hydrothermally transported iron near a brine conduit. Iron deposits also formed regionally on the basin floor at the interface betveen anoxic deep waters and oxygenated shallower waters. These deposits include not only manganiferous magnetite + calcite bodies similar to the Furnace magnetite bed but also silicate-facies deposits that formed by iron oxide accumulation where detrital sediment was abundant. A basin margin model can be extended to Grenvillian stratiform deposits in the northwest Adirondacks of New York and the Mont Laurier basin of Quebec. In these areas iron deposits (pyrite or magnetite) are found basinward of marble-hosted sphalerite deposits, such as those in the Balmat-Edwards district. Whether the iron and zinc precipitated as sulfide assemblages or carbonate-oxide-silicate assemblages depended on whether sufficient organic matter or other reductants were available in local sediments or bottom waters to stabilize H2S.
NASA Astrophysics Data System (ADS)
Francke, Alexander; Wagner, Bernd; Leicher, Niklas; Raphael, Gromig; Leng, Melanie; Lacey, Jack; Vogel, Hendrik; Baumgarten, Henrike; Thomas, Wonik; Zanchetta, Giovanni; Roberto, Sulpizio; Krastel, Sebastian; Lindhorst, Katja
2015-04-01
The UNESCO World Heritage site of Lake Ohrid in the Balkans is thought to be the oldest, continuously existing lake in Europe. In order to unravel the geological and evolutionary history of the lake, a deep drilling campaign was conducted in spring 2013 under the umbrella of the ICDP SCOPSCO project. At the coring site "DEEP" in central parts of the lake, more than 1,500 m of sediments were recovered down to a penetration depth of 569 m blf. This sediment sequence is assumed to be more than 1.2 Ma old and likely covers the entire lacustrine deposits of the Lake Ohrid Basin. Currently, an age model for the upper 260m of the DEEP- site sequence is available. This age model is based on chronological tie points (tephrochronology), and wiggle matching of down hole logging data and (bio-)geochemistry data (XRF, TIC, TOC) from the core sequence to the global benthic stack LR04 and local insolation patterns. The data suggests that the upper 260 m of the DEEP-site sequence corresponds to the time period between the Mid Pleistocene Transition (MPT) and present days. During this period, the sedimentological properties of the sediments show a strong dependency on environmental variability in the area. Interglacial deposits appear massive or marbled, contain up to 80 % of CaCO3 (high TIC), high amounts of organic matter (high TOC) and biogenic silica (high BSi), and low contents of clastic material. Glacial deposits are predominantly marbled and calcite is generally absent. Similarly, the amounts of organic matter and biogenic silica are low, and glacial sediments predominately consist of clastic matter. Distinct layers of siderite and uniformly distributed Fe- or Mn- oxides occur in the glacial deposits, vivianite concretions occur in both the glacial and interglacial periods. High CaCO3 contents in deposits formed during warm (interglacial) periods are also known from studies on short pilot cores from Lake Ohrid and are triggered by increased productivity in the lake, such as also indicated by enhanced contents of organic matter and biogenic silica. Thereby, CaCO3 precipitation is caused by photosynthesis induced calcite precipitation during algae blooms in spring and early summer. Negligible contents of TIC in deposits formed during glacial periods can be explained by an overall low productivity (low TOC and BSi) and, in addition, by dilution of CaCO3. Dilution of CaCO3 might be a result of more acid bottom water conditions, triggered by improved mixing conditions (less thermal stratification), oxidation of OM and CO2 release from the surface sediments. Oxygenated surface sediments and degradation of organic matter are indicated by the marbled structure of the glacial sediments implying intensive bioturbation, and by TOC/TN ratios around 4, respectively. The high amount of clastic material in deposits from cold (glacial) periods can be a result of mutual dilution with calcite, organic matter and biogenic silica, but might also indicate more intensive erosion in the catchment due to a less dense vegetation cover.
The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O
NASA Astrophysics Data System (ADS)
Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt
2013-04-01
Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.
NASA Astrophysics Data System (ADS)
Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro
2008-12-01
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.
Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M; Villar, María V; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro
2008-12-12
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.
Geologic setting of the Mountain Pass rare earth deposits, San Bernardino County, California
Olson, Jerry Chipman
1952-01-01
The Mountain Pass district is in a block of pre-Cambrian metamorphic rocks bounded on the east and south by the alluvium of Ivanpah Valley. This block is separated from Paleozoic and Mesozoic sedimentary and volcanic rocks on the west by the Clark Mountain normal fault, and the northern boundary of the district is a prominent transverse fault. The pre-Cambrian metamorphic complex comprises a great variety of lithologic types including garnetiferous mica gneisses and schists; biotite-garnet-sillimenite gneiss; hornblende gneiss, schist, and amphibolite; biotite gneiss and schist; granitic gneisses and migmatites; pegmatites; and minor amounts of foliated mafic rocks. The rare earth-bearing carbonate rocks are related to potash-rich igneous rocks, of uncertain age, that cut the metamorphic complex. The larger potash-rich intrusive masses, 300 or more feet wide, comprise one granite, two syenite, and four composite shonkinite-syenite bodies. One of the shonkinite-syenite stocks is more than a mile long. Several hundred relatively thin dikes of these potash-rich rocks range in composition, and generally decreasing age, from biotite shonkinite through syenite to granite. A few thin fine-grained shonkinite dikes cut the granite. These potash-rich rocks are cut by east-trending andesitic dikes and by faults. Veins of carbonate rock are most abundant in and near the southwest side of the largest shonkinite-syenite body. Although most veins are less than 6 feet thick, one mass of carbonate rock near the Sulphide Queen min4e is 600 feet in maximum width and 2,400 feet long. About 200 veins have been mapped in the district; their aggregate surface area is probably less than one-tenth that of the large carbonate mass. The carbonate materials, which make up about 60 percent of the veins and the large carbonite body, are chiefly calcite, dolomite, ankerite, and siderite. The other constituents are barite, bastnaesite and perisite, quartz, and variable small quantities of crocidolite, biotite, phlogopite, chlorite, muscovite, apatite, iron oxides, fluorite, monazite, galena, allanite, sphene, pyrite, chalcopyrite, tetrahedrite, malachite, azurite, corussite, wulfenite, aragonite, and thorite. The rare earth oxide content in most of the carbonate rock is less than 13 percent, but in some local concentrations of bastnaesite the content is as high as 40 percent. The origin of the carbonate rocks and related potash-rich igneous rocks is considered in the light of similar associations of carbonate and alkalinic rocks in Sweden, Norway, Russia, South Africa, and the United States. The carbonate rock may have originated (1) as a pre-Cambrian limestone or evaporate sequence in the gneisses; (2) by reaction between magma and the Paleozoic dolomite and limestone overlying the pre-Cambrian complex; (3) by alteration of pre-Cambrian gneisses by emanations from an unknown deep-seated source; or (4) by differentiation of an alkaline magma from shonkinite to syenite to granite, leading to a final carbonate-rich fraction, containing the rare elements, which was emplaced either as a concentrated or a dilute solution. The fourth hypothesis is considered the most plausible.
Hackley, Paul C.; Fishman, Neil; Wu, Tao; Baugher, Gregory
2016-01-01
Exploration for tight oil in the frontier Santanghu Basin of northwest China has resulted in recent commercial discoveries sourced from the lacustrine Upper Permian Lucaogou Formation, already considered a “world class source rock” in the Junggar Basin to the west. Here we apply an integrated analytical program to carbonate-dominated mudrocks from the Lucaogou Formation in Santanghu Basin to document the nature of organic matter (OM) in the context of an evolving lake system. The organic-rich samples (TOC 2.8–11.4 wt%; n = 10) were widely spaced from an ~ 200 m cored section, interpreted from textural and mineralogical evidence to document transition from a lower under-filled to an overlying balanced-filled lake. Organic matter is dominated by moderate to strongly fluorescent amorphous material with Type I geochemical signature (HI values 510–755; n = 10) occurring in a continuum from lamellar stringers, 10–20 μm thick, some ≥ 1 mm in length (possible microbial mat; preserved only in lower under-filled section) to finely-disseminated amorphous groundmass intimately intermixed with mineral matrix. Biomarkers for methanotrophs and photosynthetic cyanobacteria indicate a complex microbial consortium. A unicellular prasinophyte green alga(?), similar to Tasmanites in marine rocks, is present as discrete flattened discs 50–100 μm in diameter. Type III OM including vitrinite (some fluorescent) and inertinite also is abundant. Solid bitumen, indicating local kerogen conversion, fills voids and occurs throughout the cored section. Vitrinite reflectance values are 0.47–0.58%, consistent with strong OM fluorescence but may be “suppressed”. Other proxies, e.g., biomarker parameters, indicate the Lucaogou Formation is in the early oil window at this location. On average, slightly more amorphous OM and telalginite are present in the lower section, consistent with a shallow, stratified, saline environment with low sediment dilution. More inertinite is present in the upper section, indicating greater terrestrial influx and consistent with higher quartz and plagioclase content (dominantly authigenic chalcedony and albite). Laminated mudstones in the upper section indicate anoxia prevented bioturbation from benthic grazing, also indicating stratified water column conditions. A decrease upsection in authigenic dolomite with reciprocal increase of ankerite/siderite is consistent with decreasing salinity, as is an overall decrease in gammacerane index values. These observations suggest evolution from a shallow, stratified evaporative (saline) setting to a deeper, stratified freshwater basin with higher water input during Lucaogou deposition. The evolution from an under-filled to balance-filled lake in Santanghu Basin is similar to Lucaogou deposition in Junggar Basin, suggesting similar tectonic and climatic controls. Paleoclimate interpretations from other researchers in this area suggested an evolution from semi-arid to humid conditions during the Roadian; we interpret that the evolution from an under-filled to balanced-filled lake seen in our data is in response to climate change, and may represent increased groundwater delivery to the Santanghu Basin.
Reduced sediment melting at 7.5-12 GPa: phase relations, geochemical signals and diamond nucleation
NASA Astrophysics Data System (ADS)
Brey, G. P.; Girnis, A. V.; Bulatov, V. K.; Höfer, H. E.; Gerdes, A.; Woodland, A. B.
2015-08-01
Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5-12 GPa and 800-1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325-394, 1998) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO2 and 7 wt% H2O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite-siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at <9 GPa and the hydrous aluminosilicates topaz-OH and phase egg at >10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000-1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich (<10 wt% SiO2) at 800-1000 °C to volatile-rich silicate liquids (up to 40 wt% SiO2) at high temperatures. Trace elements were analyzed in melts and crystalline phases by LA ICP MS. The garnet-melt and clinopyroxene-melt partition coefficients are in general consistent with results from the literature for volatile-free systems and silicocarbonate melts derived by melting carbonated peridotites. Most trace elements are strongly incompatible in kyanite and silica polymorphs ( D < 0.01), except for V, Cr and Ni, which are slightly compatible in kyanite ( D > 1). Aragonite and Fe-Mg carbonate have very different REE partition coefficients ( D Mst-Sd/L ~ 0.01 and D Arg/L ~ 1). Nb, Ta, Zr and Hf are strongly incompatible in both carbonates. The bearthite/melt partition coefficients are very high for LREE (>10) and decrease to ~1 for HREE. All HFSE are strongly incompatible in bearthite. In contrast, Ta, Nb, Zr and Hf are moderately to strongly compatible in ZrSiO4 and TiO2 phases. Based on the obtained partition coefficients, the composition of a mobile phase derived by sediment melting in deep subduction zones was calculated. This phase is strongly enriched in incompatible elements and displays a pronounced negative Ta-Nb anomaly but no Zr-Hf anomaly. Although all experiments were conducted in the diamond stability field, only graphite was observed in low-temperature experiments. Spontaneous diamond nucleation and the complete transformation of graphite to diamond were observed at temperatures above 1200-1300 °C. We speculate that the observed character of graphite-diamond transformation is controlled by relationships between the kinetics of metastable graphite dissolution and diamond nucleation in a hydrous silicocarbonate melt that is oversaturated in C.
Microbial Biosignatures in High Iron Thermal Springs
NASA Astrophysics Data System (ADS)
Parenteau, M. N.; Embaye, T.; Jahnke, L. L.; Cady, S. L.
2003-12-01
The emerging anoxic source waters at Chocolate Pots hot springs in Yellowstone National Park contain 2.6 to 11.2 mg/L Fe(II) and are 51-54° C and pH 5.5-6.0. These waters flow down the accumulating iron deposits and over three major phototrophic mat communities: Synechococcus/Chloroflexus at 51-54° C, Pseudanabaena at 51-54° C, and a narrow Oscillatoria at 36-45° C. We are assessing the contribution of the phototrophs to biosignature formation in this high iron system. These biosignatures can be used to assess the biological contribution to ancient iron deposits on Earth (e.g. Precambrian Banded Iron Formations) and, potentially, to those found on Mars. Most studies to date have focused on chemotrophic iron-oxidizing communities; however, recent research has demonstrated that phototrophs have a significant physiological impact on these iron thermal springs (Pierson et al. 1999, Pierson and Parenteau 2000, and Trouwborst et al., 2003). We completed a survey of the microfossils, biominerals, biofabrics, and lipid biomarkers in the phototrophic mats and stromatolitic iron deposits using scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), powder X-ray diffraction (XRD), and gas chromatography-mass spectroscopy (GC-MS). The Synechococcus/Chloroflexus mat was heavily encrusted with iron silicates while the narrow Oscillatoria mat was encrusted primarily with iron oxides. Encrustation of the cells increased with depth in the mats. Amorphous 2-line ferrihydrite is the primary precipitate in the spring and the only iron oxide mineral associated with the mats. Goethite, hematite, and siderite were detected in dry sediment samples on the face of the main iron deposit. Analysis of polar lipid fatty acid methyl esters (FAME) generated a suite of lipid biomarkers. The Synechococcus/Chloroflexus mat contained two mono-unsaturated isomers of n-C18:1 with smaller amounts of polyunsaturated n-C18:2, characteristic of cyanobacteria. The mat also contained abundant n,n-wax esters of C32 to C37, characteristic of Chloroflexus. 10-Methyl-C16 was also detected, indicative of sulfate reducing bacteria (SRB). The narrow Oscillatoria mat was dominated by the aforementioned cyanobacterial biomarkers as well as iso-C17:1, a biomarker for some groups of SRB. Unusual dimethyl fatty acids were also detected. The goal of this research is to provide an initial dataset that will illustrate the maximum amount of paleobiological and paleoenvironmental information expected to form in these types of iron deposits. Insights from our research may help elucidate the role of phototrophs in the deposition of BIFs on Earth, and may assist in the search for evidence of fossilized microbial life in iron deposits on Mars. Pierson, B.K., M.N. Parenteau, and B.M. Griffin, Phototrophs in high-iron-concentration microbial mats: Ecology of phototrophs in an iron-depositing hot spring, Appl. Environ. Microbiol., 65, 5474-5483, 1999. Pierson, B.K., and M.N. Parenteau, Phototrophs in high iron microbial mats: Microstructure of mats in iron-depositing hot springs, FEMS Microbiology Ecology 32, 181-196, 2000. Trouwborst, R., G. Koch, G. Luther, and B.K. Pierson, Photosynthesis and iron in hot spring microbial mats (abstract), NAI General Meeting, Astrobiology 2(4), 206, 2003.
NASA Astrophysics Data System (ADS)
Bateman, Roger; Hagemann, Steffen
2004-10-01
The Golden Mile deposit was discovered in 1893 and represents today the largest Archaean orogenic lode gold system in the world (50 M oz produced gold). The Golden Mile deposit comprises three major styles of gold mineralisation: Fimiston, Oroya and Charlotte styles. Fimiston-style lodes formed at 250 to 350 °C and 100 to 200 MPa and are controlled by brittle ductile fault zones, their subsidiary fault zone and vein networks including breccias and open-cavity-infill textures and hydrothermally altered wall rock. Fimiston lodes were formed late D1, prior to D2 regional upright folding. Hydrothermal alteration haloes comprise a progression toward the lode of diminishing chlorite, an increase in sericite and in Fe content of carbonates. Lodes contain siderite, pyrite, native gold, 17 different telluride minerals (Au Ag tellurides contain ~25% of total gold), tourmaline, haematite, sericite and V-rich muscovite. Oroya-style lodes formed at similar P T conditions as the Fimiston lodes and are controlled by brittle ductile shear zones, associated dilational jogs that are particularly well developed at the contact between Paringa Basalt and black shale interflow sedimentary rocks and altered wall rock. The orebodies are characterised by micro-breccias and zones of intense shear zone foliation, very high gold grades (up to 100,000 g/t Au) and the common association of tellurides and vanadian mica (green leader). Oroya lodes crosscut Fimiston lodes and are interpreted to have formed slightly later than Fimiston lodes as part of one evolving hydrothermal system spanning D1 and D2 deformation (ca. 2,675 2,660 Ma). Charlotte-style lodes, exemplified by the Mt Charlotte deposit, are controlled by a sheeted vein (stockwork) complex of north-dipping quartz veins and hydrothermally altered wall rock. The Mt Charlotte orebody formed at 120 to 440 °C and 150 to 250 MPa during movement along closely spaced D4 (2,625 Ma) and reactivated D2 faults with the quartz granophyre in the Golden Mile Dolerite exerting a strong lithological control on gold mineralisation. Veins consist of quartz carbonate minor scheelite, and wall-rock alteration comprises chlorite destruction and growth of ferroan carbonate sericite pyrite native gold. Pyrite pyrrhotite is zoned on the scale of vein haloes and of the entire mine, giving a vertical temperature gradient of 50 100 °C over 1,000 vertical metres. The structural hydrothermal model proposed consists of four major stages: (1) D1 thrusting and formation of Fimiston-style lodes, (2) D2 reverse faulting and formation of Oroya-style lodes, (3) D3 faulting and dissecting of Fimiston- and Oroya-style lodes, and (4) D4 faulting and formation of Mt Charlotte-style sheeted quartz vein system. The giant accumulation of gold in the Golden Mile deposit was formed due to protracted gold mineralisation throughout episodes of an Archaean orogeny that spanned about 45 Ma. Fluid conduits formed early in the tectonic history and persisted throughout orogenesis with the plumbing system showing a rare high degree of focussing, efficiency and duration. In addition to the long-lasting fluid plumbing system, the wide variety of transient structural and geochemical traps, multiple fluid sources and precipitation mechanism contributed towards the richest golden mile in the world.
Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore
NASA Astrophysics Data System (ADS)
Wells, M. A.; Ramanaidou, E. R.
2012-04-01
In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels' identified for each phase normalised to the total number of 'pixels' for each area scanned. Shifts in the main phonon lines of goethite and hematite mapped in the CID samples examined were used to estimate the Al substitution in these phases (e.g., Ramanaidou et al. 1996) which were consistent with electron microprobe data. The Raman data demonstrated the Al-free nature of hematite (0.5 mol% Al) and showed that goethite in the CID cortex was more Al-rich (10 mol%) than goethite in the CID matrix (3 mol% Al). Shifts in the excitation bands of carbonate mapped in the BIF sample were well related to the Mg content of Fe-carbonate, based on the work of Rividi et al. (2010) and confirmed by in situ spot analysis using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). This data confirmed the first world-wide occurrence of a high Mg-bearing siderite (pistomesite) in BIF. Detailed, in situ characterisation of the iron oxide and gangue mineralogy of iron ore deposits as provided by Raman spectroscopy provides a step change to current characterisation methods. Understanding and defining their mineralogy and geochemistry is critical in developing strategies to best manage and process existing BID and CID ores, as well as the newly emerging MID ores.
NASA Astrophysics Data System (ADS)
Basu, A.; Brown, S. T.; Christensen, J. N.; DePaolo, D. J.; Reimus, P. W.; Heikoop, J. M.; Simmons, A. M.; House, B.; Schilling, K.; Johnson, T. M.; Pelizza, M.
2013-12-01
The In Situ Recovery (ISR) U mining operation at Rosita, TX, USA, involved oxidative dissolution of U from roll front U deposits. This process mobilized U along with other characteristic elements (e.g., Se) from the roll fronts in their soluble and toxic oxidized forms (e.g., U(VI), Se(VI)). The dissolved U(VI) in groundwater poses significant ecological risk due to its chemical toxicity and must be restored below the existing regulatory limit to minimize the environmental impact of ISR mining. However, the undisturbed sediments downgradient to the roll front deposits are expected to remain reduced. Naturally occurring Fe-minerals (e.g., FeS, siderite, magnetite) and microorganisms in the sediments downgradient to ISR activity can reduce dissolved U(VI) to less toxic and insoluble U(IV) and promote natural attenuation. The reduction of oxyanions of U or Se induces measurable isotopic fractionation that can be used to monitor the natural attenuation by downgradient sediments. Here, we used multiple redox-sensitive isotope systems (U, Se, and S) to detect reducing conditions and natural attenuation of U(VI) at the ISR site. We collected groundwater samples from 26 wells located in the ore body, upgradient and downgradient to the ore body. The δ238U values measured in groundwater samples from 23 wells range from 0.48‰ to -1.66‰ (×0.12‰). A preliminary investigation of 6 groundwater samples shows a variation of δ82Se values from -1.44‰ to 5.24‰ (×0.15‰). The δ34SO4 measurements in groundwater vary from 11.8‰ to -19.9‰. The reduction of Se(VI) and SO42- fractionates the lighter isotopes (i.e., 32S and 76Se) in the reduced product phase rendering the remaining reactants in the groundwater enriched in heavier isotopes. Therefore, the high δ82Se and δ34SO4 values may suggest reduction of Se(VI) and SO42-, respectively. The highest δ238U values are observed in the wells located in the ore body or upgradient to the ore body whereas the downgradient wells show significantly lower δ238U values. High δ238U values in most of the wells located in the ore-zone may be attributed to the dissolution of the U ore enriched in 238U. The low δ238U values are generally observed in the wells with low U(VI) concentrations. Since U(VI) reduction fractionates 238U to the solid U(IV) phase, the depletion of 238U in the groundwater samples in the downgradient monitoring wells suggest U(VI) reduction by the downgradient sediments. The δ238U values in the groundwater samples conform to a Rayleigh distillation model with an isotopic fractionation factor α = 1.00013 × 0.00010. Future investigations include characterization of the U ore bearing sediments collected from boreholes in the ore body and downgradient of the ore body, measurement of the δ238U and δ82Se values in the ore and in remaining groundwater samples. The U(VI) reducing capacity and concomitant U isotopic fractionation factors for the sediments from downgradient boreholes will be determined from the batch incubation experiments and flow through column experiments.
Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela
1994-01-01
The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.
NASA Astrophysics Data System (ADS)
Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd
2014-05-01
In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence of a silicate melt and a carbonate-rich melt during anatexis at relatively shallow crustal levels, but this hypothesis needs to be further tested through re-homogenization experiments by piston cylinder means. References Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L. & Meli, S., 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41, 115-118. Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. & Cavallo, A., 2009. Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, 37, 627-630. Ferrero, S., Bartoli, O., Cesare, B., Salvioli Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C. & Battiston, S., 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology, 30, 303-322. Ferrero, S., Braga, R., Berkesi, M., Cesare, B. & Laridhi Ouazaa, N., 2014. Production of Metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, DOI:10.1111/jmg.12068. Tanner, D.C. & Behrmann, J.H., 1995. The Variscan tectonics of the Moldanubian gneisses, Oberpfalzer Wald: a compressional history. Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen, 197, 331-355. Touret, J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russian Geology and Geophysics, 50, 1052-1062.
Preservation of Fe Isotope Proxies in the Rock Record
NASA Astrophysics Data System (ADS)
Johnson, C.; Beard, B.; Valley, J.; Valaas, E.
2005-12-01
Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54Fe ratios for re-crystallized magnetite from BIFs of the Biwabik iron formation that have apparent oxygen-isotope (quartz-magnetite) temperatures between 270 and 800 oC span a significant portion of the range measured in lower-grade BIFs from South Africa and Australia. d56Fe values for Biwabik magnetite vary from -0.2 to +0.7 per mil, whereas magnetite from the Dales Gorge member of the Brockman iron formation and the Kuruman iron formation has d56Fe values that lie between -1.2 and +1.3 per mil. Iron isotope fractionations between magnetite and Fe silicates (greenalite, hedenbergite, and fayalite) in the Biwabik iron formation regularly decrease with increasing oxygen-isotope temperatures, approaching the zero fractionation expected at igneous temperatures; apparent magnetite-Fe silicate fractionations range from +0.2 per mil at 650 oC to +0.5 per mil at 300 oC, lying close to those predicted using the revised beta factors of Polyakov et al. (2005, Goldschmidt). During closed-system Fe isotope exchange during metamorphism, the overall range in d56Fe values for magnetite will remain relatively constant, although it may shift to higher d56Fe values relative to primary (low-temperature) magnetite due to the non-zero magnetite-Fe silicate fractionation factor at moderate temperature ranges. If the mineral parageneis is known, and some assumptions regarding primary mineralogy can be made, these small corrections may be made to successfully infer the original Fe isotope compositions of sedimentary minerals and rocks that have been subjected to metamorphism.
The nakhlite meteorites: Augite-rich igneous rocks from Mars
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
2005-01-01
The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg' = 63% and rims that are normally zoned to iron enrichment. The core-rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning - sharp rim zoning goes with the most magnesian cores (Mg' = 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. Compared to common basalts, they are rich in Ca, strongly depleted in Al, and enriched in magmaphile (incompatible) elements, including the LREE. Nakhlites contain little pre-terrestrial organic matter. Oxygen isotope ratios are not terrestrial, and are different in anhydrous silicates and in iddingsite. The alteration assemblages all have heavy oxygen and heavy carbon, while D/H values are extreme and scattered. Igneous sulfur had a solar-system isotopic ratio, but in most minerals was altered to higher and lower values. High precision analyses show mass-independent fractionations of S isotopes. Nitrogen and noble gases are complex and represent three components: two mantle sources (Chas-E and Chas-S), and fractionated Martian atmosphere. The nakhlites are igneous cumulate rocks, formed from basaltic magma at approx.1.3 Ga, containing excess crystals over what would form from pure magma. After accumulation of their augite and olivine crystals, they were affected (to various degrees) by crystallization of the magma, element diffusion among minerals and magma, chemical reactions among minerals and magma, magma movement among the crystals, and post-igneous chemical equilibration. The extent of these modifications varies, from least to greatest, in the order: MIL03346, NWA817, Y000593, Nakhla = Governador Valadares, Lafayette, and NWA998. Chemical, isotopic, and chronologic data confirm that the nakhlites formed on Mars, most likely in thick lava flows or shallow intrusions. Their crystallization ages, referenced to crater count chronologies for Mars, suggest that the nakhlites formed on the large volcanic constructs of Tharsis, Elysium, or Syrtis Major. The nakhlites were suffused with liquid water, probably at approx.620 ma. This water dissolved olivine and mesostasis glass, and deposited iddingsite and salt minerals in their places. The nakhlites were ejected from Mars at approx.10.75Ma by an asteroid impact and fell to Earth within the last 10,000 years. Although the nakhlites are enriched in incompatible elements, their source mantle was strongly depleted. This depletion event was ancient, as the nakhlites source mantle was fractionated while short-lived radionuclides (e.g., t(sub 1/2 = 9 my) were still active. This differentiation event may have been core formation coupled with a magma ocean, as is inferred for the moon.
Magnetostratigraphy of the Miocene sediments at Háj u Duchcova and Sokolov (West Bohemia)
NASA Astrophysics Data System (ADS)
Schnabl, Petr; Man, Otakar; Matys Grygar, Tomáš; Mach, Karel; Kdýr, Šimon; Čížková, Kristýna; Pruner, Petr; Martínek, Karel; Rojík, Petr
2017-04-01
Magnetostratigraphic investigation was conducted on the newly excavated drill core HD-50 and previously retreived drill cores DP-333-09 and JP-585-10. The new drill core HD-50 was sampled at the old coal mine 1.Máj near Háj u Duchcova in the Most Basin, while the DP-333-09 and JP-585-10 are from the benches of opencast coal mines Družba and Jiří in the Sokolov Basin. Both basins are parts of one segment of the European Cenozoic Rift System. The sediments in both basins are of Burdigalian age (lower Miocene). Their lithology mainly comprise fossil-free clays/silts above the main coal seam, with two phosphatic horizons with mineral crandalite in the Most Basin and several greigite layers in the Sokolov Basin. Anisotropy of magnetic susceptibility (AMS), alternate field demagnetization and remanent magnetization were measured in all samples. Unusually behaving samples with extremely high magnetic susceptibility (siderite), prolate anisotropy of AMS and samples with the angle of the main AMS axis exceeding 20 degrees was excluded from further evaluation. The sedimentation rate was computed by multivariate spectral analysis on data acquired by X-ray fluorescence. The spectral analysis was performed with our original software solution for identification of typical frequencies and their assignement to Milanković cycles.[1] The sedimentation rate (after compaction) was around 15 cm/ky for the drill core DP-333-09 and around 30 cm/ky for the core JP-585-10. The sediment succession above the coal seam at drill core DP-333-09 starts with 20 meters, in which the magnetic polarity could not be reconstructed (70 - 50 m), then there is a top part of reverse zone (50 - 49 m) and short normal subzone above it (49 - 48 m). Above that there is the second reverse zone (45 - 4 m). Two additional magnetozones above that could be found only in the drill core HD-50 from the Most Basin. The drill core JP-585-10 begins with 14 meters of disturbed zone (94 - 80 m), then 12 meters of normal polarity (69 - 80 m) was found. Above that, after a small gap of magnetically disturbed sediments, there are 60 meters of sediments with reverse polarity (62 - 2 m) with short normal excursion at the upper half (24 - 17 m). According to the detailed analysis of drill core HK591 (Matys Grygar et al. 2014), we suppose, that the succession begins in C5En (only JP-585-10), then C5Dr. Validity of subzone C5Dr.1n in the drills JP-585-10 and DP-333-09 is still under discussion. The zone C5Cr could be found only in the HD-50 core. In comparison of the interpreted polarities with ATNTS2012 the time span in the studied cores is approximately 17.5 to 17.9 Ma for DP-333-09, 17.8 to 18.1 for JP-585-[2]10 and 17.1 to 17.7 Ma for HD-50. Additional investigation should be done. The research was supported by Czech Science Foundation GAČR, project n. 16-00800S. Matys Grygar, T., Mach, K., Pruner, P., Schnabl, P., Laurin, J., Martinez, M., 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic, Geol. Mag. 151 (6), 1013-1033.
Natural attenuation of aged tar-oil in soils: A case study from a former gas production site
NASA Astrophysics Data System (ADS)
Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe
2017-04-01
Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained unidentified, suggesting the presence of other microorganisms using high-molecular weight HC as carbon source. All contaminated layers were found to be enriched in total Fe and both dithionite-extractable and oxalate-extractable Fe. Besides, siderite crystals were identified using FTIR microscopy. The presence of secondary crystalline and poorly crystalline Fe(III)-oxides and secondary Fe(II)-carbonates in the same horizons suggests simultaneous occurrence of oxic and anoxic zones within the porous system of the contaminated layers. Although HC pollution is often considered to inhibit microbial activity in soil, in our study the layers with highest TPH-amounts were the most "alive". We assume that aging processes (the sum of volatilization, dissolution, microbial degradation, chemical oxidation, polymerization and migration) and eventually a long-term microbial adaption to the HC carbon source resulted in the development of a microbial consortium, capable of transforming high-molecular weight HC. Presumably, iron-compounds in the tar oil act as an electron acceptor and trigger HC degradation. However, to unravel natural attenuation processes and degradation pathways it seems mandatory to take into account the soil structure and spatial distribution of microbes.
Monitorization of technosols in old mining sites treated with calcareous fillers
NASA Astrophysics Data System (ADS)
Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.
2014-05-01
A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of experimental areas was done in 18 sampling points in which sediment and water samples were collected and analyzed. Monitorization was carried out during a 4 years period, samples being obtained at two month intervals. The pH and the electrical conductivity were determined, in naddition to the heavy metal concentration. The Zn content was determined by flame atomic absorption spectrometry. The Pb, Cd and Cu content was determined by electrothermal atomization atomic absorption spectrometry. The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer. In addition, Microtox bioassay was applied in order to study ecotoxicity of collected water samples. Sediments before the remediation technique showed acidic pH, high EC values and high trace elements content. The results obtained after the immobilization showed that sediment samples had neutral pH (average value of 8.3) low electrical conductivity (1.32 dS m-1) and low trace elements concentration, in some cases below the detection limit. When water samples obtained in the piezometers were evaluated, the results indicated that these samples correspond to rainfall waters and were characterized by neutral pH and trace elements concentration below the detection limit. In addition, none of them showed toxicity when submitted to the selected bioassay Then, we can conclude that the use of limestone filler constitutes an excellent option in sediments polluted by trace elements, because of risk for human health or ecosystem does not exist or is decreased in a large extent after the intervention. In addition, the designed experience allows stabilizer proportion to be optimized and may suppose a big cost-saving in the project in areas affected by mining activities.
Appraisal of iron deposits in southern and western Turkey
Gair, Jacob Eugene; Capan, Ussal Z.
1972-01-01
Between May 20 and June 17, 1969, previously known iron deposits were examined widely at eight separate localities in western Turkey. The object of the examinations was to learn the, nature, geologic setting, and approximate size of each deposit, to review prior estimates of size, and possibly recommend additional exploratory work.. The full extent of each deposit is poorly known at the present time, so recommended additional work entails drilling, digging trenches or pits, geologic mapping or, combinations of these activities. On Qaldagi Mountain an area of about 1 sq km is capped by bredciated chert under which may be a continuous zone of mixed iron oxides and chert fragments. The thickness of the ferruginous zone is poorly known but is as much as 12 meters, in at least one place. The- ferruginous material and chert appear to have formed by the weathering of serpentine, bun this concept needs further testing. Drilling is recommended to determine the grade, thickness, and extent-of the ferruginous zone beneath the cherty cap. Inasmuch as mining by hand sorting is in progress, part of the deposit can be considered to be marginally in the category of iron reserves. The Keceborlu iron deposit consists of earthy to slightly compacted hematite and limonite mixed with small chert fragments. The surface area underlain by ferruginous rock is about 5,000 to 7,500 sq meters. The maximum known thickness of the deposit is about 7 meters. Iron appears to have been concentrated by weathering and oxidation of cherty limestone. The deposit is probably either a remnant of a once more extensive weathered cap, or a sink hole filling. The Keceborlu area warrants a low priority for further exploration, but one drill hole is recommended to test the thickness of the deposit. The iron deposits at Mellec are layered and vein-magnetite replacements of limestone. The six known deposits are discontinuous. No additional. work is recommended. ' The Gilindire Iron deposit consists of irregular concentrations of pisolitic and earthy hematite and 'limonite along an unconformity or disconformity between two groups of limestone. The ferruginous zone is incompletely known around the rim of the large Gilindire syncline. Data from trenches 5 to 6 km around the syncline--about ? the possible length of the ferruginous zone--provide the main knowledge about the size and grade of ferruginous lenses. The ferruginous lenses range in thickness from a fraction of a meter, to about 3 meters, but appear to average 1 meter or less, and range in grade from about 10 to 37 percent iron. No additional exploration work is recommended at Gilindire. The Buyukeceli deposit consists of veinlike masses of earthy and compact hematite and limonite cutting fresh limestone. The veins apparently originally contained siderite which has been weathered and converted to iron oxide. Further exploration by drilling is recommended at such time as other largest deposits are able to be brought into the development stage in the Mediterranean coastal area of Turkey. The iron deposits overlooking Bayas on the Gulf of Iskenderun ere in one or more layers along the west-facing front of the Amanus Mountain Range, between beds of gently to moderately east-dipping limestone. Isolated exposures may represent a once-continuous ferruginous bed that has been blockfaulted and intruded by serpentine. The ferruginous bed (or beds) is 20-30 meters thick, and consists of a mixture of very fine grained hematite and claylike material. Iron content ranges from 20 to 40 percent and aluminum, averages about 15 percent. Available data on distribution are scant but suggest that one ferruginous bed may be 1-2 kilometers long, 500 meters wide and 20 meters thick. The potentially large size of the Payas deposits warrants an early coordinated program of drilling end beneficiation testing. An iron deposit was examined on a conspicuous limestone ridge in the Syrian graben east of the Amanus Moun
Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montross, Scott N.; Verba, Circe A.; Collins, Keith
The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries formore » supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO 4,SiO 4), xenotime (YPO 4,SiO 4), and apatite (Ca 5(PO 4) 3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification successfully identified the different mineral phases present in CUB. Further, our characterization results can guide techniques for extracting REEs from CUB, or other geologic and engineered materials. Whilst, interpretations will inform future REE separation and extraction techniques and technologies practical for commercial utilization of combustion byproducts generated by power plants.« less
Evolution of Earth&'s Atmosphere and Climate
NASA Astrophysics Data System (ADS)
Kasting, J. F.
2004-12-01
Earth's climate prior to 2.5 Ga seems to have been, if anything, warmer than today (1,2), despite the faintness of the young Sun (3). The idea that the young Sun was 25-30 percent less bright has been bolstered by data on mass loss from young, solar-type stars (4). Sagan and Mullen (1) suggested many years ago that the warming required to offset low solar luminosity was provided by high concentrations of reduced greenhouse gases. Ammonia has since been shown to be photochemically unstable in low-O2 atmospheres (5), but methane is a viable candidate. Methane photolyzes only at wavelengths shorter than 145 nm, so it is long-lived in the absence of O2 and O3. Furthermore, it is produced by anaerobic bacteria (methanogens) that are thought to have evolved early in Earth history (6). A biological methane flux comparable to today's flux, ~500 Tg CH4/yr, could have been generated by methanogens living in an anaerobic early ocean and sediments (7). This flux should have increased once oxygenic photosynthesis evolved because of increased production and recycling of organic matter (8). An Archean methane flux equal to today's flux could have generated atmospheric CH4 concentrations in excess of 1000 ppmv (9). This, in turn, could have provided 30 degrees or more of greenhouse warming (10) enough to have kept the early Earth warm even if atmospheric CO2 was no higher than today. All of this does not imply that CO2 concentrations must have been low throughout the Archean. Indeed, siderite-coated stream pebbles imply that pCO2 was greater than 2.5,e10-3 bar, or ~7 times present, at 3.2 Ga (11). Atmospheric CO2 could have been much higher than this if the continents had formed slowly (12) and/or if subduction of carbonates was inhibited (13). The rise in O2 at ~2.3 Ga (14,15) brought an end to the methane greenhouse and may have triggered the Huronian glaciation (10). Although methane concentrations declined with the rise of O2, they may still have remained much higher than today throughout much of the Proterozoic. High methane production rates in marine sediments underlying a sulfidic Proterozoic deep ocean (16) could have generated methane fluxes several times higher than today (17). The response of atmospheric CH4 to its input flux is nonlinear, so Proterozoic CH4 concentrations of 50-100 ppmv are not implausible (ibid.) A rise in either atmospheric O2 or oceanic sulfate near the end of the Proterozoic could have caused CH4 concentrations to decrease a second time and may have triggered the "Snowball Earth" glaciations (18). References: 1. Sagan, C. and Mullen G. Science 177, 52 (1972). 2. Walker, J. C. G. et al. In Schopf, J. W., ed., Earth's Earliest Biosphere: Its Origin and Evolution, p. 260, Princeton, NJ, Princeton Univ. Press (1983). 3. Gough, D.O. Solar Phys. 74, 21 (1981). 4. Wood, B.E. et al., Ap. J. 574, 412 (2002). 5. Kuhn, W.R. and Atreya, S.K. Icarus 37, 207 (1979). 6. Woese, C.R. and Fox, G.E. PNAS 74, 5088 (1977). 7. Kharecha, P. et al., Geobiol. (sub.). 8. Catling, D.C. et al., Science 293, 839 (2001). 9. Pavlov, A.A. et al., JGR 106, 23,267 (2001). 10. Pavlov, A.A., et al., JGR 105, 11,981 (2000). 11. Hessler, A.M., et al., Nature 428, 736 (2004). 12. Walker, J.C.G. Orig. of Life 16, 117 (1985). 13. Sleep, N.H. et al., PNAS 98, 3666 (2001). 14. Holland, H. D. In Early Life on Earth, p. 237, New York, Columbia Univ. Press (1994). 15. Farquhar, J. et al., Science 289, 756 (2000). 16. Canfield, D.E. Nature 396, 450 (1998). 17. Pavlov, A.A. et al., Geol. 31, 87 (2003). 18. Hoffman, P.F., et al., Science 281, 1342 (1998).
NASA Astrophysics Data System (ADS)
Lerouge, C.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Widory, D.; Guerrot, C.; Buschaert, S.
2009-04-01
The Underground Research Laboratory of Bure, located in the Eastern part of the Paris Basin, was selected by ANDRA (French Agency for Nuclear Management) in order to study the feasibility of a nuclear waste disposal in the Callovian-Oxfordian thick clayey formation at 400 meters depth. Since 1994's, numerous investigations have been initiated to understand and predict the behaviour of the clay formation in time and in space, by constraining its stability, the chemical evolution of the porewaters, and solution transfers between the clayey formation and its adjacent limestone sequences during geological times (ANDRA, 2005). In that way, this study presents combined new mineralogical and isotopic data of the diagenetic mineral sequence to constrain the porewater chemistry of the rock at different stages of the sedimentary then burial history of the clayey formation. The petrological study of Callovian-Oxfordian claystones provided evidence of the following diagenetic mineral sequence: 1) Framboïdal pyrite ± micritic calcite in replacement of carbonate bioclasts and in bioturbations, 2) Iron-rich euhedral carbonates (ankerite, sideroplesite), Glauconite, 3) Sparry dolomite, celestite in residual porosity, 4) Chalcedony 5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (-38 to +74 permil/CDT), providing evidence of bacterial sulphate reduction processes. The lowest negative values (-38 to -22 permil) indicate precipitation of pyrite in a marine environment with a permanent recharge in sulphate, whereas the higher pyrite δ34S values (-14 up to +74 permil) show that pyrite precipitated in a system that closed for sulphate. Consequently the variations of pyrite δ34S in bioturbations along the lithostratigraphic profil indicate a change of sedimentation conditions from a deep marine environment to an environment with alternative recharge of marine sulphates; that is consistent with the transgression/regression cycle observed in the middle sequence of the formation. The δ34S values of celestite (+ 22 to +31 permil /CDT) reflect the last evolution stage of the system at which the bacterial activity ends, the celestite corresponding to the deposition of the residual dissolved sulphate anions in the diagenetic porewaters. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is consistent with a deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates (δ13C= +0.2 to +2.3 permil/PDB, δ18O= +27.7 to +28.7 permil/SMOW) whereas late diagenetic siderite is slightly 13C- depleted. The 13C-depletion could be attributed to a partial contribution in diagenetic porewaters of carbonate ions derived partially from the degradation of organic matter issue of the bacterial sulphate reduction. The δ18O values of late diagenetic chalcedony range between +27 and +31 permil(/SMOW), suggesting precipitation from marine-derived porewaters at temperatures of maximum burial (~40-50°C). Late calcite in veinlet reworking with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ18O values (~+19 permil/SMOW), suggesting they precipitated from meteoric fluids (δ18O ~ -6 permil), whose signature is close to present-day porewaters of the formation. To conclude, combined mineralogical and isotopic data show that pyrite, sulfates, calcite cement, euhedral iron-bearing carbonates and probably chalcedony are diagenetic phases precipitated from marine-derived porewaters in conditions controlled by bacterial sulphate reduction. A calcite veinlet reworking chalcedony and celestite (in the middle sequence of the formation) and euhedral quartz encrusting a vug in a limestone from the top of the clayey formation are the only mineral records of the introduction of meteoric fluid in the clay formation, and the only phases at isotopic equilibrium with present-day porewaters.
Slack, John F.
2012-01-01
Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As, consistent with the general lack of abundant chalcopyrite in cobaltite-rich samples.Paragenetic relations determined by scanning electron microscopy indicate that the earliest Y-REE-Be mineralization preceded deposition of Co, Cu, Au, and Bi. Allanite, xenotime, and gadolinite-(Y) commonly occur as intergrowths with and inclusions in cobaltite; the opposite texture is rare. Monazite, in contrast, forms a poikiloblastic matrix to cobaltite and thin rims on allanite and xenotime, reflecting a later metamorphic paragenesis. Allanite and xenotime also show evidence of late dissolution and reprecipitation, forming discordant rims on older anhedral allanite and xenotime and separate euhedral crystals of each mineral. Textural data suggest extensive deformation of the deposits by folding and shearing, and by pervasive recrystallization, all during Cretaceous metamorphism. Sensitive high resolution ion microprobe U-Pb geochronology by Aleinikoff et al. (2012) supports these paragenetic interpretations, documenting contemporaneous Mesoproterozoic growth of early xenotime and crystallization of megacrystic A-type granite on the northern border of the district. These ages are used together with mineralogical and geochemical data from the present study to support an epigenetic, IOCG model for Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt. A sulfide facies variant of IOCG deposits is proposed for the Blackbird district, in which reducing hydrothermal conditions favored deposition of sulfide minerals over iron oxides. This new model includes Mesoproterozoic vein mineralization and related Fe-Cl metasomatism that formed the biotite-rich lenses, a predominantly felsic magmatic source for metals in the deposits, given their local abundance of Y, REEs, and Be, and a major sedimentary component in the hydrothermal fluids based on independent sulfur isotope and boron isotope data for sulfides and ore-related tourmaline, respectively.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-02-01
A novel high pressure column flow reactor was used to investigate the evolution of solute chemistry along a 2.3 m flow path during pure water- and CO2-charged water-basaltic glass interaction experiments at 22 and 50 °C and 10-5.7 to 22 bars partial pressure of CO2. Experimental results and geochemical modelling showed the pH of injected pure water evolved rapidly from 6.7 to 9-9.5 and most of the iron released to the fluid phase was subsequently consumed by secondary minerals, similar to natural meteoric water-basalt systems. In contrast to natural systems, however, the aqueous aluminium concentration remained relatively high along the entire flow path. The aqueous fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. As CO2-charged water replaced the alkaline fluid within the column, the fluid briefly became supersaturated with respect to siderite. Basaltic glass dissolution in the column reactor, however, was insufficient to overcome the pH buffer capacity of CO2-charged water. The pH of this CO2-charged water rose from an initial 3.4 to only 4.5 in the column reactor. This acidic reactive fluid was undersaturated with respect to carbonate minerals but supersaturated with respect to clays and Fe hydroxides at 22 °C, and with respect to clays and Al hydroxides at 50 °C. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility and aqueous concentration of several metals increased significantly with the addition of CO2 to the inlet fluid, and some metals, including Mn, Cr, Al, and As exceeded the allowable drinking water limits. Iron became mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Although carbonate minerals did not precipitate in the column reactor in response to CO2-charged water-basaltic glass interaction, once this fluid exited the reactor, carbonates precipitated as the fluid degassed at the outlet. Substantial differences were found between the results of geochemical modelling calculations and the observed chemical evolution of the fluids during the experiments. These differences underscore the need to improve the models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface. The pH increase from 3.4 to 4.5 of the CO2-rich inlet fluid does not immobilize toxic elements at ambient temperature but immobilizes Al and Cr at 50 °C. This indicates that further neutralization of CO2-charged water is required for decreased toxic element mobility. The CO2-charged water injection enhances the mobility of redox sensitive Fe2+ significantly making it available for the storage of injected carbon as iron carbonate minerals. The precipitation of aluminosilicates likely occurred at a pH of 4.2-4.5 in CO2-charged waters. These secondary phases can (1) fill the available pore space and therefore clog the host rock in the vicinity of the injection well, and (2) incorporate some divalent cations limiting their availability for carbon storage. The inability of simple reactive transport models to describe accurately the fluid evolution in this well constrained one dimensional flow system suggests that significant improvements need to be made to such models before we can predict with confidence the fate and consequences of injecting carbon dioxide into the subsurface. Column reactors such as that used in this study could be used to facilitate ex situ carbon mineral storage. Carbonate precipitation at the outlet of the reactor suggests that the harvesting of divalent metals from rocks using CO2-charged waters could potentially be upscaled to an industrial carbonation process.
Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky
Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield
1962-01-01
The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f
Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.
1993-01-01
Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4 percent of the total ground-water flow in the study area. Ground waters in the vicinity of Wright-Patterson Air Force Base can be classified into two compositional groups on the basis of their chemical composition: calcium magnesium bicarbonate-type and sodium chloride-type waters. Calcium magnesium bicarbonate-type waters are found in the glacial deposits and the Brassfield Limestone, whereas the sodium chloride waters are exclusively associated with the shales. Equilibrium speciation calculations indicate that ground water of the glacial drift aquifer is in equilibrium with calcite, dolomite, and chalcedony, but is undersaturated with respect to gypsum and fluorite. Waters from the shales are slightly supersaturated with respect to calcite, dolomite, and siderite but are undersaturated with respect to chalcedony. Simple-mass balance calculations treating boron as a conservative species indicate that little (< 5 percent) or no recharge from the shales to the glacial drift aquifer takes place. Data on the stable isotopes of oxygen and hydrogen indicate a meteoric origin for all ground water beneath Wright-Patterson Air Force Base, but the data were inconclusive with respect to identification of distinct isotopic differences between water collected from the glacial drift and bedrock aquifers. Tritium concentrations used to distinguish waters having a pre-and post-1953 recharge component indicate that most water entered the glacial drift aquifer after 1953. This finding indicates that recharge from shallow to deep parts (greater than 150 feet) of the aquifer takes place over time intervals of a few years or decades. However, the fact that some deep parts of the glacial aquifer did not contain measurable tritium indicates that ground-water flow from recharge zones to these parts of the aquifer takes decades or longer.
NASA Astrophysics Data System (ADS)
van Berk, Wolfgang; Schulz, Hans-Martin
2010-05-01
Crude oil quality in reservoirs can be modified by degradation processes at oil-water contacts (OWC). Mineral phase assemblages, composition of coexisting pore water, and type and amount of hydrocarbon degradation products (HDP) are controlling factors in complex hydrogeochemical processes in hydrocarbon-bearing siliciclastic reservoirs, which have undergone different degrees of biodegradation. Moreover, the composition of coexisting gas (particularly CO2 partial pressure) results from different pathways of hydrogeochemical equilibration. In a first step we analysed recent and palaeo-OWCs in the Heidrun field. Anaerobic decomposition of oil components at the OWC resulted in the release of methane and carbon dioxide and subsequent dissolution of feldspars (anorthite and adularia) leading to the formation of secondary kaolinite and carbonate phases. Less intensively degraded hydrocarbons co-occur with calcite, whereas strongly degraded hydrocarbons co-occur with solid solution carbonate phase (siderite, magnesite, calcite) enriched in δ13C. To test such processes quantitatively in a second step, CO2 equilibria and mass transfers induced by organic-inorganic interactions have been hydrogeochemically modelled in different semi-generic scenarios with data from the Norwegian continental shelf (acc. Smith & Ehrenberg 1989). The model is based on chemical thermodynamics and includes irreversible reactions representing hydrolytic disproportionation of hydrocarbons according to Seewald's (2006) overall reaction (1a) which is additionally applied in our modelling work in an extended form including acetic acid (1b): (1) R-CH2-CH2-CH3 + 4H2O -> R + 2CO2 + CH4 + 5H2, (2) R-CH2-CH2-CH3 + 4H2O -> R + 1.9CO2 + 0.1CH3COOH + 0.9CH4 + 5H2. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the observed primary reservoir composition at 72 °C. Modelled equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of HDP. Modelled CO2 partial pressure values in a multicomponent gas phase equilibrated with K-feldspar, quartz, kaolinite, and calcite resemble measured data. Similar CO2 contents result from acetic acid addition (eq. 1b). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K-feldspar (van Berk et al., 2009). Third and based on data by Ehrenberg & Jakobsen (2001), the effects of organic-inorganic interactions at OWCs in Brent Group reservoir sandstones from the Gullfaks Oilfield (offshore Norway) have been hydrogeochemically modelled. Observed local changes in mineral phase assemblage compositions (content of different feldspar types, kaolinite, carbonate) and CO2 partial pressures are attributed to varying degrees of oil-biodegradation (up to more than 10 %; Horstadt et al. 1992). Modelling results are congruent with observations and indicate that (i) intense dissolution of anorthite, (ii) less intense dissolution of albite, (iii) minor dissolution of K-feldspar, (iv) intense precipitation of kaolinite and quartz, (v) less intense precipitation of carbonate, and (vi) formation of CO2 partial pressures are driven by the release of HDP. References Ehrenberg SN & Jakobsen KG (2001) Plagioclase dissolution related to biodegradation of oil in Brent Group sandstones (Middle Jurassic) of Gullfaks Field, northern North Sea. Sedimentology, 48, 703-721. Smith JT & Ehrenberg SN (1989) Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: relationship to inorganic chemical equilibrium. Marine and Petroleum Geology, 6, 129-135. Seewald JS (2003) Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426, 327-333. van Berk, W, Schulz, H-M & Fu, Y (2009) Hydrogeochemical modelling of CO2 equilibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, 253-262.
A Structural and Molecular Approach for the Study Biomarkers
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie; Vali, Hojatollah; Sears, S. Kelly; Roh, Yul
2001-01-01
Investigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life, is referred to as organic synthesis on mineral surfaces. Furthermore, it is suggested that the interaction between mineral surfaces and simple organic molecules resulted in the formation of amino acids, RNA, and perhaps other more complex molecules such as proteins. On the other hand, in natural systems, it is recognized that functional groups on cell walls or membranes of microorganisms serve as sites of nucleation and crystallization. The precise replication of biominerals with controlled structure, morphology, size and texture is not confined to higher organisms as it also occurs in primitive prokaryotic cells such as magnetotactic bacteria and cyanobacteria. This suggests that the principal strategies of biomineralization were established early on in the evolutionary history of organisms. It is critical, therefore, to search for common mechanisms within diverse biological systems. One such common factor is the capability for organization and self-assembly. Organic macromolecules such as proteins and lipids can aggregate and polymerize forming membranes or extracellular matrix. At the organic-inorganic interface, several factors such as lattice geometry, polarity, stereochemistry and topography may act in concert to control nucleation and growth of crystals. Although several models have been proposed that discuss the significance of these factors for biomineralization, no comprehensive experimental data are available. In contrast to crystallization in exclusively inorganic systems, the kinetics of reaction and structural relationships between organic and inorganic phases in biominerals or biomimetic material is poorly understood. For example, it is not clear if the concept of epitactic growth (geometrical matching of unit cells at the interface of a secondary crystal growing on a primary crystal) applies to organic-inorganic systems. In contrast to inorganic templates that often have a smooth and rigid surface that promotes epitactic growth, biological substrates are usually rough and result in a large degree of mismatch. It is apparent that factors controlling the reaction at the crystal-matrix interface are strongly dependent upon the nature of the substrate. Therefore, characterization of the assembled organic surface and surface structure of the inorganic phase is crucial to understanding the processes of biomineralization. The focus of our research is the investigation of the processes leading to the nucleation and growth of crystals on both natural and synthetic systems through an interdisciplinary approach that integrates molecular biology, morphology and mineralogy using advanced preparation and analytical techniques. We have studied run-products, particularly magnetite, siderite and other carbonates, that resulted from extracellular biomineralization by extremophiles isolated from a variety of extreme environments ranging from permafrost to hydrothermal vent systems. The results of this study are critical to recognizing biomarkers in terrestrial and extraterrestrial environments.
Composition and properties of the Pierre Shale and equivalent rocks, northern Great Plains region
Schultz, Leonard Gene; Tourtelot, H.A.; Gill, J.R.; Boerngen, J.G.
1980-01-01
The Pierre Shale and equivalent rocks of Late Cretaceous age consist in the east-central Dakotas of several hundred feet of offshore-marine shale and minor marl; in west-central Montana near the sediment source the equivalents of the Pierre Shale consist of several thousand feet of volcanic-rich and mostly nonmarine sediments; and in the area between, both types of rock are separated by tongues of nearshore-marine siltstone and sandstone that mark three major transgressions of the sea across the area. The major-, minor-, and trace-element composition was determined for 226 samples of these rocks, and the mineralogical composition was determined for 1,350 samples. Slurry pH, Atterberg limits, and grain and bulk densities were determined on some samples. The arithmetic mean, in percent, and standard deviation (in parentheses) of major and minor elements, mostly in shale and siltstone and excluding the 23 chemically analyzed bentonite samples, are as follows: SiO2 60.8 (7.9) Al2O3 14.4 (2.5) Fe2O3 3.4 (1.4) FeO 1.1 (1.2) MgO 2.2 (1.0) CaO 2.7 (0.48) Na2O 1.1 (0.56) K2O 2.4 (0.57) H2O- 3.2 (1.3) H2O+ 4.3 (1.2) TiO2 0.58 (0.12) P2O5 0.14 (0.073) S 0.37 (1.1) F 0.71 (0.15) Cl 0.16 (0.024) CO2 2.1 (7.0) C, organic 0.94 (1.8) The mean and standard deviation of minerals as determined by X-ray methods, excluding bentonite samples, is as follows: clay minerals, 53 (20); quartz, 24 (13); cristobalite, 1 (5); potassium-feldspar, 1 (2); plagioclase, 6 (7); anorthite content from 20 to 40 percent; calcite, 5 (14); dolomite, 4 (7); organic matter, 1 (2); and sparsely scattered gypsum, jarosite, pyrite, zeolites, augite, siderite, and probably minor amounts of hydrated iron-manganese (Fe-Mn) oxides. The mean and standard deviation of the clay-mineral fraction is as follows: mixed-layer illite-smectite, 70 (20); illite, 16 (9); chlorite, 3 (6); and kaolinite, 9 (13). The mixed-layer clay, except in the Montana disturbed belt, is a random interlayering of 20 to 60 percent illite-type layers, about 35 percent beidelite-type layers, and the remainder montmorillonite-type layers; chlorite or vermiculite layers are rare. Most bentonite differs from shale in its small quartz content, rarely more than a few percent, in the more calcic composition and hightemperature thermal state of its plagioclase, and in its rare kaolinite, near absence of chlorite, and lack of illite-either free or mixed layered with smectite. Bentonite commonly consists of more than 90 percent smectite in which montmorillonite is interlayered with a smaller amount of beidellite. The clay-mineral composition of marine rock, including proportions of layers in the dominant illite-smectite, averages about the same as in the nonmarine rock, though in the latter the composition is more variable. The average content of major chemical constituents also is closely similar, partly because the large clay content of fine-grained offshore-marine shale is balanced by the small clay content of nearshore-marine siltstone and sandstone. In addition, the alumina and alkalic elements in an average of 10 percent more clay in marine rock are partly balanced by these constituents in the 5 percent more feldspar in nonmarine rock. Much of the observed regional and stratigraphic variation in maj or constituents is the result of the three major east-west migrations of the depositional sites of nearshore-marine sandstone and siltstone. Dolomite is found almost exclusively in relatively coarse-grained rock, particularly in nearshore-marine siltstone where diagenetic dolomite is expected, but it is found almost as frequently in nonmarine siltstone. Amounts of minor constituents are nearly equal in marine and nonmarine rocks, except that pyrite and consequently sulfur are relatively sparse in nonmarine rock. Average amounts of organic matter found in marine and nonmarine rocks are nearly identical. However, organic matter in nonmarine rock occurs almost entirely in volumetric
Appreciation of scientific achievements of Jozef Hus.
NASA Astrophysics Data System (ADS)
Spassov, S.; Geeraerts, R.
2009-04-01
In 2004, the Geophysical Centre of the Royal Meteorological Institute of Belgium (RMIB) in Dourbes (south Belgium) celebrated its 50th anniversary. Fifty years of top research to which Jozef Hus contributed considerably. When he started his career in this governmental institution more than 40 years ago, palaeomagnetic research was absent at the RIMB. After finishing studies in condensed matter physics at Ghent University (Belgium) in 1963, he became an assistant at the RMIB and developed with Prof. Dr. A. De Vuyst, in charge of the geomagnetic observatory, a method for absolute measurements of all geomagnetic field elements with a proton magnetometer. Wishing to extend the record of geomagnetic field observations in time, Jozef began to set up a laboratory of his own and started to construct and develop instruments for palaeomagnetic research with competence, great enthusiasm and concentrated passion. This world-class laboratory was constructed between 1976 ad 1980. In 1981, he received the title Doctor of Sciences from the Free University of Brussels based on his thesis entitled "De indirecte meting van de seculaire verandering van het geomagnetisch veld". Palaeomagnetism of Quaternary sediments and archaeo- and rock magnetism have been Jozef's most important research fields. In fact, a short sojourn in Prof. E. Thellier's Laboratory of Geomagnetism at Saint-Maur-de-Fossés (Paris) in 1965, raised Jozef's interest in archaeomagnetism. He formed a solid basis for the detailed establishment of reference curves for declination and inclination for the Belgian territory for historical and archaeological times. He studied the suitability of burned archaeological materials to record the Earth's magnetic field as well as effects which influence accurate field registration in archaeological materials, such as magnetic refraction and magnetic anisotropy. During his career, Jozef promoted archaeomagnetism as a valuable dating tool and strengthened the cooperation with the archaeological community in a way that is almost unique in Europe. Jozef investigated loess/palaeosol deposits in Belgium, south-east Europe, central and eastern Asia and contributed to magnetostratigraphic dating and to a better understanding of the magnetisation process in these sediments. He mentioned for the first time that different post detrital remanence lock-in conditions could be responsible for the inconsistently observed stratigraphic position of the Matuyama-Brunhes boundary (MBB) on the Chinese Loess Plateau, which not always occurs in an interglacial period as expected from marine sediments. Sediment formation and its progressive transformation into soil are controlled by wind strength, temperature and humidity and alter the magnetic mineral content of the source material. Analysing the magnetic mineral content and texture of loesses and palaeosols he found that both lithologic units contain mainly the same magnetic mineral types, but that soil magnetic minerals were much more oxidised and of smaller grain sizes than in loess. He found also that the primary sedimentary fabric is in general only moderately modified in the soils. Jozef investigated also magnetic properties of weathering products and showed particularly that siderite, present in marine Quaternary sediments, alters when in contact with air forming haematite. He studied the acquisition of crystallisation magnetisation during the transformation of a paramagnetic (in ambient temperature) mineral into a mineral with ferromagnetic properties. He showed further that manganese could substitute iron in the goethite crystal lattice during crystal growth, hence decreasing the crystallinity degree. Besides the typical rock magnetic investigation for magnetic mineral characterisation Jozef often used Mössbauer-spectroscopy to corroborate interpretations. Jozef also promoted rock magnetism as a service to the environmental management community. Even, after retirement he remains active and proposed the application of magnetic methods for pollution detection within the frame of the project "Magnetic Valley" which aims at socio-economical development of the area around the Geophysical Centre. Jozef has always been searching for new applications of magnetic methods and aimed at collaboration with scientists from different research areas such as geochemistry, geology, archaeology and physics. Numerous transdisciplinary publications in internationally approved journals resulted from this activity. Besides his lecturing duties at the Free University of Brussels, he shared his experience by teaching young scientists such as for instance at the International Post-Graduate Training course on Fundamental and Applied Quaternary Geology and became a leading member of the European Research Training network AARCH (Archaeomagnetic Applications for the Rescue of Cultural Heritage). Together with the aerial photographer Charles Léva, Jozef promoted in his free time the application of geophysical prospection methods for searching archaeological structures in the subsurface and determining the archaeological nature of "marks" discovered by aerial photography. This fruitful work resulted for instance in the investigation of the Roman road system in Belgium. Both were the founders of the Interdisciplinary Centre for Aerial Photography and organised international symposia. A kaleidoscope of archaeo- and enviromagnetic topics will be presented, responding to the cornerstones of Jozef's successful and intensive research career as interdisciplinary archaeo-, rock- and enviromagnetist.
Geology of the Lake Mary quadrangle, Iron County, Michigan
Bayley, Richard W.
1959-01-01
The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.
Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits
NASA Astrophysics Data System (ADS)
Kucha, H.; Raith, J.
2009-04-01
*Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular 0.5 to 1um large fossilised bacteria with some nano-size spheres as well (Kucha et al., 1990). In the Silvermines and Ballinalack ores wavy bacterial film-like textures composed of peloids made up of Zn-calcite or Zn-siderite cores and ZnS rims are known (Kucha et al., 1990). 2) Alpine Zn-Pb deposits. Bleiberg sulphides, Austria, Zn-Pb ores display the δ34S‰ values from -32 to -2 (n=284), with mean close to 20‰ (Schroll & Rantitsch, 2005). Cardita and Crest ores contain wavy bacterial films (-28.84 to -27.91‰). Semimassive globular sphalerite with globules varying in size from 90 to 180um is a basic ZnS type in the Bleiberg ores with light sulphur from (-30.49 to -26.4‰). Based on sulphur isotope data, um-sized bacterial filaments, and spherical nano-textures seen in etched ZnS globules, sulphate reducing bacteria (SRB) involvement is suggested (Kucha et al. 2005). ZnS globules were formed by replacement of original peloids (i.e. bacterial colonies) and/or by agglomeration of original 10-15nm ZnS spheres secreted by SRB. The growth of peloids was promoted by unbalanced electric charges on the surfaces of these ZnS nano-spheres. 3) Upper Silesian MVT Zn-Pb deposits. Sulphur isotopes vary between 2 and 12‰, (mean 5‰) for early stage sulphides, main stage sulphides are characterised by S signature -2 to -15‰. Redeposition of ZnS from the horst to graben structures produced "pulvery" sphalerite with -19‰ (Haranczyk, 1993). Sulphide stalactites containing oxysulphides have δS‰ vales of -23.7. Bacterial microtextures occur mainly within oxysulphides and at the contact between Fe-smithsonite replaced by banded sphalerite (Kucha et al., 1990). 4) La Calamine and Engis, Belgium, contain bacterial micro- and nano-textures in ores related to karst cavities, and paleoweathering crusts (Kucha et al., 1990). The biogenic textures are represented by clumps of peloids, and bacterial mats occurring in banded sphalerite composed of replaced peloids. Peloids are composed of Zn-calcite cores and ZnS rims, oxysulphides, thiosulphates, vaesite and chalcedonic silica. Bacterial microtextures in all of the above mentioned deposits are as a rule associated with oxysulphides i.e. compounds with mixed and intermediate sulphur valences (Kucha et al., 1989). The origin of oxysulphides is probably related either directly to incomplete bacterial reduction of the sulphatic sulphur, or reaction of bacterial H2S with sulphatic S present in the fluids. Some of peloids are composed of oxysulphides (Kucha & Stumpfl, 1992; Kucha, 2003). Therefore, an interpretation of the S isotopic signature of bacterial textures should consider not only microbial community structure, but also the oxidative part of the sulphur cycle proceeding through compounds with mixed sulphur valences. References Druschel GK, Labrenz M, Thomsen-Ebert T, Fowler DA, Banfield JF (2002) Geochemical modelling of ZnS in biofilms: An example of ore depositional processes. Economic Geology, v 97, 1319-1329. Fallick, AE, Ashton JH, Boyce AJ, Ellam RM, Russell MJ (2001) Bacteria were responsible fort he magnitude of the world-class hydrothermal base metal sulphide orebody at Navan, Ireland. Economic Geology, v 96, 885 - 890. Haranczyk Cz (1993) Sulphur isotope models of genesis of the Silesian-Cracov Zn-Pb ore deposits. Geological Quarterly, v 37, 307 - 322. Kucha H (1988) Biogenic and non-biogenic concentration of sulfur and metals in the carbonate-hosted Ballinalack Zn-Pb deposit, Ireland. Min. Pet., 38, 171-187. Kucha H, Wouters R, Arkens O (1989) Determination of sulfur and iron valence by microprobe. Scanning Microscopy, 3, no 1, 89-97. Kucha H, Van der Biest J, Viaene W (1990) Peloids in strata bound Zn-Pb deposits and their genetic importance. Min. Deposita, 25, 132-139. Kucha H, Stumpfl EF (1992) Thiosulphates as precursors of banded sphalerite and pyrite at Bleiberg, Austria. Min. Mag., 56, 165-172. Kucha H (2003) Mississippi Valley Type Zn-Pb deposits of Upper Silesia, Poland, 253-272. In: Kelly, J., G., Andrew, C., J., Ashton, J., H., Boland, M., B., Earls, E., Fusciardi, L., Stanley, G. (eds) Europe's Major Base Metal Deposits, Irish Association for Economic Geology, Printed by Colour Books Ltd, Dublin 2003, 551 pp. Kucha H, Schroll E, Stumpfl EF (2005) Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineralium Deposita, v 40, 123-126. Schroll E, Rantitsch G (2005) Sulfur isotope patterns in the Bleiberg deposit (Eastern Alps) and their implications for genetically affiliated. Mineralogy and Petrology 148: 1-18.