Science.gov

Sample records for siegel modular forms

  1. Siegel modular forms and black hole entropy

    NASA Astrophysics Data System (ADS)

    Belin, Alexandre; Castro, Alejandra; Gomes, João; Keller, Christoph A.

    2017-04-01

    We discuss the application of Siegel Modular Forms to Black Hole entropy counting. The role of the Igusa cusp form χ 10 in the D1D5P system is well-known, and its transformation properties are what allows precision microstate counting in this case. We apply a similar method to extract the Fourier coefficients of other Siegel modular and paramodular forms, and we show that they could serve as candidates for other types of black holes. We investigate the growth of their coefficients, identifying the dominant contributions and the leading logarithmic corrections in various regimes. We also discuss similarities and differences to the behavior of χ 10, and possible physical interpretations of such forms both from a microscopic and gravitational point of view.

  2. K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications

    NASA Astrophysics Data System (ADS)

    Malmendier, Andreas; Morrison, David R.

    2015-08-01

    We construct non-geometric compactifications using the F-theory dual of the heterotic string compactified on a two-torus, together with a close connection between Siegel modular forms of genus two and the equations of certain K3 surfaces. The modular group mixes together the Kähler, complex structure, and Wilson line moduli of the torus yielding weakly coupled heterotic string compactifications which have no large radius interpretation.

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  4. Unimodal sequences and quantum and mock modular forms

    PubMed Central

    Bryson, Jennifer; Ono, Ken; Pitman, Sarah; Rhoades, Robert C.

    2012-01-01

    We show that the rank generating function U(t; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U(-1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F(q). As a result, we obtain a new representation for a certain generating function for L-values. The series U(i; q) = U(-i; q) is a mock modular form, and we use this fact to obtain new congruences for certain enumerative functions.

  5. Interview with Bernard Siegel.

    PubMed

    Siegel, Bernard

    2017-04-01

    Bernard Siegel is the Founder and full-time Executive Director of the nonprofit Regenerative Medicine Foundation (FL, USA). He is the Founder and the Co-chair of the World Stem Cell Summit series of global conferences and Editor-in-Chief of the World Stem Cell Report. He received his undergraduate and law degrees from the University of Miami (BA, 1972; JD, 1975) and has been a member of the Florida Bar since 1975. As a recognized policy expert relating to stem cell research, regenerative medicine and cloning, Bernard works with the world's leading stem cell researchers and advocates. He is also a frequent panelist and keynote speaker on the subject of stem cells, public policy and the societal implications of longevity.

  6. Multiple D3-Instantons and Mock Modular Forms I

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris

    2017-07-01

    We study D3-instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In a previous work, consistency of D3-instantons with S-duality was established at first order in the instanton expansion, using the modular properties of the M5-brane elliptic genus. We extend this analysis to the two-instanton level, where wall-crossing phenomena start playing a role. We focus on the contact potential, an analogue of the Kähler potential which must transform as a modular form under S-duality. We show that it can be expressed in terms of a suitable modification of the partition function of D4-D2-D0 BPS black holes, constructed out of the generating function of MSW invariants (the latter coincide with Donaldson-Thomas invariants in a particular chamber). Modular invariance of the contact potential then requires that, in the case where the D3-brane wraps a reducible divisor, the generating function of MSW invariants must transform as a vector-valued mock modular form, with a specific modular completion built from the MSW invariants of the constituents. Physically, this gives a powerful constraint on the degeneracies of BPS black holes. Mathematically, our result gives a universal prediction for the modular properties of Donaldson-Thomas invariants of pure two-dimensional sheaves.

  7. Multiple D3-Instantons and Mock Modular Forms I

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Banerjee, Sibasish; Manschot, Jan; Pioline, Boris

    2016-11-01

    We study D3-instanton corrections to the hypermultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In a previous work, consistency of D3-instantons with S-duality was established at first order in the instanton expansion, using the modular properties of the M5-brane elliptic genus. We extend this analysis to the two-instanton level, where wall-crossing phenomena start playing a role. We focus on the contact potential, an analogue of the Kähler potential which must transform as a modular form under S-duality. We show that it can be expressed in terms of a suitable modification of the partition function of D4-D2-D0 BPS black holes, constructed out of the generating function of MSW invariants (the latter coincide with Donaldson-Thomas invariants in a particular chamber). Modular invariance of the contact potential then requires that, in the case where the D3-brane wraps a reducible divisor, the generating function of MSW invariants must transform as a vector-valued mock modular form, with a specific modular completion built from the MSW invariants of the constituents. Physically, this gives a powerful constraint on the degeneracies of BPS black holes. Mathematically, our result gives a universal prediction for the modular properties of Donaldson-Thomas invariants of pure two-dimensional sheaves.

  8. A Convenient Coordinatization of Siegel-Jacobi Domains

    NASA Astrophysics Data System (ADS)

    Berceanu, Stefan

    2012-11-01

    We determine the homogeneous Kähler diffeomorphism FC which expresses the Kähler two-form on the Siegel-Jacobi ball DJn = Cn× Dn as the sum of the Kähler two-form on ℂn and the one on the Siegel ball Dn. The classical motion and quantum evolution on DJn determined by a hermitian linear Hamiltonian in the generators of the Jacobi group GnJ = Hn\\rtimes Sp (n, R)C are described by a matrix Riccati equation on Dn and a linear first-order differential equation in z ∈ ℂn, with coefficients depending also on W\\in Dn. Hn denotes the (2n+1)-dimensional Heisenberg group. The system of linear differential equations attached to the matrix Riccati equation is a linear Hamiltonian system on Dn. When the transform FC : (η, W) → (z, W) is applied, the first-order differential equation in the variable η = (In-W\\bar {W})-1(z+W\\bar; {z})\\in Cn becomes decoupled from the motion on the Siegel ball. Similar considerations are presented for the Siegel-Jacobi upper half plane XnJ = Cn× Xn, where Xn denotes the Siegel upper half plane.

  9. Balanced Metric and Berezin Quantization on the Siegel-Jacobi Ball

    NASA Astrophysics Data System (ADS)

    Berceanu, Stefan

    2016-06-01

    We determine the matrix of the balanced metric of the Siegel-Jacobi ball and its inverse. We calculate the scalar curvature, the Ricci form and the Laplace-Beltrami operator of this manifold. We discuss several geometric aspects related with Berezin quantization on the Siegel-Jacobi ball.

  10. On the Scaling Ratios for Siegel Disks

    NASA Astrophysics Data System (ADS)

    Gaidashev, Denis

    2015-01-01

    The boundary of the Siegel disk of a quadratic polynomial with an irrationally indifferent fixed point and the rotation number whose continued fraction expansion is preperiodic has been observed to be self-similar with a certain scaling ratio. The restriction of the dynamics of the quadratic polynomial to the boundary of the Siegel disk is known to be quasisymmetrically conjugate to the rigid rotation with the same rotation number. The geometry of this self-similarity is universal for a large class of holomorphic maps. A renormalization explanation of this universality has been proposed in the literature. In this paper we provide an estimate on the quasisymmetric constant of the conjugacy, and use it to prove bounds on the scaling ratio of the form where s is the period of the continued fraction, and depends on the rotation number in an explicit way, while C > 1, and depend only on the maximum of the integers in the continued fraction expansion of the rotation number.

  11. Modular Form Representation for Periods of Hyperelliptic Integrals

    NASA Astrophysics Data System (ADS)

    Eilers, Keno

    2016-06-01

    To every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including only the curve's parameters λ_j and modular forms. By a change of basis of the meromorphic differentials one can further simplify this expression. We discuss the advantages of these explicitly given bases, which we call Baker and Klein basis, respectively.

  12. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable.

  13. Modular forms and a generalized Cardy formula in higher dimensions

    NASA Astrophysics Data System (ADS)

    Shaghoulian, Edgar

    2016-06-01

    We derive a formula which applies to conformal field theories on a spatial torus and gives the asymptotic density of states solely in terms of the vacuum energy on a parallel plate geometry. The formula follows immediately from global scale and Lorentz invariance, but to our knowledge has not previously been made explicit. It can also be understood from the fact that log Z on T2×Rd -1 transforms as the absolute value of a nonholomorphic modular form of weight d -1 , which we show. The results are extended to theories which violate Lorentz invariance and hyperscaling but maintain a scaling symmetry. The formula is checked for the cases of a free scalar, free Maxwell gauge field, and free N =4 super Yang-Mills. The case of a Maxwell gauge field gives Casimir's original calculation of the electromagnetic force between parallel plates in terms of the entropy of a photon gas.

  14. Logarithmic conformal field theory, log-modular tensor categories and modular forms

    NASA Astrophysics Data System (ADS)

    Creutzig, Thomas; Gannon, Terry

    2017-10-01

    The two pillars of rational conformal field theory and rational vertex operator algebras are modularity of characters, and the interpretation of its category of modules as a modular tensor category. Overarching these pillars is the Verlinde formula. In this paper we consider the more general class of logarithmic conformal field theories and C 2-cofinite vertex operator algebras. We suggest logarithmic variants of those pillars and of Verlinde’s formula. We illustrate our ideas with the \

  15. Israel Scheffler Interviewed by Harvey Siegel

    ERIC Educational Resources Information Center

    Journal of Philosophy of Education, 2005

    2005-01-01

    In this interview with Harvey Siegel, Israel Scheffler reflects on his career in philosophy of education. Beginning with his unusual entry into the field, he discusses the connections between his own early projects and that of R. S. Peters and Paul Hirst to make philosophy a central part of teacher education programmes, and articulates his view of…

  16. Gaussian distributions, Jacobi group, and Siegel-Jacobi space

    SciTech Connect

    Molitor, Mathieu

    2014-12-15

    Let N be the space of Gaussian distribution functions over ℝ, regarded as a 2-dimensional statistical manifold parameterized by the mean μ and the deviation σ. In this paper, we show that the tangent bundle of N, endowed with its natural Kähler structure, is the Siegel-Jacobi space appearing in the context of Number Theory and Jacobi forms. Geometrical aspects of the Siegel-Jacobi space are discussed in detail (completeness, curvature, group of holomorphic isometries, space of Kähler functions, and relationship to the Jacobi group), and are related to the quantum formalism in its geometrical form, i.e., based on the Kähler structure of the complex projective space. This paper is a continuation of our previous work [M. Molitor, “Remarks on the statistical origin of the geometrical formulation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 9(3), 1220001, 9 (2012); M. Molitor, “Information geometry and the hydrodynamical formulation of quantum mechanics,” e-print arXiv (2012); M. Molitor, “Exponential families, Kähler geometry and quantum mechanics,” J. Geom. Phys. 70, 54–80 (2013)], where we studied the quantum formalism from a geometric and information-theoretical point of view.

  17. Gaussian distributions, Jacobi group, and Siegel-Jacobi space

    NASA Astrophysics Data System (ADS)

    Molitor, Mathieu

    2014-12-01

    Let N be the space of Gaussian distribution functions over ℝ, regarded as a 2-dimensional statistical manifold parameterized by the mean μ and the deviation σ. In this paper, we show that the tangent bundle of N , endowed with its natural Kähler structure, is the Siegel-Jacobi space appearing in the context of Number Theory and Jacobi forms. Geometrical aspects of the Siegel-Jacobi space are discussed in detail (completeness, curvature, group of holomorphic isometries, space of Kähler functions, and relationship to the Jacobi group), and are related to the quantum formalism in its geometrical form, i.e., based on the Kähler structure of the complex projective space. This paper is a continuation of our previous work [M. Molitor, "Remarks on the statistical origin of the geometrical formulation of quantum mechanics," Int. J. Geom. Methods Mod. Phys. 9(3), 1220001, 9 (2012); M. Molitor, "Information geometry and the hydrodynamical formulation of quantum mechanics," e-print arXiv (2012); M. Molitor, "Exponential families, Kähler geometry and quantum mechanics," J. Geom. Phys. 70, 54-80 (2013)], where we studied the quantum formalism from a geometric and information-theoretical point of view.

  18. TM at Folsom Prison: A Critique of Abrams and Siegel.

    ERIC Educational Resources Information Center

    Allen, Don; And Others

    1979-01-01

    An article by Abrams and Siegel, "The Transcendental Meditation Program at Folsom State Prison: A Cross Validation Study" is examined and found wanting in several respects. A second article responds that the findings of the Abrams-Siegel study resulted from the Rosenthal effect, experimental bias, and other effects. (LPG)

  19. The Siegel Upper Half Space is a Marsden-Weinstein Quotient: Symplectic Reduction and Gaussian Wave Packets

    NASA Astrophysics Data System (ADS)

    Ohsawa, Tomoki

    2015-09-01

    We show that the Siegel upper half space is identified with the Marsden-Weinstein quotient obtained by symplectic reduction of the cotangent bundle with O(2 d)-symmetry. The reduced symplectic form on corresponding to the standard symplectic form on turns out to be a constant multiple of the symplectic form on obtained by Siegel. Our motivation is to understand the geometry behind two different formulations of the Gaussian wave packet dynamics commonly used in semiclassical mechanics. Specifically, we show that the two formulations are related via the symplectic reduction.

  20. Modular forms, Schwarzian conditions, and symmetries of differential equations in physics

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Y.; Maillard, J.-M.

    2017-05-01

    We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to

  1. The Production Phase for the National Compact Stellarator Experiment (NCSX) Modular Coil Winding Forms

    SciTech Connect

    Heitzenroeder, P.; Brown, T.; Neilson, G.; Malinowski, F.; Sutton, L.; Nelson, B.; Williamson, D.; Horton, N.; Goddard, B.; Edwards, J.; Bowling, K.; Hatzilias, K.

    2005-10-20

    The production phase for the NCSX modular coil winding forms has been underway for approximately one year as of this date. This is the culmination of R&D efforts performed in 2001-4. The R&D efforts included limited manufacturing studies while NCSX was in its conceptual design phase followed by more detailed manufacturing studies by two teams which included the fabrication of full scale prototypes. This provided the foundation necessary for the production parts to be produced under a firm price and schedule contract that was issued in September 2004. This paper will describe the winding forms, the production team and team management, details of the production process, and the achievements for the first year.

  2. Brain and cognitive evolution: forms of modularity and functions of mind.

    PubMed

    Geary, David C; Huffman, Kelly J

    2002-09-01

    Genetic and neurobiological research is reviewed as related to controversy over the extent to which neocortical organization and associated cognitive functions are genetically constrained or emerge through patterns of developmental experience. An evolutionary framework that accommodates genetic constraint and experiential modification of brain organization and cognitive function is then proposed. The authors argue that 4 forms of modularity and 3 forms of neural and cognitive plasticity define the relation between genetic constraint and the influence of developmental experience. For humans, the result is the ontogenetic emergence of functional modules in the domains of folk psychology, folk biology, and folk physics. The authors present a taxonomy of these modules and review associated research relating to brain and cognitive plasticity in these domains.

  3. In Excess of Epistemology: Siegel, Taylor, Heidegger and the Conditions of Thought

    ERIC Educational Resources Information Center

    Williams, Emma

    2015-01-01

    Harvey Siegel's epistemologically-informed conception of critical thinking is one of the most influential accounts of critical thinking around today. In this article, I seek to open up an account of critical thinking that goes beyond the one defended by Siegel. I do this by re-reading an opposing view, which Siegel himself rejects as leaving…

  4. In Excess of Epistemology: Siegel, Taylor, Heidegger and the Conditions of Thought

    ERIC Educational Resources Information Center

    Williams, Emma

    2015-01-01

    Harvey Siegel's epistemologically-informed conception of critical thinking is one of the most influential accounts of critical thinking around today. In this article, I seek to open up an account of critical thinking that goes beyond the one defended by Siegel. I do this by re-reading an opposing view, which Siegel himself rejects as leaving…

  5. CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli

    PubMed Central

    Saggese, Anella; Isticato, Rachele; Cangiano, Giuseppina; Ricca, Ezio

    2016-01-01

    ABSTRACT CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central “modular” region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis. PMID:26953338

  6. The World Stem Cell Summit. Interview with Bernard Siegel.

    PubMed

    Siegel, Bernard

    2011-11-01

    Regenerative Medicine talks to Bernard Siegel, Executive Director of the Genetics Policy Institute (GPI) and founder of the annual World Stem Cell Summit. Bernard Siegel, JD, is the Founder and full-time Executive Director of the nonprofit Genetics Policy Institute (GPI), based in Wellington, FL, USA. He is the creator and co-chair of the World Stem Cell Summit series of global conferences and Editor-in-Chief of the World Stem Cell Report, which he also founded. He traded his 30-year courtroom career to found GPI, which leads the global 'Pro-Cures Movement' and Stem Cell Action Coalition. As a recognized policy expert on to stem cell research, regenerative medicine and cloning, Mr Siegel works with the world's leading stem cell researchers and advocates. Mr Siegel serves on the board of directors of the Coalition for Advancement of Medical Research (CAMR) and Americans for Cures Foundation. He also serves on the executive committee of the Alliance for Regenerative Medicine (ARM). He is a past co-chair of the Governmental Affairs Committee of the International Society for Stem Cell Research (ISSCR).

  7. Herman's Condition and Siegel Disks of Bi-Critical Polynomials

    NASA Astrophysics Data System (ADS)

    Chéritat, Arnaud; Roesch, Pascale

    2016-06-01

    We extend a theorem of Herman from the case of unicritical polynomials to the case of polynomials with two finite critical values. This theorem states that Siegel disks of such polynomials, under a diophantine condition (called Herman's condition) on the rotation number, must have a critical point on their boundaries.

  8. A computer model for simulation of absorption systems in flexible and modular form

    SciTech Connect

    Grossman, G; Gommed, K; Gadoth, D

    1991-08-01

    A computer code in a flexible and modular form developed for simulation of absorption systems makes it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. The equations are linked by a main program according to the user's specifications to form the complete system. The equations are solved simultaneously, and fluid properties are taken from a property data base. The code is user oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. The user conveys to the computer an image of his or her cycle by specifying the different subunits and their interconnection. Based on this information, the program calculates (1) the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system and (2) the heat duty at each unit, from which the coefficient of performance may be determined. The program has been used successfully to simulate a variety of single-stage, double-stage, and dual-loop heat pumps and heat transformers, with the working fluids LiBr-H{sup 2}O,H{sub 2}O-NH{sub 3}, LiBr/H{sub 2}O-NH{sub 3}, LiBr/ZnBr{sub 2}-CH{sub 3}OH, and more. 23 refs., 10 figs., 13 tabs.

  9. On Siegel's linearization theorem for fields of prime characteristic

    NASA Astrophysics Data System (ADS)

    Lindahl, Karl-Olof

    2004-05-01

    In 1981, Herman and Yoccoz (1983 Generalizations of some theorems of small divisors to non Archimedean fields Geometric Dynamics (Lecture Notes in Mathematics) ed J Palis Jr, pp 408-47 (Berlin: Springer) Proc. Rio de Janeiro, 1981) proved that Siegel's linearization theorem (Siegel C L 1942 Ann. Math. 43 607-12) is true also for non-Archimedean fields. However, the condition in Siegel's theorem is usually not satisfied over fields of prime characteristic. We consider the following open problem from non-Archimedean dynamics. Given an analytic function f defined over a complete, non-trivial valued field of characteristic p > 0, does there exist a convergent power series solution to the Schröder functional equation (2) that conjugates f to its linear part near an indifferent fixed point? We will give both positive and negative answers to this question, one of the problems being the presence of small divisors. When small divisors are present this brings about a problem of a combinatorial nature, where the convergence of the conjugacy is determined in terms of the characteristic of the state space and the powers of the monomials of f, rather than in terms of the diophantine properties of the multiplier, as in the complex case. In the case that small divisors are present, we show that quadratic polynomials are analytically linearizable if p = 2. We find an explicit formula for the coefficients of the conjugacy, and applying a result of Benedetto (2003 Am. J. Math. 125 581-622), we find the exact size of the corresponding Siegel disc and show that there is an indifferent periodic point on the boundary. In the case p > 2 we give a sufficient condition for divergence of the conjugacy for quadratic maps as well as for a certain class of power series containing a quadratic term (corollary 2.1).

  10. Allowable rotation numbers for Siegel disks of rational maps

    NASA Astrophysics Data System (ADS)

    Manlove, Joseph Michael

    The results presented here answers in part a conjecture of Douady about sharpness of the Brjuno condition. Douady hypothesized that a Siegel disk exists for a rational function if and only if the Brjuno condition is satisfied by the rotation number. It is known that the Brjuno condition is sharp for quadratic polynomials and many special families. This thesis focuses on a class of rational functions, many of which have not been considered previously. Specific examples of maps for which these results apply include quadratic rational maps with an attracting cycle. Also included are those rational functions arising of Newton's method on cubic polynomials with distinct roots.

  11. Why Siegel's Arguments Are Irrelevant to the Definition of Learning Disabilities.

    ERIC Educational Resources Information Center

    Baldwin, R. Scott; Vaughn, Sharon

    1989-01-01

    This critique of a paper by Linda Siegel (EC221505) challenges Siegel's assumptions on the relationship of Intelligence Quotient to learning disabilities as being unacceptable and non-literature-based, and points out that discussion of Intelligence Quotient cutoffs may be moot given that 49 states employ no cutoff for learning disabilities. (JDD)

  12. Critical Thinking, Epistemic Virtue, and the Significance of Inclusion: Reflections on Harvey Siegel's Theory of Rationality

    ERIC Educational Resources Information Center

    Kilby, R. Jay

    2004-01-01

    Among proponents of critical thinking, Harvey Siegel stands out in his attempt to address fundamental epistemological issues. Siegel argues that discursive inclusion of diverse groups should not be confused with rational justification of the outcome of inquiry. He maintains that epistemic virtues such as inclusion are neither necessary nor…

  13. Gauge threshold corrections for {N}=2 heterotic local models with flux, and mock modular forms

    NASA Astrophysics Data System (ADS)

    Carlevaro, Luca; Israël, Dan

    2013-03-01

    We determine threshold corrections to the gauge couplings in local models of {N}=2 smooth heterotic compactifications with torsion, given by the direct product of a warped Eguchi-Hanson space and a two-torus, together with a line bundle. Using the worldsheet cft description previously found and by suitably regularising the infinite target space volume divergence, we show that threshold corrections to the various gauge factors are governed by the non-holomorphic completion of the Appell-Lerch sum. While its holomorphic Mock-modular component captures the contribution of states that localise on the blown-up two-cycle, the non-holomorphic correction originates from non-localised bulk states. We infer from this analysis universality properties for {N}=2 heterotic local models with flux, based on target space modular invariance and the presence of such non-localised states. We finally determine the explicit dependence of these one-loop gauge threshold corrections on the moduli of the two-torus, and by S-duality we extract the corresponding string-loop and E1-instanton corrections to the Kähler potential and gauge kinetic functions of the dual type i model. In both cases, the presence of non-localised bulk states brings about novel perturbative and non-perturbative corrections, some features of which can be interpreted in the light of analogous corrections to the effective theory in compact models.

  14. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase

    PubMed Central

    Jacobs, Dave; Glossip, Danielle; Xing, Heming; Muslin, Anthony J.; Kornfeld, Kerry

    1999-01-01

    MAP kinases phosphorylate specific groups of substrate proteins. Here we show that the amino acid sequence FXFP is an evolutionarily conserved docking site that mediates ERK MAP kinase binding to substrates in multiple protein families. FXFP and the D box, a different docking site, form a modular recognition system, as they can function independently or in combination. FXFP is specific for ERK, whereas the D box mediates binding to ERK and JNK MAP kinase, suggesting that the partially overlapping substrate specificities of ERK and JNK result from recognition of shared and unique docking sites. These findings enabled us to predict new ERK substrates and design peptide inhibitors of ERK that functioned in vitro and in vivo. PMID:9925641

  15. Open partial horizontal laryngectomies: is it time to adopt a modular form of consent for the intervention?

    PubMed

    Giordano, L; Di Santo, D; Crosetti, E; Bertolin, A; Rizzotto, G; Succo, G; Bussi, M

    2016-10-01

    Nowadays, open partial horizontal laryngectomies (OPHLs) are well-established procedures for treatment of laryngeal cancer. Their uniqueness is the possibility to modulate the intervention intraoperatively, according to eventual tumour extension. An OPHL procedure is not easy to understand: there are several types of procedures and the possibility to modulate the intervention can produce confusion and lack of adherence to the treatment from the patient. Even if the surgery is tailored to a patient's specific lesion, a unified consent form that discloses any possible extensions, including a total laryngectomy, is still needed. We reviewed the English literature on informed consent, and propose comprehensive Information and Consent Forms for OPHLs. The Information Form is intended to answer any possible questions about the procedure, while remaining easy to read and understand for the patient. It includes sections on laryngeal anatomy and physiology, surgical aims and indications, alternatives to surgery, complications, and physiology of the operated larynx. The Consent Form is written in a "modular" way: the surgeon defines the precise extension of the lesion, chooses the best OPHL procedure and highlights all possible expected extensions specific for the patient. Our intention, providing these forms both in Italian and in English, is to optimise communication between the patient and surgeon, improving surgical procedure arrangements and preventing any possible misunderstandings and medico-legal litigation.

  16. Helping people live between office visits: An interview with Bernie Siegel, MD. Interview by Sheldon Lewis.

    PubMed

    Siegel, Bernie

    2008-01-01

    Bernie Siegel, MD, was born in Brooklyn, New York, and attended Colgate University and Cornell University Medical College. Dr Siegel trained as a surgeon at Yale New Haven Hospital, West Haven Veteran's Hospital, and the Children's Hospital of Pittsburgh. He was an assistant clinical professor of surgery in general and pediatric surgery at Yale University School of Medicine. In 1978, Dr Siegel founded Exceptional Cancer Patients (ECaP) using a group therapy approach aimed at personal empowerment, transformation, and lifestyle changes. He is the best-selling author of Love, Medicine and Miracles (HarperCollins, 1986); Peace, Love, and Healing: Bodymind Communication and the Path to Self-Healing (HarperCollins, 1989); and How to Live Between Office Visits (HarperCollins, 1992), among others. He retired from Yale in 1989 to continue to write and speak to patients and their caregivers. Dr Siegel recently spoke with the editor in chief of Advances, Sheldon Lewis.

  17. Modular phenotypic plasticity: divergent responses of barnacle penis and feeding leg form to variation in density and wave-exposure.

    PubMed

    Neufeld, Christopher J

    2011-06-15

    Traits can evolve both in response to direct selection and in response to indirect selection on other linked traits. Although the evolutionary significance of coupled traits (e.g., through shared components of developmental pathways, or through competition for shared developmental resources) is now well accepted, we know comparatively little about how developmental coupling may restrict the independent responses of two or more phenotypically plastic traits in response to conflicting environmental cues. Such studies are important because coupled development, if present, could act as an important limit to the evolution of functionally independent plasticity in multiple traits. I tested whether developmental coupling can restrict the direction of plastic responses by studying how penis form and leg form--both highly plastic traits of barnacles--varied in response to differences in conspecific density and water velocity. Penis length and leg length in Balanus glandula varied in parallel with variation in wave-exposure but varied in opposite directions with variation in conspecific density. This study represents one of the rare tests of developmental coupling between multiple (demonstrably adaptive) plastic traits: Barnacle legs and penises appear to exhibit modular development that can respond concurrently--yet in independent directions--to conflicting environmental cues. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  18. Chaotic maps and flows: exact Riemann-Siegel lookalike for spectral fluctuations

    NASA Astrophysics Data System (ADS)

    Braun, Petr; Haake, Fritz

    2012-10-01

    To treat the spectral statistics of quantum maps and flows that are fully chaotic classically, we use the rigorous Riemann-Siegel lookalike available for the spectral determinant of unitary time evolution operators F. Concentrating on dynamics without time reversal invariance, we get the exact two-point correlator of the spectral density for finite dimension N of the matrix representative of F, as phenomenologically given by random matrix theory. In the limit N → ∞, the correlator of the Gaussian unitary ensemble is recovered. Previously conjectured cancellations of contributions of pseudo-orbits with periods beyond half the Heisenberg time are shown to be implied by the Riemann-Siegel lookalike.

  19. Searching for Evidence, Not a War: Reply to Lindquist, Siegel, Quigley, and Barrett (2013)

    ERIC Educational Resources Information Center

    Lench, Heather C.; Bench, Shane W.; Flores, Sarah A.

    2013-01-01

    Lindquist, Siegel, Quigley, and Barrett (2013) critiqued our recent meta-analysis that reported the effects of discrete emotions on outcomes, including cognition, judgment, physiology, behavior, and experience (Lench, Flores, & Bench, 2011). Lindquist et al. offered 2 major criticisms--we address both and consider the nature of emotion and…

  20. Searching for Evidence, Not a War: Reply to Lindquist, Siegel, Quigley, and Barrett (2013)

    ERIC Educational Resources Information Center

    Lench, Heather C.; Bench, Shane W.; Flores, Sarah A.

    2013-01-01

    Lindquist, Siegel, Quigley, and Barrett (2013) critiqued our recent meta-analysis that reported the effects of discrete emotions on outcomes, including cognition, judgment, physiology, behavior, and experience (Lench, Flores, & Bench, 2011). Lindquist et al. offered 2 major criticisms--we address both and consider the nature of emotion and…

  1. On Not Abolishing Faith Schools: A Response to Michael Hand and H. Siegel

    ERIC Educational Resources Information Center

    Groothuis, Douglas

    2004-01-01

    This article finds Michael's Hand's argument for the abolition of faith schools to be deficient because key premises of his argument seem false. I argue that the concept of knowledge that Hand employs in arguing that no religious proposition is known to be true is overly strict. I reject Siegel's attempt to amend Hand's argument to make it…

  2. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  3. Apples and Oranges: A Rejoinder to Smith and Siegel

    ERIC Educational Resources Information Center

    Cobern, Bill

    2004-01-01

    This article reiterates the view that belief and knowledge can be conflated based on having a common form. The pedagogical advantage is that teachers are less likely to close off student discussions needed to help students develop an understanding of the characteristics and limitations of scientific knowledge. It is also less likely that a…

  4. The Iterative Structure Analysis of Montgomery Modular Multiplication

    NASA Astrophysics Data System (ADS)

    Jinbo, Wang

    2007-09-01

    Montgomery modular multiplication (MMM) plays a crucial role in the implementation of modular exponentiations of public-key cryptography. In this paper, we discuss the iterative structure and extend the iterative bound condition of MMM. It can be applied to complicated modular exponentiations. Based on the iterative condition of MMM, we can directly use non-modular additions, subtractions and even simple multiplications instead of the modular forms, which make modular exponentiation operation very efficient but more importantly iterative applicability of MMM.

  5. Modular core holder

    SciTech Connect

    Mueller, J.; Cole, C.W.; Hamid, S.; Lucas, J.K.

    1991-03-05

    This patent describes a modular core holder. It comprises: a sleeve, forming an internal cavity for receiving a core. The sleeve including segments; support means, overlying the sleeve, for supporting the sleeve; and access means, positioned between at least two of the segments of the sleeve, for allowing measurement of conditions within the internal cavity.

  6. Joint probabilities of noncommuting observables and the Einstein-Podolsky-Rosen question in Wiener-Siegel quantum theory

    SciTech Connect

    Warnock, R.L.

    1996-02-01

    Ordinary quantum theory is a statistical theory without an underlying probability space. The Wiener-Siegel theory provides a probability space, defined in terms of the usual wave function and its ``stochastic coordinates``; i.e., projections of its components onto differentials of complex Wiener processes. The usual probabilities of quantum theory emerge as measures of subspaces defined by inequalities on stochastic coordinates. Since each point {alpha} of the probability space is assigned values (or arbitrarily small intervals) of all observables, the theory gives a pseudo-classical or ``hidden-variable`` view in which normally forbidden concepts are allowed. Joint probabilities for values of noncommuting variables are well-defined. This paper gives a brief description of the theory, including a new generalization to incorporate spin, and reports the first concrete calculation of a joint probability for noncommuting components of spin of a single particle. Bohm`s form of the Einstein-Podolsky-Rosen Gedankenexperiment is discussed along the lines of Carlen`s paper at this Congress. It would seem that the ``EPR Paradox`` is avoided, since to each {alpha} the theory assigns opposite values for spin components of two particles in a singlet state, along any axis. In accordance with Bell`s ideas, the price to pay for this attempt at greater theoretical detail is a disagreement with usual quantum predictions. The disagreement is computed and found to be large.

  7. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  8. Self Evolving Modular Network

    NASA Astrophysics Data System (ADS)

    Tokunaga, Kazuhiro; Kawabata, Nobuyuki; Furukawa, Tetsuo

    We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.

  9. Harmonic Analysis and H2-Functions on Siegel Domains of Type II

    PubMed Central

    Ogden, R. D.; Vági, S.

    1972-01-01

    It is known that the distinguished boundary of a Siegel domain of type II can be identified with a simply connected nilpotent Lie group of step two. The Plancherel formula for this group and the irreducible unitary representations which enter into that formula are determined. The H2-space of the domain and its Szegö kernel are characterized in terms of the harmonic analysis of the above group, in particular, the integral representations for H2-functions due to Gindikin and Korányi-Stein are shown to be instances of the Fourier inversion formula. PMID:16591961

  10. A distance between elliptical distributions based in an embedding into the Siegel group

    NASA Astrophysics Data System (ADS)

    Calvo, Miquel; Oller, Josep M.

    2002-08-01

    This paper describes two different embeddings of the manifolds corresponding to many elliptical probability distributions with the informative geometry into the manifold of positive-definite matrices with the Siegel metric, generalizing a result published previously elsewhere. These new general embeddings are applicable to a wide class of elliptical probability distributions, in which the normal, t-Student and Cauchy are specific examples. A lower bound for the Rao distance is obtained, which is itself a distance, and, through these embeddings, a number of statistical tests of hypothesis are derived.

  11. Jargonial-Obfuscation(J-O) DISambiguation Elimination via Siegel-Baez Cognition Category-Semantics(C-S) in Siegel FUZZYICS=CATEGORYICS (Son of TRIZ)/(F=C) Tabular List-Format Dichotomy Truth-Table Matrix Analytics

    NASA Astrophysics Data System (ADS)

    Siegel, Carl Ludwig; Siegel, Edward Carl-Ludwig

    2011-03-01

    NOT "philosophy" per se but raising serious salient Arnol'd [Huygens and Barrow, Newton and Hooke(96)] questions begged is Rota empiricism Husserl VS. Frege maths-objects Dichotomy controversy: Hill-Haddock[Husserl or Frege?(00)]as manifestly-demonstrated by Hintikka[B.U.]-Critchey[Derrida Deconstruction Ethics(78)] deconstruction; Altshuler TRIZ; Siegel F=C/C-S; Siegel-Baez(UCR) Cognition C-S = "Category-theory ``+'' Cognitive-Semantics[Wierzbica-Langacker-Lakoff-Nunez[Where Maths Comes From(00)]-Fauconnier-Turner[Blending(98)]-Coulson[Semantic-Leaps (00)

  12. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  13. On equations of motion on Siegel-Jacobi spaces generated by linear Hamiltonians in the generators of the Jacobi group

    NASA Astrophysics Data System (ADS)

    Berceanu, Stefan

    2015-04-01

    It is proved that the equations of classical motion and the quantum evolution on the Siegel-Jacobi disk generated by a Hamiltonian linear in the generators of the Jacobi group Gj1 obtained by the Wei-Norman method and a method used in the context of Berezin's quantization are identical. In a certain set of variables the motion on the Siegel disk and C are decoupled. The geometric significance and the meaning in the context of coherent states of this coordinates are emphasized.

  14. Modular invariant inflation

    SciTech Connect

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-08

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  15. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  16. Book review of "The estrogen elixir: A history of hormone replacement therapy in America" by Elizabeth Siegel Watkins

    PubMed Central

    Sonnenschein, Carlos

    2008-01-01

    "The Estrogen elixir: A history of hormone replacement therapy in America" by Elizabeth Siegel Watkins is a thoroughly documented cautionary tale of the information and advice offered to women in the perimenopausal period of their life, and the consequences of exposure to sexual hormones on their health and wellbeing.

  17. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  18. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  19. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  20. Quantum spaces are modular

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2016-11-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrödinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and rotation invariance. We also discuss how the usual classical notion of space comes out as a form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

  1. Modular reflector concept study

    NASA Astrophysics Data System (ADS)

    Vaughan, D. H.

    1981-02-01

    The feasibility was studied of constructing large space structures, specifically a 100 meter paraboloidal R.F. reflector, by individually deploying a number of relatively small structural modules, and then joining them to form a single large structure in orbit. The advantage of this approach is that feasibility of a large antenna may be demonstrated by ground and flight tests of several smaller and less costly subelements. Thus, initial development costs are substantially reduced and a high degree of reliability can be obtained without commitment to construction of a very large system. The three candidate structural concepts investigated are: (1) the deployable cell module; (2) the paraboloidal extendable truss antenna adapted to modular assembly; and (3) the modular extendable truss antenna (META).

  2. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    The feasibility was studied of constructing large space structures, specifically a 100 meter paraboloidal R.F. reflector, by individually deploying a number of relatively small structural modules, and then joining them to form a single large structure in orbit. The advantage of this approach is that feasibility of a large antenna may be demonstrated by ground and flight tests of several smaller and less costly subelements. Thus, initial development costs are substantially reduced and a high degree of reliability can be obtained without commitment to construction of a very large system. The three candidate structural concepts investigated are: (1) the deployable cell module; (2) the paraboloidal extendable truss antenna adapted to modular assembly; and (3) the modular extendable truss antenna (META).

  3. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  4. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  5. FIRST Quantum-(1980)-Computing DISCOVERY in Siegel-Rosen-Feynman-...A.-I. Neural-Networks: Artificial(ANN)/Biological(BNN) and Siegel FIRST Semantic-Web and Siegel FIRST ``Page''-``Brin'' ``PageRank'' PRE-Google Search-Engines!!!

    NASA Astrophysics Data System (ADS)

    Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration

    2013-03-01

    Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)

  6. Searching for evidence, not a war: reply to Lindquist, Siegel, Quigley, and Barrett (2013).

    PubMed

    Lench, Heather C; Bench, Shane W; Flores, Sarah A

    2013-01-01

    Lindquist, Siegel, Quigley, and Barrett (2013) critiqued our recent meta-analysis that reported the effects of discrete emotions on outcomes, including cognition, judgment, physiology, behavior, and experience (Lench, Flores, & Bench, 2011). Lindquist et al. offered 2 major criticisms-we address both and consider the nature of emotion and scientific debate. Their 1st criticism, that the meta-analysis did not demonstrate emotion-consistent and emotion-specific changes in outcomes, appears to have been based on a misunderstanding of the method that we employed. Changes in outcomes were coded according to predictions derived from a functional discrete emotion account. Their 2nd criticism, that the findings are consistent with a psychological constructionist approach to emotion, is partially supported by the data and our statements in Lench et al. (2011). However, only 1 meta-analytic finding is relevant to this hypothesis, and it does not offer unequivocal evidence. Further, we contend that no modern discrete emotion theories would make the claims described by Lindquist et al. as representing a "natural kind" perspective and that viewing a scientific debate as a war has negative implications for the ability to evaluate evidence. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  7. Geometric Kac Moody modularity

    NASA Astrophysics Data System (ADS)

    Lynker, Monika; Schimmrigk, Rolf

    2006-05-01

    It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Mellin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory.

  8. Modularity maximization using completely positive programming

    NASA Astrophysics Data System (ADS)

    Yazdanparast, Sakineh; Havens, Timothy C.

    2017-04-01

    Community detection is one of the most prominent problems of social network analysis. In this paper, a novel method for Modularity Maximization (MM) for community detection is presented which exploits the Alternating Direction Augmented Lagrangian (ADAL) method for maximizing a generalized form of Newman's modularity function. We first transform Newman's modularity function into a quadratic program and then use Completely Positive Programming (CPP) to map the quadratic program to a linear program, which provides the globally optimal maximum modularity partition. In order to solve the proposed CPP problem, a closed form solution using the ADAL merged with a rank minimization approach is proposed. The performance of the proposed method is evaluated on several real-world data sets used for benchmarks community detection. Simulation results shows the proposed technique provides outstanding results in terms of modularity value for crisp partitions.

  9. Modular Fixturing System

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)

    2017-01-01

    The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.

  10. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  11. The emergence of modularity in biological systems

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2011-06-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks.

  12. A Modular Approach to Redundant Robot Control

    SciTech Connect

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

  13. Implementing Modular A Levels.

    ERIC Educational Resources Information Center

    Holding, Gordon

    This document, which is designed for curriculum managers at British further education (FE) colleges, presents basic information on the implementation and perceived benefits of the General Certificate of Education (GCE) modular A (Advanced) levels. The information was synthesized from a survey of 12 FE colleges that introduced the modular A levels…

  14. Modular tokamak configuration

    SciTech Connect

    Thomson, S.L.

    1985-01-01

    This report is concerned with the modular tokamak configuration, and presents information on the following topics: modularity; external vacuum boundary; vertical maintenance; combined reactor building/biological shield with totally remote maintenance; independent TF coils; minimum TF coil bore; saddle PF coils; and heat transport system in bore.

  15. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  16. FRAMING Linguistics: ``SEANCES"(!!!) Martin-Bradshaw-Siegel ``Buzzwordism, Bandwagonism, Sloganeering For:Fun, Profit, Survival, Ego": Rampant UNethics Sociological-DYSfunctionality!!!

    NASA Astrophysics Data System (ADS)

    Bradshaw, John; Siegel, E.

    2010-03-01

    ``Sciences''/SEANCES(!!!) rampant UNethics!!! WITNESS: Yau v Perelman Poincare-conj.-pf. [Naser, NewYorker(8/06)]; digits log- law Siegel[AMS Nat.Mtg.(02)-Abs.973-60-124] inversion to ONLY BEQS: Newcomb(1881)<<Siegel [AMS Nat.Mtg.(02)-Abs.973-03-126] proof: Fermat's: Last-Theorem = Least-Action Ppl:64<<<94(Wiles); ``Bak''/BNL (so called) ``SOC''= F=ma REdiscovery, copying Siegel [PSS(71);...] acoustic-emission:71<<<88: ``Per Bak''?, PRE Bak!!!; ``Bednorz''(v Raveau-Chu) high-Tc cuprate SC Nobel; ``Emery''(˜93)/ BNL high-Tc SC 3-band Hubbard-model v Siegel generic multi-(2- 10)-band spin-orbital-degeneracy(SOD)[Ph.D.,MSU(70);PSS(72;73); JMMM(76-80);World Cong.SC,Munich(92)]:70<<<93!!!; Anderson [1/3<1] failed cuprate high-Tc SC ``RVB'' v Overhauser correct cuprates/pnictides SSDWs:[(60s)<<<(87)];(so called) ``Anderson'' [1/3<1;PRL(58)] localization REdiscovery v Rayleigh(1881)``short- CUT'' graph-theory method[Doyle-Snell, Random-Walks/Electric-Nets (81)]: 1881<<<58; ``Fert''[PRL(88)] 07-Nobel copying v Siegel[at flickr.com,search on ``GMR''; google: ``If Leaks Could Kill'']: [(78)<<<(88)]!!!: Marti[google: ``Brian Martin'']-Bradshaw [Healing the SHAME that BINDS You(80s)]: Ethics? SHMETHICS!!!

  17. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  18. Calculation and modular properties of multiloop superstring amplitudes

    SciTech Connect

    Danilov, G. S.

    2013-06-15

    Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.

  19. Modular kinetic analysis.

    PubMed

    Krab, Klaas

    2011-01-01

    Modularization is an important strategy to tackle the study of complex biological systems. Modular kinetic analysis (MKA) is a quantitative method to extract kinetic information from such a modularized system that can be used to determine the control and regulatory structure of the system, and to pinpoint and quantify the interaction of effectors with the system. The principles of the method are described, and the relation with metabolic control analysis is discussed. Examples of application of MKA are given. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  1. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  2. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  3. Successful modular cosmology

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Stewart, Ewan D.

    2003-07-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  4. A Modular Robotic Architecture

    DTIC Science & Technology

    1990-11-01

    DATES COVERED AD-A232 007 Januar 1991 professional paper5 FUNOING NUMBERS A MODULAR ROBOTIC ARCHITECTURE PR: ZE92 WU: DN300029 PE: 0602936N - S. AUTHOR...mobile robots will help alleviate these problems, and, if made widely available, will promote standardization and compatibility among systems throughout...the industry. The Modular Robotic Architecture (MRA) is a generic control system that meets the above needs by providing developers with a standard set

  5. Modularity and mental architecture.

    PubMed

    Robbins, Philip

    2013-11-01

    Debates about the modularity of cognitive architecture have been ongoing for at least the past three decades, since the publication of Fodor's landmark book The Modularity of Mind. According to Fodor, modularity is essentially tied to informational encapsulation, and as such is only found in the relatively low-level cognitive systems responsible for perception and language. According to Fodor's critics in the evolutionary psychology camp, modularity simply reflects the fine-grained functional specialization dictated by natural selection, and it characterizes virtually all aspects of cognitive architecture, including high-level systems for judgment, decision making, and reasoning. Though both of these perspectives on modularity have garnered support, the current state of evidence and argument suggests that a broader skepticism about modularity may be warranted. WIREs Cogn Sci 2013, 4:641-649. doi: 10.1002/wcs.1255 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.

  6. Understanding the Emergence of Modularity in Neural Systems

    ERIC Educational Resources Information Center

    Bullinaria, John A.

    2007-01-01

    Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular…

  7. Modular passive solar heating system

    SciTech Connect

    Hunter, B.D.

    1985-03-19

    A modular passive solar energy storage system comprises a plurality of heat tubes which are arranged to form a flat plate solar collector and are releasably connected to a water reservoir by, and are part of, double-walled heat exchangers which penetrate to the water reservoir and enhance the heat transfer characteristics between the collector and the reservoir. The flat plate collector-heat exchanger disassembly, the collector housing, and the reservoir are integrated into a relatively light weight, unitary structural system in which the reservoir is a primary structural element. In addition to light weight, the system features high efficiency and ease of assembly and maintenance.

  8. Construction and evaluation of a modular biofilm-forming chamber for microbial recovery of neodymium and semi-continuous biofilm preparation. Tolerance of Serratia sp.N14 on acidic conditions and neutralized aqua regia.

    PubMed

    Vavlekas, Dimitrios A

    2017-02-01

    Recovery of neodymium from liquid metallic wastes and scrap leachates is a crucial step for its recycling, which can take place through the immobilized biofilms of Serratia sp. N14. These biofilms are produced in a fermentor vessel with a turnaround time of 10-14 days, which is unacceptable from an economic point of view for an industrial process. This study proposes the construction and evaluation of a modular system, whereby a biofilm-forming chamber is inserted into the continuous biomass outflow of the main chemostat vessel, for an alternative semi-continuous and economic production of biofilm. The activity of the biofilm from the outflow chamber was found to be the same as the one from the main chamber, which was stored in a cold room (4°C), for 9-12 months, depending on a 24 h nucleation step.Moreover, the ability of the biofilm to function in the presence of a leaching agent (aqua regia) or in acidic conditions was also evaluated. The biofilm of the main chamber can remain active even at 50% neutralized aqua regia (pH 3.0), while at acidic conditions, phosphate release of the cells is reduced to 50%. This strain proves to be very tolerant in low pH or high salt concentration solutions. The biofilm produced from the outflow of the main fermentor vessel is of acceptable activity, rather than being disposed.

  9. Cyclic modular beta-sheets.

    PubMed

    Woods, R Jeremy; Brower, Justin O; Castellanos, Elena; Hashemzadeh, Mehrnoosh; Khakshoor, Omid; Russu, Wade A; Nowick, James S

    2007-03-07

    The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (

  10. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  11. Written Reformulation in a Modular Approach.

    ERIC Educational Resources Information Center

    Flottum, Kjersti

    1996-01-01

    Examines the relationship between form and use of the reformulation sequence signalled by "c'est-a-dire" in written French and describes this sequence's various functions. The article attempts to show how a modular approach consisting of structural, semantic, pragmatic, and textual components contributes to a new and accurate description of…

  12. Modular arithmetic weight and cyclic shifting.

    NASA Technical Reports Server (NTRS)

    Hartman, W. F.

    1972-01-01

    This note shows that the modular arithmetic weight of an integer is invariant to the cyclic shifts of its radix-2 form. This result leads to a reduced search for the minimum weight codeword in a cyclic AN-code as well as to a better understanding of previous work.

  13. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  14. Modular Optofluidic Systems (MOPS)

    NASA Astrophysics Data System (ADS)

    Ackermann, Tobias N.; Dietvorst, Jiri; Sanchis, Ana; Salvador, Juan P.; Munoz-Berbel, Xavier; Alvarez-Conde, Erica; Kopp, Daniel; Zappe, Hans; Marco, M.-Pilar; Llobera, Andreu

    2016-12-01

    Elementary PDMS-based building blocks of fluidic, optical and optofluidic components for Lab on a chip (LOC) platforms has here been developed. All individual modules are compatible and can be anchored and released with the help of puzzle-type connectors This approach is a powerful toolbox to create modular optofluidic systems (MOPS), which can be modified/upgraded to user needs and in-situ reconfigurable. In addition, the PDMS can locally be functionalized, defining a modular biosensor. Measurements in absorbance and fluorescence have been pursued as demonstrator.

  15. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  16. Modular invariant gaugino condensation

    SciTech Connect

    Gaillard, M.K.

    1991-05-09

    The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.

  17. A Modular CAI System.

    ERIC Educational Resources Information Center

    Van Der Mast, Charles

    The experimental CAI system which is being tested at Delft University of Technology is structured in a modular manner to account for high changeability. The concept formulated for this project was the outcome of research into technological, organizational, and educational developments in CAI, and the enumeration of the common aspects of the…

  18. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  19. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  20. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  1. Modular, Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Tsuen-Hsi

    1991-01-01

    Combination of proposed modular, multilayer perceptron and algorithm for its operation recognizes new objects after relatively brief retraining sessions. (Perceptron is multilayer, feedforward artificial neural network fully connected and trained via back-propagation learning algorithm.) Knowledge pertaining to each object to be recognized resides in subnetwork of full network, therefore not necessary to retrain full network to recognize each new object.

  2. Modularity, noise, and natural selection.

    PubMed

    Marroig, Gabriel; Melo, Diogo A R; Garcia, Guilherme

    2012-05-01

    Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Modular space station

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.

  4. ATIS - A modular approach

    NASA Astrophysics Data System (ADS)

    Kirson, Allan

    The author describes a modular approach to the design of an in-vehicle navigation and route guidance system that supports a phased implementation of the technology, and anticipates expected differences in implementation in different parts of the world and for different makes and models of vehicle. A series of sensors in the vehicle are used to determine the vehicle's position by dead reckoning and map-matching. The system then calculates the best route to the selected destination, taking into account the real-time traffic information received from a traffic management center, and presents route guidance instructions to the user as the route is traversed. Attention is given to modularity considerations, vehicle positioning, driver support, vehicle-to-infrastructure communications, and the role of standards.

  5. [Modular enteral nutrition in pediatrics].

    PubMed

    Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D

    1991-01-01

    Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.

  6. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  7. LMDS Lightweight Modular Display System.

    DTIC Science & Technology

    1982-02-16

    LIGHTWEIGHT MODULAR DISPLAY SYSTEM %C AD Gomez SW Wolfe EW Davenport BD Calder 16 February 1982 * / DTrSJUL 22 3829 Approved for public release...375 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Oct 77 to Jan 82 LMDS LIGHTWEIGHT MODULAR DISPLAY SYSTEM S. PERFORMING ORG. REPORT...Processing Power Distribution Modular Display Low Cost Tactical Display Tactical Tablet Lightweight Display General Purpose Dispiay Functional Modules Touch

  8. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  9. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  10. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  11. Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor)

    2017-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to control communication of data, via the bus, with each of the plurality of data acquisition modules.

  12. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  13. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  14. Modularity of music processing.

    PubMed

    Peretz, Isabelle; Coltheart, Max

    2003-07-01

    The music faculty is not a monolithic entity that a person either has or does not. Rather, it comprises a set of neurally isolable processing components, each having the potential to be specialized for music. Here we propose a functional architecture for music processing that captures the typical properties of modular organization. The model rests essentially on the analysis of music-related deficits in neurologically impaired individuals, but provides useful guidelines for exploring the music faculty in normal people, using methods such as neuroimaging.

  15. Modular and Hierarchically Modular Organization of Brain Networks

    PubMed Central

    Meunier, David; Lambiotte, Renaud; Bullmore, Edward T.

    2010-01-01

    Brain networks are increasingly understood as one of a large class of information processing systems that share important organizational principles in common, including the property of a modular community structure. A module is topologically defined as a subset of highly inter-connected nodes which are relatively sparsely connected to nodes in other modules. In brain networks, topological modules are often made up of anatomically neighboring and/or functionally related cortical regions, and inter-modular connections tend to be relatively long distance. Moreover, brain networks and many other complex systems demonstrate the property of hierarchical modularity, or modularity on several topological scales: within each module there will be a set of sub-modules, and within each sub-module a set of sub-sub-modules, etc. There are several general advantages to modular and hierarchically modular network organization, including greater robustness, adaptivity, and evolvability of network function. In this context, we review some of the mathematical concepts available for quantitative analysis of (hierarchical) modularity in brain networks and we summarize some of the recent work investigating modularity of structural and functional brain networks derived from analysis of human neuroimaging data. PMID:21151783

  16. Osmotrophy in modular Ediacara organisms

    PubMed Central

    Laflamme, Marc; Xiao, Shuhai; Kowalewski, Michał

    2009-01-01

    The Ediacara biota include macroscopic, morphologically complex soft-bodied organisms that appear globally in the late Ediacaran Period (575–542 Ma). The physiology, feeding strategies, and functional morphology of the modular Ediacara organisms (rangeomorphs and erniettomorphs) remain debated but are critical for understanding their ecology and phylogeny. Their modular construction triggered numerous hypotheses concerning their likely feeding strategies, ranging from micro-to-macrophagus feeding to photoautotrophy to osmotrophy. Macrophagus feeding in rangeomorphs and erniettomorphs is inconsistent with their lack of oral openings, and photoautotrophy in rangeomorphs is contradicted by their habitats below the photic zone. Here, we combine theoretical models and empirical data to evaluate the feasibility of osmotrophy, which requires high surface area to volume (SA/V) ratios, as a primary feeding strategy of rangeomorphs and erniettomorphs. Although exclusively osmotrophic feeding in modern ecosystems is restricted to microscopic bacteria, this study suggests that (i) fractal branching of rangeomorph modules resulted in SA/V ratios comparable to those observed in modern osmotrophic bacteria, and (ii) rangeomorphs, and particularly erniettomorphs, could have achieved osmotrophic SA/V ratios similar to bacteria, provided their bodies included metabolically inert material. Thus, specific morphological adaptations observed in rangeomorphs and erniettomorphs may have represented strategies for overcoming physiological constraints that typically make osmotrophy prohibitive for macroscopic life forms. These results support the viability of osmotrophic feeding in rangeomorphs and erniettomorphs, help explain their taphonomic peculiarities, and point to the possible importance of earliest macroorganisms for cycling dissolved organic carbon that may have been present in abundance during Ediacaran times. PMID:19706530

  17. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  18. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  19. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  20. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  1. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  2. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  3. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  4. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  5. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  6. On the modularity of certain functions from the Gromov–Witten theory of elliptic orbifolds

    PubMed Central

    Bringmann, Kathrin; Rolen, Larry; Zwegers, Sander

    2015-01-01

    In this paper, we study modularity of several functions which naturally arose in a recent paper of Lau and Zhou on open Gromov–Witten potentials of elliptic orbifolds. They derived a number of examples of indefinite theta functions, and we provide modular completions for several such functions which involve more complicated objects than ordinary modular forms. In particular, we give new closed formulae for special indefinite theta functions of type (1,2) in terms of products of mock modular forms. This formula is also of independent interest. PMID:26715996

  7. RAMS (Risk Analysis - Modular System) methodology

    SciTech Connect

    Stenner, R.D.; Strenge, D.L.; Buck, J.W.

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  8. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  9. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  10. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  11. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  12. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  13. Modular weapon control unit

    SciTech Connect

    Boccabella, M.F.; McGovney, G.N.

    1997-01-01

    The goal of the Modular Weapon Control Unit (MWCU) program was to design and develop a reconfigurable weapon controller (programmer/sequencer) that can be adapted to different weapon systems based on the particular requirements for that system. Programmers from previous systems are conceptually the same and perform similar tasks. Because of this commonality and the amount of re-engineering necessary with the advent of every new design, the idea of a modular, adaptable system has emerged. Also, the controller can be used in more than one application for a specific weapon system. Functionality has been divided into a Processor Module (PM) and an Input/Output Module (IOM). The PM will handle all operations that require calculations, memory, and timing. The IOM will handle interfaces to the rest of the system, input level shifting, output drive capability, and detection of interrupt conditions. Configuration flexibility is achieved in two ways. First, the operation of the PM is determined by a surface mount Read-Only Memory (ROM). Other surface-mount components can be added or neglected as necessary for functionality. Second, IOMs consist of configurable input buffers, configurable output drivers, and configurable interrupt generation. Further, these modules can be added singly or in groups to a Processor Module to achieve the required I/O configuration. The culmination of this LDRD was the building of both Processor Module and Input/Output Module. The MWCU was chosen as a test system to evaluate Low-Temperature Co-fired Ceramic (LTCC) technology, desirable for high component density and good thermal characteristics.

  14. What's in a Name?FRAMING:Martin-Bradshaw DYSfunctionality = Siegel ``Buzzwordism,Bandwagonism&Sloganeering For: Fun, Profit,Survival,Ego": From SOC to FLT Proof to High-Tc to Spintronics to Giant-Magnetoresistance: Ethics??? SHMETHICS!!! Rampant Sociolog

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2008-03-01

    Buzzwordism,Bandwagonism,Sloganeering for:Fun,Profit,Survival, Ego=ethics DYSunctionality: Digits log-law: Siegel INVERSION: bosons=digits; Excluded d=0? P(0)=oo V P(1)Siegel[FUZZYICS]Pythagorean-thm+dimension-thy+category-semantics simple FLT pf.=vector-subtraction+Fermat least-action V Wiles: 1964<1994! Bak SOC,long-after Siegel[PSS(a)601,1971;Scripta(Acta)Met.1974(1977);Intl.Conf.AE,JIPA,1977;MRS Symp.Scaling,1990-proving SOC=F=ma Fourier-transform=AE]: 1971<1987: Not Per Bak, but PRE Bak!(ie Pure Bunk!) Bednorz-Mueller cuprates V Raveau-Chu TRUE high-Tc! Emery SC 3-band V Siegel multi-band Hubbard-mdls[J.Mag.Mag. Mtls.(1976-1980);APS March Mtgs.,1987-on];Intl.Conf.High-Tc:Stanford,1987;Berkeley,1987); WorldCong.SC, 1992]: 1970s<1993! Anderson SC RVB V Overhauser CORRECT SS/CDWs:1960s<1987. Fert-Grunberg GMR V decade-earlier Siegel[JMMM.7,31(1978);Mayo,Village Voice,p.40(8/21/78):1978<1988!!!A la Brian Martin-John Bradshaw addictions 12-step recovery programs[Healing SHAME That BINDS YOU]: One is only as SICK as one's SECRETS! Ethics? SHMETHICS! RAMPANT ethical DYSfunctionality!!!

  15. Modular modelling with Physiome standards.

    PubMed

    Cooling, Michael T; Nickerson, David P; Nielsen, Poul M F; Hunter, Peter J

    2016-12-01

    address this consideration. The principles are illustrated with examples that couple electrophysiology, signalling, metabolism, gene regulation and synthetic biology, together forming an architectural prototype for whole-cell modelling (including human intervention) in CellML. Such models illustrate how testable units of quantitative biophysical simulation can be constructed. Finally, future relationships between modular models so constructed and Physiome frameworks and tools are discussed, with particular reference to how such frameworks and tools can in turn be extended to complement and gain more benefit from the results of applying the principles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Modular optimization code package: MOZAIK

    NASA Astrophysics Data System (ADS)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the

  17. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  18. The Langlands program and string modular K3 surfaces

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2007-06-01

    A number theoretic approach to string compactification is developed for Calabi-Yau hypersurfaces in arbitrary dimensions. The motivic strategy involved is illustrated by showing that the Hecke eigenforms derived from Galois group orbits of the holomorphic two-form of a particular type of K3 surface can be expressed in terms of modular forms constructed from the worldsheet theory. The process of deriving string physics from spacetime geometry can be reversed, allowing the construction of K3 surface geometry from the string characters of the partition function. A general argument for K3 modularity is given by combining mirror symmetry with the proof of the Shimura-Taniyama conjecture.

  19. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  20. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  1. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  2. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  3. Modular Sequence: English as a Second Language, Methods and Techniques. Instructor's Guide. Teacher Corps Bilingual Project.

    ERIC Educational Resources Information Center

    Hernandez, Alberto; Melnick, Susan L.

    This instructor's guide for a modular sequence in English as a second language is itself in modular format. It presents the rationale for, and the objectives and organization of, the sequence modules as well as management guidelines for the instructor, including checklist forms for each module in sequence. The objective of the entire sequence is…

  4. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  5. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  7. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  8. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  9. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  10. Eigenvalue Spectra of Modular Networks

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2013-08-01

    A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks, however, possess large-scale modular structures that can drastically influence their spectral characteristics and which are neglected in such simplified descriptions. Here, we obtain in a unified fashion the spectrum of a large family of operators, including the adjacency, Laplacian, and normalized Laplacian matrices, for networks with generic modular structure, in the limit of large degrees. We focus on the conditions necessary for the merging of the isolated eigenvalues with the continuous band of the spectrum, after which the planted modular structure can no longer be easily detected by spectral methods. This is a crucial transition point which determines when a modular structure is strong enough to affect a given dynamical process. We show that this transition happens in general at different points for the different matrices, and hence the detectability threshold can vary significantly, depending on the operator chosen. Equivalently, the sensitivity to the modular structure of the different dynamical processes associated with each matrix will be different, given the same large-scale structure present in the network. Furthermore, we show that, with the exception of the Laplacian matrix, the different transitions coalesce into the same point for the special case where the modules are homogeneous but separate otherwise.

  11. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  12. Latching chains in K-nearest-neighbor and modular small-world networks.

    PubMed

    Song, Sanming; Yao, Hongxun; Simonov, Alexander Yurievich

    2015-01-01

    Latching dynamics retrieve pattern sequences successively by neural adaption and pattern correlation. We have previously proposed a modular latching chain model in Song et al. (2014) to better accommodate the structured transitions in the brain. Different cortical areas have different network structures. To explore how structural parameters like rewiring probability, threshold, noise and feedback connections affect the latching dynamics, two different connection schemes, K-nearest-neighbor network and modular network both having modular structure are considered. Latching chains are measured using two proposed measures characterizing length of intra-modular latching chains and sequential inter-modular association transitions. Our main findings include: (1) With decreasing threshold coefficient and rewiring probability, both the K-nearest-neighbor network and the modular network experience quantitatively similar phase change processes. (2) The modular network exhibits selectively enhanced latching in the small-world range of connectivity. (3) The K-nearest-neighbor network is more robust to changes in rewiring probability, while the modular network is more robust to the presence of noise pattern pairs and to changes in the strength of feedback connections. According to our findings, the relationships between latching chains in K-nearest-neighbor and modular networks and different forms of cognition and information processing emerging in the brain are discussed.

  13. Modular process modeling for OPC

    NASA Astrophysics Data System (ADS)

    Keck, M. C.; Bodendorf, C.; Schmidtling, T.; Schlief, R.; Wildfeuer, R.; Zumpe, S.; Niehoff, M.

    2007-03-01

    Modular OPC modeling, describing mask, optics, resist and etch processes separately is an approach to keep efforts for OPC manageable. By exchanging single modules of a modular OPC model, a fast response to process changes during process development is possible. At the same time efforts can be reduced, since only single modular process steps have to be re-characterized as input for OPC modeling as the process is adjusted and optimized. Commercially available OPC tools for full chip processing typically make use of semi-empirical models. The goal of our work is to investigate to what extent these OPC tools can be applied for modeling of single process steps as separate modules. For an advanced gate level process we analyze the modeling accuracy over different process conditions (focus and dose) when combining models for each process step - optics, resist and etch - for differing single processes to a model describing the total process.

  14. Modular assembly of optical nanocircuits.

    PubMed

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-29

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  15. Design variants of modular permanent magnet brushless machine

    NASA Astrophysics Data System (ADS)

    Ede, Jason D.; Atallah, Kais; Howe, David

    2002-05-01

    The article describes an analytical technique for determining all possible slot-number and pole-number combinations, of modular permanent magnet brushless machines. It is shown that a large number of design variants exist. Furthermore, typical performance parameters, such as back-emf and cogging torque wave forms, for selected fault-tolerant designs are presented.

  16. Modular Finite Element Methods Library Version: 1.0

    SciTech Connect

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  17. Modular invariance and anomaly cancellation formulas in odd dimension

    NASA Astrophysics Data System (ADS)

    Liu, Kefeng; Wang, Yong

    2016-01-01

    By studying modular invariance properties of some characteristic forms, we get some new anomaly cancellation formulas on (4 r - 1) dimensional manifolds. As an application, we derive some results on divisibilities of the index of Toeplitz operators on (4 r - 1) dimensional spin manifolds and some congruent formulas on characteristic number for (4 r - 1) dimensional spinc manifolds.

  18. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    NASA Astrophysics Data System (ADS)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  19. Modular multichannel surface plasmon spectrometer

    NASA Astrophysics Data System (ADS)

    Neuert, G.; Kufer, S.; Benoit, M.; Gaub, H. E.

    2005-05-01

    We have developed a modular multichannel surface plasmon resonance (SPR) spectrometer on the basis of a commercially available hybrid sensor chip. Due to its modularity this inexpensive and easy to use setup can readily be adapted to different experimental environments. High temperature stability is achieved through efficient thermal coupling of individual SPR units. With standard systems the performance of the multichannel instrument was evaluated. The absorption kinetics of a cysteamine monolayer, as well as the concentration dependence of the specific receptor-ligand interaction between biotin and streptavidin was measured.

  20. Modular multivariable control improves hydrocracking

    SciTech Connect

    Chia, T.L.; Lefkowitz, I.; Tamas, P.D.

    1996-10-01

    Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.

  1. Inherent controllability in modular ALMRs

    SciTech Connect

    Sackett, J.I.; Sevy, R.H.; Wei, T.Y.C.

    1989-01-01

    As part of recent development efforts on advanced reactor designs ANL has proposed the IFR (Integral Fast Reactor) concept. The IFR concept is currently being applied to modular sized reactors which would be built in multiple power paks together with an integrated fuel cycle facility. It has been amply demonstrated that the concept as applied to the modular designs has significant advantages in regard to ATWS transients. Attention is now being focussed on determining whether or not those advantages deriving from the traits of the IFR can be translated to the operational/DBA (design basis accident) class of transients. 5 refs., 3 figs., 3 tabs.

  2. Modular Firewalls for Storage Areas

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Owens, L. J.

    1986-01-01

    Giant honeycomb structures assembled in modular units. Flammable materials stored in cells. Walls insulated with firebrick to prevent spread of fire among cells. Portable, modular barrier withstands heat of combustion for limited time and confines combustion products horizontally to prevent fire from spreading. Barrier absorbs heat energy by ablation and not meant to be reused. Designed to keep fires from spreading among segments of solid rocket propellant in storage, barrier erected between storage units of other flammable or explosive materials; tanks of petroleum or liquid natural gas. Barrier adequate for most industrial purposes.

  3. Modular assembly of thick multifunctional cardiac patches

    PubMed Central

    Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal

    2017-01-01

    In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795

  4. Manufacturing Development of the NCSX Modular Coil Windings

    SciTech Connect

    Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-09-27

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

  5. Inter-module credit assignment in modular reinforcement learning.

    PubMed

    Samejima, Kazuyuki; Doya, Kenji; Kawato, Mitsuo

    2003-09-01

    Critical issues in modular or hierarchical reinforcement learning (RL) are (i) how to decompose a task into sub-tasks, (ii) how to achieve independence of learning of sub-tasks, and (iii) how to assure optimality of the composite policy for the entire task. The second and last requirements are often under trade-off. We propose a method for propagating the reward for the entire task achievement between modules. This is done in the form of a 'modular reward', which is calculated from the temporal difference of the module gating signal and the value of the succeeding module. We implement modular reward for a multiple model-based reinforcement learning (MMRL) architecture and show its effectiveness in simulations of a pursuit task with hidden states and a continuous-time non-linear control task.

  6. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  7. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212 Modular transmitters. (a) Single modular transmitters consist of a completely...

  8. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212 Modular transmitters. (a) Single modular transmitters consist of a completely...

  9. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212 Modular transmitters. (a) Single modular transmitters consist of a completely...

  10. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Modular transmitters. 15.212 Section 15.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.212 Modular transmitters. (a) Single modular transmitters consist of a completely...

  11. 48 CFR 3417.70 - Modular contracting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Modular contracting. 3417... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Modular Contracting 3417.70 Modular contracting. (a) FSA—May incrementally conduct successive procurements of modules of overall...

  12. The Modular Mind and Intrapersonal Communication Processes.

    ERIC Educational Resources Information Center

    Stacks, Don W.

    Based on a prior model on modularity of the brain, a new modular model of intrapersonal communication was developed which focuses on brain processing, encompassing both the structures and the functions of those structures in the creation of messages. The modular mind is a bio-social model of communication which presupposes a relationship between…

  13. Evolution and the Modularity of Mindreading.

    ERIC Educational Resources Information Center

    Moore, Chris

    1996-01-01

    Reviews Baron-Cohen's study of autism and an explanatory theory called modularity of mindreading, which proposed a domain-specific modular psychological model based on evolutionary, developmental, psychopathological, and neurobiological considerations. Enumerates problems with the modularity approach and emphasized the evolution of domain general…

  14. Modular Instruction Under Restricted Conditions.

    ERIC Educational Resources Information Center

    Utomo, Tjipto; Ruijter, Kees

    1984-01-01

    Describes the evaluation and reconstruction of a transport phenomena course given at the Bandung Institute of Technology which had a 70 percent failure rate. Discusses the teacher-paced modular instruction technique designed to replace the original course material and its results in terms of student performance over a three-year period. (JM)

  15. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  16. Modular health services: a single case study approach to the applicability of modularity to residential mental healthcare

    PubMed Central

    2014-01-01

    Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however

  17. Modular multiplication in GF(p) for public-key cryptography

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub

    Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.

  18. Semi-submerged modular offshore platform

    SciTech Connect

    Huang, Y.T.

    1994-12-31

    A modular offshore platform which can be used in a deep sea oil exploration is introduced here. A hybrid of guyed tower and tension leg platforms will be studied. A double-layer dodecahedrous float will be stabilized by a series of guyed cables and clump weights that are anchored to the ocean floor. The platform is built on a dodecahedrous float, which can be fabricated onshore and transported to the job site by direct towing. Buoyancy of the dodecahedrous float will counteract the tremendous weight exerted on this offshore structure. With the help of the guy cables and clump weights anchored to the ocean floor, the structure can be column stabilized to a designated location ready for needed drilling operation. Dodecahedron is one of the natural crystal forms which can be built up by modular space components. It is an ideal structure for easy assembly in a hostile, physically restrictive sea environment. In this article only the major factors affecting the analysis is considered. Much more detailed considerations will be required in the final design, reflecting environmental forces in action, stresses during erection, and the fabrication details.

  19. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  20. Quasispecies theory for evolution of modularity

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  1. Quasispecies Theory for Evolution of Modularity

    PubMed Central

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

  2. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  3. Relaxation labeling using modular operators

    SciTech Connect

    Duncan, J.S.; Frei, W.

    1983-01-01

    Probabilistic relaxation labeling has been shown to be useful in image processing, pattern recognition, and artificial intelligence. The approaches taken to date have been encumbered with computationally extensive summations which generally prevent real-time operation and/or easy hardware implementation. The authors present a new and unique approach to the relaxation labeling problem using modular, VLSI-oriented hierarchical complex operators. One of the fundamental concepts of this work is the representation of the probability distribution of the possible labels for a given object (pixel) as an ellipse, which may be summed with neighboring object's distribution ellipses, resulting in a new, relaxed label space. The mathematical development of the elliptical approach will be presented and compared to more classical approaches, and a hardware block diagram that shows the implementation of the relaxation scheme using vlsi chips will be presented. Finally, results will be shown which illustrate applications of the modular scheme, iteratively, to both edges and lines. 13 references.

  4. Modular hydrodam: concept definition study

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this investigation was to explore the potential for developing economical new ultra low-head (6 to 10 ft) sites using an innovative concept known as the Modular Hydrodam (MH). This concept combines the benefits of shop fabrication, installation of equipment in truck transportable, waterproof power modules, and prefabricated gate sections that can be located between the power modules. The size and weight of the power module permits it to be fully assembled and checked out in the manufacturer's shop. The module can then be broken down into four pieces and shipped by truck to the site. Once in place, concrete ballast will be added, as necessary, to prevent flotation. The following aspects were investigated: tubular and cross flow turbines; modularized components; the use of a cable support system for horizontal stability of the dam and powerhouse; and construction in the wet as well as in the dry.

  5. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  6. PTERA - Modular Aircraft Flight Test

    NASA Image and Video Library

    2016-01-13

    Aerospace testing can be costly and time consuming but a new modular, subscale remotely piloted aircraft offers NASA researchers more affordable options for developing a wide range of cutting edge aviation and space technologies. The Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by Area-I, Inc., of Kennesaw, Georgia, is an extremely versatile and high quality, yet inexpensive, flying laboratory bridging the gap between wind tunnels and crewed flight testing.

  7. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2013-02-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks.

  8. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  9. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  10. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  11. Estimation of inter-modular connectivity from the local field potentials in a hierarchical modular network

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Mei; Kim, Won Sup; Hwang, Dong-Uk; Han, Seung Kee

    2015-05-01

    We propose a method of estimating inter-modular connectivity in a hierarchical modular network. The method is based on an analysis of inverse phase synchronization applied to the local field potentials on a hierarchical modular network of phase oscillators. For a strong-coupling strength, the inverse phase synchronization index of the local field potentials for two modules depends linearly on the corresponding inter-modular connectivity defined as the number of links connecting the modules. The method might enable us to estimate the inter-modular connectivity in various complex systems from the inverse phase synchronization index of the mesoscopic modular activities.

  12. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  13. Modular, security enclosure and method of assembly

    DOEpatents

    Linker, Kevin L.; Moyer, John W.

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  14. A modular system for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.

    This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.

  15. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  16. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  17. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  18. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  19. The origin of subfunctions and modular gene regulation.

    PubMed

    Force, Allan; Cresko, William A; Pickett, F Bryan; Proulx, Steven R; Amemiya, Chris; Lynch, Michael

    2005-05-01

    Evolutionary explanations for the origin of modularity in genetic and developmental pathways generally assume that modularity confers a selective advantage. However, our results suggest that even in the absence of any direct selective advantage, genotypic modularity may increase through the formation of new subfunctions under near-neutral processes. Two subfunctions may be formed from a single ancestral subfunction by the process of fission. Subfunction fission occurs when multiple functions under unified genetic control become subdivided into more restricted functions under independent genetic control. Provided that population size is sufficiently small, random genetic drift and mutation can conspire to produce changes in the number of subfunctions in the genome of a species without necessarily altering the phenotype. Extensive genotypic modularity may then accrue in a near-neutral fashion in permissive population-genetic environments, potentially opening novel pathways to morphological evolution. Many aspects of gene complexity in multicellular eukaryotes may have arisen passively as population size reductions accompanied increases in organism size, with the adaptive exploitation of such complexity occurring secondarily.

  20. Modular microrobot for swimming in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Meshkati; Fu, Henry; Kim, Minjun; Drexel University Team; University of Nevada, Reno Team

    2015-11-01

    One of the difficulties in navigating in vivo is to overcome many types of environments. This includes blood vessels of different diameters, fluids with different mechanical properties, and physical barriers. Inspired by conventional modular robotics, we demonstrate modular microrobotics using magnetic particles as the modular units to change size and shape through docking and undocking. Much like the vast variety of microorganisms navigating many different bio-environments, modular microswimmers have the ability to dynamically adapt different environments by reconfiguring the swimmers' physical characteristics. We model the docking as magnetic assembly and undocking mechanisms as deformation by hydrodynamic forces. We characterize the swimming capability of the modular microswimmer with different size and shapes. Finally, we demonstrate modular microrobotics by assembling a three-bead microswimmer into a nine-bead microswimmer, and then disassemble it into several independently swimming microswimmers..

  1. Modular Design in Treaty Verification Equipment

    SciTech Connect

    Macarthur, Duncan Whittemore; Benz, Jacob; Tolk, Keith; Weber, Tom

    2015-01-27

    It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffs described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.

  2. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  3. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the novel modular DNA-binding protein BurrH in its apo form and in complex with its target DNA.

    PubMed

    Stella, Stefano; Molina, Rafael; Bertonatti, Claudia; Juillerrat, Alexandre; Montoya, Guillermo

    2014-01-01

    Different genome-editing strategies have fuelled the development of new DNA-targeting molecular tools allowing precise gene modifications. Here, the expression, purification, crystallization and preliminary X-ray diffraction of BurrH, a novel DNA-binding protein from Burkholderia rhizoxinica, are reported. Crystallization experiments of BurrH in its apo form and in complex with its target DNA yielded crystals suitable for X-ray diffraction analysis. The crystals of the apo form belonged to the primitive hexagonal space group P3(1) or its enantiomorph P3(2), with unit-cell parameters a = b = 73.28, c = 268.02 Å, α = β = 90, γ = 120°. The BurrH-DNA complex crystallized in the monoclinic space group P2(1), with unit-cell parameters a = 70.15, b = 95.83, c = 76.41 Å, α = γ = 90, β = 109.51°. The self-rotation function and the Matthews coefficient suggested the presence of two protein molecules per asymmetric unit in the apo crystals and one protein-DNA complex in the monoclinic crystals. The crystals diffracted to resolution limits of 2.21 and 2.65 Å, respectively, using synchrotron radiation.

  4. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  5. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  6. Local bulk physics from intersecting modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2017-06-01

    We show that bulk quantities localized on a minimal surface homologous to a boundary region correspond in the CFT to operators that commute with the modular Hamiltonian associated with the boundary region. If two such minimal surfaces intersect at a point in the bulk then CFT operators which commute with both extended modular Hamiltonians must be localized at the intersection point. We use this to construct local bulk operators purely from CFT considerations, without knowing the bulk metric, using intersecting modular Hamiltonians. For conformal field theories at zero and finite temperature the appropriate modular Hamiltonians are known explicitly and we recover known expressions for local bulk observables.

  7. Vertical D4-D2-D0 Bound States on K3 Fibrations and Modularity

    NASA Astrophysics Data System (ADS)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2017-03-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibit some of the features of a generalized Hecke transform.

  8. Development of energy efficient modular architectural textile structures. Final report

    SciTech Connect

    Ko, F.K.; Harris, J.A.; Messinger, A.

    1983-05-01

    This research program was aimed at the development of energy efficient architecture using textile structures. Design concepts for modular units were developed using cell structures. Roof and wall panels were constructed and evaluated to demonstrate the design concept. Test results indicated tubular fiberglass cell structures could provide thermal insulation R-value well above 2.4. Exploratory study was also carried out to demonstrate the possibility of forming complex shapes for structural architectural applications.

  9. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex.

    PubMed

    Oates, Joanne; Barrett, Claire M L; Barnett, James P; Byrne, Katheryne G; Bolhuis, Albert; Robinson, Colin

    2005-02-11

    The Tat system transports folded proteins across bacterial plasma and plant thylakoid membranes. To date, three key Tat subunits have been identified and mechanistic studies indicate the presence of two types of complex: a TatBC-containing substrate-binding unit and a separate TatA complex. Here, we used blue-native gel electrophoresis and affinity purification to study the nature of these complexes in Escherichia coli. Analysis of solubilized membrane shows that the bulk of TatB and essentially all of the TatC is found in a single 370kDa TatABC complex. TatABC was purified to homogeneity using an affinity tag on TatC and this complex runs apparently as an identical band. We conclude that this is the primary core complex, predicted to contain six or seven copies of TatBC together with a similar number of TatA subunits. However, the data indicate the presence of an additional form of Tat complex containing TatA and TatB, but not TatC; we speculate that this may be an assembly or disassembly intermediate of the translocator. The vast majority of TatA is found in separate complexes that migrate in blue-native gels as a striking ladder of bands with sizes ranging from under 100 kDa to over 500 kDa. Further analysis shows that the bands differ by an average of 34 kDa, indicating that TatA complexes are built largely, but possibly not exclusively, from modules of three or four TatA molecules. The range and nature of these complexes are similar in a TatC mutant that is totally inactive, indicating that the ladder of bands does not stem from ongoing translocation activity, and we show that purified TatA can self-assemble in vitro to form similar complexes. This spectrum of TatA complexes may provide the flexibility required to generate a translocon capable of transporting substrates of varying sizes across the plasma membrane in a folded state.

  10. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  11. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1983-01-01

    Application of modular control techniques to the attitude control of a prototype flexible spacecraft and a prototype flexible space platform was further developed by determining numerical values for the physical parameters of a four body approximation of the MSFC/hybrid deployable truss incorporated in the space platform model, generating sensitivity coefficients for the model of the flexible spacecraft, evaluating the changes in the digital computer simulation of the flexible spacecraft resulting from the addition of another rigid body to the model and comparing attitude control effectiveness with actuators on more than one rigid body of the model with that for the case in which the actuators were restricted to one body.

  12. Cascading dynamics in modular networks

    NASA Astrophysics Data System (ADS)

    Galstyan, Aram; Cohen, Paul

    2007-03-01

    In this paper we study a simple cascading process in a structured heterogeneous population, namely, a network composed of two loosely coupled communities. We demonstrate that under certain conditions the cascading dynamics in such a network has a two-tiered structure that characterizes activity spreading at different rates in the communities. We study the dynamics of the model using both simulations and an analytical approach based on annealed approximation and obtain good agreement between the two. Our results suggest that network modularity might have implications in various applications, such as epidemiology and viral marketing.

  13. Integrated modular engine - Reliability assessment

    NASA Astrophysics Data System (ADS)

    Parsley, R. C.; Ward, T. B.

    1992-07-01

    A major driver in the increased interest in integrated modular engine configurations is the desire for ultra reliability for future rocket propulsion systems. The concept of configuring multiple sets of turbomachinery networked to multiple thrust chamber assemblies has been identified as an approach with potential to achieve significant reliability enhancement. This paper summarizes the results of a reliability study comparing networked systems vs. discrete engine installations, both with and without major module and engine redundancy. The study was conducted for gas generator, expander, and staged combustion cycles. The results are representative of either booster or upper-stage applications and are indicative of either plug or nonplug installation philosophies.

  14. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  15. Revised Modularity Index to Measure Modularity of OSS Projects with Case Study of Freemind

    NASA Astrophysics Data System (ADS)

    WahjuRahardjoEmanuel, Andi; Jahja Surjawan, Daniel

    2012-12-01

    Open Source Software (OSS) Projects are gaining popularity worldwide. Studies by many researchers show that the important key success factor is modularity of the source code. This paper presents the revised Modularity Index which is a software metrics to measure the modularity level of a javabased OSS Projects. To show its effectiveness in analyzing OSS Project, the Modularity Index and its supporting software metrics are then used to analyze the evolution of Freemind mind mapping OSS Project. The analysis using Modularity Index and its supporting metrics shows the strength and weaknesses of the Freemind OSS Projects.

  16. Decentralized and Modular Electrical Architecture

    NASA Astrophysics Data System (ADS)

    Elisabelar, Christian; Lebaratoux, Laurence

    2014-08-01

    This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.

  17. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  18. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  19. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  20. Learning modular policies for robotics.

    PubMed

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots.

  1. Learning modular policies for robotics

    PubMed Central

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  2. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  3. Deployable modular mesh antenna - Concept and feasibility

    NASA Astrophysics Data System (ADS)

    Mitsugi, Jin; Yasaka, Tetsuo

    The feasibility of a 10m aperture deployable modular mesh antenna is evaluated by integrating the results of a statistical surface accuracy estimation and of surface shape adjustment experiments. It has been clarified that by combining seven 4m aperture modules, a 10m aperture deployable modular mesh antenna can be constructed, preserving the surface accuracy that is applicable to C band mission.

  4. Modular Building Institute 2000 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. The articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Elementary K-8 Modular Courtyard"; (2) "School District #33, Chilliwack, BC"; (3) "New Elementary School for Briarwood, NY"; (4) "Addition to Queens Intermediate…

  5. Modular Buildings Are Here To Stay.

    ERIC Educational Resources Information Center

    Williams, Steven; Roman, Michael I.; Tiernan, Maury; Savage, Chuck; Airikka, Robert; Brosius, Jerry L.

    2000-01-01

    Presents several examples of modular building construction being used be school districts to support their need for more space, building flexibility, and enhancement of the learning environment. Comparisons with traditionally built school facilities are offered as are answers to commonly held myths concerning modular construction. (GR)

  6. Modular Construction: The Wave of the Future.

    ERIC Educational Resources Information Center

    Savage, Chuck

    1989-01-01

    Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

  7. Detectability thresholds of general modular graphs

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Kabashima, Yoshiyuki

    2017-01-01

    We investigate the detectability thresholds of various modular structures in the stochastic block model. Our analysis reveals how the detectability threshold is related to the details of the modular pattern, including the hierarchy of the clusters. We show that certain planted structures are impossible to infer regardless of their fuzziness.

  8. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Modular contracting. 39.103 Section 39.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL... extent practicable, use modular contracting to acquire major systems (see 2.101) of...

  9. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Modular contracting. 39.103 Section 39.103 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL... extent practicable, use modular contracting to acquire major systems (see 2.101) of...

  10. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  11. The relative efficiency of modular and non-modular networks of different size

    PubMed Central

    Tosh, Colin R.; McNally, Luke

    2015-01-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  12. Finding network communities using modularity density

    NASA Astrophysics Data System (ADS)

    Botta, Federico; del Genio, Charo I.

    2016-12-01

    Many real-world complex networks exhibit a community structure, in which the modules correspond to actual functional units. Identifying these communities is a key challenge for scientists. A common approach is to search for the network partition that maximizes a quality function. Here, we present a detailed analysis of a recently proposed function, namely modularity density. We show that it does not incur in the drawbacks suffered by traditional modularity, and that it can identify networks without ground-truth community structure, deriving its analytical dependence on link density in generic random graphs. In addition, we show that modularity density allows an easy comparison between networks of different sizes, and we also present some limitations that methods based on modularity density may suffer from. Finally, we introduce an efficient, quadratic community detection algorithm based on modularity density maximization, validating its accuracy against theoretical predictions and on a set of benchmark networks.

  13. SmartBuild-a truly plug-n-play modular microfluidic system.

    PubMed

    Yuen, Po Ki

    2008-08-01

    In this Technical Note, for the first time, a truly "plug-n-play" modular microfluidic system (SmartBuild Plug-n-Play Modular Microfluidic System) is presented for designing and building integrated modular microfluidic systems for biological and chemical applications. The modular microfluidic system can be built by connecting multiple microfluidic components together to form a larger integrated system. The SmartBuild System comprises of a motherboard with interconnect channels/grooves, fitting components, microchannel inserts with different configurations and microchips/modules with different functionalities. Also, heaters, micropumps and valving systems can be designed and used in the system. Examples of an integrated mixing system and reaction systems are presented here to demonstrate the versatility of the SmartBuild System.

  14. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  15. A modular approach to multi-robot control

    SciTech Connect

    Anderson, R.J.; Lilly, K.W.

    1996-03-01

    The ability to rapidly command multi-robot behavior is crucial for the acceptance and effective utilization of multiple robot control. To achieve this, a modular- multiple robot control solution is being, pursued using the SMART modular control architecture. This paper investigates the development of a new dual-arm kinematics module (DUAL-KLN) which allows multiple robots, previously controlled as separate stand-alone systems, to be controlled as a coordinated multi-robot system. The DUAL-KIN module maps velocity and force information from a center point of interest on a grasped object to the tool centers of each grasping robot. Three-port network equations are used and mapped into the scattering operator domain in a computationally efficient form. Application examples of the DUAL-KLN module in multi-robot coordinated control are given.

  16. Functional group diversity increases with modularity in complex food webs.

    PubMed

    Montoya, D; Yallop, M L; Memmott, J

    2015-06-10

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  17. Modularity-based graph partitioning using conditional expected models

    PubMed Central

    Chang, Yu-Teng; Leahy, Richard M.; Pantazis, Dimitrios

    2013-01-01

    Modularity-based partitioning methods divide networks into modules by comparing their structure against random networks conditioned to have the same number of nodes, edges, and degree distribution. We propose a novel way to measure modularity and divide graphs, based on conditional probabilities of the edge strength of random networks. We provide closed-form solutions for the expected strength of an edge when it is conditioned on the degrees of the two neighboring nodes, or alternatively on the degrees of all nodes comprising the network. We analytically compute the expected network under the assumptions of Gaussian and Bernoulli distributions. When the Gaussian distribution assumption is violated, we prove that our expression is the best linear unbiased estimator. Finally, we investigate the performance of our conditional expected model in partitioning simulated and real-world networks. PMID:22400627

  18. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  19. Standard power regulator for the multi-mission modular spacecraft

    NASA Technical Reports Server (NTRS)

    Kichak, R. A.

    1979-01-01

    The Standard Power Regulator Unit (SPRU) which forms the central building block of the Modular Power Subsystem (MPS) for the Multi-mission Modular Spacecraft (MMS) is described. A functional description of the SPRU is presented, detailing key design features, operational characteristics, and internal redundancy as well as giving block and schematic diagrams for all major subassemblies. The description of a qualification test program consisting of ten sequences ranging from a physical examination of the unit to calculating vibration and sine sweep of power on shock tests is presented. The results showed that some significant anomalies were encountered but no catastrophic failures were indicated, although several power module failures were found due to overvoltage malfunctions of the solar array stimulator.

  20. A bioinspired modular aquatic robot

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Pollard, Beau

    2016-11-01

    Several bio inspired swimming robots exist which seek to emulate the morphology of fish and the flapping motion of the tail and fins or other appendages and body of aquatic creatures. The locomotion of such robots and the aquatic animals that they seek to emulate is determined to a large degree by the changes in the shape of the body, which produce periodic changes in the momentum of the body and the creation and interaction of the vorticity field in the fluid with the body. We demonstrate an underactuated robot which swims due to the periodic changes in the angular momentum of the robot effected by the motion of an internal rotor. The robot is modular, unactuated tail like segments can be easily added to the robot. These segments modulate the interaction of the body with the fluid to produce a variety of passive shape changes that can allow the robot to swim in different modes.

  1. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  2. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  3. Riemann hypothesis for period polynomials of modular forms.

    PubMed

    Jin, Seokho; Ma, Wenjun; Ono, Ken; Soundararajan, Kannan

    2016-03-08

    The period polynomial r(f)(z) for an even weight k≥4 newform f∈S(k)(Γ(0)((N)) is the generating function for the critical values of L(f,s) . It has a functional equation relating r(f)(z) to r(f)(-1/Nz). We prove the Riemann hypothesis for these polynomials: that the zeros of r(f)(z) lie on the circle |z|=1/√N . We prove that these zeros are equidistributed when either k or N is large.

  4. Riemann hypothesis for period polynomials of modular forms

    PubMed Central

    Jin, Seokho; Ma, Wenjun; Ono, Ken; Soundararajan, Kannan

    2016-01-01

    The period polynomial rf(z) for an even weight k≥4 newform f∈Sk(Γ0(N)) is the generating function for the critical values of L(f,s). It has a functional equation relating rf(z) to rf(−1Nz). We prove the Riemann hypothesis for these polynomials: that the zeros of rf(z) lie on the circle |z|=1/N. We prove that these zeros are equidistributed when either k or N is large. PMID:26903628

  5. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  6. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  7. A Prototype for Modular Cell Engineering.

    PubMed

    Wilbanks, Brandon; Layton, Donovan; Garcia, Sergio; Trinh, Cong

    2017-10-10

    When aiming to produce a target chemical at high yield, titer, and productivity, various combinations of genetic parts available to build the target pathway can generate a large number of strains for characterization. This engineering approach will become increasingly laborious and expensive when seeking to develop desirable strains for optimal production of a large space of biochemicals due to extensive screening. Our recent theoretical development of modular cell (MODCELL) design principles can offer a promising solution for rapid generation of optimal strains by coupling a modular cell and exchangeable production modules in a plug-and-play fashion. In this study, we experimentally validated some designed properties of MODCELL by demonstrating: i) a modular (chassis) cell is required to couple with a production module, a heterologous ethanol pathway, as a testbed, ii) degree of coupling between the modular cell and production modules can be modulated to enhance growth and product synthesis, iii) a modular cell can be used as a host to select an optimal pyruvate decarboxylase (PDC) of the ethanol production module and to help identify a hypothetical PDC protein, and iv) adaptive laboratory evolution based on growth selection of the modular cell can enhance growth and product synthesis rates. We envision that the MODCELL design provides a powerful prototype for modular cell engineering to rapidly create optimal strains for synthesis of a large space of biochemicals.

  8. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  9. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  10. Generalized epidemic process on modular networks

    NASA Astrophysics Data System (ADS)

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  11. The gravity duals of modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-01

    In this work, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-like to the causal completion of the region.

  12. The gravity duals of modular Hamiltonians

    SciTech Connect

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-like to the causal completion of the region.

  13. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  14. Models of modular inflation and their phenomenological consequences

    SciTech Connect

    Ben-Dayan, Ido; Brustein, Ram; De Alwis, Senarath P E-mail: ramyb@bgu.ac.il

    2008-07-15

    We study models of modular inflation of the form expected to arise from low energy effective actions of superstring theories. We argue on general grounds that the most likely models are small field models in which the inflaton moves about a Planck distance from an extremum of the potential. We then explain the generic difficulties in designing small field models of supergravity modular inflation. We show that if the Kaehler potential of the inflaton is logarithmic as in perturbative string theories, then it is not possible to satisfy the slow-roll conditions for any superpotential. We find that if the corrections to the Kaehler potential are large enough that it can be approximated by a canonical Kaehler potential in the vicinity of the extremum, then viable slow-roll inflation is possible and we give a prescription for designing such models. In this case, several parameters have to be tuned to a fraction of a per cent. Generic models of this class predict a red spectrum of scalar perturbations and negligible spectral index running. They also predict a characteristic suppression of tensor perturbations despite the high scale of inflation. Consequently, a detection of primordial tensor anisotropies or spectral index running in cosmic microwave background observations in the foreseeable future will rule out this entire class of modular inflation models.

  15. Design and Evolution of a Modular Tensegrity Robot Platform

    NASA Technical Reports Server (NTRS)

    Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas

    2014-01-01

    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.

  16. Miniature modular microwave end-to-end receiver

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)

    1993-01-01

    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.

  17. Analysis of In-Space Assembly of Modular Systems

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.

    2005-01-01

    Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.

  18. Spintronic device modeling and evaluation using modular approach to spintronics

    NASA Astrophysics Data System (ADS)

    Ganguly, Samiran

    Spintronics technology finds itself in an exciting stage today. Riding on the backs of rapid growth and impressive advances in materials and phenomena, it has started to make headway in the memory industry as solid state magnetic memories (STT-MRAM) and is considered a possible candidate to replace the CMOS when its scaling reaches physical limits. It is necessary to bring all these advances together in a coherent fashion to explore and evaluate the potential of spintronic devices. This work creates a framework for this exploration and evaluation based on Modular Approach to Spintronics, which encapsulate the physics of transport of charge and spin through materials and the phenomenology of magnetic dynamics and interaction in benchmarked elemental modules. These modules can then be combined together to form spin-circuit models of complex spintronic devices and structures which can be simulated using SPICE like circuit simulators. In this work we demonstrate how Modular Approach to Spintronics can be used to build spin-circuit models of functional spintronic devices of all types: memory, logic, and oscillators. We then show how Modular Approach to Spintronics can help identify critical factors behind static and dynamic dissipation in spintronic devices and provide remedies by exploring the use of various alternative materials and phenomena. Lastly, we show the use of Modular Approach to Spintronics in exploring new paradigms of computing enabled by the inherent physics of spintronic devices. We hope that this work will encourage more research and experiments that will establish spintronics as a viable technology for continued advancement of electronics.

  19. Modular Heat Exchanger With Integral Heat Pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1992-01-01

    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  20. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  1. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  2. The Modular Structure of Protein Networks

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Hernán D.; Rybski, Diego; Havlin, Shlomo; Makse, Hernán A.

    2008-03-01

    The evolution of the human protein homology network (H-PHN) has led to a complex network that exhibits a surprisingly high level of modularity. Topologically, the H-PHN presents well connected groups (conformed by proteins of similar aminoacid structure) and weak connectivities between the groups. Here, we perform an empirical study of the H-PHN to characterize the degree of modularity in terms of scale-invariant laws using recently introduced box covering algorithms. We find that the exponent that determines the scale-invariance of the modularity is unexpectedly higher than the box dimension of the network. In addition, we perform a percolation analysis that gives insight into the evolutionary process that led to the modular organization and dynamics of the present H-PHN.

  3. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  4. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio elements...

  5. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  6. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  7. Siegel[JMMM 7,312(`78)] FIRST EXPERIMENTAL DISCOVERY of Giant-Magnetoresistance Decade Pre ``Fert'' and ``Gruenberg'' ['88 - `78] = 10-Years = One-Decade Sounds, for Nuclear-Power Naïve ``Panacea'' for Global-Warming/Climate-Chan

    NASA Astrophysics Data System (ADS)

    Hoffmann, Masterace; Siegel, Edward

    Siegel[JMMM 7,312(`78); Monju (12/'95) LMFBR PREDICTION!!!] following: Wigner[JAP 17,857(`46)]-(Alvin)Weinberg(ANL/ORNL/ANS)-(Sidney)Siegel(ANL/ORNL/ANS)-Seitz-Overhauser-Rollnick-Pollard-Lofaro-Markey-Pringle[Nuclear-PowerFrom Physics to Politics(`79)] FIRST EXPERIMENTAL DISCOVERY [Siegel<<<''Fert''-''Gruenberg'':2007-Physics-Nobel/2006:-Wolf/Japan-prizes:[`88 -`78] =10-years =1-decade precedence!!!] of granular giant-magnetoresistance(GMR) [Google: ``EDWARD SIEGEL GIANT-MAGNETORESISTANCE ICMAO 1977 FLICKER''] [Google: ``Ana Mayo If LEAKS`Could' KILL''] in austenitic/FCC Ni/Fe-based (so MIScalled)''super''alloy-182/82 transition-welds GENERIC ENDEMIC EXTANT detrimental (SYNONYMS): Wigner's-disease/Ostwald-ripening/spinodal-decompositio/OVERageing-EMBRITTLEMENT/THERMAL-leading-to-mechanical (TLTM)-INstability/``sensitization'' in: nuclear-reactors/spent-fuel dry-casks/refineries/jet/missile/rocket-engines/...SOUNDS A DIRE WARNING FOR NAIVE Hansen-Sommerville-Holdren-DOE-NRC-OSTP-WNA-NEI-AIP-APS-...calls/media-hype/P.R./spin-doctoring for carbon-``free'' nuclear-power as a SUPPOSED ``panacea'' for climate-change/global-warming: ``TRUST BUT VERIFY!!!'' ; a VERY LOUD CAVEAT EMPTOR!!!

  8. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  9. Modular Programming Techniques for Distributed Computing Tasks

    DTIC Science & Technology

    2004-08-01

    Modular Programming Techniques for Distributed Computing Tasks Anthony Cowley, Hwa-Chow Hsu, Camillo J. Taylor GRASP Laboratory University of...network, distributed computing , software design 1. INTRODUCTION As efforts to field sensor networks, or teams of mobile robots, become more...TITLE AND SUBTITLE Modular Programming Techniques for Distributed Computing Tasks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  10. Adaptive Coupled Oscillators for Modular Robots

    NASA Astrophysics Data System (ADS)

    Hartono, Pitoyo; Nakane, Aito

    In this research we physically built several robotics modules that are able to self-discover a connection topology which allows them to generate a coordinated behavior as an integrated modular robot. We consider that this self-configurability of hardware module can potentially simplify the costly designing process of complicated robots and at the same time improve the resiliency of modular robots in the face of internal and external changes.

  11. [Importance of neurobiology for modular psychotherapy].

    PubMed

    Schmahl, C; Bohus, M

    2013-11-01

    In the context of continuing education in psychiatry and psychotherapy, modular psychotherapy is of special importance. In modular psychotherapy, general interventions, e.g. for regulation of emotions, have an important function. In this review examples are given to describe the importance of neurobiology for the understanding and the improvement of these mechanisms. In addition, the use of neurobiological investigations within classical psychotherapy trials in the fields of borderline personality disorder and posttraumatic stress disorder will be depicted.

  12. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-01-01

    Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

  13. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  14. Evolution of Complex Modular Biological Networks

    PubMed Central

    Hintze, Arend; Adami, Christoph

    2008-01-01

    Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein–protein interaction network, synthetic lethal gene pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks. PMID:18266463

  15. Managing in an age of modularity.

    PubMed

    Baldwin, C Y; Clark, K B

    1997-01-01

    Modularity is a familiar principle in the computer industry. Different companies can independently design and produce components, suck as disk drives or operating software, and those modules will fit together into a complex and smoothly functioning product because the module makers obey a given set of design rules. Modularity in manufacturing is already common in many companies. But now a number of them are beginning to extend the approach into the design of their products and services. Modularity in design should tremendously boost the rate of innovation in many industries as it did in the computer industry. As businesses as diverse as auto manufacturing and financial services move toward modular designs, the authors say, competitive dynamics will change enormously. No longer will assemblers control the final product: suppliers of key modules will gain leverage and even take on responsibility for design rules. Companies will compete either by specifying the dominant design rules (as Microsoft does) or by producing excellent modules (as disk drive maker Quantum does). Leaders in a modular industry will control less, so they will have to watch the competitive environment closely for opportunities to link up with other module makers. They will also need to know more: engineering details that seemed trivial at the corporate level may now play a large part in strategic decisions. Leaders will also become knowledge managers internally because they will need to coordinate the efforts of development groups in order to keep them focused on the modular strategies the company is pursuing.

  16. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  17. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  18. The TOTEM modular trigger system

    NASA Astrophysics Data System (ADS)

    Bagliesi, M. G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-05-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5 μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  19. Modular verification of concurrent systems

    SciTech Connect

    Sobel, A.E.K.

    1986-01-01

    During the last ten years, a number of authors have proposed verification techniques that allow one to prove properties of individual processes by using global assumptions about the behavior of the remaining processes in the distributed program. As a result, one must justify these global assumptions before drawing any conclusions regarding the correctness of the entire program. This justification is often the most difficult part of the proof and presents a serious obstacle to hierarchical program development. This thesis develops a new approach to the verification of concurrent systems. The approach is modular and supports compositional development of programs since the proofs of each individual process of a program are completely isolated from all others. The generality of this approach is illustrated by applying it to a representative set of contemporary concurrent programming languages, namely: CSP, ADA, Distributed Processes, and a shared variable language. In addition, it is also shown how the approach may be used to deal with a number of other constructs that have been proposed for inclusion in concurrent languages: FORK and JOIN primitives, nested monitor calls, path expressions, atomic transactions, and asynchronous message passing. These results allow argument that the approach is universal and can be used to design proof systems for any concurrent language.

  20. Fitness, environmental changes and the growth of modularity- a quasispecies theory for the evolutionary dynamics of modularity

    NASA Astrophysics Data System (ADS)

    Niestemski, Liang; Park, Jeong-Man; Deem, Michael

    2015-03-01

    Although the modularity of a biological system is demonstrated and recognized, the evolution of the modularity is not well understood. We here present a quasispecies theory for the evolutionary dynamics of modularity. Complemented with numerical models, this analytical theory shows the calculation of the steady-state fitness in a randomly changing environment, the relationship between rate of environmental changes and rate of growth of modularity, as well as a principle of least action for the evolved modularity at steady state.

  1. Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton

    2007-01-01

    Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

  2. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  3. Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies.

    PubMed Central

    Sánchez, Juan Armando; Lasker, Howard R

    2003-01-01

    Despite the relative simplicity of their modular growth, marine invertebrates such as arborescent gorgonian octocorals (Octocorallia: Cnidaria) generate complex colonial forms. Colony form in these taxa is a consequence of modular (polyp) replication, and if there is a tight integration among modular and supramodular traits (e.g. polyp aperture, inter-polyp spacing, branch thickness, internode and branch length), then changes at the module level may lead to changes in colony architecture. Alternatively, different groups of traits may evolve semi-independently (or conditionally independent). To examine the patterns of integration among morphological traits in Caribbean octocorals, we compared five morphological traits across 21 species, correcting for the effects of phylogenetic relationships among the taxa. Graphical modelling and phylogenetic independence contrasts among the five morphological characters indicate two groups of integrated traits based on whether they were polyp- or colony-level traits. Although all characters exhibited bivariate associations, multivariate analyses (partial correlation coefficients) showed the strongest integration among the colony-level characters (internode distance and branch length). It is a quantitative demonstration that branching characters within the octocorals studied are independent of characters of the polyps. Despite the universally recognized modularity of octocorals at the level of polyps, branching during colony development may represent an emergent level of integration and modularity. PMID:14561292

  4. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot

  5. Endomorphisms on half-sided modular inclusions

    SciTech Connect

    Svegstrup, Rolf Dyre

    2006-12-15

    In algebraic quantum field theory we consider nets of von Neumann algebras indexed over regions of the space time. Wiesbrock [''Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras,'' Commun. Math. Phys. 158, 537-543 (1993)] has shown that strongly additive nets of von Neumann algebras on the circle are in correspondence with standard half-sided modular inclusions. We show that a finite index endomorphism on a half-sided modular inclusion extends to a finite index endomorphism on the corresponding net of von Neumann algebras on the circle. Moreover, we present another approach to encoding endomorphisms on nets of von Neumann algebras on the circle into half-sided modular inclusions. There is a natural way to associate a weight to a Moebius covariant endomorphism. The properties of this weight have been studied by Bertozzini et al. [''Covariant sectors with infinite dimension and positivity of the energy,'' Commun. Math. Phys. 193, 471-492 (1998)]. In this paper we show the converse, namely, how to associate a Moebius covariant endomorphism to a given weight under certain assumptions, thus obtaining a correspondence between a class of weights on a half-sided modular inclusion and a subclass of the Moebius covariant endomorphisms on the associated net of von Neumann algebras. This allows us to treat Moebius covariant endomorphisms in terms of weights on half-sided modular inclusions. As our aim is to provide a framework for treating endomorphisms on nets of von Neumann algebras in terms of the apparently simpler objects of weights on half-sided modular inclusions, we lastly give some basic results for manipulations with such weights.

  6. Local modularity for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Tao; Zhang, Yan; Hu, Ke; Li, Jian-Ming; Xu, Xiao-Ke; Liu, Cui-Cui; Chen, Shi

    2016-02-01

    Community detection is a topic of interest in the study of complex networks such as the protein-protein interaction networks and metabolic networks. In recent years, various methods were proposed to detect community structures of the networks. Here, a kind of local modularity with tunable parameter is derived from the Newman-Girvan modularity by a special self-loop strategy that depends on the community division of the networks. By the self-loop strategy, one can easily control the definition of modularity, and the resulting modularity can be optimized by using the existing modularity optimization algorithms. The local modularity is used as the target function for community detection, and a self-consistent method is proposed for the optimization of the local modularity. We analyze the behaviors of the local modularity and show the validity of the local modularity in detecting community structures on various networks.

  7. Robust modular product family design

    NASA Astrophysics Data System (ADS)

    Jiang, Lan; Allada, Venkat

    2001-10-01

    This paper presents a modified Taguchi methodology to improve the robustness of modular product families against changes in customer requirements. The general research questions posed in this paper are: (1) How to effectively design a product family (PF) that is robust enough to accommodate future customer requirements. (2) How far into the future should designers look to design a robust product family? An example of a simplified vacuum product family is used to illustrate our methodology. In the example, customer requirements are selected as signal factors; future changes of customer requirements are selected as noise factors; an index called quality characteristic (QC) is set to evaluate the product vacuum family; and the module instance matrix (M) is selected as control factor. Initially a relation between the objective function (QC) and the control factor (M) is established, and then the feasible M space is systemically explored using a simplex method to determine the optimum M and the corresponding QC values. Next, various noise levels at different time points are introduced into the system. For each noise level, the optimal values of M and QC are computed and plotted on a QC-chart. The tunable time period of the control factor (the module matrix, M) is computed using the QC-chart. The tunable time period represents the maximum time for which a given control factor can be used to satisfy current and future customer needs. Finally, a robustness index is used to break up the tunable time period into suitable time periods that designers should consider while designing product families.

  8. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  9. Microcomputer applications of, and modifications to, the modular fault trees

    SciTech Connect

    Zimmerman, T.L.; Graves, N.L.; Payne, A.C. Jr.; Whitehead, D.W.

    1994-10-01

    The LaSalle Probabilistic Risk Assessment was the first major application of the modular logic fault trees after the IREP program. In the process of performing the analysis, many errors were discovered in the fault tree modules that led to difficulties in combining the modules to form the final system fault trees. These errors are corrected in the revised modules listed in this report. In addition, the application of the modules in terms of editing them and forming them into the system fault trees was inefficient. Originally, the editing had to be done line by line and no error checking was performed by the computer. This led to many typos and other logic errors in the construction of the modular fault tree files. Two programs were written to help alleviate this problem: (1) MODEDIT - This program allows an operator to retrieve a file for editing, edit the file for the plant specific application, perform some general error checking while the file is being modified, and store the file for later use, and (2) INDEX - This program checks that the modules that are supposed to form one fault tree all link up appropriately before the files are,loaded onto the mainframe computer. Lastly, the modules were not designed for relay type logic common in BWR designs but for solid state type logic. Some additional modules were defined for modeling relay logic, and an explanation and example of their use are included in this report.

  10. [Modular psychotherapy with children and adolescents].

    PubMed

    Schmidt, Stefanie J; Schimmelmann, Benno G

    2016-11-01

    The implementation of evidence-based psychotherapy with children and adolescents has been limited so far. This is mainly due to the fact that patients in service settings tend to have higher rates of comorbidities and more frequently changing therapy needs than those in research settings. Thus, modular psychotherapies are promising, as they allow the treatment protocol to be adapted to patients’ individual needs. Because no review on modular psychotherapy for children and adolescents exists, we conducted a systematic literature research. The results of the 15 randomized controlled trials identified demonstrate that modular psychotherapy is associated with significant reductions in symptom levels as well as with higher rates of diagnostic remission compared to control conditions. Because of the lack of evidence, future studies should investigate the incremental efficacy of modular approaches and test the validity of underlying theoretical models as well as of decision flowcharts. Modular psychotherapy approaches have the potential to personalize evidence-based interventions for children and adolescents across various therapeutical traditions, and to facilitate their implementation into clinical practice.

  11. Modular Extracellular Matrices: Solutions for the Puzzle

    PubMed Central

    Serban, Monica A.; Prestwich, Glenn D.

    2008-01-01

    The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709

  12. Duality and modularity in elliptic integrable systems and vacua of gauge theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2015-04-01

    We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for the Γ0(4) congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that make up vector valued modular forms for congruence subgroups (namely Γ0(4), Γ(2) and Γ(3)), and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed supersymmetric Yang-Mills theories with low rank gauge group of type B, C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for with gauge algebra so(8). We compare the exact massive vacua on to those found in a semi-classical analysis on . We identify several intriguing features of the quantum gauge theories.

  13. Development and Optimization of Modular Hybrid Plasma Reactor

    SciTech Connect

    N /A

    2013-01-02

    INL developed a bench–scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system was optimized for WO{sub 3} nanoparticle production and scale-model projection to a 300 kW pilot system. During the course of technology development, many modifications were made to the system to resolve technical issues that surfaced and also to improve performance. All project tasks were completed except two optimization subtasks. Researchers were unable to complete these two subtasks, a four-hour and an eight-hour continuous powder production run at 1 lb/hr powder-feeding rate, due to major technical issues developed with the reactor system. The 4-hour run was attempted twice, and on both occasions, the run was terminated prematurely. The termination was due to (1) heavy material condensation on the modular electrodes, which led to system operational instability, and (2) pressure buildup in the reactor due to powder clogging of the exhaust gas and product transfer line. The modular electrode for the plasma system was significantly redesigned to address the material condensation problem on the electrodes. However, the cause for product powder clogging of the exhaust gas and product transfer line led to a pressure build up in the reactor that was undetected. Fabrication of the redesigned modular electrodes and additional components was completed near the end of the project life. However, insufficient resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable {delta}- Al{sub 2}O{sub 3} from pure {alpha}-phase large Al{sub 2}O{sub 3} powder. The formation of {delta} -Al{sub 2}O{sub 3} was surprising because this phase is meta-stable and only formed between 973–1073 K, and {delta} -Al{sub 2}O{sub 3} is very difficult to synthesize as a single

  14. An Integrated Modular Avionics Development Environment

    NASA Astrophysics Data System (ADS)

    Schoofs, T.; Santos, S.; Tatibana, C.; Anjos, J.; Rufino, J.; Windsor, J.

    2009-05-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-Space software framework. As part of this process, it is necessary to establish an effective way to develop, test and analyse on-board applications without having access to the final IMA target platform for all engineers. Target platforms are usually extremely expensive considering hardware and software prices as well as training costs. This paper describes the architecture of an Integrated Modular Avionics Development Environment (IMADE) based on the Linux Operating System and the ARINC 653 simulator for Modular On-Board Applications that was developed by Skysoft Portugal, S.A. In cooperation with ESA, 2007-2008.

  15. A modular PMAD system for small spacecraft

    NASA Astrophysics Data System (ADS)

    Button, Robert M.

    1997-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  16. The gravity duals of modular Hamiltonians

    DOE PAGES

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  17. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  18. A Modular Schedule (Telstar Regional High School's Humanities-Oriented English Program).

    ERIC Educational Resources Information Center

    Russell, Frances M., Ed.

    To better match available time and facilities to the form and content of subject matter, a humanities-oriented English program was coordinated with programs in other content areas and a modular schedule will be set up. Each class day will consist of 24 fifteen-minute modules, and some meeting times will be a multiple of these 15-minute periods. To…

  19. Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing

    NASA Technical Reports Server (NTRS)

    Dobbs, Carl, Sr.

    2012-01-01

    A hardware unit has been designed that reduces the cost, in terms of performance and power consumption, for implementing N-modular redundancy (NMR) in a multiprocessor device. The innovation monitors transactions to memory, and calculates a form of sumcheck on-the-fly, thereby relieving the processors of calculating the sumcheck in software

  20. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications.

  1. [Modular tumor prostheses of the humerus].

    PubMed

    Funovics, P T; Dominkus, M

    2010-10-01

    The humerus is a common location of musculoskeletal tumors. Modular prostheses of the humerus, besides APC and biological reconstructions, allow restoration of resulting bone defects. The functional outcome is determined by the extent of bone and soft tissue loss. Anatomical shoulder prostheses have a limited abductor function, while shoulder function could be improved by an inverse prosthetic design and implants for ligament repair. Elbow prostheses provide satisfactory function. Our own results in 101 patients showed a 23% revision rate. The median overall survival was 171 months with an overall 5-year survival of 53%. With respect to good oncological outcomes modular reconstruction of the humerus is a feasible treatment option for cancer patients.

  2. Modular arrangement of regulatory RNA elements.

    PubMed

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  3. Proving relations between modular graph functions

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-12-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links.

  4. Modular arrangement of regulatory RNA elements

    PubMed Central

    Roßmanith, Johanna; Narberhaus, Franz

    2017-01-01

    ABSTRACT Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed. PMID:28010165

  5. Design of Modular Protein Tags for Orthogonal Covalent Bond Formation at Specific DNA Sequences.

    PubMed

    Nguyen, Thang Minh; Nakata, Eiji; Saimura, Masayuki; Dinh, Huyen; Morii, Takashi

    2017-06-28

    Simultaneous formation of specific covalent linkages at nucleotides in given DNA sequences demand distinct orthogonal reactivity of DNA modification agents. Such highly specific reactions require well-balanced reactivity and affinity of the DNA modification agents. Conjugation of a sequence-specific DNA binding zinc finger protein and a self-ligating protein tag provides a modular adaptor that expedites formation of a covalent bond between the protein tag and a substrate-modified nucleotide at a specific DNA sequence. The modular adaptor stably locates a protein of interest fused to it at the target position on DNA scaffold in its functional form. Modular adaptors with orthogonal selectivity and fast reaction kinetics to specific DNA sequences enable site-specific location of different protein molecules simultaneously. Three different modular adaptors consisting of zinc finger proteins with distinct DNA sequence specificities and self-ligating protein tags with different substrate specificities achieved orthogonal covalent bond formation at respective sequences on the same DNA scaffold with an overall coassembly yield over 90%. Application of this unique set of orthogonal modular adaptors enabled construction of a cascade reaction of three enzymes from xylose metabolic pathway on DNA scaffold.

  6. MALEO: Modular Assembly in Low Earth Orbit. A strategy for an IOC lunar base

    NASA Technical Reports Server (NTRS)

    Thangavelu, M.; Schierle, G. G.

    1990-01-01

    Modular Assembly in Low Earth Orbit (MALEO) is a new strategy for building an initial operational capability lunar habitation base. In this strategy, the modular lunar base components are brought up to Low Earth Orbit by the Space Transportation System/Heavy Lift Launch Vehicle fleet, and assembled there to form a complete lunar base. Modular propulsion systems are then used to transport the MALEO lunar base, complete and intact, all the way to the moon. Upon touchdown on the lunar surface, the MALEO lunar habitation base is operational. An exo-skeletal truss superstructure is employed in order to uniformly absorb and distribute the rocket engine thrusting forces incurred by the MALEO lunar base during translunar injection, lunar orbit insertion, and lunar surface touchdown. The components, configuration, and structural aspects of the MALEO lunar base are discussed. Advantages of the MALEO strategy over conventional strategies are pointed out. It is concluded that MALEO holds promise for lunar base deployment.

  7. The prescribed output pattern regulates the modular structure of flow networks

    NASA Astrophysics Data System (ADS)

    Emanuel Beber, Moritz; Armbruster, Dieter; Hütt, Marc-Thorsten

    2013-11-01

    Modules are common functional and structural properties of many social, technical and biological networks. Especially for biological systems it is important to understand how modularity is related to function and how modularity evolves. It is known that time-varying or spatially organized goals can lead to modularity in a simulated evolution of signaling networks. Here, we study a minimal model of material flow in networks. We discuss the relation between the shared use of nodes, i.e., the cooperativity of modules, and the orthogonality of a prescribed output pattern. We study the persistence of cooperativity through an evolution of robustness against local damages. We expect the results to be valid for a large class of flow-based biological and technical networks. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2013-40672-3

  8. The gateway coefficient: a novel metric for identifying critical connections in modular networks

    NASA Astrophysics Data System (ADS)

    Ruiz Vargas, Estefania; Wahl, Lindi M.

    2014-07-01

    The modular structure of a complex network is an important and well-studied topological property. Within this modular framework, particular nodes which play key roles have been previously identified based on the node's degree, and on the node's participation coefficient, a measure of the diversity of a node's intermodular connections. In this contribution, we develop a generalization of the participation coefficient, called the gateway coefficient, which measures not only the diversity of the intermodular connections, but also how critical these connections are to intermodular connectivity; in brief, nodes which form rare or unique "gateways" between sparsely connected modules rank highly in this measure. We illustrate the use of the gateway coefficient with simulated networks with defined modular structure, as well as networks obtained from air transportation data and functional neuroimaging.

  9. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  10. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  11. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector...

  12. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke...

  13. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke...

  14. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units. 181.450... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke...

  15. On Classification of Modular Categories by Rank: Table A.1

    SciTech Connect

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.; Wang, Zhenghan

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  16. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect

    CUNNINGHAM, L.T.

    1999-09-27

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  17. Modularity, Working Memory and Language Acquisition

    ERIC Educational Resources Information Center

    Baddeley, Alan D.

    2017-01-01

    The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…

  18. Modular learning models in forecasting natural phenomena.

    PubMed

    Solomatine, D P; Siek, M B

    2006-03-01

    Modular model is a particular type of committee machine and is comprised of a set of specialized (local) models each of which is responsible for a particular region of the input space, and may be trained on a subset of training set. Many algorithms for allocating such regions to local models typically do this in automatic fashion. In forecasting natural processes, however, domain experts want to bring in more knowledge into such allocation, and to have certain control over the choice of models. This paper presents a number of approaches to building modular models based on various types of splits of training set and combining the models' outputs (hard splits, statistically and deterministically driven soft combinations of models, 'fuzzy committees', etc.). An issue of including a domain expert into the modeling process is also discussed, and new algorithms in the class of model trees (piece-wise linear modular regression models) are presented. Comparison of the algorithms based on modular local modeling to the more traditional 'global' learning models on a number of benchmark tests and river flow forecasting problems shows their higher accuracy and transparency of the resulting models.

  19. Modular Building Institute 2001 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "An Architect's Perspective: Convincing a Skeptic" (Robert M. Iamello); (2) "66 Portables for San Mateo High" (Steven Williams); (3) "Case Study: Charter Schools"…

  20. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  1. Modular evolution of the Cetacean vertebral column.

    PubMed

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  2. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  3. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  4. Modular Building Institute 1999 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Many articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Hightstown High School"; (2) "St. Pius X Parish, Vancouver BC"; (3) "Forrest Street Elementary School"; (4) "Kingman Academy of Learning"; (5) "Women Christian…

  5. The Modular Market. Studies in Further Education.

    ERIC Educational Resources Information Center

    Theodossin, Ernest

    Origins of modular courses and the module in British postcompulsory education are considered, along with characteristics of modules, credit transfer, five case studies, and marketing in further and higher education. A module is a measured part (or course) of an extended learning experience that leads to specified qualifications. A designated…

  6. Transforming modular classrooms in California and elsewhere

    SciTech Connect

    Eilert, P.L.; Hoeschele, M.

    1998-07-01

    This paper discussed a market-transformation program to reduce energy use in modular school classrooms, a large part of new construction activities in California's schools. Today's modular classrooms cost more to operate than is necessary to provide effective, comfortable learning conditions for students and teachers. Although past resource acquisition programs have created a demand for efficient products and services, modular classrooms remain poorly differentiated in this respect. The cost-effectiveness of a range of potential energy efficiency measures (EEM's) were evaluated including lighting, alternative HVAC options, and improved envelope features. Viable EEM's were combined in two separate packages. The first includes measures that can easily be implemented and are projected to reduce operating costs by 30%. The second implements a daylighting system, a two-stage evaporative cooler, and radiant heating, resulting in projected annual energy cost savings over 60%. Transforming the market for modular classrooms is accomplished using natural market forces, rather than financial incentives directed at an entire industry. Proactive efforts are focused on the manufacturing industry's change leaders to commercialize energy-efficient products. Lost market share and peer pressure do the heavy lifting of convincing market followers to upgrade their products. Demand for efficient classrooms is increased by educating schools about the new products' financial advantages, comfort enhancements, and environmental benefits. As new products become established in the marketplace, support will be gradually withdrawn. The relevance of this work extends beyond California, given other States' programs to reduce class size, and the Presidents initiative to reduce class size nationally.

  7. Modular Building Institute 2002 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Re-Educating Schools" (Chuck Savage); (2) "Tax-Exempt Financing for Public Schools" (John Kennedy); (3) "Help Us Rebuild America" (Michael Roman); (4) "Case…

  8. A Modular Curriculum in Information Studies.

    ERIC Educational Resources Information Center

    Large, J. A.

    Prepared under a contract between UNESCO and IFLA (the International Federation of Library Associations), this modular curriculum is intended as a resource from which curricula can be constructed by individual departments of information studies to meet local needs and circumstances. Following an introductory discussion and explanation of the…

  9. Modular space station phase B extension

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The system safety analyses and requirements developed for the modular space station during the phase B extension are reviewed. Residual hazards and unresolved safety issues are summarized. Hazards resulting from equipment failures or malfunctions, operations, or credible accidents are identified and evaluated. Special safety trade studies are presented.

  10. GAMBIT: Global And Modular BSM Inference Tool

    NASA Astrophysics Data System (ADS)

    GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrzä Szcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-08-01

    GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

  11. Modular processes in mind and brain.

    PubMed

    Sternberg, Saul

    2011-05-01

    One approach to understanding a complex process starts with an attempt to divide it into modules·, sub-processes that are independent in some sense, and have distinct functions. In this paper, I discuss an approach to the modular decomposition of neural and mental processes. Several examples of process decomposition are presented, together with discussion of inferential requirements. Two examples are of well-established and purely behavioural realizations of the approach (signal detection theory applied to discrimination data; the method of additive factors applied to reaction-time data), and lead to the identification of mental modules. Other examples, leading to the identification of modular neural processes, use brain measures, including the fMRI signal, the latencies of electrophysiological events, and their amplitudes. Some measures are pure (reflecting just one process), while others are composite. Two of the examples reveal mental and neural modules that correspond. Attempts to associate brain regions with behaviourally defined processing modules that use a brain manipulation (transcranial magnetic stimulation, TMS) are promising but incomplete. I show why the process-decomposition approach discussed here, in which the criterion for modularity is separate modifiability, is superior for modular decomposition to the more frequently used task comparison procedure (often used in cognitive neuropsychology) and to its associated subtraction method. To demonstrate the limitations of task comparison, I describe the erroneous conclusion to which it has led about sleep deprivation, and the interpretive difficulties in a TMS study.

  12. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  13. Modular polynomial arithmetic in partial fraction decomposition

    NASA Technical Reports Server (NTRS)

    Abdali, S. K.; Caviness, B. F.; Pridor, A.

    1977-01-01

    Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algorithm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algorithm.

  14. A Modular, Reconfigurable Surveillance UAV Architecture

    DTIC Science & Technology

    2007-11-02

    Una Società Galileo Avionica A Modular, Reconfigurable Surveillance UAV Architecture METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via...ES) METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via Mario Stoppani 21 34077 Ronchi dei Legionari (GO) ITALY 8. PERFORMING

  15. What Symbionts Teach us about Modularity

    PubMed Central

    Porcar, Manuel; Latorre, Amparo; Moya, Andrés

    2013-01-01

    The main goal of Synthetic Biology (SB) is to apply engineering principles to biotechnology in order to make life easier to engineer. These engineering principles include modularity: decoupling of complex systems into smaller, orthogonal sub-systems that can be used in a range of different applications. The successful use of modules in engineering is expected to be reproduced in synthetic biological systems. But the difficulties experienced up to date with SB approaches question the short-term feasibility of designing life. Considering the “engineerable” nature of life, here we discuss the existence of modularity in natural living systems, particularly in symbiotic interactions, and compare the behavior of such systems, with those of engineered modules. We conclude that not only is modularity present but it is also common among living structures, and that symbioses are a new example of module-like sub-systems having high similarity with modularly designed ones. However, we also detect and stress fundamental differences between man-made and biological modules. Both similarities and differences should be taken into account in order to adapt SB design to biological laws. PMID:25023877

  16. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  17. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.

  18. Modular design for a liquid target

    NASA Astrophysics Data System (ADS)

    Li, K.; Jahangiri, P.; Zacchia, N.; Uittenbosch, T.; Buckley, K.; Martinez, D. M.; Hoehr, C.

    2017-05-01

    A modular target with varying depth has been designed and built to investigate density reduction in liquid targets. An interchangeable middle piece allows target depths from 7.5 to 52.5 mm. The target has been tested and found to be leak tight and functional.

  19. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    PubMed

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modularity and sense organs in the blind cavefish, Astyanax mexicanus.

    PubMed

    Franz-Odendaal, Tamara A; Hall, Brian K

    2006-01-01

    Mexican tetra (Astyanax mexicanus) exist as two morphs: a sighted (surface) form and a blind (cavefish) form. In the cavefish, some modules are lost, such as the eye and pigment modules, whereas others are expanded, such as the taste bud and cranial neuromast modules. We suggest that modularity can be viewed as being nested in a manner similar to Baupläne so that modules express unique sets of genes, cells, and processes. In terms of evolution, we conclude that natural selection can act on any of these hierarchical levels within modules or on all the sensory modules as a whole. We discuss interactions within and between modules with reference to the blind cavefish from both genetic and developmental perspectives. The cavefish represents an illuminating example of module interaction, uncoupling of modules, and module expansion.

  1. Modularity for Motor Control and Motor Learning.

    PubMed

    d'Avella, Andrea

    2016-01-01

    How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

  2. Automorphic Black Hole Entropy

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2013-09-01

    Over the past few years the understanding of the microscopic theory of black hole entropy has made important conceptual progress by recognizing that the degeneracies are encoded in partition functions which are determined by higher rank automorphic representations, in particular in the context of Siegel modular forms of genus two. In this review, some of the elements of this framework are highlighted. One of the surprising aspects is that the Siegel forms that have appeared in the entropic context are geometric in origin, arising from weight two cusp forms, hence from elliptic curves.

  3. Utility of modular implants in primary total hip arthroplasty.

    PubMed

    Berry, Daniel J

    2014-04-01

    Most surgeons believe that some level of modularity has a valuable role to play in primary total hip arthroplasty. However, all modular junctions carry some risk and recent problems with taper tribocorrosion have elevated concerns. These problems suggest that more rigorous preclinical testing should be undertaken before new types of modularity are widely used. Efforts to further optimize these junctions where they are needed, avoidance of gratuitous use of modular junctions where they provide only modest benefits, and a judicious approach to adopting new modularity are reasonable approaches to current concerns. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Local temperatures and local terms in modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Arias, Raúl E.; Blanco, David D.; Casini, Horacio; Huerta, Marina

    2017-03-01

    We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show that important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically that this is the case for free massive scalar and Dirac fields. In dimensions d ≥3 , the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field, we classify the structure of the local terms.

  5. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  6. Odd Laplacians: geometrical meaning of potential and modular class

    NASA Astrophysics Data System (ADS)

    Khudaverdian, Hovhannes M.; Peddie, Matthew T.

    2017-01-01

    A second-order self-adjoint operator Δ =Spartial ^2+U is uniquely defined by its principal symbol S and potential U if it acts on half-densities. We analyse the potential U as a compensating field (gauge field) in the sense that it compensates the action of coordinate transformations on the second derivatives in the same way as an affine connection compensates the action of coordinate transformations on first derivatives in the first-order operator, a covariant derivative, nabla =partial +Γ . Usually a potential U is derived from other geometrical constructions such as a volume form, an affine connection, or a Riemannian structure, etc. The story is different if Δ is an odd operator on a supermanifold. In this case, the second-order potential becomes a primary object. For example, in the case of an odd symplectic supermanifold, the compensating field of the canonical odd Laplacian depends only on this symplectic structure and can be expressed by the formula obtained by K. Bering. We also study modular classes of odd Poisson manifolds via Δ -operators, and consider an example of a non-trivial modular class which is related with the Nijenhuis bracket.

  7. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  8. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  9. On the classification of weakly integral modular categories

    SciTech Connect

    Bruillard, Paul; Galindo, César; Ng, Siu-Hung; Plavnik, Julia Y.; Rowell, Eric C.; Wang, Zhenghan

    2016-06-01

    In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. The classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.

  10. Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces

    PubMed Central

    Hussain, N.; Salimi, P.

    2014-01-01

    The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157

  11. Bosonics: Phononics, Magnonics, Plasmonics in Nano-Scale Disorder(Nanonics), Metamaterials, Astro-Seismology (Meganonics): Brillouin-Siegel GENERIC: Generalized-Disorder Collective-Boson Mode-Softening Universality-Principle (G...P) With PIPUB Many-Body Localization

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    Siegel and Matsubara[Statphys-13(`77) Intl.Conf.Lattice-Dyn.(`77)Scripta Met.13,913(`80)]JMMM:5, 1, 84 (`77)22,1:41,58(`80)Mag.Lett.(`80)Phys./Chem.Liquids:4,(4) (`75)5,(1)(76)] generalization to GENERIC Siegel[J.Non-Xline-Sol.40,453(`80)] G...P GENERIC Brillouin[Wave-Propagation in Periodic-Structures(`22)]-Landau[`41]-Feynman[`51]-de Boer[in Phonons/Phonon-Interactions(`64)]-Egelstaff[Intro.Liquid-State(`65)]-Hubbard-Beebe[J.Phys.C(`67)]-``Anderson''[1958]- Siegel [J.Non-Xl.-Sol. 40, 453(`80)] GENERIC many-body localization. GENERIC Hubbard-Beebe[J.Phys.C(`67)] static structure-factor S(k) modulated kinetic-energy ω(k) = ℏ ⌃(2)k⌃(2)/2mS(k) expressing G....P(``bass-ackwardly'') aka homogeneity and isotropy creates GENERIC G...P with GENERIC pseudo-isotropic pseudo-Umklapp backscattering (PIPUB) for GENERIC many-body localization of and/or by mutually interacting collective-bosons: phonons(phononics) with magnons(magnonics) with plasmons(plasmonics) with fermions (electros, holes)...etc. in nano-scale ``disorder'', metamaterials and on very-macro-scales (surprisingly) Bildsten et.al. astro-seismology(meganonics) of red-giant main-sequence stars(Mira, Betelguese)!

  12. Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering.

    PubMed

    McGuigan, Alison P; Sefton, Michael V

    2007-05-01

    We have proposed modular tissue engineering as a strategy to construct vascularized tissues containing multiple cell types. To create a modular construct, instead of seeding a preformed scaffold, cells were encapsulated within sub-mm modules, and the outer surface of these modules was covered with a layer of endothelial cells. Modules were then added to a larger structure (here by filling a tube) to form the modular construct. Through a systematic process of materials selection, collagen, human umbilical vein endothelial cells (HUVECs), and HepG2 cells, a human hepatoma cell line, were identified as suitable components for module formation, at least for initial studies. A method, which involved cutting and shaping the modules within a tubular mold, was developed to fabricate sub-mm, cylindrical, collagen modules that contained viable, functioning HepG2 cells and that could be seeded with a surface layer of HUVECs. Module dimensions were reproducible and easily altered in a controlled fashion if desired. The module fabrication process developed here not only generated modules suitable for the assembly of a prototype modular construct, but also could potentially be used more generally for other applications for which the goal is to form submm-diameter cylinders from soft hydrogels.

  13. Robust and fault tolerant control of modular and reconfigurable robots

    NASA Astrophysics Data System (ADS)

    Abdul, Sajan

    Modular and reconfigurable robot has been one of the main areas of robotics research in recent years due to its wide range of applications, especially in aerospace sector. Dynamic control of manipulators can be performed using joint torque sensing with little information of the link dynamics. From the modular robot perspective, this advantage offered by the torque sensor can be taken to enhance the modularity of the control system. Known modular robots though boast novel and diverse mechanical design on joint modules in one way or another, they still require the whole robot dynamic model for motion control, and modularity offered in the mechanical side does not offer any advantage in the control design. In this work, a modular distributed control technique is formulated for modular and reconfigurable robots that can instantly adapt to robot reconfigurations. Under this control methodology, a modular and reconfigurable robot is stabilized joint by joint, and modules can be added or removed without the need of re-tuning the controller. Model uncertainties associated with load and links are compensated by the use of joint torque sensors. Other model uncertainties at each joint module are compensated by a decomposition based robust controller for each module. The proposed distributed control technique offers a 'modular' approach, featuring a unique joint-by-joint control synthesis of the joint modules. Fault tolerance and fault detection are formulated as a decentralized control problem for modular and reconfigurable robots in this thesis work. The modularity of the system is exploited to derive a strategy dependent only on a single joint module, while eliminating the need for the motion states of other joint modules. While the traditional fault tolerant and detection schemes are suitable for robots with the whole dynamic model, this proposed technique is ideal for modular and reconfigurable robots because of its modular nature. The proposed methods have been

  14. Giant-Magnetoresistance(GMR) Siegel KEY FIRST Experimental Discovery Decade-Earlier PRE-``Fert"-``Gruenberg" in Nuc"el"ar ``Super"alloys: Science?;``SEANCE!!!; Ethics?; SHMETHICS!!!

    NASA Astrophysics Data System (ADS)

    Hoffman, R.; Siegel, E.

    2010-03-01

    (So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!

  15. Unravelling Mathieu moonshine

    NASA Astrophysics Data System (ADS)

    Govindarajan, Suresh

    2012-11-01

    The D1-D5-KK-p system naturally provides an infinite-dimensional module graded by the dyonic charges whose dimensions are counted by the Igusa cusp form, Φ10(Z). We show that the Mathieu group, M24, acts on this module by recovering the Siegel modular forms that count twisted dyons as a trace over this module. This is done by recovering Borcherds product formulae for these modular forms using the M24 action. This establishes the correspondence ('moonshine') proposed in arXiv:0907.1410 that relates conjugacy classes of M24 to Siegel modular forms. This also, in a sense that we make precise, subsumes existing moonshines for M24 that relates its conjugacy classes to eta-products and Jacobi forms.

  16. Stress promotes maleness in hermaphroditic modular animals

    PubMed Central

    Hughes, R. N.; Manríquez, P. H.; Bishop, J. D. D.; Burrows, M. T.

    2003-01-01

    Sex-allocation theory developed for hermaphroditic plants predicts that impaired phenotype or reduced parental survivorship caused by environmental stress should induce relatively greater allocation to the male function. We provide experimental evidence of stress-induced maleness, already well documented in flowering plants, in a modular animal. By using cloned copies of replicate genotypes, we show that the marine bryozoan Celleporella hyalina increases the ratio of male to female modules in response to diverse environmental stressors. Mating trials confirmed that paternity is determined by fair-raffle sperm competition, which should obviate local mate competition at characteristic population density and promote the advantage of increased male allocation. The demonstrated similarity to plants transcends specific physiological pathways and suggests that stress-induced bias toward male function is a general response of hermaphroditic modular organisms to impaired prospects for parental productivity or survival. PMID:12930903

  17. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  18. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  19. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  20. Modular Chemical Process Intensification: A Review

    SciTech Connect

    Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; Tsouris, Costas

    2016-06-24

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  1. On Fusion Algebras and Modular Matrices

    NASA Astrophysics Data System (ADS)

    Gannon, T.; Walton, M. A.

    We consider the fusion algebras arising in e.g. Wess-Zumino-Witten conformal field theories, affine Kac-Moody algebras at positive integer level, and quantum groups at roots of unity. Using properties of the modular matrix S, we find small sets of primary fields (equivalently, sets of highest weights) which can be identified with the variables of a polynomial realization of the Ar fusion algebra at level k. We prove that for many choices of rank r and level k, the number of these variables is the minimum possible, and we conjecture that it is in fact minimal for most r and k. We also find new, systematic sources of zeros in the modular matrix S. In addition, we obtain a formula relating the entries of S at fixed points, to entries of S at smaller ranks and levels. Finally, we identify the number fields generated over the rationals by the entries of S, and by the fusion (Verlinde) eigenvalues.

  2. Siberian company starts up modular refinery

    SciTech Connect

    1996-03-18

    Uraineftegas, a subsidiary of Russian oil giant Lukoil, has started up Siberia`s first modular crude distillation unit. The 2,000 b/d refinery was designed and manufactured by Ventech Engineers Inc., Pasadena, Tex. Uraineftegas is based in Urai, Siberia. Located in the Tyumen region on the Konda river, the remote town is accessible only by air and water. Most of Urai`s crude production--about 50,000 b/d, according to Ventech president Bill Stanley--is shipped by pipeline to the refining centers at Ufa and Omsk. Because there are no products pipelines in which to ship fuels back to Urai, the town needed a small refinery in order to produce its own fuels. This report briefly describes the design ad operation of these modular units. It describes construction techniques and temperature control equipment used to maintain an operational environment under severe winter weather.

  3. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGES

    Zuntz, J.; Paterno, M.; Jennings, E.; ...

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  4. CosmoSIS: Modular cosmological parameter estimation

    SciTech Connect

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  5. Small satellite modular design and application prospect

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Chen, Jin-Jun

    1993-01-01

    A small satellite modular architecture is introduced, which is based on systematically analyzing the subsystem functions of small satellites. A whole spacecraft is divided into three modules: the payload module, the attitude control module and the common service module. The payload module offers three versions to select according to payload mass; the attitude control module offers gravity gradient modules, spin stabilized modules and two types of three axis stabilization module; common service module is the small satellite control center including control system, power system and TTC (Telemetry, Tracking and Control) system. Several basic module configurations are possible: gravity gradient model, spin stabilized model, the payload module mass varying between 50 to 150 kg. The use of a Chinese launch vehicle to launch these modular small satellites is possible. Small satellite applications in the military, civil and scientific fields are prospected.

  6. SMARBot: a modular miniature mobile robot platform

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  7. Modular Chemical Process Intensification: A Review

    DOE PAGES

    Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...

    2016-06-24

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less

  8. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  9. Modular organization of axial microcircuits in zebrafish

    PubMed Central

    Bagnall, Martha W.; McLean, David L.

    2014-01-01

    Locomotion requires precise control of spinal networks. In tetrapods and bipeds, dynamic regulation of locomotion is simplified by the modular organization of spinal limb circuits, but it is not known whether their predecessors, fish axial circuits, are similarly organized. Here, we demonstrate that the larval zebrafish spinal cord contains distinct, parallel microcircuits for independent control of dorsal and ventral musculature on each side of the body. During normal swimming, dorsal and ventral microcircuits are equally active; but during postural correction, fish differentially engage these microcircuits to generate torque for self-righting. These findings reveal greater complexity in the axial spinal networks responsible for swimming than previously recognized and suggest an early template of modular organization for more complex locomotor circuits in later vertebrates. PMID:24408436

  10. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-10-07

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.

  11. Implementing a modular system of computer codes

    SciTech Connect

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out.

  12. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  13. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  14. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  15. Modular quantum-information processing by dissipation

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo

    2016-11-01

    Dissipation can be used as a resource to control and simulate quantum systems. We discuss a modular model based on fast dissipation capable of performing universal quantum computation, and simulating arbitrary Lindbladian dynamics. The model consists of a network of elementary dissipation-generated modules and it is in principle scalable. In particular, we demonstrate the ability to dissipatively prepare all single-qubit gates, and the controlled-not gate; prerequisites for universal quantum computing. We also show a way to implement a type of quantum memory in a dissipative environment, whereby we can arbitrarily control the loss in both coherence, and concurrence, over the evolution. Moreover, our dissipation-assisted modular construction exhibits a degree of inbuilt robustness to Hamiltonian and, indeed, Lindbladian errors, and as such is of potential practical relevance.

  16. Modular Chemical Process Intensification: A Review.

    PubMed

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  17. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  18. lazar: a modular predictive toxicology framework

    PubMed Central

    Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph

    2013-01-01

    lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761

  19. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  20. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  1. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  2. Modular control system for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Sowiński, Mikołaj; Kulik, Paweł; Kasprowicz, Grzegorz; Mankiewicz, Lech; Krawczyk, Rafał D.; Jarosiński, Jakub; Czajkowski, Rafał; Knapska, Ewelina; Puścian, Alicja; Kowalski, Jakub; Rusakov, Konstantin; Przywózki, Tomasz; Rasiński, Paweł; Juszczyk, Bartłomiej

    2016-09-01

    This article presents a modular control system used in Eco-HAB experimentation system. Features specific to the solution are covered. Control system is described in details. The architecture is outlined in the context of requirements to be met. Modes of utilization of implantable device, time synchronization, localization service and antenna driving oscillation fine-tuning as well as preliminary experiments in preparation are described.

  3. Modular Zero Energy. BrightBuilt Home

    SciTech Connect

    Aldrich, Robb; Butterfield, Karla

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  4. Bifurcated, modular syntheses of chiral annulet triazacyclononanes.

    PubMed

    Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C

    2003-12-21

    Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.

  5. Modular Habitats Comprising Rigid and Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2010-01-01

    Modular, lightweight, fully equipped buildings comprising hybrids of rigid and inflatable structures can be assembled on Earth and then transported to and deployed on the Moon for use as habitats. Modified versions of these buildings could also prove useful on Earth as shelters that can be rapidly and easily erected in emergency situations and/or extreme environments: examples include shelters for hurricane relief and for Antarctic exploration.

  6. Workflow and cost analysis on MODULAR ANALYTICS.

    PubMed

    Stolz, Herbert; Dossler, Bettina; Keller, Franz; Steigerwald, Udo

    2003-01-01

    Four stand-alone analyzers in a centralized laboratory were replaced by two modular analytical systems processing 45 methods of the general chemistry and specific protein segment. This consolidation led to a reduction of the daily workflow and operational costs. The cost saving with 1.3 million reported results per year was 53,000 Euro, which can be assessed as an important contribution to cost reduction in the health care system.

  7. Parallel Induction of Modular Classification Rules

    NASA Astrophysics Data System (ADS)

    Stahl, Frederic; Bramer, Max; Adda, Mo

    The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.

  8. Modular vaccine packaging increases packing efficiency.

    PubMed

    Norman, Bryan A; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T; Lee, Bruce Y

    2015-06-17

    Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. Copyright © 2015. Published by Elsevier Ltd.

  9. Integrated modular propulsion for launch vehicles

    NASA Technical Reports Server (NTRS)

    Knuth, William; Crawford, Roger; Litchford, Ron

    1993-01-01

    The paper proposes a modular approach to rocket propulsion which offers a versatile method for realizing the goals of low cost, safety, reliability, and ease of operation. It is shown that, using practical modules made up of only 4-6 individual elements, it is possible to achieve thrust levels of 2-3 mln lbf and more, using turbomachinery, thrust chambers, lines, and valves about the size of SSME hardware. The approach is illustrated by a LOX/LH2 configuration.

  10. Modular vaccine packaging increases packing efficiency

    PubMed Central

    Norman, Bryan A.; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T.; Lee, Bruce Y.

    2015-01-01

    Background Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular “inner packs” for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. Methods We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Results Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Conclusions Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. PMID:25957666

  11. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  12. Generalized modular-value-based scheme and its generalized modular value

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2017-03-01

    We consider a generalized modular-value-based scheme based on the standard von Neumann measurement. We model the scheme as an interaction between a quantum system and a discrete quantum pointer where the pointer operator is a projection operator onto one of the states of the basis of the pointer Hilbert space. The interaction strength is made arbitrarily large. After post-selection onto the system, the results of the pointer measurement are the so-called conditional probabilities. We first explicitly derive the analytical expressions of the conditional probabilities, the expectation value, and the average displacement in the measured value of a pointer observable that we name as the pointer quantities. We also provide an expression for a generalized modular value and discuss the relationship between the generalized modular value and generalized weak values. The study then shows that the generalized modular value can characterize these pointer quantities. Then we give applications of our proposal to the cases of a spin-s particle pointer and a semiclassical pointer state. One of the key results is that the amplification effect, similar to the weak-value case, is also observed in the case of the generalized modular value. Our study can also apply to the cases of nonclassical pointer states.

  13. Modular Zero Energy. BrightBuilt Home

    SciTech Connect

    Aldrich, Robb; Butterfield, Karla

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  14. Evolution of a modular software network

    PubMed Central

    Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.

    2011-01-01

    “Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260

  15. Modular injection systems for miniature engines

    NASA Astrophysics Data System (ADS)

    Cochran, Mike

    1992-07-01

    Mission requirements for Kinetic Energy Weapons will require miniaturization of current vehicle propulsion systems for future Space Defence Iniative Programs. A modular injection system (MIS) valve is presented which will decrease cost, size and weight of miniaturized storable bipropellant rocket engines and features two poppet-type propellant valve modules pneumatically linked to a pilot solenoid module. A prototype modular injection valve sized for 100lbf thrust was designed and is being tested to show lower costs, fewer moving parts and a reduction in weight and size. Results show that this valve meets objectives of one-half weight, one-half cost and one-fifth the envelopment of current production valves. Studies indicate that a cruciform configuration of four nominal 100lbf thrust engines can be controlled by four modular injection valve systems in a single housing of less than 1.0 m3. Following further development and correlation of results this concept may be scaled to control four higher thrust engines.

  16. Evolution of a modular software network.

    PubMed

    Fortuna, Miguel A; Bonachela, Juan A; Levin, Simon A

    2011-12-13

    "Evolution behaves like a tinkerer" (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed.

  17. Modular Closed-Loop Control of Diabetes

    PubMed Central

    Magni, L.; Dassau, E.; Hughes-Karvetski, C.; Toffanin, C.; De Nicolao, G.; Del Favero, S.; Breton, M.; Man, C. Dalla; Renard, E.; Zisser, H.; Doyle, F. J.; Cobelli, C.; Kovatchev, B. P.

    2015-01-01

    Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient’s basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability. PMID:22481809

  18. Understanding Modularity in Molecular Networks Requires Dynamics

    PubMed Central

    Alexander, Roger P.; Kim, Philip M.; Emonet, Thierry; Gerstein, Mark B.

    2014-01-01

    The era of genome sequencing has produced long lists of the molecular parts from which cellular machines are constructed. A fundamental goal in systems biology is to understand how cellular behavior emerges from the interaction in time and space of genetically encoded molecular parts, as well as non-genetically encoded small molecules. Networks provide a natural framework for the organization and quantitative representation of all the available data about molecular interactions. The structural and dynamic properties of molecular networks have been the subject of intense research. Despite major advances, bridging network structure to dynamics – and therefore to behavior – remains challenging. A key concept of modern engineering that recurs in the functional analysis of biological networks is modularity. Most approaches to molecular network analysis rely to some extent on the assumption that molecular networks are modular – that is, they are separable and can be studied to some degree in isolation. We describe recent advances in the analysis of modularity in biological networks, focusing on the increasing realization that a dynamic perspective is essential to grouping molecules into modules and determining their collective function. PMID:19638611

  19. Antimony: a modular model definition language.

    PubMed

    Smith, Lucian P; Bergmann, Frank T; Chandran, Deepak; Sauro, Herbert M

    2009-09-15

    Model exchange in systems and synthetic biology has been standardized for computers with the Systems Biology Markup Language (SBML) and CellML, but specialized software is needed for the generation of models in these formats. Text-based model definition languages allow researchers to create models simply, and then export them to a common exchange format. Modular languages allow researchers to create and combine complex models more easily. We saw a use for a modular text-based language, together with a translation library to allow other programs to read the models as well. The Antimony language provides a way for a researcher to use simple text statements to create, import, and combine biological models, allowing complex models to be built from simpler models, and provides a special syntax for the creation of modular genetic networks. The libAntimony library allows other software packages to import these models and convert them either to SBML or their own internal format. The Antimony language specification and the libAntimony library are available under a BSD license from http://antimony.sourceforge.net/.

  20. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  1. MACOP modular architecture with control primitives

    PubMed Central

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  2. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  3. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  4. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  5. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  6. Modularized functions of the Fanconi anemia core complex.

    PubMed

    Huang, Yaling; Leung, Justin W C; Lowery, Megan; Matsushita, Nobuko; Wang, Yucai; Shen, Xi; Huong, Do; Takata, Minoru; Chen, Junjie; Li, Lei

    2014-06-26

    The Fanconi anemia (FA) core complex provides the essential E3 ligase function for spatially defined FANCD2 ubiquitination and FA pathway activation. Of the seven FA gene products forming the core complex, FANCL possesses a RING domain with demonstrated E3 ligase activity. The other six components do not have clearly defined roles. Through epistasis analyses, we identify three functional modules in the FA core complex: a catalytic module consisting of FANCL, FANCB, and FAAP100 is absolutely required for the E3 ligase function, and the FANCA-FANCG-FAAP20 and the FANCC-FANCE-FANCF modules provide nonredundant and ancillary functions that help the catalytic module bind chromatin or sites of DNA damage. Disruption of the catalytic module causes complete loss of the core complex function, whereas loss of any ancillary module component does not. Our work reveals the roles of several FA gene products with previously undefined functions and a modularized assembly of the FA core complex.

  7. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  8. Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations

    PubMed Central

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and

  9. Relative importance of modularity and other morphological attributes on different types of lithic point weapons: assessing functional variations.

    PubMed

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving

  10. Modular Manufacturing Simulator Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.

  11. New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint

    SciTech Connect

    Jonkman, J.

    2013-01-01

    NREL has recently put considerable effort into improving the overall modularity of its FAST wind turbine aero-hydro-servo-elastic tool to (1) improve the ability to read, implement, and maintain source code; (2) increase module sharing and shared code development across the wind community; (3) improve numerical performance and robustness; and (4) greatly enhance flexibility and expandability to enable further developments of functionality without the need to recode established modules. The new FAST modularization framework supports module-independent inputs, outputs, states, and parameters; states in continuous-time, discrete-time, and in constraint form; loose and tight coupling; independent time and spatial discretizations; time marching, operating-point determination, and linearization; data encapsulation; dynamic allocation; and save/retrieve capability. This paper explains the features of the new FAST modularization framework, as well as the concepts and mathematical background needed to understand and apply it correctly. It is envisioned that the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic, hydrodynamic, servo-dynamic, and structural-dynamic components.

  12. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art

    PubMed Central

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience. PMID:23840527

  13. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art.

    PubMed

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience.

  14. The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    PubMed Central

    Alberghina, Lilia; Colangelo, Anna Maria

    2006-01-01

    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease. PMID:17118156

  15. Building blocks of a fish head: Developmental and variational modularity in a complex system.

    PubMed

    Lehoux, Caroline; Cloutier, Richard

    2015-11-01

    Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones. © 2015 Wiley Periodicals, Inc.

  16. Engineering Analyses of NCSX Modular Coil and Its Supporting Structure for EM Loads

    SciTech Connect

    H.M. Fan; D. Williamson

    2003-10-30

    NCSX modular coil is a major parts of the NCSX coil systems that surround the highly shaped plasma and vacuum vessel. The flexible copper cable conductors are used to form modular coil on both sides of the ''tee'' beam, which is cast inside the supporting shell structure. The Engineering analyses comprise sequentially coupled-field analyses that include an electromagnetic analysis to calculate the magnetic fields and EM forces, and a structural analysis to evaluate the structural responses. In the sequential EM-structural analysis, nodal forces obtained from the EM analysis were applied as ''nodal force'' loads in the subsequent stress analysis using the identical nodal points and elements. The shell model was imported directly from Pro/ENGINEER files in order to obtain an accurate structural representation. The Boolean operations provided by the ANSYS preprocessor were then applied to subdivide the solid model for more desirable finite element meshing. Material properties of the modular coil were based on test results. Analyses using the ANSYS program to evaluate structural responses of the complicated modular coil systems provided a clear understanding of the structural behaviors and the directions for improving the structural design.

  17. Towards a Formal Basis for Modular Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  18. Young Investigator Program: Modular Paradigm for Scalable Quantum Information

    DTIC Science & Technology

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0120 Modular Paradigm for Scalable Quantum Information Paola Cappellaro MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final Report 03...AND SUBTITLE Young Investigator Program: Modular Paradigm for Scalable Quantum Information 5a. CONTRACT NUMBER FA9550-12-1-0292 5b. GRANT NUMBER...Modular Paradigm for Scalable Quantum Information” was to address some of the challenges facing the field of quantum information science (QIS). The

  19. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  20. Network-Physics (NP) BEC DIGITAL(#)-VULNERABILITY; ``Q-Computing"=Simple-Arithmetic;Modular-Congruences=SignalXNoise PRODUCTS=Clock-model;BEC-Factorization;RANDOM-# Definition;P=/=NP TRIVIAL Proof!!!

    NASA Astrophysics Data System (ADS)

    Pi, E. I.; Siegel, E.

    2010-03-01

    Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).

  1. Cascading failures of interdependent modular small-world networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  2. Metabolic network modularity in archaea depends on growth conditions.

    PubMed

    Takemoto, Kazuhiro; Borjigin, Suritalatu

    2011-01-01

    Network modularity is an important structural feature in metabolic networks. A previous study suggested that the variability in natural habitat promotes metabolic network modularity in bacteria. However, since many factors influence the structure of the metabolic network, this phenomenon might be limited and there may be other explanations for the change in metabolic network modularity. Therefore, we focus on archaea because they belong to another domain of prokaryotes and show variability in growth conditions (e.g., trophic requirement and optimal growth temperature), but not in habitats because of their specialized growth conditions (e.g., high growth temperature). The relationship between biological features and metabolic network modularity is examined in detail. We first show the absence of a relationship between network modularity and habitat variability in archaea, as archaeal habitats are more limited than bacterial habitats. Although this finding implies the need for further studies regarding the differences in network modularity, it does not contradict previous work. Further investigations reveal alternative explanations. Specifically, growth conditions, trophic requirement, and optimal growth temperature, in particular, affect metabolic network modularity. We have discussed the mechanisms for the growth condition-dependant changes in network modularity. Our findings suggest different explanations for the changes in network modularity and provide new insights into adaptation and evolution in metabolic networks, despite several limitations of data analysis.

  3. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. © 2014.

  4. Final Report: Self-Consolidating Concrete Construction for Modular Units

    SciTech Connect

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly; Petrovic, Bojan; Loreto, Giovanni; Van Wyk, Jurie; Canterero-Leal, Carlos

    2016-07-29

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to

  5. Imaging Total Stations - Modular and Integrated Concepts

    NASA Astrophysics Data System (ADS)

    Hauth, Stefan; Schlüter, Martin

    2010-05-01

    Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany

  6. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect

    1990-05-01

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  7. Development of modular cable mesh deployable antenna

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

    1993-03-01

    This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

  8. Final Report 2175 Modular Radar Project

    DTIC Science & Technology

    1975-06-30

    AFC Amplifier AGC Module L.V. LC FUter SYS Power Converter (DC) SYS Power Converter (AC) AUX Power Supply (DC) AUX Power Supply (AC) +5VRec/Fil...Pos. Series Reg. 4* 4 2 1C - $200 ND „ HV Rectifier/ FUter I* 1 1 IB - $150 ND LV Rectifier/ FUter 3* 3 2 1C - $175 ND _ Comparator 1* 1 1 1A - $100...Status F1LXFMR/XIST0RS & Line Rect/ FUter (Special for each magnetron) 1* — — 2G 20X10-6 $350 ND Modular Isolation LC Filter(Special for each

  9. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  10. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  11. Modular platform for low-light microscopy

    PubMed Central

    Kim, Tae Jin; Tuerkcan, Silvan; Ceballos, Andrew; Pratx, Guillem

    2015-01-01

    Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes. Results show that this microscope system features excellent aberration correction capabilities and enhanced image resolution, where bioluminescence, radioluminescence and epifluorescence images were captured and compared with the commercial bioluminescence microscope. PMID:26601020

  12. Language constructs for modular parallel programs

    SciTech Connect

    Foster, I.

    1996-03-01

    We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

  13. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  14. Shape optimization of the modular press body

    NASA Astrophysics Data System (ADS)

    Pabiszczak, Stanisław

    2016-12-01

    A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.

  15. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  16. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect

    STUBBS, A.M.

    2000-12-04

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

  17. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  18. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  19. Prototype of the Modular Equipment Transporter (MET)

    NASA Image and Video Library

    1970-02-13

    S70-29505 (13-18 Feb. 1970) --- A prototype of the modular equipment transporter (MET), nicknamed the "Rickshaw" after its shape and method of propulsion. This equipment was used by the Apollo 14 astronauts during their geological and lunar surface simulation training in the Pinacate volcanic area of northwestern Sonora, Mexico. The Apollo 14 crew will be the first one to use the MET. It will be a portable workbench with a place for the lunar hand tools and their carrier, three cameras, two sample container bags, a special environmental sample container, spare film magazines, and a lunar surface Penetrometer.

  20. Modular, Parallel Pulse-Shaping Filter Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  1. Testing programs for the Multimission Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  2. Data Acquisition for Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  3. Integrated modular teaching in dermatology for undergraduate students: A novel approach

    PubMed Central

    Karthikeyan, Kaliaperumal; Kumar, Annapurna

    2014-01-01

    Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education

  4. Integrated modular teaching in dermatology for undergraduate students: A novel approach.

    PubMed

    Karthikeyan, Kaliaperumal; Kumar, Annapurna

    2014-07-01

    Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.

  5. Westinghouse modular grinding process - improvement for follow on processes

    SciTech Connect

    Fehrmann, Henning

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompaction (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)

  6. Additive, modular functionalization of reactive self-assembled monolayers: toward the fabrication of multilevel optical storage media.

    PubMed

    Gentili, Denis; Barbalinardo, Marianna; Manet, Ilse; Durso, Margherita; Brucale, Marco; Mezzi, Alessio; Melucci, Manuela; Cavallini, Massimiliano

    2015-04-28

    We report a novel strategy based on iterative microcontact printing, which provides additive, modular functionalization of reactive SAMs by different functional molecules. We demonstrate that after printing the molecules form an interpenetrating network at the SAM surface preserving their individual properties. We exploited the process by fabricating new optical storage media that consist of a multilevel TAG.

  7. Modular Cognitive-Behavioral Therapy for Childhood Anxiety Disorders. Guides to Individualized Evidence-Based Treatment Series

    ERIC Educational Resources Information Center

    Chorpita, Bruce F.

    2006-01-01

    This clinically wise and pragmatic book presents a systematic approach for treating any form of childhood anxiety using proven exposure-based techniques. What makes this rigorously tested modular treatment unique is that it is explicitly designed with flexibility and individualization in mind. Developed in a real-world, highly diverse community…

  8. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  9. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  10. Modular thermal analyzer routine, volume 1

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Phillips, M. A.; Williams, D. R.

    1972-01-01

    The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.

  11. Intelligent modular manipulation for mobile robots

    NASA Astrophysics Data System (ADS)

    Culbertson, John

    2008-04-01

    As mobile robots continue to gain acceptance across a variety of applications within the defense and civilian markets, the number of tasks that these robot platforms are expected to accomplish are expanding. Robot operators are asked to do more with the same platforms - from EOD missions to reconnaissance and inspection operations. Due to the fact that a majority of missions are dangerous in nature, it is critical that users are able to make remote adjustments to the systems to ensure that they are kept out of harm's way. An efficient way to expand the capabilities of existing robot platforms, improve the efficiency of robot missions, and to ultimately improve the operator's safety is to integrate JAUS-enabled Intelligent Modular Manipulation payloads. Intelligent Modular Manipulation payloads include both simple and dexterous manipulator arms with plug-and-play end-effector tools that can be changed based on the specific mission. End-effectors that can be swapped down-range provide an added benefit of decreased time-on-target. The intelligence in these systems comes from semi-autonomous mobile manipulation actions that enable the robot operator to perform manipulation task with the touch of a button on the OCU. RE2 is supporting Unmanned Systems Interoperability by utilizing the JAUS standard as the messaging protocol for all of its manipulation systems. Therefore, they can be easily adapted and integrated onto existing JAUS-enabled robot platforms.

  12. Intelligent Control of Modular Robotic Welding Cell

    SciTech Connect

    Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

    2002-04-01

    Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

  13. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  14. A Modular, Portable Model of Image Fidelity

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    There is a persistent need for a trustworthy model of perceptual image fidelity, especially in applications such as image compression and display design. A fidelity model provides a measure of the visual discriminability of two images. Ahumada has previously shown that the existing fidelity models may be categorized according to their inclusion of various canonical properties, such as a contrast sensitivity function, spatial frequency channels, etc. This suggests that research would be aided by the availability of a modular model, in which these components could be easily inserted or removed. A further impediment to research in this area has been that most models are written in low-level languages and are consequently large, non-portable, and difficult to understand, modify, and maintain. We therefore believe research would also be aided by models written in high-level languages. To serve both of these purposes, and to honor our conference host for his lifetime dedication to the problem of image quality. Global brightness and its effect on perceptual image quality. We offer a modular model written in the high-level language Mathematica. We will demonstrate this model and show how it may be modified.

  15. Modular adaptive implant based on smart materials.

    PubMed

    Bîzdoacă, N; Tarniţă, Daniela; Tarniţă, D N

    2008-01-01

    Applications of biological methods and systems found in nature to the study and design of engineering systems and modern technology are defined as Bionics. The present paper describes a bionics application of shape memory alloy in construction of orthopedic implant. The main idea of this paper is related to design modular adaptive implants for fractured bones. In order to target the efficiency of medical treatment, the implant has to protect the fractured bone, for the healing period, undertaking much as is possible from the daily usual load of the healthy bones. After a particular stage of healing period is passed, using implant modularity, the load is gradually transferred to bone, assuring in this manner a gradually recover of bone function. The adaptability of this design is related to medical possibility of the physician to made the implant to correspond to patient specifically anatomy. Using a CT realistic numerical bone models, the mechanical simulation of different types of loading of the fractured bones treated with conventional method are presented. The results are commented and conclusions are formulated.

  16. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  17. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    SciTech Connect

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; Subramanian, Vijaya; Urban, Volker S.; Vairaprakash, Pothiappan; Tian, Yongming; Evans, Deborah G.; Shreve, Andrew P.; Montaño, Gabriel A.

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  18. An instrumental puzzle: the modular integration of AOLI

    NASA Astrophysics Data System (ADS)

    López, Roberto L.; Velasco, Sergio; Colodro-Conde, Carlos; Valdivia, Juan J. F.; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; MacKay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José Manuel M.; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo

    2016-08-01

    The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.

  19. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Edgar Functions § 232.501 Modular submissions and segmented filings. An electronic filer may use the following procedures to submit information to the EDGAR system for subsequent inclusion in an electronic filing: (a) Modular submissions....

  20. Evaluating the Small Group as a Component of Modular Schedules.

    ERIC Educational Resources Information Center

    Welch, Wayne W.

    The paper presents an evaluation to determine the effectiveness of small student learning groups and, moreover, to identify factors that contribute to small group learning in the overall flexible modular plan. Fifteen schools comprising a total of 91 small groups using flexible modular schedules participated in the study. Techniques to determine…

  1. Adapting to change: the advantage of modular clinic design.

    PubMed

    Arsenault, Bruce

    2004-01-01

    Architects have applied modular design concepts for years. Projects benefiting most are those where a few room types are repeated often. Ambulatory care facilities are excellent candidates because this project type typically consists of a large number of rooms that can be standardized. The new Kaiser Permanente Santa Clara Medical Office Building illustrates the benefits and flexibility of modular design.

  2. Modular Laboratory Courses: An Alternative to a Traditional Laboratory Program

    ERIC Educational Resources Information Center

    Caprette, David R.; Armstrong, Sarah; Beason, K. Beth

    2005-01-01

    Our modular laboratory teaching program is characterized by two major features. First, each course is taught independently and not linked with a particular lecture course. Second, each course is designed to be completed within one-half semester or less. The modular organization has allowed incorporation of the latest technology, reduction of class…

  3. Modularity, Working Memory, and Second Language Acquisition: A Research Program

    ERIC Educational Resources Information Center

    Truscott, John

    2017-01-01

    Considerable reason exists to view the mind, and language within it, as modular, and this view has an important place in research and theory in second language acquisition (SLA) and beyond. But it has had very little impact on the study of working memory and its role in SLA. This article considers the need for modular study of working memory,…

  4. 24 CFR 3282.12 - Excluded structures-modular homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Excluded structures-modular homes... Excluded structures—modular homes. (a) The purpose of this section is to provide the certification... structure elects to have them excluded. If a manufacturer wishes to construct a structure that is both a...

  5. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  6. Modular control systems for teleoperated and autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Kadonoff, Mark B.; Parish, David W.

    1995-01-01

    This paper will discuss components of a modular hardware and software architecture for mobile robots that supports both teleoperation and autonomous control. The Modular Autonomous Robot System architecture enables rapid development of control systems for unmanned vehicles for a wide variety of commercial and military applications.

  7. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  8. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information to the EDGAR system for subsequent inclusion in an electronic filing: (a) Modular submissions. (1... data storage area at any time, not to exceed a total of one megabyte of digital information. If an... business days, the modular submission held in suspense will be deleted from the system. (3) A...

  9. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  10. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  11. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  12. Some improvements on RNS Montgomery modular multiplication

    NASA Astrophysics Data System (ADS)

    Bajard, Jean-Claude; Didier, Laurent-Stephane; Kornerup, Peter; Rico, Fabien

    2000-11-01

    In Residue Number Systems (RNS), an integer X is represented by its residues {x0,...,xn-1} modulo a base of relatively prime numbers {m0,...,mn-1}. Thus a large number can be represented as a set of small integers. Addition and multiplication can be easily parallelized, there is no carry propagation. The time is reduced to the evaluation of these operations with small numbers. This representation is useful in cryptography and digital signal processing. Furthermore, in these two domains, modular multiplication (A X B mod N) is frequently used. So, in 1998, we have presented in IEEE journal of transactions on computers, a new modular multiplication algorithm in RNS. This algorithm is based on the Montgomery algorithm, using the associated Mixed Radix representation, for the weighted digits. It was the first algorithm of this type. In this paper, we present two remarks. First, if we develop the different expressions due to the algorithm, we obtain some mathematical simplifications that allow us to suppress some Mixed Radix occurrence in the basic iteration simply with a new initialization of our variables. Thus, in this new version, the complexity of each basic iteration, becomes equivalent to two products of small integers instead of three. The second remark is that, most of the time, modular multiplications are done with the same modulo N. We can precompute some values and reduce the complexity of each basic iteration to one multiplication of two small integers. Thus, the basic iteration is three times faster, and the global computation, due to the initialization, is 8/5 time faster than the original version. Sometime after the last basic iteration a Mixed Radix conversion can be needed. Classical parallel methods are linear. We propose an algorithmic parallel algorithm for this translation from RNS to Mixed Radix. For this, we use a result that comes from an RNS division algorithm, we published in Journal of VLSI signal processing systems 1998. We obtain in a

  13. Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation

    PubMed Central

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  14. Modularity and hierarchical organization of action programs in children's acquisition of graphic skills.

    PubMed

    Manoel, Edison de J; Dantas, Luiz; Gimenez, Roberto; de Oliveira, Dalton Lustosa

    2011-10-01

    The organization of actions is based on modules in memory as a result of practice, easing the demand of performing more complex actions. If this modularization occurs, the elements of the module must remain invariant in new tasks. To test this hypothesis, 35 children, age 10 yr., practiced a graphic criterion task on a digital tablet and completed a complex graphic task enclosing the previous one. Total movement and pause times to draw the figure indicated skill acquisition. A module was identified by the variability of relative timing, pause time, and sequencing. Total movement to perform the criterion task did not increase significantly when it was embedded in the more complex task. Modularity was evidenced by the stability of relative timing and pause time and sequencing. The spatial position of new elements did not perturb the module, so the grammar of action may still have been forming.

  15. Modular and duality properties of surface operators in N={2}^{\\star } gauge theories

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; John, R. R.; Lerda, A.

    2017-07-01

    We calculate the instanton partition function of the four-dimensional N={2}^{\\star } SU( N) gauge theory in the presence of a generic surface operator, using equivariant localization. By analyzing the constraints that arise from S-duality, we show that the effective twisted superpotential, which governs the infrared dynamics of the two-dimensional theory on the surface operator, satisfies a modular anomaly equation. Exploiting the localization results, we solve this equation in terms of elliptic and quasi-modular forms which resum all non-perturbative corrections. We also show that our results, derived for monodromy defects in the four-dimensional theory, match the effective twisted superpotential describing the infrared properties of certain two-dimensional sigma models coupled either to pure N=2 or to N={2}^{\\star } gauge theories.

  16. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  17. Modular photonic power and VCSEL-based data links for aerospace and military applications

    SciTech Connect

    Carson, R.F.

    1997-02-01

    If photonic data and power transfer links are constructed in a modular fashion, they can be easily adapted into various forms to meet a wide range of needs for aerospace and military applications. The performance specifications associated with these needs can vary widely according to application. Alignment tolerance needs also tend to vary greatly, as can requirements on power consumption. An example of a modular photonic data and/or power transfer link that can be applied to military and aerospace needs is presented. In this approach, a link is designed for low (<10 kb/s) data rates, ultra-low electrical power consumption, large alignment tolerance, and power transfer to provide complete electrical shielding in a remote module that might be found in a military or aerospace application.

  18. Modularity of a carbon-fixing protein organelle.

    PubMed

    Bonacci, Walter; Teng, Poh K; Afonso, Bruno; Niederholtmeyer, Henrike; Grob, Patricia; Silver, Pamela A; Savage, David F

    2012-01-10

    Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.

  19. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  20. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    NASA Astrophysics Data System (ADS)

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  1. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  2. RSA and its Correctness through Modular Arithmetic

    NASA Astrophysics Data System (ADS)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  3. On Gauging Symmetry of Modular Categories

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan

    2016-12-01

    Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4}-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.

  4. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  5. Generic small modular reactor plant design.

    SciTech Connect

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  6. Modular designs highlight several new rigs

    SciTech Connect

    Rappold, K.

    1995-12-04

    A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

  7. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  8. Quadruped robots' modular trajectories: Stability issues

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.

    2012-09-01

    Pinto, Santos, Rocha and Matos [13, 12] study a CPG model for the generation of modular trajectories of quadruped robots. They consider that each movement is composed of two types of primitives: rhythmic and discrete. The rhythmic primitive models the periodic patterns and the discrete primitive is inserted as a perturbation of those patterns. In this paper we begin to tackle numerically the problem of the stability of that mathematical model. We observe that if the discrete part is inserted in all limbs, with equal values, and as an offset of the rhythmic part, the obtained gait is stable and has the same spatial and spatio-temporal symmetry groups as the purely rhythmic gait, differing only on the value of the offset.

  9. Flexible and modular virtual scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Tracey, John; Federici Canova, Filippo; Keisanen, Olli; Gao, David Z.; Spijker, Peter; Reischl, Bernhard; Foster, Adam S.

    2015-11-01

    Non-contact Atomic Force Microscopy (NC-AFM) is an experimental technique capable of imaging almost any surface with atomic resolution, in a wide variety of environments. Linking measured images to real understanding of system properties is often difficult, and many studies combine experiments with detailed modelling, in particular using virtual simulators to directly mimic experimental operation. In this work we present the PyVAFM, a flexible and modular based virtual atomic force microscope capable of simulating any operational mode or set-up. Furthermore, the PyVAFM is fully expandable to allow novel and unique set-ups to be simulated, finally the PyVAFM ships with fully developed documentation and tutorial to increase usability.

  10. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  11. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    SciTech Connect

    Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.; Yarkov, Alexander V

    2011-01-01

    In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

  12. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  13. Research on a Reconfigurable Modular Manipulator System

    SciTech Connect

    Khosla, P.K.; Kanade, T.

    1992-01-01

    Research has been conducted on developing the theoretical basis and the technology for a Reconfigurable Modular Manipulation System (RMMS). Unlike a conventional manipulator which has a fixed configuration, the RMMS consists of a set of interchangeable modules that can be rapidly assembled into a system of manipulators with appropriate configurations depending on the specific task requirement. For effective development and use of such a versatile and flexible system a program of theoretical and experimental research has been pursued aimed at developing the basis for next generation of autonomous manipulator systems. The RMMS concept extends the idea of autonomy from sensor-based to configuration based autonomy. One of the important components is the development of design methodologies for mapping tasks into manipulator configurations and for automatic generation of manipulator specific algorithms (e.g., kinematics and dynamics) in order to make the hardware transparent to the user.(JDB)

  14. LEGO: A Modular Accelerator Design Code

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Irwin, J.

    1997-05-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in three dimensional space. Several symplectic integrators are used to approximate the integration of the local Hamiltonians. A differential algebra class is introduced to extract a Taylor map up to an arbitrary order. Analysis of optics is done in the same way for both the linear and non-linear cases. Currently the code is used to design and simulate the lattices of the PEP-II. It will be used for the commissioning of the machines as well.

  15. Honeywell Modular Automation System Acceptance Test Procedure

    SciTech Connect

    STUBBS, A.M.

    1999-09-21

    The purpose of this Acceptance Test Procedure (ATP) is to verify the operability of the three new furnaces as controlled by the new Honeywell Modular Automation System (MAS). The Honeywell MAS is being installed in PFP to control the three thermal stabilization furnaces in glovebox HA-211. The ATP provides instructions for testing the configuration of the Honeywell MAS at the Plutonium Finishing Plant(PFP). The test will be a field test of the analog inputs, analog outputs, and software interlocks. The interlock test will check the digital input and outputs. Field equipment will not be connected forth is test. Simulated signals will be used to test thermocouple, limit switch, and vacuum pump inputs to the PLUMAS.

  16. The modular nature of trustworthiness detection.

    PubMed

    Bonnefon, Jean-François; Hopfensitz, Astrid; De Neys, Wim

    2013-02-01

    The capacity to trust wisely is a critical facilitator of success and prosperity, and it has been conjectured that people of higher intelligence are better able to detect signs of untrustworthiness from potential partners. In contrast, this article reports five trust game studies suggesting that reading trustworthiness of the faces of strangers is a modular process. Trustworthiness detection from faces is independent of general intelligence (Study 1) and effortless (Study 2). Pictures that include nonfacial features such as hair and clothing impair trustworthiness detection (Study 3) by increasing reliance on conscious judgments (Study 4), but people largely prefer to make decisions from this sort of pictures (Study 5). In sum, trustworthiness detection in an economic interaction is a genuine and effortless ability, possessed in equal amount by people of all cognitive capacities, but whose impenetrability leads to inaccurate conscious judgments and inappropriate informational preferences. 2013 APA, all rights reserved

  17. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    PubMed Central

    2011-01-01

    Background In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. Results In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Conclusions Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format. PMID:21276272

  18. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  19. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  20. Jargon and Graph Modularity on Twitter

    SciTech Connect

    Dowling, Chase P.; Corley, Courtney D.; Farber, Robert M.; Reynolds, William

    2013-09-01

    The language of conversation is just as dependent upon word choice as it is on who is taking part. Twitter provides an excellent test-bed in which to conduct experiments not only on language usage but on who is using what language with whom. To this end, we combine large scale graph analytical techniques with known socio-linguistic methods. In this article we leverage both expert curated vocabularies and naive mathematical graph analyses to determine if network behavior on Twitter corroborates with the current understanding of language usage. The results reported indicate that, based on networks constructed from user to user communication and communities identified using the Clauset- Newman greedy modularity algorithm we find that more prolific users of these curated vocabularies are concentrated in distinct network communities.