Science.gov

Sample records for siegel modular forms

  1. Derivatives of Siegel modular forms and exponential functions

    NASA Astrophysics Data System (ADS)

    Bertrand, D.; Zudilin, W. W.

    2001-08-01

    We show that the differential field generated by Siegel modular forms and the differential field generated by exponentials of polynomials are linearly disjoint over \\mathbb C. Combined with our previous work [3], this provides a complete multidimensional extension of Mahler's theorem on the transcendence degree of the field generated by the exponential function and the derivatives of a modular function. We give two proofs of our result, one purely algebraic, the other analytic, but both based on arguments from differential algebra and on the stability under the action of the symplectic group of the differential field generated by rational and modular functions.

  2. K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications

    NASA Astrophysics Data System (ADS)

    Malmendier, Andreas; Morrison, David R.

    2015-08-01

    We construct non-geometric compactifications using the F-theory dual of the heterotic string compactified on a two-torus, together with a close connection between Siegel modular forms of genus two and the equations of certain K3 surfaces. The modular group mixes together the Kähler, complex structure, and Wilson line moduli of the torus yielding weakly coupled heterotic string compactifications which have no large radius interpretation.

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  4. Maass Forms and Quantum Modular Forms

    NASA Astrophysics Data System (ADS)

    Rolen, Larry

    This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his

  5. Topological Strings And (Almost) Modular Forms

    SciTech Connect

    Aganagic, Mina; Bouchard, Vincent; Klemm, Albrecht

    2007-05-04

    The B-model topological string theory on a Calabi-Yau threefold X has a symmetry group {Lambda}, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H{sup 3}(X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasi-modular form or an almost holomorphic modular form of weight 0 under {Lambda}. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local IP{sub 2} and IP{sub 1} x IP{sub 1}. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for Gromov-Witten invariants of the orbifold C{sub 3}/ZZ{sub 3}.

  6. Liouville field, modular forms and elliptic genera

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji; Taormina, Anne

    2007-03-01

    When we describe non-compact or singular Calabi-Yau manifolds by CFT, continuous as well as discrete representations appear in the theory. These representations mix in an intricate way under the modular transformations. In this article, we propose a method of combining discrete and continuous representations so that the resulting combinations have a simpler modular behavior and can be used as conformal blocks of the theory. We compute elliptic genera of ALE spaces and obtain results which agree with those suggested from the decompactification of K3 surface. Consistency of our approach is assured by some remarkable identity of theta functions whose proof, by D. Zagier, is included in an appendix.

  7. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable. PMID:22938320

  8. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable.

  9. Modular forms and a generalized Cardy formula in higher dimensions

    NASA Astrophysics Data System (ADS)

    Shaghoulian, Edgar

    2016-06-01

    We derive a formula which applies to conformal field theories on a spatial torus and gives the asymptotic density of states solely in terms of the vacuum energy on a parallel plate geometry. The formula follows immediately from global scale and Lorentz invariance, but to our knowledge has not previously been made explicit. It can also be understood from the fact that log Z on T2×Rd -1 transforms as the absolute value of a nonholomorphic modular form of weight d -1 , which we show. The results are extended to theories which violate Lorentz invariance and hyperscaling but maintain a scaling symmetry. The formula is checked for the cases of a free scalar, free Maxwell gauge field, and free N =4 super Yang-Mills. The case of a Maxwell gauge field gives Casimir's original calculation of the electromagnetic force between parallel plates in terms of the entropy of a photon gas.

  10. M-strings, monopole strings, and modular forms

    NASA Astrophysics Data System (ADS)

    Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2015-09-01

    We study relations between M-strings (one-dimensional intersections of M2-branes and M5-branes) in six dimensions and m-strings (magnetically charged monopole strings) in five dimensions. For specific configurations, we propose that the counting functions of Bogomol'nyi-Prasad-Sommerfield (BPS) bound states of M-strings capture the elliptic genus of the moduli space of m-strings. We check this proposal for the known cases, the Taub-NUT and Atiyah-Hitchin spaces, for which we find complete agreement. We further analyze the modular properties of the M-string free energies and find that they do not transform covariantly under S L (2 ,Z ). However, for a given number of M-strings, we show that there exists a unique combination of unrefined genus-zero free energies that transforms as a Jacobi form under a congruence subgroup of S L (2 ,Z ). These combinations correspond to summing over different numbers of M5-branes and make sense only if the distances between them are all equal. We explain that this is a necessary condition for the m-string moduli space to be factorizable into relative and center-of-mass parts.

  11. Simulation of Absorption Systems in Flexible and Modular Form

    1994-09-23

    The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system''s components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamicmore » properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. the user conveys to the computer an image of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to facilitate interactive input and study of the output.« less

  12. Israel Scheffler Interviewed by Harvey Siegel

    ERIC Educational Resources Information Center

    Journal of Philosophy of Education, 2005

    2005-01-01

    In this interview with Harvey Siegel, Israel Scheffler reflects on his career in philosophy of education. Beginning with his unusual entry into the field, he discusses the connections between his own early projects and that of R. S. Peters and Paul Hirst to make philosophy a central part of teacher education programmes, and articulates his view of…

  13. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be

  14. Gaussian distributions, Jacobi group, and Siegel-Jacobi space

    SciTech Connect

    Molitor, Mathieu

    2014-12-15

    Let N be the space of Gaussian distribution functions over ℝ, regarded as a 2-dimensional statistical manifold parameterized by the mean μ and the deviation σ. In this paper, we show that the tangent bundle of N, endowed with its natural Kähler structure, is the Siegel-Jacobi space appearing in the context of Number Theory and Jacobi forms. Geometrical aspects of the Siegel-Jacobi space are discussed in detail (completeness, curvature, group of holomorphic isometries, space of Kähler functions, and relationship to the Jacobi group), and are related to the quantum formalism in its geometrical form, i.e., based on the Kähler structure of the complex projective space. This paper is a continuation of our previous work [M. Molitor, “Remarks on the statistical origin of the geometrical formulation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 9(3), 1220001, 9 (2012); M. Molitor, “Information geometry and the hydrodynamical formulation of quantum mechanics,” e-print arXiv (2012); M. Molitor, “Exponential families, Kähler geometry and quantum mechanics,” J. Geom. Phys. 70, 54–80 (2013)], where we studied the quantum formalism from a geometric and information-theoretical point of view.

  15. TM at Folsom Prison: A Critique of Abrams and Siegel.

    ERIC Educational Resources Information Center

    Allen, Don; And Others

    1979-01-01

    An article by Abrams and Siegel, "The Transcendental Meditation Program at Folsom State Prison: A Cross Validation Study" is examined and found wanting in several respects. A second article responds that the findings of the Abrams-Siegel study resulted from the Rosenthal effect, experimental bias, and other effects. (LPG)

  16. HOTAIR forms an intricate and modular secondary structure

    PubMed Central

    Somarowthu, Srinivas; Legiewicz, Michal; Chillón, Isabel; Marcia, Marco; Liu, Fei; Pyle, Anna Marie

    2015-01-01

    SUMMARY Long non-coding RNAs (lncRNAs) have recently emerged as key players in fundamental cellular processes and diseases, but their functions are poorly understood. HOTAIR is a 2,148-nucleotide-long lncRNA molecule involved in physiological epidermal development and in pathogenic cancer progression, where it has been demonstrated to repress tumor and metastasis suppressor genes. To gain insights into the molecular mechanisms of HOTAIR, we purified it in a stable and homogenous form in vitro and we determined its functional secondary structure through chemical probing and phylogenetic analysis. The HOTAIR structure reveals a degree of structural organization comparable to well-folded RNAs, like the group II intron, rRNA or lncRNA steroid receptor activator. It is composed of four independently-folding modules, two of which correspond to predicted protein-binding domains. Secondary structure elements that surround protein-binding motifs are evolutionarily conserved. Our work serves as a guide for “navigating” through the lncRNA HOTAIR and ultimately for understanding its function. PMID:25866246

  17. Non-holomorphic modular forms and SL(2,R)/U(1) superconformal field theory

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji

    2011-03-01

    We study the torus partition function of the {{{{text{SL}}left( {2,mathbb{R}} right)}} left/ {{{text{U}}(1)}} right.} SUSY gauged WZW model coupled to mathcal{N} = 2 U(1) current. Starting from the path-integral formulation of the theory, we introduce an infra-red regularization which preserves good modular properties and discuss the decomposition of the partition function in terms of the mathcal{N} = 2 characters of discrete (BPS) and continuous (non-BPS) representations. Contrary to our naive expectation, we find a non-holomorphic dependence (dependence on bar{tau } ) in the expansion coefficients of continuous representations. This non-holomorphicity appears in such a way that the anomalous modular behaviors of the discrete (BPS) characters are compensated by the transformation law of the non-holomorphic coefficients of the continuous (non-BPS) characters. Discrete characters together with the non-holomorphic continuous characters combine into real analytic Jacobi forms and these combinations exactly agree with the "modular completion" of discrete characters known in the theory of Mock theta functions [11]. We consider this to be a general phenomenon: we expect to encounter "holomorphic anomaly" ( bar{tau } -dependence) in string partition function on non-compact target manifolds. The anomaly occurs due to the incompatibility of holomorphy and modular invariance of the theory. Appearance of non-holomorphicity in {{{{text{SL}}left( {2,mathbb{R}} right)}} left/ {{{text{U}}(1)}} right.} elliptic genus has recently been observed by Troost [12].

  18. In Excess of Epistemology: Siegel, Taylor, Heidegger and the Conditions of Thought

    ERIC Educational Resources Information Center

    Williams, Emma

    2015-01-01

    Harvey Siegel's epistemologically-informed conception of critical thinking is one of the most influential accounts of critical thinking around today. In this article, I seek to open up an account of critical thinking that goes beyond the one defended by Siegel. I do this by re-reading an opposing view, which Siegel himself rejects as leaving…

  19. The Production Phase for the National Compact Stellarator Experiment (NCSX) Modular Coil Winding Forms

    SciTech Connect

    Heitzenroeder, P.; Brown, T.; Neilson, G.; Malinowski, F.; Sutton, L.; Nelson, B.; Williamson, D.; Horton, N.; Goddard, B.; Edwards, J.; Bowling, K.; Hatzilias, K.

    2005-10-20

    The production phase for the NCSX modular coil winding forms has been underway for approximately one year as of this date. This is the culmination of R&D efforts performed in 2001-4. The R&D efforts included limited manufacturing studies while NCSX was in its conceptual design phase followed by more detailed manufacturing studies by two teams which included the fabrication of full scale prototypes. This provided the foundation necessary for the production parts to be produced under a firm price and schedule contract that was issued in September 2004. This paper will describe the winding forms, the production team and team management, details of the production process, and the achievements for the first year.

  20. The World Stem Cell Summit. Interview with Bernard Siegel.

    PubMed

    Siegel, Bernard

    2011-11-01

    Regenerative Medicine talks to Bernard Siegel, Executive Director of the Genetics Policy Institute (GPI) and founder of the annual World Stem Cell Summit. Bernard Siegel, JD, is the Founder and full-time Executive Director of the nonprofit Genetics Policy Institute (GPI), based in Wellington, FL, USA. He is the creator and co-chair of the World Stem Cell Summit series of global conferences and Editor-in-Chief of the World Stem Cell Report, which he also founded. He traded his 30-year courtroom career to found GPI, which leads the global 'Pro-Cures Movement' and Stem Cell Action Coalition. As a recognized policy expert on to stem cell research, regenerative medicine and cloning, Mr Siegel works with the world's leading stem cell researchers and advocates. Mr Siegel serves on the board of directors of the Coalition for Advancement of Medical Research (CAMR) and Americans for Cures Foundation. He also serves on the executive committee of the Alliance for Regenerative Medicine (ARM). He is a past co-chair of the Governmental Affairs Committee of the International Society for Stem Cell Research (ISSCR).

  1. A computer model for simulation of absorption systems in flexible and modular form

    SciTech Connect

    Grossman, G; Gommed, K; Gadoth, D

    1991-08-01

    A computer code in a flexible and modular form developed for simulation of absorption systems makes it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. The equations are linked by a main program according to the user's specifications to form the complete system. The equations are solved simultaneously, and fluid properties are taken from a property data base. The code is user oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. The user conveys to the computer an image of his or her cycle by specifying the different subunits and their interconnection. Based on this information, the program calculates (1) the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system and (2) the heat duty at each unit, from which the coefficient of performance may be determined. The program has been used successfully to simulate a variety of single-stage, double-stage, and dual-loop heat pumps and heat transformers, with the working fluids LiBr-H{sup 2}O,H{sub 2}O-NH{sub 3}, LiBr/H{sub 2}O-NH{sub 3}, LiBr/ZnBr{sub 2}-CH{sub 3}OH, and more. 23 refs., 10 figs., 13 tabs.

  2. Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations

    NASA Astrophysics Data System (ADS)

    Assis, M.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J.-M.; McCoy, B. M.

    2012-02-01

    We give the exact expressions of the partial susceptibilities χ(3)d and χ(4)d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3, 2/3, 3/2], [1, 1] z) and 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1] z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χ(3)d and χ(4)d. We also give new results for χ(5)d. We see, in particular, the emergence of a remarkable order-6 operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the n-fold integrals of the Ising model are not only ‘derived from geometry’ (globally nilpotent), but actually correspond to ‘special geometry’ (homomorphic to their formal adjoint). This raises the question of seeing if these ‘special geometry’ Ising operators are ‘special’ ones, reducing, in fact systematically, to (selected, k-balanced, ...) q + 1Fq hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.

  3. Linear relations among holomorphic quadratic differentials and induced Siegel's metric on g

    NASA Astrophysics Data System (ADS)

    Matone, Marco; Volpato, Roberto

    2011-10-01

    We find the explicit form of the volume form on the moduli space of non-hyperelliptic Riemann surfaces induced by the Siegel metric, a long-standing question in string theory. This question is related to the explicit form of the (g-2)(g-3)/2 linearly independent relations among the 2-fold products of holomorphic abelian differentials, that are provided in the case of canonical curves of genus g ⩾ 4. Such relations can be completely expressed in terms of determinants of the standard normalized holomorphic abelian differentials. Remarkably, it turns out that the induced volume form is the Kodaira-Spencer map of the square of the Bergman reproducing kernel.

  4. Critical Thinking, Epistemic Virtue, and the Significance of Inclusion: Reflections on Harvey Siegel's Theory of Rationality

    ERIC Educational Resources Information Center

    Kilby, R. Jay

    2004-01-01

    Among proponents of critical thinking, Harvey Siegel stands out in his attempt to address fundamental epistemological issues. Siegel argues that discursive inclusion of diverse groups should not be confused with rational justification of the outcome of inquiry. He maintains that epistemic virtues such as inclusion are neither necessary nor…

  5. Why Siegel's Arguments Are Irrelevant to the Definition of Learning Disabilities.

    ERIC Educational Resources Information Center

    Baldwin, R. Scott; Vaughn, Sharon

    1989-01-01

    This critique of a paper by Linda Siegel (EC221505) challenges Siegel's assumptions on the relationship of Intelligence Quotient to learning disabilities as being unacceptable and non-literature-based, and points out that discussion of Intelligence Quotient cutoffs may be moot given that 49 states employ no cutoff for learning disabilities. (JDD)

  6. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine.

    PubMed

    Forer, Nadav; Korman, Maayan; Elharar, Yifat; Vishkautzan, Marina; Gur, Eyal

    2013-12-17

    Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins. PMID:24228735

  7. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase

    PubMed Central

    Jacobs, Dave; Glossip, Danielle; Xing, Heming; Muslin, Anthony J.; Kornfeld, Kerry

    1999-01-01

    MAP kinases phosphorylate specific groups of substrate proteins. Here we show that the amino acid sequence FXFP is an evolutionarily conserved docking site that mediates ERK MAP kinase binding to substrates in multiple protein families. FXFP and the D box, a different docking site, form a modular recognition system, as they can function independently or in combination. FXFP is specific for ERK, whereas the D box mediates binding to ERK and JNK MAP kinase, suggesting that the partially overlapping substrate specificities of ERK and JNK result from recognition of shared and unique docking sites. These findings enabled us to predict new ERK substrates and design peptide inhibitors of ERK that functioned in vitro and in vivo. PMID:9925641

  8. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    PubMed

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand. PMID:27322001

  9. Parallel Cortical Networks Formed by Modular Organization of Primary Motor Cortex Outputs.

    PubMed

    Hamadjida, Adjia; Dea, Melvin; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-07-11

    In primates, the refinement of motor behaviors, in particular hand use, is associated with the establishment of more direct projections from primary motor cortex (M1) onto cervical motoneurons [1, 2] and the appearance of additional premotor and sensory cortical areas [3]. All of these areas have reciprocal connections with M1 [4-7]. Thus, during the evolution of the sensorimotor network, the number of interlocutors with which M1 interacts has tremendously increased. It is not clear how these additional interconnections are organized in relation to one another within the hand representation of M1. This is important because the organization of connections between M1 and phylogenetically newer and specialized cortical areas is likely to be key to the increased repertoire of hand movements in primates. In cebus monkeys, we used injections of retrograde tracers into the hand representation of different cortical areas of the sensorimotor network (ventral and dorsal premotor areas [PMv and PMd], supplementary motor area [SMA], and posterior parietal cortex [area 5]), and we analyzed the pattern of labeled neurons within the hand representation of M1. Instead of being uniformly dispersed across M1, neurons sending projections to each distant cortical area were largely segregated in different subregions of M1. These data support the view that primates split the cortical real estate of M1 into modules, each preferentially interconnected with a particular cortical area within the sensorimotor network. This modular organization could sustain parallel processing of interactions with multiple specialized cortical areas to increase the behavioral repertoire of the hand.

  10. On Not Abolishing Faith Schools: A Response to Michael Hand and H. Siegel

    ERIC Educational Resources Information Center

    Groothuis, Douglas

    2004-01-01

    This article finds Michael's Hand's argument for the abolition of faith schools to be deficient because key premises of his argument seem false. I argue that the concept of knowledge that Hand employs in arguing that no religious proposition is known to be true is overly strict. I reject Siegel's attempt to amend Hand's argument to make it…

  11. Searching for Evidence, Not a War: Reply to Lindquist, Siegel, Quigley, and Barrett (2013)

    ERIC Educational Resources Information Center

    Lench, Heather C.; Bench, Shane W.; Flores, Sarah A.

    2013-01-01

    Lindquist, Siegel, Quigley, and Barrett (2013) critiqued our recent meta-analysis that reported the effects of discrete emotions on outcomes, including cognition, judgment, physiology, behavior, and experience (Lench, Flores, & Bench, 2011). Lindquist et al. offered 2 major criticisms--we address both and consider the nature of emotion and…

  12. Apples and Oranges: A Rejoinder to Smith and Siegel

    ERIC Educational Resources Information Center

    Cobern, Bill

    2004-01-01

    This article reiterates the view that belief and knowledge can be conflated based on having a common form. The pedagogical advantage is that teachers are less likely to close off student discussions needed to help students develop an understanding of the characteristics and limitations of scientific knowledge. It is also less likely that a…

  13. Disentangling the sources of opioid withdrawal responses: comment on McDonald and Siegel (2004).

    PubMed

    Stewart, Jane

    2004-02-01

    R. V. McDonald and S. Siegel (see record 2004-10475-001) present new evidence for the idea that opioid drug-opposite responses can become conditioned to cues of initial drug onset and that they could, therefore, play a role in the development of tolerance of some drug effects and a role in the elicitation of withdrawal-like symptoms in cases in which addicted individuals are exposed to small doses of the drug they normally consume. In this comment, some puzzling features of the data are discussed, and alternative explanations are suggested.

  14. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  15. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  16. Jargonial-Obfuscation(J-O) DISambiguation Elimination via Siegel-Baez Cognition Category-Semantics(C-S) in Siegel FUZZYICS=CATEGORYICS (Son of TRIZ)/(F=C) Tabular List-Format Dichotomy Truth-Table Matrix Analytics

    NASA Astrophysics Data System (ADS)

    Siegel, Carl Ludwig; Siegel, Edward Carl-Ludwig

    2011-03-01

    NOT "philosophy" per se but raising serious salient Arnol'd [Huygens and Barrow, Newton and Hooke(96)] questions begged is Rota empiricism Husserl VS. Frege maths-objects Dichotomy controversy: Hill-Haddock[Husserl or Frege?(00)]as manifestly-demonstrated by Hintikka[B.U.]-Critchey[Derrida Deconstruction Ethics(78)] deconstruction; Altshuler TRIZ; Siegel F=C/C-S; Siegel-Baez(UCR) Cognition C-S = "Category-theory ``+'' Cognitive-Semantics[Wierzbica-Langacker-Lakoff-Nunez[Where Maths Comes From(00)]-Fauconnier-Turner[Blending(98)]-Coulson[Semantic-Leaps (00)

  17. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  18. Modular Synthesizers.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1985-01-01

    Discusses the basics of inexpensive modular synthesizers (which demonstrate various principles of sound). Topics considered include: oscillators and musical range; oscillator waveforms and characteristics; synthesizing simple musical sounds; and modulation and sweeping filter effects. Suggestions for purchasing or building synthesizer components…

  19. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  20. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  1. Perfusion and Characterization of an Endothelial Cell-Seeded Modular Tissue Engineered Construct Formed in a Microfluidic Remodeling Chamber

    PubMed Central

    Khan, Omar F.

    2010-01-01

    Tissue engineered constructs containing tortuous endothelial cell-lined perfusion channels were formed by randomly assembling endothelial cell-seeded submillimeter-sized collagen cylinders (modules) into a microfluidic perfusion chamber. The interconnected void space produced by random module packing created flow channels that were lined with endothelial cells. The effect of perfusion (0.5 mL min−1, Re* = 14.36 and shear stress = 0.64 dyn cm−2) through the tortuous channels on construct remodeling and endothelium quiescence was studied. Over time, modules fused at their points of contact and as they contracted, decreased the internal void space, which reduced the overall perfusion through the construct. As compared to static controls, perfusion caused a transient increase in activation (ICAM-1 and VCAM-1 expression) after 1 hour followed by a decrease after 24 hours. Proliferation (by BrdU) was reduced significantly, while KLF2, which is upregulated with atheroprotective laminar shear stress, was upregulated significantly after 24 hours. VE-cadherin became discontinuous and was significantly downregulated after 24 hours, which was likely caused by the dismantling of the endothelial cell adherens junctions during remodeling. Collectively, these outcomes suggest that flow through the construct did not drive the endothelial cells towards an inflamed, “atherosclerotic like” disturbed flow pathology. PMID:20678792

  2. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  3. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  4. FIRST Quantum-(1980)-Computing DISCOVERY in Siegel-Rosen-Feynman-...A.-I. Neural-Networks: Artificial(ANN)/Biological(BNN) and Siegel FIRST Semantic-Web and Siegel FIRST ``Page''-``Brin'' ``PageRank'' PRE-Google Search-Engines!!!

    NASA Astrophysics Data System (ADS)

    Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration

    2013-03-01

    Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)

  5. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  6. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  7. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  8. Induction in a Modular Learner.

    ERIC Educational Resources Information Center

    Carroll, Susanne E.

    2002-01-01

    Presents a theory of inductive learning--Autonomous Induction Theory--a form of induction that takes place within the autonomous and modular representational systems of the language faculty. Argues that Autonomous Induction Theory is constrained enough to be taken seriously as a plausible approach to explaining second language acquisition.…

  9. Modern Schools? Think Modular!

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Examines how modular educational facilities can provide a viable alternative in building construction when speed and safety are key construction issues. Explains the durability of modular structures, their adherence to building codes, and the flexibility that they provide in design and appearance. The advantages to permanent modular construction…

  10. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  11. A Modular Approach to Redundant Robot Control

    SciTech Connect

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

  12. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  13. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  14. Diversity and Unity of Modularity

    ERIC Educational Resources Information Center

    Seok, Bongrae

    2006-01-01

    Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many…

  15. Modular missile borne computers

    NASA Technical Reports Server (NTRS)

    Ramseyer, R.; Arnold, R.; Applewhite, H.; Berg, R.

    1980-01-01

    The modular missile borne computer's architecture with emphasis on how that architecture evolved is discussed. A careful analysis is given of both the physical constraints and the processing requirements.

  16. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  17. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  18. Understanding the Emergence of Modularity in Neural Systems

    ERIC Educational Resources Information Center

    Bullinaria, John A.

    2007-01-01

    Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular…

  19. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  20. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  1. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  2. Branched modular primers in DNA sequencing

    SciTech Connect

    Mugasimangalam, R.C.; Shmulevitz, M. |; Ramanathan, V.

    1997-08-01

    The need to synthesize new sequencing primers, such as in primer walking, can be eliminated by assembling modular primers from oligonucleotide modules selected from presynthesized libraries. Our earlier modular primers consisted of 5-mers, 6-mers or 7-mers, annealing to the template contiguously with each other. Here we introduce a novel {open_quotes}branched{close_quotes} type of modular primer with a distinctly different specificity mechanism. The concept of a {open_quotes}branched{close_quotes} primer involves modules that are physically linked by annealing to each other as well as to the target, forming a branched structure of the 3-way junction type. While contiguous modular primers are made specific by the preference of the polymerase for longer primer, branched primers, in contrast, owe their specificity to cooperative annealing of their modules to the intended site on the template. This cooperativity of annealing to the template is provided by mutually complementary segments in the two modules that bind each other. Thus the primer-template complex is no longer limited to linear sequences, but acquires another, second dimension giving the modular primer new functionality.

  3. The Evolution of Modular Construction.

    ERIC Educational Resources Information Center

    American School & University, 1993

    1993-01-01

    Explores how the myths of modular construction for schools began; also discusses the advances made in steel and modular construction. The major advantages of using permanent modular construction for schools are highlighted, including its rapid construction, use of standard building materials, financial flexibility, and durability. (GR)

  4. Network modularity promotes cooperation.

    PubMed

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  5. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  6. Modular cleanroom construction success.

    PubMed

    Möllmann, Markus

    2007-09-01

    The completion of a 408 m2 major new aseptic pharmacy unit for the St George's Hospital NHS Trust, London, is a significant example of the benefits of using modern modular construction techniques compared to a traditional cleanroom build. At every stage from concept through project planning to final completion, the use of modules proved to be the most appropriate for the task.

  7. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  8. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  9. Modular NRPSs are monomeric.

    PubMed

    Smith, Stuart

    2002-09-01

    NRPSs, PKSs, and hybrid NRPS/PKSs are modular proteins with similar assembly-line organizations. Although PKSs function as dimers, new data demonstrate that functional NRPSs are monomeric. This discovery has significant implications for engineering artificial assemblies for the production of novel biotherapeutics.

  10. Modular hydropower demonstration

    SciTech Connect

    Not Available

    1988-09-01

    The modular approach has been developed for the construction of small hydro projects in order to reduce the costs and to shorten procurement and construction schedules that occur when designs and equipment selection more applicable to large projects are used. The modular approach aims to maximize the use of ''off-the-shelf'' and readily available components. A key feature is the replacement of the conventional purpose-designed hydroelectric turbine by a pump used in reverse as a turbine with fixed blades and vanes. Other features are the use of siphon penstocks, induction generators, prefabricated structures, and automated control equipment. The New York State Energy Research and Development Authority contracted with Acres International Corporation to study two small hydro projects designed and built using the modular approach, and compare each one with an equivalent conventional design. Equipment procurement and installation costs, general construction costs, and energy production were estimated. Economic analyses were prepared. Preliminary data on operation and maintenance was recorded. The methodology and results of the study are contained in this report. 18 figs., 20 tabs.

  11. Focal plane array with modular pixel array components for scalability

    DOEpatents

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  12. Robotic hand with modular extensions

    SciTech Connect

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  13. What's in a Name?FRAMING:Martin-Bradshaw DYSfunctionality = Siegel ``Buzzwordism,Bandwagonism&Sloganeering For: Fun, Profit,Survival,Ego": From SOC to FLT Proof to High-Tc to Spintronics to Giant-Magnetoresistance: Ethics??? SHMETHICS!!! Rampant Sociolog

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2008-03-01

    Buzzwordism,Bandwagonism,Sloganeering for:Fun,Profit,Survival, Ego=ethics DYSunctionality: Digits log-law: Siegel INVERSION: bosons=digits; Excluded d=0? P(0)=oo V P(1)Siegel[FUZZYICS]Pythagorean-thm+dimension-thy+category-semantics simple FLT pf.=vector-subtraction+Fermat least-action V Wiles: 1964<1994! Bak SOC,long-after Siegel[PSS(a)601,1971;Scripta(Acta)Met.1974(1977);Intl.Conf.AE,JIPA,1977;MRS Symp.Scaling,1990-proving SOC=F=ma Fourier-transform=AE]: 1971<1987: Not Per Bak, but PRE Bak!(ie Pure Bunk!) Bednorz-Mueller cuprates V Raveau-Chu TRUE high-Tc! Emery SC 3-band V Siegel multi-band Hubbard-mdls[J.Mag.Mag. Mtls.(1976-1980);APS March Mtgs.,1987-on];Intl.Conf.High-Tc:Stanford,1987;Berkeley,1987); WorldCong.SC, 1992]: 1970s<1993! Anderson SC RVB V Overhauser CORRECT SS/CDWs:1960s<1987. Fert-Grunberg GMR V decade-earlier Siegel[JMMM.7,31(1978);Mayo,Village Voice,p.40(8/21/78):1978<1988!!!A la Brian Martin-John Bradshaw addictions 12-step recovery programs[Healing SHAME That BINDS YOU]: One is only as SICK as one's SECRETS! Ethics? SHMETHICS! RAMPANT ethical DYSfunctionality!!!

  14. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  15. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  16. Multimission modular spacecraft (MMS)

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward, Jr.

    1988-01-01

    This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

  17. Versatile modular scaffolds

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1981-01-01

    Movable and fixed modular scaffolds can be tailored to most scaffolding needs by interconnecting only 4 basic structural elements: platforms, rails, vertical-support angles, and stiffener. Standard nuts and bolts are used to join elements, simplifying construction, and reducing costs. Scaffolds are rigid and can be made any length. They are stable on unlevel ground and can extend to well over 50 feet in height. Scaffolds allow for internal elevators and for wheels and air mounts so that same elements can be used for standing or movable scaffold.

  18. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  19. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  20. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  1. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  2. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  3. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  4. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  5. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  6. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  7. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  8. On the modularity of certain functions from the Gromov–Witten theory of elliptic orbifolds

    PubMed Central

    Bringmann, Kathrin; Rolen, Larry; Zwegers, Sander

    2015-01-01

    In this paper, we study modularity of several functions which naturally arose in a recent paper of Lau and Zhou on open Gromov–Witten potentials of elliptic orbifolds. They derived a number of examples of indefinite theta functions, and we provide modular completions for several such functions which involve more complicated objects than ordinary modular forms. In particular, we give new closed formulae for special indefinite theta functions of type (1,2) in terms of products of mock modular forms. This formula is also of independent interest. PMID:26715996

  9. Modular properties of characters of the W3 algebra

    NASA Astrophysics Data System (ADS)

    Iles, Nicholas J.; Watts, Gérard M. T.

    2016-01-01

    In a previous work, exact formulae and differential equations were found for traces of powers of the zero mode in the W 3 algebra. In this paper we investigate their modular properties, in particular we find the exact result for the modular transformations of traces of W 0 n for n = 1 , 2 , 3, solving exactly the problem studied approximately by Gaberdiel, Hartman and Jin. We also find modular differential equations satisfied by traces with a single W 0 inserted, and relate them to differential equations studied by Mathur et al. We find that, remarkably, these all seem to be related to weight 0 modular forms with expansions with non-negative integer coefficients.

  10. RAMS (Risk Analysis - Modular System) methodology

    SciTech Connect

    Stenner, R.D.; Strenge, D.L.; Buck, J.W.

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  11. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  12. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  13. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  14. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  15. Modular stems in DDH.

    PubMed

    Benazzo, F; Cuzzocrea, F; Stroppa, S; Ravasi, F; Dalla Pria, P

    2007-01-01

    The Modulus (Lima-Lto) system has been created on the association of a conical stem and a modular neck in order to address the so called "difficult hip". Modularity can maximize the options for a correct reconstruction in a total hip replacement of the coxofemoral anatomy as well as biomechanics. Modulus should be used in CDH, primary hip arthritis, the sequelae of osteotomies and in each case in which we face a congenital or acquired hip deformity. The Modulus stem has been commonly utilised in association with the Delta cup (Lima-Lto) with the chance to use big diameter heads (32-36 mm) and ceramic on ceramic coupling. Modulus has been used in association with Delta cup since November 2002. 51 patients affected by CDH have been treated. Clinical and radiographic results can be considered very good. The average evaluation based on Merle D'Aubigné schedule is equal to 17.5 with a significant increase in the results with respect to the preoperatory score (with an average score equal to 10). In the light of the above, Modulus should be considered a valuable system to optimize the results of total hip replacement also in those more complex situations with a modified femoral morphology, allowing the restoration of a normal biomechanics in terms of off-set and anteversion with benefit in terms of stability and length of the implant as well as in terms of satisfaction of the patient as far as limb length and ROM are concerned. The association of Modulus with big diameter heads gives a higher guarantee in terms of duration of the implant and restoration of the functionality in young patients with a serious deformity and increased functional demands.

  16. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    NASA Astrophysics Data System (ADS)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  17. Report on modular hydropower demonstration

    SciTech Connect

    Pelton, F.

    1988-09-01

    This report describes an Energy Authority project to demonstrate the use of modular small hydropower systems at two sites. The project demonstrated that 'off-the-shelf' components can be used to construct a functionally reliable, cost-effective hydropower system at a significant savings over custom-designed systems. A key feature of the modular system is the replacement of the conventional hydroelectric turbine with a pump operated in reverse. Also, the construction of a water-intake system in the dam is replaced with a siphon penstock. Further cost and time savings are gained from the use of a prefabricated powerhouse and automated control equipment. The project demonstrated that modular systems are an attractive option for sites with capacities from under 100 to 500 kilowatts. The modular concept is applicable at about 250 sites Statewide, with a combined capacity of up to 400 MW.

  18. Modular optimization code package: MOZAIK

    NASA Astrophysics Data System (ADS)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the

  19. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  20. The modularity of pollination networks

    PubMed Central

    Olesen, Jens M.; Bascompte, Jordi; Dupont, Yoko L.; Jordano, Pedro

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities. PMID:18056808

  1. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  2. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  3. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  4. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  5. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  8. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  9. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  10. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  11. Latching chains in K-nearest-neighbor and modular small-world networks.

    PubMed

    Song, Sanming; Yao, Hongxun; Simonov, Alexander Yurievich

    2015-01-01

    Latching dynamics retrieve pattern sequences successively by neural adaption and pattern correlation. We have previously proposed a modular latching chain model in Song et al. (2014) to better accommodate the structured transitions in the brain. Different cortical areas have different network structures. To explore how structural parameters like rewiring probability, threshold, noise and feedback connections affect the latching dynamics, two different connection schemes, K-nearest-neighbor network and modular network both having modular structure are considered. Latching chains are measured using two proposed measures characterizing length of intra-modular latching chains and sequential inter-modular association transitions. Our main findings include: (1) With decreasing threshold coefficient and rewiring probability, both the K-nearest-neighbor network and the modular network experience quantitatively similar phase change processes. (2) The modular network exhibits selectively enhanced latching in the small-world range of connectivity. (3) The K-nearest-neighbor network is more robust to changes in rewiring probability, while the modular network is more robust to the presence of noise pattern pairs and to changes in the strength of feedback connections. According to our findings, the relationships between latching chains in K-nearest-neighbor and modular networks and different forms of cognition and information processing emerging in the brain are discussed.

  12. Modular assembly of optical nanocircuits

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-01

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  13. Modular assembly of optical nanocircuits.

    PubMed

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-29

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  14. Modular Finite Element Methods Library Version: 1.0

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  15. Modular Firewalls for Storage Areas

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Owens, L. J.

    1986-01-01

    Giant honeycomb structures assembled in modular units. Flammable materials stored in cells. Walls insulated with firebrick to prevent spread of fire among cells. Portable, modular barrier withstands heat of combustion for limited time and confines combustion products horizontally to prevent fire from spreading. Barrier absorbs heat energy by ablation and not meant to be reused. Designed to keep fires from spreading among segments of solid rocket propellant in storage, barrier erected between storage units of other flammable or explosive materials; tanks of petroleum or liquid natural gas. Barrier adequate for most industrial purposes.

  16. Manufacturing Development of the NCSX Modular Coil Windings

    SciTech Connect

    Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-09-27

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

  17. Evolution and the Modularity of Mindreading.

    ERIC Educational Resources Information Center

    Moore, Chris

    1996-01-01

    Reviews Baron-Cohen's study of autism and an explanatory theory called modularity of mindreading, which proposed a domain-specific modular psychological model based on evolutionary, developmental, psychopathological, and neurobiological considerations. Enumerates problems with the modularity approach and emphasized the evolution of domain general…

  18. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  19. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  20. Teaching Creation: A Modular Approach

    ERIC Educational Resources Information Center

    Bosworth, David A.

    2007-01-01

    The present article describes a modular approach to teaching Genesis 1-3 that values depth over breadth even in an introductory class. The module allows students to learn about the text and its original context by orienting discussion around contemporary issues of practical concern. Specifically, the creation-evolution debates provide an…

  1. Modular GCSE Economics.

    ERIC Educational Resources Information Center

    Curry, Paul; Jewell, Bruce

    1989-01-01

    Discusses the London East Anglian Group's General Certificate of Secondary Education (GCSE) Economics (Mature) syllabus. Prepared for students over 17 in sixth form schools and higher education, it was designed for centers that required a flexible economics course. Offers ideas on coursework assignments. (GG)

  2. Modular health services: a single case study approach to the applicability of modularity to residential mental healthcare

    PubMed Central

    2014-01-01

    Background The Dutch mental healthcare sector has to decrease costs by reducing intramural capacity with one third by 2020 and treating more patients in outpatient care. This transition necessitates enabling patients to become as self-supporting as possible, by customising the residential care they receive to their needs for self-development. Theoretically, modularity might help mental healthcare institutions with this. Modularity entails the decomposition of a healthcare service in parts that can be mixed-and-matched in a variety of ways, and combined form a functional whole. It brings about easier and better configuration, increased transparency and more variety without increasing costs. Aim: this study aims to explore the applicability of the modularity concept to the residential care provided in Assisted Living Facilities (ALFs) of Dutch mental healthcare institutions. Methods A single case study is carried out at the centre for psychosis in Etten-Leur, part of the GGz Breburg IMPACT care group. The design enables in-depth analysis of a case in a specific context. This is considered appropriate since theory concerning healthcare modularity is in an early stage of development. The present study can be considered a pilot case. Data were gathered by means of interviews, observations and documentary analysis. Results At the centre for psychosis, the majority of the residential care can be decomposed in modules, which can be grouped in service bundles and sub-bundles; the service customisation process is sufficiently fit to apply modular thinking; and interfaces for most of the categories are present. Hence, the prerequisites for modular residential care offerings are already largely fulfilled. For not yet fulfilled aspects of these prerequisites, remedies are available. Conclusion The modularity concept seems applicable to the residential care offered by the ALF of the mental healthcare institution under study. For a successful implementation of modularity however

  3. Modular multiplication in GF(p) for public-key cryptography

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub

    Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.

  4. Modularity and stability in ecological communities

    PubMed Central

    Grilli, Jacopo; Rogers, Tim; Allesina, Stefano

    2016-01-01

    Networks composed of distinct, densely connected subsystems are called modular. In ecology, it has been posited that a modular organization of species interactions would benefit the dynamical stability of communities, even though evidence supporting this hypothesis is mixed. Here we study the effect of modularity on the local stability of ecological dynamical systems, by presenting new results in random matrix theory, which are obtained using a quaternionic parameterization of the cavity method. Results show that modularity can have moderate stabilizing effects for particular parameter choices, while anti-modularity can greatly destabilize ecological networks. PMID:27337386

  5. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  6. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  7. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  8. Quasispecies Theory for Evolution of Modularity

    PubMed Central

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

  9. Modular hydrodam: concept definition study

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this investigation was to explore the potential for developing economical new ultra low-head (6 to 10 ft) sites using an innovative concept known as the Modular Hydrodam (MH). This concept combines the benefits of shop fabrication, installation of equipment in truck transportable, waterproof power modules, and prefabricated gate sections that can be located between the power modules. The size and weight of the power module permits it to be fully assembled and checked out in the manufacturer's shop. The module can then be broken down into four pieces and shipped by truck to the site. Once in place, concrete ballast will be added, as necessary, to prevent flotation. The following aspects were investigated: tubular and cross flow turbines; modularized components; the use of a cable support system for horizontal stability of the dam and powerhouse; and construction in the wet as well as in the dry.

  10. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  11. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  12. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  13. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2013-02-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks.

  14. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  15. A modular theory of learning and performance.

    PubMed

    Guilhardi, Paulo; Yi, Linun; Church, Russell M

    2007-08-01

    We describe a theory to account for the acquisition and extinction of response rate (conditioning) and pattern (timing). This modular theory is a development of packet theory (Kirkpatrick, 2002; Kirkpatrick & Church, 2003) that adds a distinction between pattern and strength memories, as well as contributing closed-form equations. We describe the theory using equations related to a flow diagram and illustrate it by an application to an experiment with repeated acquisitions and extinctions of a multiple-cued-interval procedure using rats. The parameter estimates for the theory were based on a calibration sample from the data, and the predictions for different measures of performance on a validation sample from the same data (cross-validation). The theory's predictions were similar to predictions based on the reliability of the behavior.

  16. Integrating automated systems with modular architecture

    SciTech Connect

    Salit, M.L.; Guenther, F.R.; Kramer, G.W. ); Griesmeyer, J.M. )

    1994-03-15

    The modularity project of the Consortium for Automated Analytical Laboratory Systems, or CAALS, has been working to define and produce specifications with which manufacturers of analytical equipment can produce products suited for integration into automated systems. A set of standards that will allow subsystems to be configured into robust, useful, controllable systems in a stylized, consistent manner will facilitate the development and integration process. Such standards could ultimately allow an analytical chemist to select devices from a heterogeneous set of vendors and integrate those devices into a work cell to perform chemical methods without further invention, computer programming, or engineering. Our approach to this formidable task is to view analytical chemistry in an abstract fashion, forming a generic model from the understanding of what it is we do. In this article, we report on the generic model and the integration architecture we have developed to implement it. 6 refs., 3 figs.

  17. Modular, security enclosure and method of assembly

    DOEpatents

    Linker, Kevin L.; Moyer, John W.

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  18. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  19. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  20. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  1. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  2. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  3. Modular ulnar head decoupling force: case report.

    PubMed

    Naidu, Sanjiv H; Radin, Alex

    2009-01-01

    Cobalt-chrome modular distal ulnar head replacement arthroplasty is a surgical option to restore stability to the distal radioulnar joint rendered unstable by hemi-resection arthroplasty or a total resection arthroplasty. However, the revision of dislocated modular cobalt-chrome ulnar head implants may pose an important intraoperative challenge. The Morse-taper disassembly force of modular ulnar head implants is not available in the current published literature. We present a case in which tremendous difficulty was encountered while revising a dislocated modular cobalt-chrome distal ulnar head implant. The mean Morse-taper disassembly force of the retrieved modular cobalt-chrome implant was 2958 N +/- 1272. At nearly 4.5 times the average body weight, the modular ulnar head Morse-taper disassembly strength presented a formidable force to overcome intraoperatively.

  4. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  5. Modular microrobot for swimming in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Meshkati; Fu, Henry; Kim, Minjun; Drexel University Team; University of Nevada, Reno Team

    2015-11-01

    One of the difficulties in navigating in vivo is to overcome many types of environments. This includes blood vessels of different diameters, fluids with different mechanical properties, and physical barriers. Inspired by conventional modular robotics, we demonstrate modular microrobotics using magnetic particles as the modular units to change size and shape through docking and undocking. Much like the vast variety of microorganisms navigating many different bio-environments, modular microswimmers have the ability to dynamically adapt different environments by reconfiguring the swimmers' physical characteristics. We model the docking as magnetic assembly and undocking mechanisms as deformation by hydrodynamic forces. We characterize the swimming capability of the modular microswimmer with different size and shapes. Finally, we demonstrate modular microrobotics by assembling a three-bead microswimmer into a nine-bead microswimmer, and then disassemble it into several independently swimming microswimmers..

  6. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  7. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  8. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  9. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  10. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  11. Learning modular policies for robotics.

    PubMed

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  12. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  13. Modular Construction: The Wave of the Future.

    ERIC Educational Resources Information Center

    Savage, Chuck

    1989-01-01

    Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

  14. Modular Building Institute 2000 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. The articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Elementary K-8 Modular Courtyard"; (2) "School District #33, Chilliwack, BC"; (3) "New Elementary School for Briarwood, NY"; (4) "Addition to Queens Intermediate…

  15. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  16. A modular data system for Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Frost, W. O.; Emens, F. H.

    1982-01-01

    This overview describes a flexible system of electronic and mechanical building blocks with characteristics and capabilities suitable for construction of a flight-capable experiment data management system. The initial space application of this modular system, called the Spacelab Payload System Modular Electronics (SPSME), is the data system for the Nuclear Radiation Monitor (NRM) on Spacelab Mission 2.

  17. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  18. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  19. The relative efficiency of modular and non-modular networks of different size.

    PubMed

    Tosh, Colin R; McNally, Luke

    2015-03-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: 'small' and 'large', and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity.

  20. Siegel[JMMM 7,312(`78)] FIRST EXPERIMENTAL DISCOVERY of Giant-Magnetoresistance Decade Pre ``Fert'' and ``Gruenberg'' ['88 - `78] = 10-Years = One-Decade Sounds, for Nuclear-Power Naïve ``Panacea'' for Global-Warming/Climate-Chan

    NASA Astrophysics Data System (ADS)

    Hoffmann, Masterace; Siegel, Edward

    Siegel[JMMM 7,312(`78); Monju (12/'95) LMFBR PREDICTION!!!] following: Wigner[JAP 17,857(`46)]-(Alvin)Weinberg(ANL/ORNL/ANS)-(Sidney)Siegel(ANL/ORNL/ANS)-Seitz-Overhauser-Rollnick-Pollard-Lofaro-Markey-Pringle[Nuclear-PowerFrom Physics to Politics(`79)] FIRST EXPERIMENTAL DISCOVERY [Siegel<<<''Fert''-''Gruenberg'':2007-Physics-Nobel/2006:-Wolf/Japan-prizes:[`88 -`78] =10-years =1-decade precedence!!!] of granular giant-magnetoresistance(GMR) [Google: ``EDWARD SIEGEL GIANT-MAGNETORESISTANCE ICMAO 1977 FLICKER''] [Google: ``Ana Mayo If LEAKS`Could' KILL''] in austenitic/FCC Ni/Fe-based (so MIScalled)''super''alloy-182/82 transition-welds GENERIC ENDEMIC EXTANT detrimental (SYNONYMS): Wigner's-disease/Ostwald-ripening/spinodal-decompositio/OVERageing-EMBRITTLEMENT/THERMAL-leading-to-mechanical (TLTM)-INstability/``sensitization'' in: nuclear-reactors/spent-fuel dry-casks/refineries/jet/missile/rocket-engines/...SOUNDS A DIRE WARNING FOR NAIVE Hansen-Sommerville-Holdren-DOE-NRC-OSTP-WNA-NEI-AIP-APS-...calls/media-hype/P.R./spin-doctoring for carbon-``free'' nuclear-power as a SUPPOSED ``panacea'' for climate-change/global-warming: ``TRUST BUT VERIFY!!!'' ; a VERY LOUD CAVEAT EMPTOR!!!

  1. Mechanically Assisted Taper Corrosion in Modular TKA

    PubMed Central

    Arnholt, Christina; MacDonald, Daniel W.; Tohfafarosh, Mariya; Gilbert, Jeremy L.; Rimnac, Clare M.; Kurtz, Steven M.; Klein, Gregg; Mont, Michael A.; Parvizi, Javad; Cates, Harold E.; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Matthew

    2014-01-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. 198 modular components were revised after 3.9±4.2y (range: 0.0–17.5y). Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Flexural rigidity, stem diameter, alloy coupling, patient weight, age and implantation time were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score≥2) was observed in 94/101 of the tapers on the modular femoral components and 90/97 of the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications of fretting and corrosion in TKA remain unclear. PMID:24996586

  2. Mechanically assisted taper corrosion in modular TKA.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Tohfafarosh, Mariya; Gilbert, Jeremy L; Rimnac, Clare M; Kurtz, Steven M; Klein, Gregg; Mont, Michael A; Parvizi, Javad; Cates, Harold E; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Mattheuw

    2014-09-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.2 years of implantation. Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Design features and patient information were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score ≥2) was observed in 94/101 tapers on the modular femoral components and 90/97 tapers on the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications remain unclear.

  3. SmartBuild-a truly plug-n-play modular microfluidic system.

    PubMed

    Yuen, Po Ki

    2008-08-01

    In this Technical Note, for the first time, a truly "plug-n-play" modular microfluidic system (SmartBuild Plug-n-Play Modular Microfluidic System) is presented for designing and building integrated modular microfluidic systems for biological and chemical applications. The modular microfluidic system can be built by connecting multiple microfluidic components together to form a larger integrated system. The SmartBuild System comprises of a motherboard with interconnect channels/grooves, fitting components, microchannel inserts with different configurations and microchips/modules with different functionalities. Also, heaters, micropumps and valving systems can be designed and used in the system. Examples of an integrated mixing system and reaction systems are presented here to demonstrate the versatility of the SmartBuild System. PMID:18651081

  4. Functional group diversity increases with modularity in complex food webs.

    PubMed

    Montoya, D; Yallop, M L; Memmott, J

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  5. A modular approach to multi-robot control

    SciTech Connect

    Anderson, R.J.; Lilly, K.W.

    1996-03-01

    The ability to rapidly command multi-robot behavior is crucial for the acceptance and effective utilization of multiple robot control. To achieve this, a modular- multiple robot control solution is being, pursued using the SMART modular control architecture. This paper investigates the development of a new dual-arm kinematics module (DUAL-KLN) which allows multiple robots, previously controlled as separate stand-alone systems, to be controlled as a coordinated multi-robot system. The DUAL-KIN module maps velocity and force information from a center point of interest on a grasped object to the tool centers of each grasping robot. Three-port network equations are used and mapped into the scattering operator domain in a computationally efficient form. Application examples of the DUAL-KLN module in multi-robot coordinated control are given.

  6. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  7. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  8. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence. PMID:23545837

  9. Integrated Modular Engine technology needs

    NASA Astrophysics Data System (ADS)

    Harmon, Timothy J.; Briley, Gary; Pauckert, Ron; Vilja, John

    1993-06-01

    An Integrated Modular Engine (IME) system conceptual design has been developed for meeting the upper stage propulsion requirements. This design was used to identify key technical areas for further development and demonstration. A number of factors are favorable for introducing advanced technologies: new materials are available, controls and health monitoring are vastly more capable, and new fabrication methods are coming on-line. Furthermore, recent innovative integrated propulsion system architecture designs leverage the benefits throughout the stage. All needed technologies are compatible with near-term initial launch capability around the year 2000. These technologies do not require extensive, time-consuming, or expensive development programs to bring these technologies to fruition. This paper describes those technologies that need to be developed to support an IME development program which would result in an affordable propulsion system applicable to a wide range of missions, i.e., upper stage, space-based, transfer, lunar lander, lunar ascent, and Mars lander propulsion systems.

  10. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  11. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence.

  12. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  13. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  14. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  15. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  16. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  17. Generalized epidemic process on modular networks.

    PubMed

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  18. The gravity duals of modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-01

    In this work, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-like to the causal completion of the region.

  19. Modular Buildings: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    School Planning & Management, 2001

    2001-01-01

    Highlights the history of the modular classroom industry and emergence of the Modular Building Institute. Analyzes the differences between temporary portable classrooms and permanent modular additions. Also examines the possible influence of modular classrooms on future facility design and the ways that educational facilities officials are saving…

  20. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin

    2013-05-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.

  1. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  2. On the mechanism of the modular primer effect.

    PubMed Central

    Beskin, A D; Zevin-Sonkin, D; Sobolev, I A; Ulanovsky, L E

    1995-01-01

    Modular primers are strings of three contiguously annealed unligated oligonucleotides (modules) as short as 5- or 6-mers, selected from a presynthesized library. It was previously found that such strings can prime DNA sequencing reactions specifically, thus eliminating the need for the primer synthesis step in DNA sequencing by primer walking. It has remained largely a mystery why modular primers prime uniquely, while a single module, used alone in the same conditions, often shows alternative priming of comparable strength. In a puzzling way, the single module, even in a large excess over the template, no longer primes at the alternative sites, when modules with which it can form a contiguous string are also present. Here we describe experiments indicating that this phenomenon cannot be explained by cooperative annealing of the modules to the template. Instead, the mechanism seems to involve competition between different primers for the available polymerase. In this competition, the polymerase is preferentially engaged by longer primers, whether modular or conventional, at the expense of shorter primers, even though the latter can otherwise prime with similar or occasionally higher efficiency. Images PMID:7659510

  3. Design and Evolution of a Modular Tensegrity Robot Platform

    NASA Technical Reports Server (NTRS)

    Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas

    2014-01-01

    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.

  4. Miniature modular microwave end-to-end receiver

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)

    1993-01-01

    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.

  5. Analysis of In-Space Assembly of Modular Systems

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.

    2005-01-01

    Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.

  6. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  7. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  8. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  9. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  10. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  11. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-01-01

    Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

  12. [The significance of modular design in the investigation of processes of system self-organization].

    PubMed

    Bul'enkov, N A

    2005-01-01

    A model of the process of determined system self-organization based on system-forming modular water structures is proposed. The arrangement and symmetry of these structures, described by the symmetry groups entanglement, matches the basic principles of system self-organization: "system of systems", "recognition", "all-or-none". Crystallography modular generalization engulfs all stable forms of condensed state, including the bound water structures--matrices for the self-organization of biological systems. The bound water structures, besides being matrices, accomplish the metric selection of other structural components of biological systems capable of self-organization into a whole system by creating numerous directed weak bonds among them. PMID:16248172

  13. Managing in an age of modularity.

    PubMed

    Baldwin, C Y; Clark, K B

    1997-01-01

    Modularity is a familiar principle in the computer industry. Different companies can independently design and produce components, suck as disk drives or operating software, and those modules will fit together into a complex and smoothly functioning product because the module makers obey a given set of design rules. Modularity in manufacturing is already common in many companies. But now a number of them are beginning to extend the approach into the design of their products and services. Modularity in design should tremendously boost the rate of innovation in many industries as it did in the computer industry. As businesses as diverse as auto manufacturing and financial services move toward modular designs, the authors say, competitive dynamics will change enormously. No longer will assemblers control the final product: suppliers of key modules will gain leverage and even take on responsibility for design rules. Companies will compete either by specifying the dominant design rules (as Microsoft does) or by producing excellent modules (as disk drive maker Quantum does). Leaders in a modular industry will control less, so they will have to watch the competitive environment closely for opportunities to link up with other module makers. They will also need to know more: engineering details that seemed trivial at the corporate level may now play a large part in strategic decisions. Leaders will also become knowledge managers internally because they will need to coordinate the efforts of development groups in order to keep them focused on the modular strategies the company is pursuing.

  14. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  15. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  16. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  17. Test stations: a modular approach

    NASA Astrophysics Data System (ADS)

    Capone, Benjamin R.; Remillard, Paul; Everett, Jonathan E.

    1996-06-01

    Recent requests for test stations to characterize and evaluate thermal and visible imaging systems have shown remarkable similarities. They contain the usual request for target patterns for the measurement of MRTD, NETD, SiTF for the infrared thermal imager and similar patterns for measuring CTF and SNR for the visible imager. The combined systems almost invariably include some type of laser designator/rangefinder in the total package requiring the need for LOS registration among the various individual units. Similarities also exist in that the requests are for large collimator apertures and focal lengths for projecting the desired signals into the unit under test apertures. Diversified Optical Products, Inc. has developed and is continually improving test station hardware and software to provide modularity in design and versatility in operation while satisfying individual test requirements and maintaining low cost. A high emissivity, DSP controlled, high slew rate, low cost, blackbody source with excellent uniformity and stability has been produced to function as the driver for thermal image target projectors. Several types of sources for producing energy in the visible portion of the spectrum have been evaluated. Software for selection of targets, sources, focus and auto- collimation has been developed and tested.

  18. Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton

    2007-01-01

    Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.

  19. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  20. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot

  1. Local modularity for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Tao; Zhang, Yan; Hu, Ke; Li, Jian-Ming; Xu, Xiao-Ke; Liu, Cui-Cui; Chen, Shi

    2016-02-01

    Community detection is a topic of interest in the study of complex networks such as the protein-protein interaction networks and metabolic networks. In recent years, various methods were proposed to detect community structures of the networks. Here, a kind of local modularity with tunable parameter is derived from the Newman-Girvan modularity by a special self-loop strategy that depends on the community division of the networks. By the self-loop strategy, one can easily control the definition of modularity, and the resulting modularity can be optimized by using the existing modularity optimization algorithms. The local modularity is used as the target function for community detection, and a self-consistent method is proposed for the optimization of the local modularity. We analyze the behaviors of the local modularity and show the validity of the local modularity in detecting community structures on various networks.

  2. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  3. Modular Rake of Pitot Probes

    NASA Technical Reports Server (NTRS)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  4. Duality and modularity in elliptic integrable systems and vacua of gauge theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2015-04-01

    We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for the Γ0(4) congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that make up vector valued modular forms for congruence subgroups (namely Γ0(4), Γ(2) and Γ(3)), and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed supersymmetric Yang-Mills theories with low rank gauge group of type B, C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for with gauge algebra so(8). We compare the exact massive vacua on to those found in a semi-classical analysis on . We identify several intriguing features of the quantum gauge theories.

  5. Bosonics: Phononics, Magnonics, Plasmonics in Nano-Scale Disorder(Nanonics), Metamaterials, Astro-Seismology (Meganonics): Brillouin-Siegel GENERIC: Generalized-Disorder Collective-Boson Mode-Softening Universality-Principle (G...P) With PIPUB Many-Body Localization

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    Siegel and Matsubara[Statphys-13(`77) Intl.Conf.Lattice-Dyn.(`77)Scripta Met.13,913(`80)]JMMM:5, 1, 84 (`77)22,1:41,58(`80)Mag.Lett.(`80)Phys./Chem.Liquids:4,(4) (`75)5,(1)(76)] generalization to GENERIC Siegel[J.Non-Xline-Sol.40,453(`80)] G...P GENERIC Brillouin[Wave-Propagation in Periodic-Structures(`22)]-Landau[`41]-Feynman[`51]-de Boer[in Phonons/Phonon-Interactions(`64)]-Egelstaff[Intro.Liquid-State(`65)]-Hubbard-Beebe[J.Phys.C(`67)]-``Anderson''[1958]- Siegel [J.Non-Xl.-Sol. 40, 453(`80)] GENERIC many-body localization. GENERIC Hubbard-Beebe[J.Phys.C(`67)] static structure-factor S(k) modulated kinetic-energy ω(k) = ℏ ⌃(2)k⌃(2)/2mS(k) expressing G....P(``bass-ackwardly'') aka homogeneity and isotropy creates GENERIC G...P with GENERIC pseudo-isotropic pseudo-Umklapp backscattering (PIPUB) for GENERIC many-body localization of and/or by mutually interacting collective-bosons: phonons(phononics) with magnons(magnonics) with plasmons(plasmonics) with fermions (electros, holes)...etc. in nano-scale ``disorder'', metamaterials and on very-macro-scales (surprisingly) Bildsten et.al. astro-seismology(meganonics) of red-giant main-sequence stars(Mira, Betelguese)!

  6. Development and Optimization of Modular Hybrid Plasma Reactor

    SciTech Connect

    N /A

    2013-01-02

    INL developed a bench–scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system was optimized for WO{sub 3} nanoparticle production and scale-model projection to a 300 kW pilot system. During the course of technology development, many modifications were made to the system to resolve technical issues that surfaced and also to improve performance. All project tasks were completed except two optimization subtasks. Researchers were unable to complete these two subtasks, a four-hour and an eight-hour continuous powder production run at 1 lb/hr powder-feeding rate, due to major technical issues developed with the reactor system. The 4-hour run was attempted twice, and on both occasions, the run was terminated prematurely. The termination was due to (1) heavy material condensation on the modular electrodes, which led to system operational instability, and (2) pressure buildup in the reactor due to powder clogging of the exhaust gas and product transfer line. The modular electrode for the plasma system was significantly redesigned to address the material condensation problem on the electrodes. However, the cause for product powder clogging of the exhaust gas and product transfer line led to a pressure build up in the reactor that was undetected. Fabrication of the redesigned modular electrodes and additional components was completed near the end of the project life. However, insufficient resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable {delta}- Al{sub 2}O{sub 3} from pure {alpha}-phase large Al{sub 2}O{sub 3} powder. The formation of {delta} -Al{sub 2}O{sub 3} was surprising because this phase is meta-stable and only formed between 973–1073 K, and {delta} -Al{sub 2}O{sub 3} is very difficult to synthesize as a single

  7. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  8. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

  9. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. PMID:25890504

  10. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design.

  11. An Integrated Modular Avionics Development Environment

    NASA Astrophysics Data System (ADS)

    Schoofs, T.; Santos, S.; Tatibana, C.; Anjos, J.; Rufino, J.; Windsor, J.

    2009-05-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-Space software framework. As part of this process, it is necessary to establish an effective way to develop, test and analyse on-board applications without having access to the final IMA target platform for all engineers. Target platforms are usually extremely expensive considering hardware and software prices as well as training costs. This paper describes the architecture of an Integrated Modular Avionics Development Environment (IMADE) based on the Linux Operating System and the ARINC 653 simulator for Modular On-Board Applications that was developed by Skysoft Portugal, S.A. In cooperation with ESA, 2007-2008.

  12. Modular categories and 3-manifold invariants

    SciTech Connect

    Tureav, V.G. )

    1992-06-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.

  13. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  14. Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing

    NASA Technical Reports Server (NTRS)

    Dobbs, Carl, Sr.

    2012-01-01

    A hardware unit has been designed that reduces the cost, in terms of performance and power consumption, for implementing N-modular redundancy (NMR) in a multiprocessor device. The innovation monitors transactions to memory, and calculates a form of sumcheck on-the-fly, thereby relieving the processors of calculating the sumcheck in software

  15. Successes and failures in modular genetic engineering.

    PubMed

    Kittleson, Joshua T; Wu, Gabriel C; Anderson, J Christopher

    2012-08-01

    Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.

  16. The evolution to global burst synchronization in a modular neuronal network

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Wang, Manman

    2016-05-01

    In this paper, we investigated the development of global burst synchronization in a modular neuronal network at the mesoscale level. The modular network consists of some subnetworks, each of them presenting a scale-free property. Numerical results have demonstrated that, upon increasing the coupling strength, all neurons in the modular network initially burst in a desynchronous pattern; then the burst synchronization within each subnetwork is followed at the mesoscale; finally, the global burst synchronization at the macroscale is formed by the bursting activities on each subnetwork moving forward in harmony. This implies the network behavior possesses two distinct mesoscopic and macroscopic properties for some coupling strengths, i.e. the mesoscopic dynamics of burst synchronization on subnetworks is different from the macroscopic property of desynchronous activity on the whole network. It is also found that global burst synchronization can be promoted by large interconnection probability and hindered by small interconnection probability.

  17. MALEO: Modular Assembly in Low Earth Orbit. A strategy for an IOC lunar base

    NASA Technical Reports Server (NTRS)

    Thangavelu, M.; Schierle, G. G.

    1990-01-01

    Modular Assembly in Low Earth Orbit (MALEO) is a new strategy for building an initial operational capability lunar habitation base. In this strategy, the modular lunar base components are brought up to Low Earth Orbit by the Space Transportation System/Heavy Lift Launch Vehicle fleet, and assembled there to form a complete lunar base. Modular propulsion systems are then used to transport the MALEO lunar base, complete and intact, all the way to the moon. Upon touchdown on the lunar surface, the MALEO lunar habitation base is operational. An exo-skeletal truss superstructure is employed in order to uniformly absorb and distribute the rocket engine thrusting forces incurred by the MALEO lunar base during translunar injection, lunar orbit insertion, and lunar surface touchdown. The components, configuration, and structural aspects of the MALEO lunar base are discussed. Advantages of the MALEO strategy over conventional strategies are pointed out. It is concluded that MALEO holds promise for lunar base deployment.

  18. Modular invariant partition functions for the doubly extended N = 4 superconformal algebras

    NASA Astrophysics Data System (ADS)

    Ooguri, Hirosi; Petersen, Jens Lyng; Taormina, Anne

    1992-01-01

    Non-trivial modular properties of characters of the doubly extended N = 4 superconformal algebras Aγ, Ãγ are derived from two different points of view. First, we use realizations on Wolf spaces, in particular when one of the levels of the two commuting affine SU(2) subalgebras takes the value 2. We emphasize how these realizations involve rational torus theories, and how some specific combinations of massless characters transform under the modular group as affine SU(2) characters. Second, we show how these combinations, and generalizations thereof, emerge from a study of the explicit form of the characters when angular variables are partly restricted, but the levels are not. The two results are then combined to give stringent constraints on the modular invariant Ãγ partition functions and they give rise to a partial classification of the latter, closely related to that of affine SU(2).

  19. The prescribed output pattern regulates the modular structure of flow networks

    NASA Astrophysics Data System (ADS)

    Emanuel Beber, Moritz; Armbruster, Dieter; Hütt, Marc-Thorsten

    2013-11-01

    Modules are common functional and structural properties of many social, technical and biological networks. Especially for biological systems it is important to understand how modularity is related to function and how modularity evolves. It is known that time-varying or spatially organized goals can lead to modularity in a simulated evolution of signaling networks. Here, we study a minimal model of material flow in networks. We discuss the relation between the shared use of nodes, i.e., the cooperativity of modules, and the orthogonality of a prescribed output pattern. We study the persistence of cooperativity through an evolution of robustness against local damages. We expect the results to be valid for a large class of flow-based biological and technical networks. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2013-40672-3

  20. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  1. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units....

  2. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units....

  3. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units....

  4. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units....

  5. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units....

  6. Modular Building Institute 2001 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "An Architect's Perspective: Convincing a Skeptic" (Robert M. Iamello); (2) "66 Portables for San Mateo High" (Steven Williams); (3) "Case Study: Charter Schools"…

  7. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  8. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  9. A robust and modular synthesis of ynamides.

    PubMed

    Mansfield, Steven J; Campbell, Craig D; Jones, Michael W; Anderson, Edward A

    2015-02-25

    A flexible, modular ynamide synthesis is reported that uses trichloroethene as an inexpensive two carbon synthon. A wide range of amides and electrophiles can be converted to the corresponding ynamides, importantly including acyclic carbamates, hindered amides, and aryl amides. This method thus overcomes many of the limitations of other approaches to this useful functionality.

  10. A Modular Communicative Syllabus (2): The Project.

    ERIC Educational Resources Information Center

    Estaire, Sheila

    1982-01-01

    Describes two core syllabi, a communicative one and a grammatical one, and a modular syllabus for elementary ESL courses, with hints for introducing out-of-sequence items. Explains how the syllabi have been designed, what they offer to teachers, and how they have affected first-year teaching as a whole. (Author/MES)

  11. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  12. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  13. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  14. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  15. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  16. Modular Instruction in Higher Education: A Review.

    ERIC Educational Resources Information Center

    Goldschmid, Barbara; Goldschmid, Marcel L.

    This paper reviews the principles, implementation, management, formats, problems, and research in modular instruction. A module is defined as a self-contained, independent unit of a planned series of learning activities designed to help the student accomplish certain well-defined objectives. The learner is able to proceed at his own rate, choose…

  17. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect

    CUNNINGHAM, L.T.

    1999-09-27

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  18. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  19. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  20. Modular learning models in forecasting natural phenomena.

    PubMed

    Solomatine, D P; Siek, M B

    2006-03-01

    Modular model is a particular type of committee machine and is comprised of a set of specialized (local) models each of which is responsible for a particular region of the input space, and may be trained on a subset of training set. Many algorithms for allocating such regions to local models typically do this in automatic fashion. In forecasting natural processes, however, domain experts want to bring in more knowledge into such allocation, and to have certain control over the choice of models. This paper presents a number of approaches to building modular models based on various types of splits of training set and combining the models' outputs (hard splits, statistically and deterministically driven soft combinations of models, 'fuzzy committees', etc.). An issue of including a domain expert into the modeling process is also discussed, and new algorithms in the class of model trees (piece-wise linear modular regression models) are presented. Comparison of the algorithms based on modular local modeling to the more traditional 'global' learning models on a number of benchmark tests and river flow forecasting problems shows their higher accuracy and transparency of the resulting models. PMID:16531005

  1. What Symbionts Teach us about Modularity

    PubMed Central

    Porcar, Manuel; Latorre, Amparo; Moya, Andrés

    2013-01-01

    The main goal of Synthetic Biology (SB) is to apply engineering principles to biotechnology in order to make life easier to engineer. These engineering principles include modularity: decoupling of complex systems into smaller, orthogonal sub-systems that can be used in a range of different applications. The successful use of modules in engineering is expected to be reproduced in synthetic biological systems. But the difficulties experienced up to date with SB approaches question the short-term feasibility of designing life. Considering the “engineerable” nature of life, here we discuss the existence of modularity in natural living systems, particularly in symbiotic interactions, and compare the behavior of such systems, with those of engineered modules. We conclude that not only is modularity present but it is also common among living structures, and that symbioses are a new example of module-like sub-systems having high similarity with modularly designed ones. However, we also detect and stress fundamental differences between man-made and biological modules. Both similarities and differences should be taken into account in order to adapt SB design to biological laws. PMID:25023877

  2. Modular Building Institute 1999 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Many articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Hightstown High School"; (2) "St. Pius X Parish, Vancouver BC"; (3) "Forrest Street Elementary School"; (4) "Kingman Academy of Learning"; (5) "Women Christian…

  3. Modular Building Institute 2002 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Re-Educating Schools" (Chuck Savage); (2) "Tax-Exempt Financing for Public Schools" (John Kennedy); (3) "Help Us Rebuild America" (Michael Roman); (4) "Case…

  4. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  5. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    PubMed

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  6. Vascularized organoid engineered by modular assembly enables blood perfusion

    PubMed Central

    McGuigan, Alison P.; Sefton, Michael V.

    2006-01-01

    Tissue engineering is one approach to address the donor-organ shortage, but to attain clinically significant viable cell densities in thick tissues, laboratory-constructed tissues must have an internal vascular supply. We have adopted a biomimetic approach and assembled microscale modular components, consisting of submillimeter-sized collagen gel rods seeded with endothelial cells (ECs) into a (micro)vascularized tissue; in some prototypes the gel contained HepG2 cells to illustrate the possibilities. The EC-covered modules then were assembled into a larger tube and perfused with medium or whole blood. The interstitial spaces among the modules formed interconnected channels that enabled this perfusion. Viable cell densities were high, within an order of magnitude of cell densities within tissues, and the percolating nature of the flow through the construct was evident in microcomputed tomography and Doppler ultrasound measurements. Most importantly, the ECs retained their nonthrombogenic phenotype and delayed clotting times and inhibited the loss of platelets associated with perfusion of whole blood through the construct. Unlike the conventional scaffold and cell-seeding paradigm of other tissue-engineering approaches, this modular construct has the potential to be scalable, uniform, and perfusable with whole blood, circumventing the limitations of other approaches. PMID:16864785

  7. DIVA: an iterative method for building modular integrated models

    NASA Astrophysics Data System (ADS)

    Hinkel, J.

    2005-08-01

    Integrated modelling of global environmental change impacts faces the challenge that knowledge from the domains of Natural and Social Science must be integrated. This is complicated by often incompatible terminology and the fact that the interactions between subsystems are usually not fully understood at the start of the project. While a modular modelling approach is necessary to address these challenges, it is not sufficient. The remaining question is how the modelled system shall be cut down into modules. While no generic answer can be given to this question, communication tools can be provided to support the process of modularisation and integration. Along those lines of thought a method for building modular integrated models was developed within the EU project DINAS-COAST and applied to construct a first model, which assesses the vulnerability of the world's coasts to climate change and sea-level-rise. The method focuses on the development of a common language and offers domain experts an intuitive interface to code their knowledge in form of modules. However, instead of rigorously defining interfaces between the subsystems at the project's beginning, an iterative model development process is defined and tools to facilitate communication and collaboration are provided. This flexible approach has the advantage that increased understanding about subsystem interactions, gained during the project's lifetime, can immediately be reflected in the model.

  8. Intramolecular phenotypic capacitance in a modular RNA molecule

    PubMed Central

    Hayden, Eric J.; Bendixsen, Devin P.; Wagner, Andreas

    2015-01-01

    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins. PMID:26401020

  9. A modular modulation method for achieving increases in metabolite production.

    PubMed

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. PMID:25683235

  10. Normal form solutions of dynamical systems in the basin of attraction of their fixed points

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Tsarouhas, George; Herman, Russell

    1998-10-01

    The normal form theory of Poincaré, Siegel and Arnol'd is applied to an analytically solvable Lotka-Volterra system in the plane, and a periodically forced, dissipative Duffing's equation with chaotic orbits in its 3-dimensional phase space. For the planar model, we determine exactly how the convergence region of normal forms about a nodal fixed point is limited by the presence of singularities of the solutions in the complex t-plane. Despite such limitations, however, we show, in the case of a periodically driven system, that normal forms can be used to obtain useful estimates of the basin of attraction of a stable fixed point of the Poincaré map, whose ``boundary'' is formed by the intersecting invariant manifolds of a second hyperbolic fixed point nearby.

  11. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  12. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  13. On Fusion Algebras and Modular Matrices

    NASA Astrophysics Data System (ADS)

    Gannon, T.; Walton, M. A.

    We consider the fusion algebras arising in e.g. Wess-Zumino-Witten conformal field theories, affine Kac-Moody algebras at positive integer level, and quantum groups at roots of unity. Using properties of the modular matrix S, we find small sets of primary fields (equivalently, sets of highest weights) which can be identified with the variables of a polynomial realization of the Ar fusion algebra at level k. We prove that for many choices of rank r and level k, the number of these variables is the minimum possible, and we conjecture that it is in fact minimal for most r and k. We also find new, systematic sources of zeros in the modular matrix S. In addition, we obtain a formula relating the entries of S at fixed points, to entries of S at smaller ranks and levels. Finally, we identify the number fields generated over the rationals by the entries of S, and by the fusion (Verlinde) eigenvalues.

  14. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  15. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  16. Autonomous vehicle platforms from modular robotic components

    NASA Astrophysics Data System (ADS)

    Schonlau, William J.

    2004-09-01

    A brief survey of current autonomous vehicle (AV) projects is presented with intent to find common infrastructure or subsystems that can be configured from commercially available modular robotic components, thereby providing developers with greatly reduced timelines and costs and encouraging focus on the selected problem domain. The Modular Manipulator System (MMS) robotic system, based on single degree of freedom rotary and linear modules, is introduced and some approaches to autonomous vehicle configuration and deployment are examined. The modules may be configured to provide articulated suspensions for very rugged terrain and fall recovery, articulated sensors and tooling plus a limited capacity for self repair and self reconfiguration. The MMS on-board visually programmed control software (Model Manager) supports experimentation with novel physical configurations and behavior algorithms via real-time 3D graphics for operations simulation and provides useful subsystems for vision, learning and planning to host intelligent behavior.

  17. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  18. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-01-01

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach. PMID:25289521

  19. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  20. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  1. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  2. CosmoSIS: Modular cosmological parameter estimation

    SciTech Connect

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  3. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGES

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  4. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  5. Modular test facility for HTS insert coils

    SciTech Connect

    Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2009-10-01

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

  6. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  7. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  8. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  9. lazar: a modular predictive toxicology framework

    PubMed Central

    Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph

    2013-01-01

    lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761

  10. FORTRAN Extensions for Modular Parallel Processing

    1996-01-12

    FORTRAN M is a small set of extensions to FORTRAN that supports a modular approach to the construction of sequential and parallel programs. FORTRAN M programs use channels to plug together processes which may be written in FORTRAN M or FORTRAN 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used.

  11. MACOP modular architecture with control primitives.

    PubMed

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot.

  12. A modular approach to linear uncertainty analysis.

    PubMed

    Weathers, J B; Luck, R; Weathers, J W

    2010-01-01

    This paper introduces a methodology to simplify the uncertainty analysis of large-scale problems where many outputs and/or inputs are of interest. The modular uncertainty technique presented here can be utilized to analyze the results spanning a wide range of engineering problems with constant sensitivities within parameter uncertainty bounds. The proposed modular approach provides the same results as the traditional propagation of errors methodology with fewer conceptual steps allowing for a relatively straightforward implementation of a comprehensive uncertainty analysis effort. The structure of the modular technique allows easy integration into most experimental/modeling programs or data acquisition systems. The proposed methodology also provides correlation information between all outputs, thus providing information not easily obtained using the traditional uncertainty process based on analyzing one data reduction equation (DRE)/model at a time. Finally, the paper presents a straightforward methodology to obtain the covariance matrix for the input variables using uncorrelated elemental sources of systematic uncertainties along with uncorrelated sources corresponding to random uncertainties.

  13. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  14. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  15. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  16. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  17. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    NASA Astrophysics Data System (ADS)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  18. Network-Physics (NP) BEC DIGITAL(#)-VULNERABILITY; ``Q-Computing"=Simple-Arithmetic;Modular-Congruences=SignalXNoise PRODUCTS=Clock-model;BEC-Factorization;RANDOM-# Definition;P=/=NP TRIVIAL Proof!!!

    NASA Astrophysics Data System (ADS)

    Pi, E. I.; Siegel, E.

    2010-03-01

    Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).

  19. Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations

    PubMed Central

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and

  20. Relative importance of modularity and other morphological attributes on different types of lithic point weapons: assessing functional variations.

    PubMed

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving

  1. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  2. Modular Manufacturing Simulator Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.

  3. The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    PubMed Central

    Alberghina, Lilia; Colangelo, Anna Maria

    2006-01-01

    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease. PMID:17118156

  4. New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint

    SciTech Connect

    Jonkman, J.

    2013-01-01

    NREL has recently put considerable effort into improving the overall modularity of its FAST wind turbine aero-hydro-servo-elastic tool to (1) improve the ability to read, implement, and maintain source code; (2) increase module sharing and shared code development across the wind community; (3) improve numerical performance and robustness; and (4) greatly enhance flexibility and expandability to enable further developments of functionality without the need to recode established modules. The new FAST modularization framework supports module-independent inputs, outputs, states, and parameters; states in continuous-time, discrete-time, and in constraint form; loose and tight coupling; independent time and spatial discretizations; time marching, operating-point determination, and linearization; data encapsulation; dynamic allocation; and save/retrieve capability. This paper explains the features of the new FAST modularization framework, as well as the concepts and mathematical background needed to understand and apply it correctly. It is envisioned that the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic, hydrodynamic, servo-dynamic, and structural-dynamic components.

  5. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art

    PubMed Central

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience. PMID:23840527

  6. Engineering Analyses of NCSX Modular Coil and Its Supporting Structure for EM Loads

    SciTech Connect

    H.M. Fan; D. Williamson

    2003-10-30

    NCSX modular coil is a major parts of the NCSX coil systems that surround the highly shaped plasma and vacuum vessel. The flexible copper cable conductors are used to form modular coil on both sides of the ''tee'' beam, which is cast inside the supporting shell structure. The Engineering analyses comprise sequentially coupled-field analyses that include an electromagnetic analysis to calculate the magnetic fields and EM forces, and a structural analysis to evaluate the structural responses. In the sequential EM-structural analysis, nodal forces obtained from the EM analysis were applied as ''nodal force'' loads in the subsequent stress analysis using the identical nodal points and elements. The shell model was imported directly from Pro/ENGINEER files in order to obtain an accurate structural representation. The Boolean operations provided by the ANSYS preprocessor were then applied to subdivide the solid model for more desirable finite element meshing. Material properties of the modular coil were based on test results. Analyses using the ANSYS program to evaluate structural responses of the complicated modular coil systems provided a clear understanding of the structural behaviors and the directions for improving the structural design.

  7. Towards a Formal Basis for Modular Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  8. Cascading failures of interdependent modular small-world networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  9. Full characterization of modular values for finite-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2016-06-01

    Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.

  10. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  11. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect

    1990-05-01

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  12. Modular, flexible, and stereoselective synthesis of pyrroloquinolines: rapid assembly of complex heterocyclic scaffolds.

    PubMed

    Boomhoff, Michael; Yadav, Ashok K; Appun, Johannes; Schneider, Christoph

    2014-12-01

    A novel 1,2-dinucleophile engages two imines in a sequential vinylogous Mannich-Mannich-Pictet-Spengler process to generate complex hexahydropyrrolo[3,2-c]quinolines in a one-pot operation. This methodology provides a rapid, highly modular, and flexible access toward a wide range of products and forms four new σ-bonds and chiral centers each. The diastereoselectivity may be inverted by fine-tuning of reaction conditions and the electronic nature of the imines. PMID:25415061

  13. Modular, Parallel Pulse-Shaping Filter Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  14. Nucleic acid amplification using modular branched primers

    SciTech Connect

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  15. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  16. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin; Urko, Willam

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  17. Development of modular cable mesh deployable antenna

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

    1993-03-01

    This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

  18. Data Acquisition for Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  19. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  20. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  1. The axion mass in modular invariant supergravity

    SciTech Connect

    Butter, Daniel; Gaillard, Mary K.

    2005-02-09

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).

  2. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  3. From the Cover: Osmotrophy in modular Ediacara organisms.

    PubMed

    Laflamme, Marc; Xiao, Shuhai; Kowalewski, Michał

    2009-08-25

    The Ediacara biota include macroscopic, morphologically complex soft-bodied organisms that appear globally in the late Ediacaran Period (575-542 Ma). The physiology, feeding strategies, and functional morphology of the modular Ediacara organisms (rangeomorphs and erniettomorphs) remain debated but are critical for understanding their ecology and phylogeny. Their modular construction triggered numerous hypotheses concerning their likely feeding strategies, ranging from micro-to-macrophagus feeding to photoautotrophy to osmotrophy. Macrophagus feeding in rangeomorphs and erniettomorphs is inconsistent with their lack of oral openings, and photoautotrophy in rangeomorphs is contradicted by their habitats below the photic zone. Here, we combine theoretical models and empirical data to evaluate the feasibility of osmotrophy, which requires high surface area to volume (SA/V) ratios, as a primary feeding strategy of rangeomorphs and erniettomorphs. Although exclusively osmotrophic feeding in modern ecosystems is restricted to microscopic bacteria, this study suggests that (i) fractal branching of rangeomorph modules resulted in SA/V ratios comparable to those observed in modern osmotrophic bacteria, and (ii) rangeomorphs, and particularly erniettomorphs, could have achieved osmotrophic SA/V ratios similar to bacteria, provided their bodies included metabolically inert material. Thus, specific morphological adaptations observed in rangeomorphs and erniettomorphs may have represented strategies for overcoming physiological constraints that typically make osmotrophy prohibitive for macroscopic life forms. These results support the viability of osmotrophic feeding in rangeomorphs and erniettomorphs, help explain their taphonomic peculiarities, and point to the possible importance of earliest macroorganisms for cycling dissolved organic carbon that may have been present in abundance during Ediacaran times.

  4. Modular Cognitive-Behavioral Therapy for Childhood Anxiety Disorders. Guides to Individualized Evidence-Based Treatment Series

    ERIC Educational Resources Information Center

    Chorpita, Bruce F.

    2006-01-01

    This clinically wise and pragmatic book presents a systematic approach for treating any form of childhood anxiety using proven exposure-based techniques. What makes this rigorously tested modular treatment unique is that it is explicitly designed with flexibility and individualization in mind. Developed in a real-world, highly diverse community…

  5. SEPHIROT: Scenario for Universe-Creation AUTOMATICALLY from Digits On-Average Euler-Bernoulli-Kummer-Riemann-Newcomb-Poincare-Weyl-Benford-Kac-Raimi-Hill-Antonoff-Siegel ``Digit-Physics'' Logarithm-Law: ``It's a Jack-in-the-Box Universe'': EMET/TRUTH!!!

    NASA Astrophysics Data System (ADS)

    Siegel, Edward Carl-Ludwig; Young, Frederic; Wignall, Janis

    2013-04-01

    SEPHIROT: Siegel[http://fqxi.org/community/forum/topic/1553]: Ten-[0->9]-Digits; Average Log-Law SCALE-Invariance; Utter-Simplicity: ``Complexity'' (vs. ``Complicatedness''); Zipf-law/Hyperbolicity/ Inevitability SCENARIO AUTOMATICALLY CREATES & EVOLVES a UNIVERSE: inflation, a big-bang, bosons(E)->Mellin-(c2)-tranform->fermions(m), hidden-dark-energy(HDE), hidden-dark-matter (HDM), cosmic-microwave-background(CMB), supersymmetry(SUSY), PURPOSELY NO: theories,models,mechanisms,processes, parameters,assumptions,WHATSOEVER: It's a ``Jack-in-the-Box'' Universe!!!: ONLY VIA: Newcomb [Am.J.Math.4(1),39(1881)]QUANTUM-discovery!!!-Benford-Siegel-Antonoff[AMS.Joint-Mtg.(02)-Abs.#973-60-124!!!] inversion to ONLY BEQS with d=0 BEC: ``Digit-Physics''!; Log fixed-point invariance(s): [base=units=SCALE] of digits classic (not classical!) average [CAUSING] log statistical-correlations =log(1+1/d), with physics-crucial d=0 BEC singularity/pole, permits SEPHIROT!!!: ``digits are quanta are bosons because bosons are and always were digits!!!'': Digits = Bosons with d=0 BEC(!!!) & expansion to Zipf-law Hyperbolicity INEVITABILITY CMB!

  6. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGES

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; Subramanian, Vijaya; Urban, Volker S.; Vairaprakash, Pothiappan; Tian, Yongming; Evans, Deborah G.; Shreve, Andrew P.; Montaño, Gabriel A.

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  7. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  8. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-01

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  9. Intelligent modular manipulation for mobile robots

    NASA Astrophysics Data System (ADS)

    Culbertson, John

    2008-04-01

    As mobile robots continue to gain acceptance across a variety of applications within the defense and civilian markets, the number of tasks that these robot platforms are expected to accomplish are expanding. Robot operators are asked to do more with the same platforms - from EOD missions to reconnaissance and inspection operations. Due to the fact that a majority of missions are dangerous in nature, it is critical that users are able to make remote adjustments to the systems to ensure that they are kept out of harm's way. An efficient way to expand the capabilities of existing robot platforms, improve the efficiency of robot missions, and to ultimately improve the operator's safety is to integrate JAUS-enabled Intelligent Modular Manipulation payloads. Intelligent Modular Manipulation payloads include both simple and dexterous manipulator arms with plug-and-play end-effector tools that can be changed based on the specific mission. End-effectors that can be swapped down-range provide an added benefit of decreased time-on-target. The intelligence in these systems comes from semi-autonomous mobile manipulation actions that enable the robot operator to perform manipulation task with the touch of a button on the OCU. RE2 is supporting Unmanned Systems Interoperability by utilizing the JAUS standard as the messaging protocol for all of its manipulation systems. Therefore, they can be easily adapted and integrated onto existing JAUS-enabled robot platforms.

  10. Intelligent Control of Modular Robotic Welding Cell

    SciTech Connect

    Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

    2002-04-01

    Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

  11. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  12. Modular Inverse Reinforcement Learning for Visuomotor Behavior

    PubMed Central

    Rothkopf, Constantin A.; Ballard, Dana H.

    2013-01-01

    In a large variety of situations one would like to have an expressive and accurate model of observed animal or human behavior. While general purpose mathematical models may capture successfully properties of observed behavior, it is desirable to root models in biological facts. Because of ample empirical evidence for reward-based learning in visuomotor tasks we use a computational model based on the assumption that the observed agent is balancing the costs and benefits of its behavior to meet its goals. This leads to using the framework of Reinforcement Learning, which additionally provides well-established algorithms for learning of visuomotor task solutions. To quantify the agent’s goals as rewards implicit in the observed behavior we propose to use inverse reinforcement learning, which quantifies the agent’s goals as rewards implicit in the observed behavior. Based on the assumption of a modular cognitive architecture, we introduce a modular inverse reinforcement learning algorithm that estimates the relative reward contributions of the component tasks in navigation, consisting of following a path while avoiding obstacles and approaching targets. It is shown how to recover the component reward weights for individual tasks and that variability in observed trajectories can be explained succinctly through behavioral goals. It is demonstrated through simulations that good estimates can be obtained already with modest amounts of observation data, which in turn allows the prediction of behavior in novel configurations. PMID:23832417

  13. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  14. Modularized evolution in archaeal methanogens phylogenetic forest.

    PubMed

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C

    2014-12-09

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.

  15. Modular adaptive implant based on smart materials.

    PubMed

    Bîzdoacă, N; Tarniţă, Daniela; Tarniţă, D N

    2008-01-01

    Applications of biological methods and systems found in nature to the study and design of engineering systems and modern technology are defined as Bionics. The present paper describes a bionics application of shape memory alloy in construction of orthopedic implant. The main idea of this paper is related to design modular adaptive implants for fractured bones. In order to target the efficiency of medical treatment, the implant has to protect the fractured bone, for the healing period, undertaking much as is possible from the daily usual load of the healthy bones. After a particular stage of healing period is passed, using implant modularity, the load is gradually transferred to bone, assuring in this manner a gradually recover of bone function. The adaptability of this design is related to medical possibility of the physician to made the implant to correspond to patient specifically anatomy. Using a CT realistic numerical bone models, the mechanical simulation of different types of loading of the fractured bones treated with conventional method are presented. The results are commented and conclusions are formulated. PMID:19050799

  16. Modular thermal analyzer routine, volume 1

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Phillips, M. A.; Williams, D. R.

    1972-01-01

    The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.

  17. DynaMod: dynamic functional modularity analysis

    PubMed Central

    Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2010-01-01

    A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468

  18. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  19. Manufactured Housing--The Modular Home in Texas.

    ERIC Educational Resources Information Center

    Sindt, Roger P.

    This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…

  20. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information to the EDGAR system for subsequent inclusion in an electronic filing: (a) Modular submissions. (1... data storage area at any time, not to exceed a total of one megabyte of digital information. If an... business days, the modular submission held in suspense will be deleted from the system. (3) A...

  1. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  2. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., EDGAR will suspend the modular submission and notify the electronic filer by electronic mail. After six... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Edgar Functions § 232.501 Modular submissions and segmented filings. An electronic filer may use the following procedures to...

  3. Amp: A modular approach to machine learning in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Khorshidi, Alireza; Peterson, Andrew A.

    2016-10-01

    Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which

  4. Modularity Induced Gating and Delays in Neuronal Networks.

    PubMed

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  5. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  6. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  7. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  8. Z-Score-Based Modularity for Community Detection in Networks.

    PubMed

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

  9. Modularity Induced Gating and Delays in Neuronal Networks.

    PubMed

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition.

  10. Development of a modular integrated control architecture for flexible manipulators. Final report

    SciTech Connect

    Burks, B.L.; Battiston, G.

    1994-12-08

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford.

  11. Modular photonic power and VCSEL-based data links for aerospace and military applications

    SciTech Connect

    Carson, R.F.

    1997-02-01

    If photonic data and power transfer links are constructed in a modular fashion, they can be easily adapted into various forms to meet a wide range of needs for aerospace and military applications. The performance specifications associated with these needs can vary widely according to application. Alignment tolerance needs also tend to vary greatly, as can requirements on power consumption. An example of a modular photonic data and/or power transfer link that can be applied to military and aerospace needs is presented. In this approach, a link is designed for low (<10 kb/s) data rates, ultra-low electrical power consumption, large alignment tolerance, and power transfer to provide complete electrical shielding in a remote module that might be found in a military or aerospace application.

  12. Modularity and hierarchical organization of action programs in children's acquisition of graphic skills.

    PubMed

    Manoel, Edison de J; Dantas, Luiz; Gimenez, Roberto; de Oliveira, Dalton Lustosa

    2011-10-01

    The organization of actions is based on modules in memory as a result of practice, easing the demand of performing more complex actions. If this modularization occurs, the elements of the module must remain invariant in new tasks. To test this hypothesis, 35 children, age 10 yr., practiced a graphic criterion task on a digital tablet and completed a complex graphic task enclosing the previous one. Total movement and pause times to draw the figure indicated skill acquisition. A module was identified by the variability of relative timing, pause time, and sequencing. Total movement to perform the criterion task did not increase significantly when it was embedded in the more complex task. Modularity was evidenced by the stability of relative timing and pause time and sequencing. The spatial position of new elements did not perturb the module, so the grammar of action may still have been forming.

  13. Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation

    PubMed Central

    Bermudo, Carolina; Martín, Francisco; Martín, María Jesús; Sevilla, Lorenzo

    2015-01-01

    Nowadays, thanks to the new manufacturing processes, indentation is becoming an essential part of the new arising processes such as the Incremental Forming Processes. This work presents the experimental validation of the analytical model developed for an indentation-based process. The analytical model is originated from the Upper Bound Theorem application by means of its new modular distribution. The modules considered are composed of two Triangular Rigid Zones each. The experimental validation is performed through a series of indentation tests with work-pieces of annealed aluminium EN AW-2030 and punches of steel AISI 304, under plane strain conditions. The results are compared with the ones obtained from the application of this new modular distribution of the Upper Bound Theorem, showing a good approximation and suitability of the model developed for an indentation-based process. PMID:25826738

  14. Lorentz-invariant actions for chiral p-forms

    SciTech Connect

    Pasti, P.; Sorokin, D.; Tonin, M.

    1997-05-01

    We demonstrate how a Lorentz-covariant formulation of the chiral p-form model in D=2(p+1) containing infinitely many auxiliary fields is related to a Lorentz-covariant formulation with only one auxiliary scalar field entering a chiral p-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolynomial action and show that the Dirac constraints have a simple form and are all first class. In contrast with the Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is quadratic and determines the energy of a single chiral p-form. In the case of D=2 chiral scalars the constraint can be improved by use of a {open_quotes}twisting{close_quotes} procedure (without the loss of the property to be first class) in such a way that the central charge of the quantum constraint algebra is zero. This points to the possible absence of an anomaly in an appropriate quantum version of the model. {copyright} {ital 1997} {ital The American Physical Society}

  15. Modularity of a carbon-fixing protein organelle.

    PubMed

    Bonacci, Walter; Teng, Poh K; Afonso, Bruno; Niederholtmeyer, Henrike; Grob, Patricia; Silver, Pamela A; Savage, David F

    2012-01-10

    Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures. PMID:22184212

  16. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  17. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  18. Modular designs highlight several new rigs

    SciTech Connect

    Rappold, K.

    1995-12-04

    A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

  19. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  20. Modular Synthesis of N-Vinyl Benzotriazoles

    PubMed Central

    Singh, Govindra; Kumar, Rakesh; Swett, Jorge; Zajc, Barbara

    2014-01-01

    A modular approach to N1-vinyl benzotriazoles by azide–aryne cycloadditions and Julia–Kocienski reactions is described. Reactions of azidomethyl phenyl-1H-tetrazol-5-yl (PT) sulfide with arynes gave methyl(PT-sulfanyl)-substituted benzotriazoles in 68–89% yields. Oxidation of the sulfides to the sulfones gave the benzotriazole-substituted Julia–Kocienski reagents. Olefination reactions of aldehydes and a ketone with reagents derived from benzyne, 2,3-naphthyne, and 4,5-dimethoxybenzyne precursors proceeded to give various N1-vinyl benzotriazole derivatives. Olefination stereoselectivities are tunable for electron-rich aldehydes, but not for electron-deficient aldehydes and alkanals, where they proceed with good to excellent Z-stereoselectivity. PMID:23915255

  1. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  2. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  3. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  4. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  5. The modular nature of trustworthiness detection.

    PubMed

    Bonnefon, Jean-François; Hopfensitz, Astrid; De Neys, Wim

    2013-02-01

    The capacity to trust wisely is a critical facilitator of success and prosperity, and it has been conjectured that people of higher intelligence are better able to detect signs of untrustworthiness from potential partners. In contrast, this article reports five trust game studies suggesting that reading trustworthiness of the faces of strangers is a modular process. Trustworthiness detection from faces is independent of general intelligence (Study 1) and effortless (Study 2). Pictures that include nonfacial features such as hair and clothing impair trustworthiness detection (Study 3) by increasing reliance on conscious judgments (Study 4), but people largely prefer to make decisions from this sort of pictures (Study 5). In sum, trustworthiness detection in an economic interaction is a genuine and effortless ability, possessed in equal amount by people of all cognitive capacities, but whose impenetrability leads to inaccurate conscious judgments and inappropriate informational preferences. PMID:22686638

  6. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    SciTech Connect

    Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.; Yarkov, Alexander V

    2011-01-01

    In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

  7. Modular design of receiver coil arrays.

    PubMed

    De Zanche, Nicola; Massner, Jurek A; Leussler, Christoph; Pruessmann, Klaas P

    2008-07-01

    We describe a modular and hence flexible system for connecting MR surface coils to create a receiver array. Up to 16 individual coils of different size and shape depending on the application are plugged into a connector box that houses the control electronics. Preamplification, matching and detuning circuitry are housed on a circuit board directly attached to each coil loop. Electrical adjustments for tuning or decoupling for each coil configuration are not needed thanks to effective preamplifier decoupling provided through a Pi matching network. Radio-frequency safety and electrically stable cabling are ensured by multiple radio-frequency traps. Array modules for 1.5 and 3 T have been simulated, constructed, tested, and used for imaging experiments.

  8. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  9. Lightweight modular instrumentation for planetary applications

    NASA Astrophysics Data System (ADS)

    Joshi, P. B.

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  10. Modular radar hardware for deep space applications

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Foerster, K. P.; Oudot, O.; Perrot, J. L.; Hartner, P.

    The authors describe work carried out under contract to the European Space Agency to investigate modular design approaches for a range of scientific missions. In order to provide meaningful design and performance requirements at the start of the study, three proposed planetary research missions featuring radar sensors were selected. The missions are CASSINI, Comet Nucleus Sample Return, and Mars-98. Under the first phase of the work, common instrument systems and subsystems have been proposed. Under a second phase of the work, a digital subsystem for signal processing and control has been developed which can fulfill the requirements of the various instruments but which is fully reconfigurable through software. The DSP (digital signal processor) architecture based on programmable signal processing cores has been demonstrated through development of breadboard hardware. Tracking and control in the breadboard is achieved through a programmable microprocessor with purpose-developed interfaces.

  11. MODULAR CORE UNITS FOR A NEUTRONIC REACTOR

    DOEpatents

    Gage, J.F. Jr.; Sherer, D.B.

    1964-04-01

    A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

  12. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  13. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  14. RSA and its Correctness through Modular Arithmetic

    NASA Astrophysics Data System (ADS)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  15. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  16. Auditory-visual spatial interaction and modularity

    PubMed

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  17. Generic small modular reactor plant design.

    SciTech Connect

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  18. Jargon and Graph Modularity on Twitter

    SciTech Connect

    Dowling, Chase P.; Corley, Courtney D.; Farber, Robert M.; Reynolds, William

    2013-09-01

    The language of conversation is just as dependent upon word choice as it is on who is taking part. Twitter provides an excellent test-bed in which to conduct experiments not only on language usage but on who is using what language with whom. To this end, we combine large scale graph analytical techniques with known socio-linguistic methods. In this article we leverage both expert curated vocabularies and naive mathematical graph analyses to determine if network behavior on Twitter corroborates with the current understanding of language usage. The results reported indicate that, based on networks constructed from user to user communication and communities identified using the Clauset- Newman greedy modularity algorithm we find that more prolific users of these curated vocabularies are concentrated in distinct network communities.

  19. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  20. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option

  1. Modular industrial solar retrofit project (MISR)

    SciTech Connect

    Alvis, R.L.

    1980-01-01

    The intent of this paper is to describe a major Department of Energy (DOE) thrust to bring line-focus solar thermal technology to commercial readiness. This effort is referred to as the MISR Project. The project is based upon the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil fuel applications are technically the first that should be retrofitted. Experience has shown that modularity in system design and construction offers potential for reducing engineering design costs, reduces manufacturing costs, reduces installation time and expense, and improves system operational reliability. The modular design effort will be sponsored by Sandia National Laboratories with industry doing the final designs. The operational credibility of the systems will be established by allowing selected industrial thermal energy users to purchase MISR systems from suppliers and operate them for two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost sharing basis. The MISR system allowed in the experiments will have been previously qualified for the application. The project is divided into three development phases which represent three design and experiment cycles. The first cycle will use commercially available trough-type solar collectors and will incorporate 5 to 10 experiments of up to 5000 m/sup 2/ of collectors each. The project effort began in March 1980, and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The project is success oriented, and if the first cycle reaches commercial readiness, the project will be terminated. If not, a second, and possibly a third, development cycle will be conducted.

  2. Modular Control of Treadmill vs Overground Running.

    PubMed

    Oliveira, Anderson Souza; Gizzi, Leonardo; Ketabi, Shahin; Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  3. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  4. Module composition and deployment method on deployable modular-mesh antenna structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Mitsunobu; Meguro, Akira; Mitsugi, Jin; Tsunoda, Hiroaki

    1996-10-01

    A deployable modular-mesh antenna is the concept behind a large space antenna. To ensure reliable deployment, a synchronously deployable truss structure forming a curved reflector surface has been developed. The proposed antenna's main reflector formed by two types of modules using mesh and cable network maintains a sufficient level of rigidity at deployment and deploys with high reliability. Importance has also been placed on the numerical analyses of cables, the mesh, and the truss structures. The truss structure analysis is based on a non-linear finite element method, rather than on multi-body dynamics, so that elastic motions of all truss members during the deployment can easily be handled.

  5. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  6. Does habitat variability really promote metabolic network modularity?

    PubMed

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  7. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  8. [The morse taper junction in modular revision hip replacement].

    PubMed

    Gravius, S; Mumme, T; Andereya, S; Maus, U; Müller-Rath, R; Wirtz, D C

    2007-01-01

    Morse taper junctions of modular hip revision replacements are predilection sites for fretting, crevice corrosion, dissociation and breakage of the components. In this report we present the results of a retrieval analysis of a morse taper junction of a MRP-titanium modular revision replacement (MRP-Titanium, Peter Brehm GmbH, Weisendorf, Germany) after 11.5 years of in vivo use. In the context of this case report the significance of morse taper junctions in modular hip revision replacement under consideration of the current literature is also discussed.

  9. A Modular Robotic System with Applications to Space Exploration

    NASA Technical Reports Server (NTRS)

    Hancher, Matthew D.; Hornby, Gregory S.

    2006-01-01

    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.

  10. Modular supervisory control and coordination of state tree structures

    NASA Astrophysics Data System (ADS)

    Chao, Wujie; Gan, Yongmei; Wang, Zhaoan; Wonham, W. M.

    2013-01-01

    Optimal nonblocking modular supervisory control of discrete-event systems is developed using state tree structures to manage state explosion. The total specification of the system to be controlled is decomposed into several sub-specifications, and a separate optimal (maximally permissive) nonblocking supervisor designed for each. Under an additional global nonblocking condition we directly obtain an optimal nonblocking modular state feedback control for the full system. If that condition fails, i.e. the modular controlled system is blocking, an additional coordinator is adjoined which renders the global controlled behaviour, both nonblocking and optimal.

  11. Mid-term Results of Revision Total Hip Arthroplasty Using Modular Cementless Femoral Stems

    PubMed Central

    Jang, Hyung-Gyu; Min, Byung-Woo; Ye, Hee-Uk; Lim, Kyung-Hwan

    2015-01-01

    Purpose The purpose of this study was to evaluate the clinical and radiological results of revision total hip arthroplasty using modular distal fixation stems for proximal femoral deficiency. Materials and Methods Forty-five patients (47 hips) were analyzed more than 24 months after revision total hip arthroplasty that used modular distal fixation stems and was performed between 2006 and 2012. There were proximal femoral defects in all cases. Preoperative femoral defect classification revealed Paprosky type II in 31 cases, type IIIA in 7, and type IIIB in 9. The mean duration of follow-up was 53.4 (25-100) months. We evaluated the Harris hip score (HHS), walking ability according to Koval as clinical parameters, stem stability, and stem position change as radiographic parameters. Kaplan-Meier survival analysis was performed. Results The average HHS improved form 39.5 points to 91.3 points and walking ability also improved in most cases; all patients had stable fixation of the femoral stem. Postoperative complications included 5 cases of infection and 2 cases of dislocation. The survival rate with the end point of re-revision surgery due to infection or dislocation was 86% after 8-year follow-up. Conclusion Cementless revision total hip arthroplasty using modular femoral stems is useful because the stems can be stably fixed on the diaphyseal portion of the femur, which has relatively good bone quality at mid-term follow-up. PMID:27536616

  12. Split green fluorescent protein as a modular binding partner for protein crystallization

    SciTech Connect

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C. Waldo, Geoffrey S.

    2013-12-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.

  13. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    SciTech Connect

    2001-07-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  14. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  15. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity.

    PubMed

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based (15)N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps-ns timescale in the context of the single W unit (W₁) and the two unit concatemer (W₂). Unambiguous mapping of backbone dynamics throughout W₂ was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W₁ and W₂ reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  16. String modular phases in Calabi-Yau families

    NASA Astrophysics Data System (ADS)

    Kadir, Shabnam; Lynker, Monika; Schimmrigk, Rolf

    2011-12-01

    We investigate the structure of singular Calabi-Yau varieties in moduli spaces that contain a Brieskorn-Pham point. Our main tool is a construction of families of deformed motives over the parameter space. We analyze these motives for general fibers and explicitly compute the L-series for singular fibers for several families. We find that the resulting motivic L-functions agree with the L-series of modular forms whose weight depends both on the rank of the motive and the degree of the degeneration of the variety. Surprisingly, these motivic L-functions are identical in several cases to L-series derived from weighted Fermat hypersurfaces. This shows that singular Calabi-Yau spaces of non-conifold type can admit a string worldsheet interpretation, much like rational theories, and that the corresponding irrational conformal field theories inherit information from the Gepner conformal field theory of the weighted Fermat fiber of the family. These results suggest that phase transitions via non-conifold configurations are physically plausible. In the case of severe degenerations we find a dimensional transmutation of the motives. This suggests further that singular configurations with non-conifold singularities may facilitate transitions between Calabi-Yau varieties of different dimensions.

  17. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Sarker, Muzaddid; Liu, Xiang-Qin; Rainey, Jan K.

    2016-01-01

    Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1) and the two unit concatemer (W2). Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. PMID:27517921

  18. The discodermolide hairpin structure flows from conformationally stable modular motifs.

    PubMed

    Jogalekar, Ashutosh S; Kriel, Frederik H; Shi, Qi; Cornett, Ben; Cicero, Daniel; Snyder, James P

    2010-01-14

    (+)-Discodermolide (DDM), a polyketide macrolide from marine sponge, is a potent microtubule assembly promoter. Reported solid-state, solution, and protein-bound DDM conformations reveal the unusual result that a common hairpin conformational motif exists in all three microenvironments. No other flexible microtubule binding agent exhibits such constancy of conformation. In the present study, we combine force-field conformational searches with NMR deconvolution in different solvents to compare DDM conformers with those observed in other environments. While several conformational families are perceived, the hairpin form dominates. The stability of this motif is dictated primarily by steric factors arising from repeated modular segments in DDM composed of the C(Me)-CHX-C(Me) fragment. Furthermore, docking protocols were utilized to probe the DDM binding mode in beta-tubulin. A previously suggested pose is substantiated (Pose-1), while an alternative (Pose-2) has been identified. SAR analysis for DDM analogues differentiates the two poses and suggests that Pose-2 is better able to accommodate the biodata.

  19. Modularity in the Organization of Mouse Primary Visual Cortex.

    PubMed

    Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D'Souza, Rinaldo D; Wang, Quanxin; Burkhalter, Andreas

    2015-08-01

    Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat, and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity, whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2- zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867

  20. Modular transformations through sequences of topological charge projections

    NASA Astrophysics Data System (ADS)

    Barkeshli, Maissam; Freedman, Michael

    2016-10-01

    The ground-state subspace of a topological phase of matter forms a representation of the mapping class group of the space on which the state is defined. We show that elements of the mapping class group of a surface of genus g can be obtained through a sequence of topological charge projections along at least three mutually intersecting noncontractible cycles. We demonstrate this both through the algebraic theory of anyons and also through an analysis of the topology of the space-time manifold. We combine this result with two observations: (i) that surfaces of genus g can be effectively simulated in planar geometries by using bilayer, or doubled, versions of the topological phase of interest, and inducing the appropriate types of gapped boundaries; and (ii) that the required topological charge projections can be implemented as adiabatic unitary transformations by locally tuning microscopic parameters of the system, such as the energy gap. These observations suggest a possible path towards effectively implementing modular transformations in physical systems. In particular, they also show how the Ising ⊗Ising¯ state, in the presence of disconnected gapped boundaries, can support universal topological quantum computation.

  1. Modularity in the Organization of Mouse Primary Visual Cortex

    PubMed Central

    Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D’Souza, Rinaldo D.; Wang, Quanxin; Burkhalter, Andreas

    2015-01-01

    SUMMARY Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2− zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867

  2. The Modular Neuroarchitecture of Social Judgments on Faces

    PubMed Central

    Langner, Robert; Hoffstaedter, Felix; Turetsky, Bruce I.; Zilles, Karl; Eickhoff, Simon B.

    2012-01-01

    Face-derived information on trustworthiness and attractiveness crucially influences social interaction. It is, however, unclear to what degree the functional neuroanatomy of these complex social judgments on faces reflects genuine social versus basic emotional and cognitive processing. To disentangle social from nonsocial contributions, we assessed commonalities and differences between the functional networks activated by judging social (trustworthiness, attractiveness), emotional (happiness), and cognitive (age) facial traits. Relative to happiness and age evaluations, both trustworthiness and attractiveness judgments selectively activated the dorsomedial prefrontal cortex and inferior frontal gyrus, forming a core social cognition network. Moreover, they also elicited a higher amygdalar response than even the emotional control condition. Both social judgments differed, however, in their top-down modulation of face-sensitive regions: trustworthiness judgments recruited the posterior superior temporal sulcus, whereas attractiveness judgments recruited the fusiform gyrus. Social and emotional judgments converged and, therefore, likely interact in the ventromedial prefrontal cortex. Social and age judgments, on the other hand, commonly engaged the anterior insula, inferior parietal cortex, and dorsolateral prefrontal cortex, which appear to subserve more cognitive aspects in social evaluation. These findings demonstrate the modularity of social judgments on human faces by separating the neural correlates of social, face-specific, emotional, and cognitive processing facets. PMID:21725038

  3. Modified modular imaging system designed for a sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Veach, Todd J.; Scowen, Paul A.; Beasley, Matthew; Nikzad, Shouleh

    2012-09-01

    We present the design and system calibration results from the fabrication of a charge-coupled device (CCD) based imaging system designed using a modified modular imager cell (MIC) used in an ultraviolet sounding rocket mission. The heart of the imaging system is the MIC, which provides the video pre-amplifier circuitry and CCD clock level filtering. The MIC is designed with standard four-layer FR4 printed circuit board (PCB) with surface mount and through-hole components for ease of testing and lower fabrication cost. The imager is a 3.5k by 3.5k LBNL p-channel CCD with enhanced quantum efficiency response in the UV using delta-doping technology at JPL. The recently released PCIe/104 Small-Cam CCD controller from Astronomical Research Cameras, Inc (ARC) performs readout of the detector. The PCIe/104 Small-Cam system has the same capabilities as its larger PCI brethren, but in a smaller form factor, which makes it ideally suited for sub-orbital ballistic missions. The overall control is then accomplished using a PCIe/104 computer from RTD Embedded Technologies, Inc. The design, fabrication, and testing was done at the Laboratory for Astronomical and Space Instrumentation (LASI) at Arizona State University. Integration and flight calibration are to be completed at the University of Colorado Boulder before integration into CHESS.

  4. Modular Pebble Bed Reactor Project, University Research Consortium Annual Report

    SciTech Connect

    Petti, David Andrew

    2000-07-01

    This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for

  5. An Open Source modular platform for hydrological model implementation

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2010-05-01

    An implementation framework for setup and evaluation of spatio-temporal models is developed, forming a highly modularized distributed model system. The ENKI framework allows building space-time models for hydrological or other environmental purposes, from a suite of separately compiled subroutine modules. The approach makes it easy for students, researchers and other model developers to implement, exchange, and test single routines in a fixed framework. The open-source license and modular design of ENKI will also facilitate rapid dissemination of new methods to institutions engaged in operational hydropower forecasting or other water resource management. Written in C++, ENKI uses a plug-in structure to build a complete model from separately compiled subroutine implementations. These modules contain very little code apart from the core process simulation, and are compiled as dynamic-link libraries (dll). A narrow interface allows the main executable to recognise the number and type of the different variables in each routine. The framework then exposes these variables to the user within the proper context, ensuring that time series exist for input variables, initialisation for states, GIS data sets for static map data, manually or automatically calibrated values for parameters etc. ENKI is designed to meet three different levels of involvement in model construction: • Model application: Running and evaluating a given model. Regional calibration against arbitrary data using a rich suite of objective functions, including likelihood and Bayesian estimation. Uncertainty analysis directed towards input or parameter uncertainty. o Need not: Know the model's composition of subroutines, or the internal variables in the model, or the creation of method modules. • Model analysis: Link together different process methods, including parallel setup of alternative methods for solving the same task. Investigate the effect of different spatial discretization schemes. o Need not

  6. Biosynthetic modularity rules in the bisintercalator family of antitumor compounds.

    PubMed

    Fernández, Javier; Marín, Laura; Alvarez-Alonso, Raquel; Redondo, Saúl; Carvajal, Juan; Villamizar, Germán; Villar, Claudio J; Lombó, Felipe

    2014-05-09

    Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.

  7. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  8. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  9. Complex modular structure of large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  10. Biosynthetic Modularity Rules in the Bisintercalator Family of Antitumor Compounds

    PubMed Central

    Fernández, Javier; Marín, Laura; Álvarez-Alonso, Raquel; Redondo, Saúl; Carvajal, Juan; Villamizar, Germán; Villar, Claudio J.; Lombó, Felipe

    2014-01-01

    Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development. PMID:24821625

  11. Modular VO oriented Java EE service deployer

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Cepparo, Francesco; De Marco, Marco; Knapic, Cristina; Apollo, Pietro; Smareglia, Riccardo

    2014-07-01

    The International Virtual Observatory Alliance (IVOA) has produced many standards and recommendations whose aim is to generate an architecture that starts from astrophysical resources, in a general sense, and ends up in deployed consumable services (that are themselves astrophysical resources). Focusing on the Data Access Layer (DAL) system architecture, that these standards define, in the last years a web based application has been developed and maintained at INAF-OATs IA2 (Italian National institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives) to try to deploy and manage multiple VO (Virtual Observatory) services in a uniform way: VO-Dance. However a set of criticalities have arisen since when the VO-Dance idea has been produced, plus some major changes underwent and are undergoing at the IVOA DAL layer (and related standards): this urged IA2 to identify a new solution for its own service layer. Keeping on the basic ideas from VO-Dance (simple service configuration, service instantiation at call time and modularity) while switching to different software technologies (e.g. dismissing Java Reflection in favour of Enterprise Java Bean, EJB, based solution), the new solution has been sketched out and tested for feasibility. Here we present the results originating from this test study. The main constraints for this new project come from various fields. A better homogenized solution rising from IVOA DAL standards: for example the new DALI (Data Access Layer Interface) specification that acts as a common interface system for previous and oncoming access protocols. The need for a modular system where each component is based upon a single VO specification allowing services to rely on common capabilities instead of homogenizing them inside service components directly. The search for a scalable system that takes advantage from distributed systems. The constraints find answer in the adopted solutions hereafter sketched. The

  12. POWOW: A Modular, High Power Spacecraft Concept

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    2000-01-01

    A robust space infrastructure encompasses a broad range of mission needs along with an imperative to reduce costs of satellites meeting those needs. A critical commodity for science, commercial and civil satellites is power at an affordable cost. The POWOW (POwer WithOut Wires) spacecraft concept was created to provide, at one end of the scale, multi-megawatts of power yet also be composed of modules that can meet spacecraft needs in the kilowatt range. With support from the NASA-sponsored Space Solar Power Exploratory Research and Technology Program, the POWOW spacecraft concept was designed to meet Mars mission needs - while at the same time having elements applicable to a range of other missions. At Mars, the vehicle would reside in an aerosynchronous orbit and beam power to a variety of locations on the surface. It is the purpose of this paper to present the latest concept design results. The Space Power Institute along with four companies: Able Engineering, Inc., Entech, Inc., Primex Aerospace Co., and TECSTAR have produced a modular, power-rich electrically propelled spacecraft design that meets these requirements. In addition, it also meets a range of civil and commercial needs. The spacecraft design is based on multijunction Ill-V solar cells, the new Stretched Lens Aurora (SLA) module, a lightweight array design based on a multiplicity of 8 kW end-of-life subarrays and electric thrusters. The solar cells have excellent radiation resistance and efficiencies above 30%. The SLA has a concentration ratio up to 15x while maintaining an operating temperature of 80 C. The design of the 8 kW array building block will be presented and its applicability to commercial and government missions will be discussed. Electric propulsion options include Hall, MPD and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. The present baseline spacecraft design providing 900 kW using technologies expected to be

  13. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  14. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  15. Standardized Modular Power Interfaces for Future Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  16. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    ERIC Educational Resources Information Center

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  17. Generating functions for modular graphs and Burgers's equation

    NASA Astrophysics Data System (ADS)

    Artamkin, I. V.

    2005-12-01

    It is shown that the generating functions of modular graphs satisfy Burgers's equations, which enable one to obtain in a unified way the generating functions for the virtual Euler characteristic and the Poincaré polynomial of the moduli space of punctured curves \\overline M_{g,n} and for the number (with weights 1/\\vert{\\operatorname{Aut} G}\\vert) of modular graphs G of a definite type.

  18. SIEGEL GMR [DECADE PRE-Fert] -> Diffusive-MR -> Magnetic-H-Valve -> HINDENBURG-EFFECT -> FLYING-WATER Makes New H2O in New Places, TERRAFORMING via ONLY H MAX-Buoyancy on Geomorphology: H-Up; H2O-Down: Renewables-H-H2O: ONLY H IS FLYING-WATER

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2008-03-01

    ``G/CMR'' 2007 Physics Nobel/Wolf/Japan-Prizes ``a tad'' PREdated by SIEGEL[www.flickr.com; search on GMR]@:WAPD/PSEG/IAEA/ABB(1973-77)[J.Mag.Mag.Mtls.,7,312 & 334(1978); -``mysteriously'' ``not yet scanned'' by Elsevier!?; A.Mayo, Village Voice,p.40(Aug.21,1978) in (so miscalled)``super''alloys:[Ni-based & Fe-based stainless-steels: ANY/ALL!!!] generic endemic: Wigner's[JAP,17,857(1946)]-disease/Ostwald-ripening/ spinodal-decomposition/overageing-embrittlement/thermo-mechanical-INstability[Daniel Horner, www.Platts.com or LexisNexis.com; or www.animatedsoftware.com's nuc"elär sector: rhoffman@animatedsoftware.com; 760-720-7261]. Enabled Ertl-Radd-Youdelis-Herring-Alefeld-Siegel[Intl..Conf. Alt.-Energy, Bal Harbor; Hemisphere/ Springer(1980)-vol.5,page 459!; W Sci. Talent-Search(1957)] H-ion/proton-band diffusive-magnetoresistance enabled magnetic-H-valve enabled HINDENBURG-EFFECT(H-up; H2O-down) enabled FLYING-WATER, enables in new places making new water/glaciers(only possible way!) & rebaseifying now acidifying-(dying)-oceans [U.McFarling, L.A. Times,Aug.3(2006))]and TERRAFORMING [D.Biello,Sci.Am.News(Mar.9,2007); D.Rosenfeld, Science 315,1396(Mar.9,2007) (http:/earth.huji.ac.il/research.asp)]a drought-parched Earth via ONLY HYDROGEN MAXIMAL Archimedes-buoyancy's geomorphology/ gravitational-potential-energy differences: WATER!!!

  19. Hybrid green permeable pave with hexagonal modular pavement systems

    NASA Astrophysics Data System (ADS)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  20. Modular robotics overview of the `state of the art`

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Hamel, W.R.

    1996-08-01

    The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

  1. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  2. The Semantics of the Modular Architecture of Protein Structures.

    PubMed

    Hleap, Jose Sergio; Blouin, Christian

    2016-01-01

    Protein structures can be conceptualized as context-aware self-organizing systems. One of its emerging properties is a modular architecture. Such modular architecture has been identified as domains and defined as its units of evolution and function. However, this modular architecture is not exclusively defined by domains. Also, the definition of a domain is an ongoing debate. Here we propose differentiating structural, evolutionary and functional domains as distinct concepts. Defining domains or modules is confounded by diverse definitions of the concept, and also by other elements inherent to protein structures. An apparent hierarchy in protein structure architecture is one of these elements, where lower level interactions may create noise for the definition of higher levels. Diverse modularity-molding factors such as folding, function, and selection, can have a misleading effect when trying to define a given type of module. It is thus important to keep in mind this complexity when defining modularity in protein structures and interpreting the outcome modularity inference approaches.

  3. MOLSIM: A modular molecular simulation software

    PubMed Central

    Jurij, Reščič

    2015-01-01

    The modular software MOLSIM for all‐atom molecular and coarse‐grained simulations is presented with focus on the underlying concepts used. The software possesses four unique features: (1) it is an integrated software for molecular dynamic, Monte Carlo, and Brownian dynamics simulations; (2) simulated objects are constructed in a hierarchical fashion representing atoms, rigid molecules and colloids, flexible chains, hierarchical polymers, and cross‐linked networks; (3) long‐range interactions involving charges, dipoles and/or anisotropic dipole polarizabilities are handled either with the standard Ewald sum, the smooth particle mesh Ewald sum, or the reaction‐field technique; (4) statistical uncertainties are provided for all calculated observables. In addition, MOLSIM supports various statistical ensembles, and several types of simulation cells and boundary conditions are available. Intermolecular interactions comprise tabulated pairwise potentials for speed and uniformity and many‐body interactions involve anisotropic polarizabilities. Intramolecular interactions include bond, angle, and crosslink potentials. A very large set of analyses of static and dynamic properties is provided. The capability of MOLSIM can be extended by user‐providing routines controlling, for example, start conditions, intermolecular potentials, and analyses. An extensive set of case studies in the field of soft matter is presented covering colloids, polymers, and crosslinked networks. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:25994597

  4. Modular HTGR Safety Basis and Approach

    SciTech Connect

    Thomas Hicks

    2011-08-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  5. Modular multi-engine thrust control assembly

    SciTech Connect

    Sakurai, S.

    1986-02-04

    This patent describes a modular thrust control lever assembly for controling forward/reverse thrust generated by an aircraft engine. It includes an electric/electronic engine thrust control system, an inhibit mechanism for preventing inadverent or premature establishment of at least one of forward and reverse engine thrust. It consists of a (a) housing; (b) a control lever assembly pivotally mounted within the housing for fore and aft pivotal movement in a single vertical plane; (c) movable inhibit mechanism normally mounted in the path of movement of the laterally projecting roller on the control lever assembly between at least one of the maximum thrust limit positions of the assembly and the adjacent intermediate idle thrust position; (d) a electric/electronic engine thrust control system including an mechanism for reconfiguring the thrust controls of the engine upon movement of the thrust control lever assembly to the adjacent intermediate idle thrust position; (e) a mechanism responsive to the output signal for shifting the inhibit mechanism out of the path of movement of the control lever assembly.

  6. Modular nonvolatile solid state recorder (MONSSTR) update

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.; Small, Martin B.; Beams, Tom

    2001-12-01

    Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.

  7. Early Complications Following Cemented Modular Hip Hemiarthroplasty

    PubMed Central

    Sullivan, Niall P.T; Hughes, Andrew W; Halliday, Ruth L; Ward, Abigail L; Chesser, Tim J.S

    2015-01-01

    Introduction : Hemiarthroplasty is the recommended treatment for displaced, intracapsular, femoral neck fractures. This study aimed to evaluate the early complications following insertion of the JRI Furlong cemented hemiarthroplasty, a contemporary, modular, double tapered, polished prosthesis. Method : A series of 459 consecutive patients (May 2006 - June 2009) treated with a JRI hemiarthroplasty with a minimum of one-year (1-4years) follow-up were evaluated. Data collected retrospectively from clinical records and hospital databases included patient demographics, mortality, deep infection, dislocation, periprosthetic fracture, and any requirement for revision or complications related to the prosthesis. Results : Full data were available for 429 of 459 (93%), partial data for 30 (7%). Average age was 83 years (52-100), 76% were female. One-year mortality was 24%. Intraoperative fractures occurred in 17 patients (3.7%). There were two intraoperative deaths. There were nine early deep wound infections (2%). There were two revisions to total hip replacement (THR), four patients required conversion to THR and one underwent an excision arthroplasty procedure. Discussion : Early surgical outcomes for the JRI hemiarthroplasty prosthesis are equivalent or superior to other major hemiarthroplasty prostheses previously reported however, there was a high intraoperative fracture rate of 3.7%. We recommend using a stem one size smaller than the final broach in fragile, osteoporotic bone. No patients re-presented with aseptic loosening or stem failure. PMID:25685248

  8. Modular assembly and interconnects for fluidic microsystems

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carlos; Collins, Scott D.; Smith, Rosemary L.

    1998-03-01

    At this early phase in the development of microfabricated fluidic systems, only a few components or functions have been microfabricated. Some sort of interface to the remaining 'off chip' components is required. For example, a variety of analysis techniques have been demonstrated in microfabricated channels, and cells, but sample preparation is to date still mostly performed off chip, involving pipetting, tubing and titer plate interfacing. The transition from micro to macro components has been to date rather crude, consisting mostly of tubing glued into or over holes etched into silicon or glass substrates. This paper presents new, micromachinable, joining and interconnecting structures that enable the modular, plug-in assembly of fluidic components to one another, to tubing, and into a fluid channel breadboard. Micro-to-miniature interfacing elements for making connections between microchannels and standard tubing, and both horizontal and vertical channel- to-channel interconnects will be demonstrated. Excellent seals are created using photopatternable silicone O-rings that are held in compression by the connecting structure. This technology allows one to assemble a fluidic microsystem with both custom and off the shelf, micro or miniature components. The connections are all reversible, making the system design reconfigurable and components easily exchanged.

  9. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  10. Proliferation resistance of small modular reactors fuels

    SciTech Connect

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  11. Random walks in directed modular networks

    NASA Astrophysics Data System (ADS)

    Comin, Cesar H.; Viana, Mateus P.; Antiqueira, Lucas; Costa, Luciano da F.

    2014-12-01

    Because diffusion typically involves symmetric interactions, scant attention has been focused on studying asymmetric cases. However, important networked systems underlain by diffusion (e.g. cortical networks and WWW) are inherently directed. In the case of undirected diffusion, it can be shown that the steady-state probability of the random walk dynamics is fully correlated with the degree, which no longer holds for directed networks. We investigate the relationship between such probability and the inward node degree, which we call efficiency, in modular networks. Our findings show that the efficiency of a given community depends mostly on the balance between its ingoing and outgoing connections. In addition, we derive analytical expressions to show that the internal degree of the nodes does not play a crucial role in their efficiency, when considering the Erdős-Rényi and Barabási-Albert models. The results are illustrated with respect to the macaque cortical network, providing subsidies for improving transportation and communication systems.

  12. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  13. Modular reconfigurable matched spectral filter spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Engel, James R.; Gruber, Thomas; Vaillancourt, Robert; Benedict-Gill, Ryan; Mansur, David J.; Dixon, John; Potter, Kevin; Newbry, Scott

    2015-06-01

    OPTRA is currently developing a modular, reconfigurable matched spectral filter (RMSF) spectrometer for the monitoring of greenhouse gases. The heart of this spectrometer will be the RMSF core, which is a dispersive spectrometer that images the sample spectrum from 2000 - 3333 cm-1 onto a digital micro-mirror device (DMD) such that different columns correspond to different wavebands. By applying masks to this DMD, a matched spectral filter can be applied in hardware. The core can then be paired with different fore-optics or detector modules to achieve active in situ or passive remote detection of the chemicals of interest. This results in a highly flexible system that can address a wide variety of chemicals by updating the DMD masks and a wide variety of applications by swapping out fore-optic and detector modules. In either configuration, the signal on the detector is effectively a dot-product between the applied mask and the sample spectrum that can be used to make detection and quantification determinations. Using this approach significantly reduces the required data bandwidth of the sensor without reducing the information content, therefore making it ideal for remote, unattended systems. This paper will focus on the design of the RMSF core.

  14. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  15. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  16. Modular on-board adaptive imaging

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Williams, D. S.

    1978-01-01

    Feature extraction involves the transformation of a raw video image to a more compact representation of the scene in which relevant information about objects of interest is retained. The task of the low-level processor is to extract object outlines and pass the data to the high-level process in a format that facilitates pattern recognition tasks. Due to the immense computational load caused by processing a 256x256 image, even a fast minicomputer requires a few seconds to complete this low-level processing. It is, therefore, necessary to consider hardware implementation of these low-level functions to achieve real-time processing speeds. The considered project had the objective to implement a system in which the continuous feature extraction process is not affected by the dynamic changes in the scene, varying lighting conditions, or object motion relative to the cameras. Due to the high bandwidth (3.5 MHz) and serial nature of the TV data, a pipeline processing scheme was adopted as the overall architecture of this system. Modularity in the system is achieved by designing circuits that are generic within the overall system.

  17. Modular strapdown guidance unit with embedded microprocessors

    NASA Astrophysics Data System (ADS)

    Gilmore, J. P.

    1980-02-01

    The Low-Cost Inertial Guidance System (LCIGS) is a modular strapdown implementation of attitude (gyro) and velocity (accelerometer) axes which permits the interchangeable use of different manufacturer's instruments without affecting the system's electronic or mechanical interfaces or processing software. This design flexibility is made possible by the use of microprocessors for processing and control. The microprocessors are embedded in each module and five are used: one per accelerometer triad, one each per gyro module, and one in the service module. The processors effect on-line digital torquing control of the gyros, active instrument error model compensation, including modeling for temperature sensitivity effects, temperature control, self-testing, etc. Adaptation of processing and calibration algorithms to accommodate for instrument changes or sensed environmental variations is achieved through the use of an alterable read-only data base that may be updated by the LCIGS support equipment as required at calibrations or upon an instrument replacement. This data base is accessed by the microprocessors and used to compute coefficient corrections for the processing algorithms. The system architecture is presented and the microprocessor software partitioning and functions are described.

  18. Modular pump limiter systems for large tokamaks

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Klepper, C. C.; Mioduszewski, P. K.; McGrath, R. T.

    1987-09-01

    Long-pulse (greater than 10-s) operation of large tokamaks with high-power (greater than 10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technolgy is discussed. The relationship between modules is considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented.

  19. Modular pump limiter systems for large tokamaks

    SciTech Connect

    Uckan, T.; Klepper, C.C.; Mioduszewski, P.K.; McGrath, R.T.

    1987-09-01

    Long-pulse (>10-s) operation of large tokamaks with high-power (>10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technology is discussed. The relationship between modules are considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented. 21 refs., 12 figs.

  20. Modular Countermine Payload for Small Robots

    SciTech Connect

    Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  1. Modular countermine payload for small robots

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  2. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  3. A modular approach for item response theory modeling with the R package flirt.

    PubMed

    Jeon, Minjeong; Rijmen, Frank

    2016-06-01

    The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.

  4. Modular Power Converters for PV Applications

    SciTech Connect

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  5. Modular control of pointing beyond arm's length.

    PubMed

    Berret, Bastien; Bonnetblanc, François; Papaxanthis, Charalambos; Pozzo, Thierry

    2009-01-01

    Hand reaching and bipedal equilibrium are two important functions of the human motor behavior. However, how the brain plans goal-oriented actions combining target reaching with equilibrium regulation is not yet clearly understood. An important question is whether postural control and reaching are integrated in one single module or controlled separately. Here, we show that postural control and reaching motor commands are processed by means of a modular and flexible organization. Principal component and correlation analyses between pairs of angles were used to extract global and local coupling during a whole-body pointing beyond arm's length. A low-dimensional organization of the redundant kinematic chain allowing simultaneous target reaching and regulation of the center of mass (CoM) displacement in extrinsic space emerged from the first analysis. In follow-up experiments, both the CoM and finger trajectories were constrained by asking participants to reach from a reduced base of support with or without knee flexion, or by moving the endpoint along a predefined trajectory (straight or semicircular trajectories). Whereas joint covaried during free conditions and under equilibrium restrictions, it was decomposed in two task-dependent and task-independent modules, corresponding to a dissociation of arm versus legs, trunk, and head coordination, respectively, under imposed finger path conditions. A numerical simulation supported the idea that both postural and focal subtasks are basically integrated into the same motor command and that the CNS is able to combine or to separate the movement into autonomous functional synergies according to the task requirements.

  6. Design of a reconfigurable modular manipulator system

    NASA Technical Reports Server (NTRS)

    Schmitz, D.; Kanade, T.

    1987-01-01

    Using manipulators with a fixed configuration for specific tasks is appropriate when the task requirements are known beforehand. However, in less predictable situations, such as an outdoor construction site or aboard a space station, a manipulator system requires a wide range of capabilities, probably beyond the limitations of a single, fixed-configuration manipulator. To fulfill this need, researchers have been working on a Reconfigurable Modular Manipulator System (RMMS). Researchers have designed and are constructing a prototype RMMS. The prototype currently consists of two joint modules and four link modules. The joints utilize a conventional harmonic drive and torque motor actuator, with a small servo amplifier included in the assembly. A brushless resolver is used to sense the joint position and velocity. For coupling the modules together, a standard electrical connector and V-band clamps for mechanical connection are used, although more sophisticated designs are under way for future versions. The joint design yields an output torque to 50 ft-lbf at joint speeds up to 1 radian/second. The resolver and associated electronics have resolutions of 0.0001 radians, and absolute accuracies of plus or minus 0.001 radians. Manipulators configured from these prototype modules will have maximum reaches in the 0.5 to 2 meter range. The real-time RMMS controller consists of a Motorola 68020 single-board computer which will perform real time servo control and path planning of the manipulator. This single board computer communicates via shared memory with a SUN3 workstation, which serves as a software development system and robot programming environment. Researchers have designed a bus communication network to provide multiplexed communication between the joint modules and the computer controller. The bus supports identification of modules, sensing of joint states, and commands to the joint actuator. This network has sufficient bandwidth to allow servo sampling rates in

  7. Evolutionary Accessibility of Modular Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Schmiegelt, B.; Krug, J.

    2013-10-01

    A fitness landscape is a mapping from the space of genetic sequences, which is modeled here as a binary hypercube of dimension L, to the real numbers. We consider random models of fitness landscapes, where fitness values are assigned according to some probabilistic rule, and study the statistical properties of pathways to the global fitness maximum along which fitness increases monotonically. Such paths are important for evolution because they are the only ones that are accessible to an adapting population when mutations occur at a low rate. The focus of this work is on the block model introduced by A.S. Perelson and C.A. Macken (Proc. Natl. Acad. Sci. USA 92:9657, 1995) where the genome is decomposed into disjoint sets of loci (`modules') that contribute independently to fitness, and fitness values within blocks are assigned at random. We show that the number of accessible paths can be written as a product of the path numbers within the blocks, which provides a detailed analytic description of the path statistics. The block model can be viewed as a special case of Kauffman's NK-model, and we compare the analytic results to simulations of the NK-model with different genetic architectures. We find that the mean number of accessible paths in the different versions of the model are quite similar, but the distribution of the path number is qualitatively different in the block model due to its multiplicative structure. A similar statement applies to the number of local fitness maxima in the NK-models, which has been studied extensively in previous works. The overall evolutionary accessibility of the landscape, as quantified by the probability to find at least one accessible path to the global maximum, is dramatically lowered by the modular structure.

  8. Innovative safety features of the modular HTGR

    SciTech Connect

    Silady, F.A.; Simon, W.A.

    1992-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

  9. Innovative safety features of the modular HTGR

    SciTech Connect

    Silady, F.A.; Simon, W.A.

    1992-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

  10. A modular neural model of motor synergies.

    PubMed

    Byadarhaly, Kiran V; Perdoor, Mithun C; Minai, Ali A

    2012-08-01

    Animals such as reptiles, amphibians and mammals (including humans) are mechanically extremely complex. It has been estimated that the human body has between 500 and 1400 degrees of freedom! And yet, these animals can generate an infinite variety of very precise, complicated and goal-directed movements in continuously changing and uncertain environments. Understanding how this is achieved is of great interest to both biologists and engineers. There are essentially two questions that must be addressed: (1) What type of control strategy is used to handle the large number of degrees of freedom involved? and (2) How is this strategy instantiated in the substrate of neural and musculoskeletal elements comprising the animal bodies? The first question has been studied intensively for several decades, providing strong indications that, rather than using standard feedback control based on continuous tracking of desired trajectories, animals' movements emerge from the controlled combination of pre-configured movement primitives or synergies. These synergies represent coordinated activity patterns over groups of muscles, and can be triggered as a whole with controlled amplitude and temporal offset. Complex movements can thus be constructed from the appropriate combination of a relatively small number of synergies, greatly simplifying the control problem. Although experimental studies on animal movements have confirmed the existence of motor synergies, and their utility has been demonstrated in the control of fairly complex robots, their neural basis remains poorly understood. In this paper, we introduce a simple but plausible and general neural model for motor synergies based on the principle that these functional modules reflect the structural modularity of the underlying physical system. Using this model, we show that a small set of synergies selected through a redundancy-reduction principle can generate a rich motor repertoire in a model two-jointed arm system. We

  11. Modular composition of gene transcription networks.

    PubMed

    Gyorgy, Andras; Del Vecchio, Domitilla

    2014-03-01

    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  12. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel

  13. The evolvability of growth form in a clonal seaweed.

    PubMed

    Monro, Keyne; Poore, Alistair G B

    2009-12-01

    Although modular construction is considered the key to adaptive growth or growth-form plasticity in sessile taxa (e.g., plants, seaweeds and colonial invertebrates), the serial expression of genes in morphogenesis may compromise its evolutionary potential if growth forms emerge as integrated wholes from module iteration. To explore the evolvability of growth form in the red seaweed, Asparagopsis armata, we estimated genetic variances, covariances, and cross-environment correlations for principal components of growth-form variation in contrasting light environments. We compared variance-covariance matrices across environments to test environmental effects on heritable variation and examined the potential for evolutionary change in the direction of plastic responses to light. Our results suggest that growth form in Asparagopsis may constitute only a single genetic entity whose plasticity affords only limited evolutionary potential. We argue that morphological integration arising from modular construction may constrain the evolvability of growth form in Asparagopsis, emphasizing the critical distinction between genetic and morphological modularity in this and other modular taxa.

  14. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    SciTech Connect

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  15. Modular titanium alloy neck failure in total hip replacement: analysis of a relapse case.

    PubMed

    Ceretti, Marco; Falez, Francesco

    2016-01-01

    Modular neck hip prosthesis born in the 1990 with the aim of allowing the surgeon to modify CCD angle, offset and femoral anteversion intra-operatively restoring patient's original biomechanics. In order to achieve the best biomechanics of the reconstructed hip, preoperative planning is essential. In the last few years modularity has been questioned and an argument made for the return to mono block stems due to events of breakage or disconnection of modular components. Fretting or crevice corrosion may lead to failure of such modular device due to the contamination inside the modular coupling or to high loads. We present a case of repetitive modular femoral neck prosthesis fracture. PMID:27163109

  16. Drosophila wing modularity revisited through a quantitative genetic approach.

    PubMed

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing.

  17. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  18. Drosophila wing modularity revisited through a quantitative genetic approach.

    PubMed

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. PMID:27272402

  19. Targeting cancer cells by novel engineered modular transporters.

    PubMed

    Gilyazova, Dinara G; Rosenkranz, Andrey A; Gulak, Pavel V; Lunin, Vladimir G; Sergienko, Olga V; Khramtsov, Yuri V; Timofeyev, Kirill N; Grin, Mikhail A; Mironov, Andrey F; Rubin, Andrey B; Georgiev, Georgii P; Sobolev, Alexander S

    2006-11-01

    A major problem in the treatment of cancer is the specific targeting of drugs to these abnormal cells. Ideally, such a drug should act over short distances to minimize damage to healthy cells and target subcellular compartments that have the highest sensitivity to the drug. We describe the novel approach of using modular recombinant transporters to target photosensitizers to the nucleus, where their action is most pronounced, of cancer cells overexpressing ErbB1 receptors. We have produced a new generation of the transporters consisting of (a) epidermal growth factor as the internalizable ligand module to ErbB1 receptors, (b) the optimized nuclear localization sequence of SV40 large T-antigen, (c) a translocation domain of diphtheria toxin as an endosomolytic module, and (d) the Escherichia coli hemoglobin-like protein HMP as a carrier module. The modules retained their functions within the transporter chimera: they showed high-affinity interactions with ErbB1 receptors and alpha/beta-importin dimers and formed holes in lipid bilayers at endosomal pH. A photosensitizer conjugated with the transporter produced singlet oxygen and (*)OH radicals similar to the free photosensitizer. Photosensitizers-transporter conjugates have >3,000 times greater efficacy than free photosensitizers for target cells and were not photocytotoxic at these concentrations for cells expressing a few ErbB1 receptors per cell, in contrast to free photosensitizers. The different modules of the transporters, which are highly expressed and easily purified to retain full activity of each of the modules, are interchangeable, meaning that they can be tailored for particular applications.

  20. A complete algorithm for synthesizing modular fixtures for polygonal parts

    SciTech Connect

    Brost, R.C.; Goldberg, K.Y.

    1993-11-01

    Commercially-available nuclear fixturing systems typically include a square lattice of tapped and bushed holes with precision locating and clamping elements that can be rigidly attached to the lattice using dowel pins or expanding mandrels. Currently, human expertise is required to synthesize a suitable arrangements of these elements to hold a given part. Besides being time consuming, if the set of alternatives is not systematically explored, the designer may fail to find an acceptable fixture or may settle upon a suboptimal fixture. We consider a class of modular fixtures that prevent a part from translating or rotting in the plane using four point contacts on the part`s boundary. These fixtures are based on three round locators, each centered on a lattice point, and one translating clamp. We present an algorithm that accepts a polygonal part shape as input and synthesizes the set of all fixture designs that achieve form closure for the given part. The algorithm also allows the user to specify geometric access constraints on fixtures. If the part has n edges and its maximal diameter is d lattice units, the asymptotic running time of the algorithm is O(n{sup 5}d{sup 5}). We have implemented the algorithm and present example fixtures that it has synthesized. This implementation includes a metric to rank fixtures based on their ability to resist applied forces. We believe this is the first fixture synthesize algorithm that is complete in the sense that it is guaranteed to find an admissible fixture if one exists. Furthermore, the algorithm is guaranteed to find the optimal fixture, relative to any well-defined quality metric.

  1. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  2. A modular framework for biomedical concept recognition

    PubMed Central

    2013-01-01

    Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88

  3. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  4. Modular Homogeneous Chromophore-Catalyst Assemblies.

    PubMed

    Mulfort, Karen L; Utschig, Lisa M

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule-nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of

  5. A modular and hybrid connectionist system for speaker identification.

    PubMed

    Bennani, Y

    1995-07-01

    This paper presents and evaluates a modular/hybrid connectionist system for speaker identification. Modularity has emerged as a powerful technique for reducing the complexity of connectionist systems, and allowing a priori knowledge to be incorporated into their design. Text-independent speaker identification is an inherently complex task where the amount of training data is often limited. It thus provides an ideal domain to test the validity of the modular/hybrid connectionist approach. To achieve such identification, we develop, in this paper, an architecture based upon the cooperation of several connectionist modules, and a Hidden Markov Model module. When tested on a population of 102 speakers extracted from the DARPA-TIMIT database, perfect identification was obtained.

  6. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering.

  7. Elliptic CY3folds and non-perturbative modular transformation

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Shabbir, Khurram

    2016-03-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.

  8. Stratway: A Modular Approach to Strategic Conflict Resolution

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Butler, Ricky W.; Maddalon, Jeffrey M.

    2011-01-01

    In this paper we introduce Stratway, a modular approach to finding long-term strategic resolutions to conflicts between aircraft. The modular approach provides both advantages and disadvantages. Our primary concern is to investigate the implications on the verification of safety-critical properties of a strategic resolution algorithm. By partitioning the problem into verifiable modules much stronger verification claims can be established. Since strategic resolution involves searching for solutions over an enormous state space, Stratway, like most similar algorithms, searches these spaces by applying heuristics, which present especially difficult verification challenges. An advantage of a modular approach is that it makes a clear distinction between the resolution function and the trajectory generation function. This allows the resolution computation to be independent of any particular vehicle. The Stratway algorithm was developed in both Java and C++ and is available through a open source license. Additionally there is a visualization application that is helpful when analyzing and quickly creating conflict scenarios.

  9. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  10. Modular hybrid total hip arthroplasty. Experimental study in dogs

    PubMed Central

    2011-01-01

    Background This prospective experimental study evaluated the surgical procedure and results of modular hybrid total hip arthroplasty in dogs. Methods Ten skeletally mature healthy mongrel dogs with weights varying between 19 and 27 kg were used. Cemented modular femoral stems and uncemented porous-coated acetabular cups were employed. Clinical and radiographic evaluations were performed before surgery and at 30, 60, 90, 120, 180 and 360 days post-operation. Results Excellent weight bearing was noticed in the operated limb in seven dogs. Dislocation followed by loosening of the prosthesis was noticed in two dogs, which were therefore properly treated with a femoral head osteotomy. Femoral fracture occurred in one dog, which was promptly treated with full implant removal and femoral osteosynthesis. Conclusions The canine modular hybrid total hip arthroplasty provided excellent functionality of the operated limb. PMID:21736758

  11. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    SciTech Connect

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  12. Broadband and ultra-broadband modular half-wave plates

    NASA Astrophysics Data System (ADS)

    Dimova, Emiliya; Huang, Wei; Popkirov, George; Rangelov, Andon; Kyoseva, Elica

    2016-05-01

    We experimentally demonstrate broadband and ultra-broadband spectral bandwidth modular half-wave plates. Both modular devices comprise an array of rotated single half-wave plates (HWPs), whereby for broadband and ultra-broadband performance we use standard and commercial achromatic HWPs, respectively. The bandwidth of the modular HWPs depends on the number N of individual HWPs used and in this paper we experimentally investigate this for N = { 3 , 5 , 7 , 9 }. The elements in the arrays are rotated at specific angles with respect to their fast-polarization axes, independent of the nature of the birefringent material. We find the rotation angles using an analogy to the technique of composite pulses, which is widely used for control in nuclear magnetic resonance.

  13. MPP: A modular library of models of nuclear reactor components

    SciTech Connect

    Abdalla, M.A.; Guimaraes, L.; Ugolini, D. ); March-Leuba, C.; Nypaver, D.J. ); Ford, C.E. )

    1992-01-01

    This paper presents the Modular Power Plant (MPP) library and its application to simulate the Advanced Liquid Metal Reactor. The MPP library is being developed as part of the Advanced Controls Program of the Oak Ridge National Laboratory. The general purpose of the library is to provide a set of modular models of components needed to simulate nuclear power plants. To give the MPP models modularity characteristics, each model is developed as a stand-alone system. The MPP contains 28 models coded in either the Advanced Continuous Simulation Language (ACSL), or the Generalized Object-Oriented Simulation Environment (GOOSE). The MPP development is parallel to the GOOSE development, and we are currently translating the MPP components from ACSL to GOOSE.

  14. MPP: A modular library of models of nuclear reactor components

    SciTech Connect

    Abdalla, M.A.; Guimaraes, L.; Ugolini, D.; March-Leuba, C.; Nypaver, D.J.; Ford, C.E.

    1992-05-01

    This paper presents the Modular Power Plant (MPP) library and its application to simulate the Advanced Liquid Metal Reactor. The MPP library is being developed as part of the Advanced Controls Program of the Oak Ridge National Laboratory. The general purpose of the library is to provide a set of modular models of components needed to simulate nuclear power plants. To give the MPP models modularity characteristics, each model is developed as a stand-alone system. The MPP contains 28 models coded in either the Advanced Continuous Simulation Language (ACSL), or the Generalized Object-Oriented Simulation Environment (GOOSE). The MPP development is parallel to the GOOSE development, and we are currently translating the MPP components from ACSL to GOOSE.

  15. Fast and accurate determination of modularity and its effect size

    NASA Astrophysics Data System (ADS)

    Treviño, Santiago, III; Nyberg, Amy; Del Genio, Charo I.; Bassler, Kevin E.

    2015-02-01

    We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively study the modularity distribution in ensembles of Erdős-Rényi networks, producing theoretical predictions for means and variances inclusive of finite-size corrections. Our work provides a way to accurately estimate the effect size of modularity, providing a z-score measure of it and enabling a more informative comparison of networks with different numbers of nodes and links.

  16. Spontaneous modular femoral head dissociation complicating total hip arthroplasty.

    PubMed

    Talmo, Carl T; Sharp, Kinzie G; Malinowska, Magdalena; Bono, James V; Ward, Daniel M; LaReau, Justin

    2014-06-01

    Modular femoral heads have been used successfully for many years in total hip arthroplasty. Few complications have been reported for the modular Morse taper connection between the femoral head and trunnion of the stem in metal-on-polyethylene bearings. Although there has always been some concern over the potential for fretting, corrosion, and generation of particulate debris at the modular junction, this was not considered a significant clinical problem. More recently, concern has increased because fretting and corrosive debris have resulted in rare cases of pain, adverse local tissue reaction, pseudotumor, and osteolysis. Larger femoral heads, which have gained popularity in total hip arthroplasty, are suspected to increase the potential for local and systemic complications of fretting, corrosion, and generation of metal ions because of greater torque at the modular junction. A less common complication is dissociation of the modular femoral heads. Morse taper dissociation has been reported in the literature, mainly in association with a traumatic event, such as closed reduction of a dislocation or fatigue fracture of the femoral neck of a prosthesis. This report describes 3 cases of spontaneous dissociation of the modular prosthetic femoral head from the trunnion of the same tapered titanium stem because of fretting and wear of the Morse taper in a metal-on-polyethylene bearing. Continued clinical and scientific research on Morse taper junctions is warranted to identify and prioritize implant and surgical factors that lead to this and other types of trunnion failure to minimize complications associated with Morse taper junctions as hip implants and surgical techniques continue to evolve.

  17. Phylogenetic analysis of modularity in protein interaction networks

    PubMed Central

    Erten, Sinan; Li, Xin; Bebek, Gurkan; Li, Jing; Koyutürk, Mehmet

    2009-01-01

    Background In systems biology, comparative analyses of molecular interactions across diverse species indicate that conservation and divergence of networks can be used to understand functional evolution from a systems perspective. A key characteristic of these networks is their modularity, which contributes significantly to their robustness, as well as adaptability. Consequently, analysis of modular network structures from a phylogenetic perspective may be useful in understanding the emergence, conservation, and diversification of functional modularity. Results In this paper, we propose a phylogenetic framework for analyzing network modules, with applications that extend well beyond network-based phylogeny reconstruction. Our approach is based on identification of modular network components from each network separately, followed by projection of these modules onto the networks of other species to compare different networks. Subsequently, we use the conservation of various modules in each network to assess the similarity between different networks. Compared to traditional methods that rely on topological comparisons, our approach has key advantages in (i) avoiding intractable graph comparison problems in comparative network analysis, (ii) accounting for noise and missing data through flexible treatment of network conservation, and (iii) providing insights on the evolution of biological systems through investigation of the evolutionary trajectories of network modules. We test our method, MOPHY, on synthetic data generated by simulation of network evolution, as well as existing protein-protein interaction data for seven diverse species. Comprehensive experimental results show that MOPHY is promising in reconstructing evolutionary histories of extant networks based on conservation of modularity, it is highly robust to noise, and outperforms existing methods that quantify network similarity in terms of conservation of network topology. Conclusion These results establish

  18. Modular functional organisation of the axial locomotor system in salamanders.

    PubMed

    Cabelguen, Jean-Marie; Charrier, Vanessa; Mathou, Alexia

    2014-02-01

    Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.

  19. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  20. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  1. Spread of infectious diseases in directed and modular metapopulation networks.

    PubMed

    Lentz, Hartmut H K; Selhorst, Thomas; Sokolov, Igor M

    2012-06-01

    We consider epidemics in metapopulations on different network topologies. Recent work on epidemics on networks has focused on epidemics of humans. In this work we present a model for epidemics on directed networks, which are found, for example, in the livestock trade. We show that the direction of edges and the modular structure of networks have an impact on the outbreak size and the time of the outbreak peak. In some circumstances, the outbreak size in directed networks can even be larger than in undirected systems. The results presented here could be useful for decision-making processes in directed modular systems. PMID:23005166

  2. Modularity, quaternion-Kähler spaces, and mirror symmetry

    SciTech Connect

    Alexandrov, Sergei; Banerjee, Sibasish

    2013-10-15

    We provide an explicit twistorial construction of quaternion-Kähler manifolds obtained by deformation of c-map spaces and carrying an isometric action of the modular group SL(2,Z). The deformation is not assumed to preserve any continuous isometry and therefore this construction presents a general framework for describing NS5-brane instanton effects in string compactifications with N= 2 supersymmetry. In this context the modular invariant parametrization of twistor lines found in this work yields the complete non-perturbative mirror map between type IIA and type IIB physical fields.

  3. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  4. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  5. KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS

    SciTech Connect

    Salerno, R. J.

    1994-06-01

    Decontamination and Dismantling (D&D) activities within the U.S. Department of Energy (DOE) require a long reach manipulator with a large load capacity. Variable Geometry Trusses (VGTs) are a unique class of mechanical structures which allow the advantages of truss structures for large scale applications to be applied to large robotic manipulators. Individual VGT units may be assembled to create a modular, long-reach, truss-type manipulator. Each module of such a manipulator system is either a static truss section or one of several possible VGT geometries. While many potential applications exist for this technology, the present work is largely motivated by the need for generic robotic systems for remote manipulation. A manipulator system based on VGT modules provides several advantages. The reconfigurable nature of the manipulator system allows it to be adapted on site to unforeseen conditions. The kinematic redundancy of the manipulator enables it to work effectively even in a highly obstructed workspace. The parallel structure of the truss modules enables the manipulator to be withdrawn in the event of a structural failure. Finally, the open framework of the modules provides a clear, protected passageway for control and power cabling, waste conveyance, or other services required at the end effector. As is implied in a truss structure, all primary members of a VGT are ideally loaded in pure tension or compression. This results in an extremely stiff and strong manipulator system with minimal overall weight. Careful design of the joints of a VGT is very important to the overall stiffness and accuracy of the structure, as several links (as many as six) are joined together at each joint. The greatest disadvantage to this approach to manipulator design has traditionally been that the kinematics of VGT structures are complex and poorly understood. This report specifically addresses the kinematics of several possible geometries for the individual VGT units. Equations and

  6. Synthetic biology design to display an 18 kDa rotavirus large antigen on a modular virus-like particle.

    PubMed

    Lua, Linda H L; Fan, Yuanyuan; Chang, Cindy; Connors, Natalie K; Middelberg, Anton P J

    2015-11-01

    Virus-like particles are an established class of commercial vaccine possessing excellent function and proven stability. Exciting developments made possible by modern tools of synthetic biology has stimulated emergence of modular VLPs, whereby parts of one pathogen are by design integrated into a less harmful VLP which has preferential physical and manufacturing character. This strategy allows the immunologically protective parts of a pathogen to be displayed on the most-suitable VLP. However, the field of modular VLP design is immature, and robust design principles are yet to emerge, particularly for larger antigenic structures. Here we use a combination of molecular dynamic simulation and experiment to reveal two key design principles for VLPs. First, the linkers connecting the integrated antigenic module with the VLP-forming protein must be well designed to ensure structural separation and independence. Second, the number of antigenic domains on the VLP surface must be sufficiently below the maximum such that a "steric barrier" to VLP formation cannot exist. This second principle leads to designs whereby co-expression of modular protein with unmodified VLP-forming protein can titrate down the amount of antigen on the surface of the VLP, to the point where assembly can proceed. In this work we elucidate these principles by displaying the 18.1 kDa VP8* domain from rotavirus on the murine polyomavirus VLP, and show functional presentation of the antigenic structure.

  7. Understanding Modular Learning--Developing a Strategic Plan to Embrace Change

    ERIC Educational Resources Information Center

    Friestad-Tate, Jill; Schubert, Carol; McCoy, Craig

    2014-01-01

    The purpose of this descriptive paper was to explore and synthesize literature related to understanding modular learning and how it can be implemented effectively so faculty members embrace its use. An in-depth review of literature addressed topics including, Educational Theories supporting modular learning, the development of modular learning,…

  8. A Modular Approach for Teaching Partial Discharge Phenomenon through Experiment

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2011-01-01

    Partial discharge (PD) monitoring is an effective predictive maintenance tool for electrical power equipment. As a result, an understanding of the theory related to PD and the associated measurement techniques is now necessary knowledge for power engineers in their professional life. This paper presents a modular course on PD phenomenon in which…

  9. Competency Based Modular Experiments in Polymer Science and Technology.

    ERIC Educational Resources Information Center

    Pearce, Eli M; And Others

    1980-01-01

    Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)

  10. Acquisition by Processing: A Modular Perspective on Language Development

    ERIC Educational Resources Information Center

    Truscott, John; Smith, Mike Sharwood

    2004-01-01

    The paper offers a model of language development, first and second, within a processing perspective. We first sketch a modular view of language, in which competence is embodied in the processing mechanisms. We then propose a novel approach to language acquisition (Acquisition by Processing Theory, or APT), in which development of the module occurs…

  11. Does nasal echolocation influence the modularity of the mammal skull?

    PubMed

    Santana, S E; Lofgren, S E

    2013-11-01

    In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the 'nasal dome', in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals.

  12. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up

    PubMed Central

    Nichol, Jason W.; Khademhosseini, Ali

    2009-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of “bottom-up” approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units. PMID:20179781

  13. A new modular optical system for large format scene projection

    NASA Astrophysics Data System (ADS)

    Alexay, Christopher C.; Palmer, Troy A.

    2006-05-01

    This work will present a new approach to large format projection optics suitable for HWIL testing. Aspects of the design's modular approach and its ability to accommodate widely varying spectral ranges, focal lengths, zoom capabilities and the ability to deliver multi-spectral scene data are presented.

  14. An Assessment of a Senior High School Modular Scheduling Program.

    ERIC Educational Resources Information Center

    Hicken, James E.

    Modular scheduling was introduced in the academic year 1967-68 at North Miami Senior High School. After a year's operation under the Stanford School Scheduling System, an "at home" evaluation of the new program was made. Student grades on a cross-sectional basis did not suffer, but rather showed a slight improvement. Moderate improvement was also…

  15. Modular genetic regulatory networks increase organization during pattern formation.

    PubMed

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  16. Fracture of the Modular Neck in Total Hip Arthroplasty

    PubMed Central

    Hernandez, A.; Gargallo-Margarit, A.; Barro, V.; Gallardo-Calero, I.; Sallent, A.

    2015-01-01

    Modularity of the components in total hip arthroplasty has had an increase in popularity in the last decades. We present the case of a 53-year-old man with a history of avascular necrosis of the femoral head due to a hypophyseal adenoma. A total hip modular arthroplasty was implanted. Three and a half years after the surgery the patient attended the emergency room due to acute left hip pain with no prior traumatism. Radiological examination confirmed a fracture of the modular neck. A revision surgery was performed finding an important pseudotumoral well-organized periprosthetic tissue reaction. Through an extended trochanteric osteotomy the femoral component was removed, and a straight-stem revision prosthesis implanted. There are several potential advantages when using modularity in total hip arthroplasty that surgeons may benefit from, but complications have arisen and must be addressed. Various circumstances such as large femoral head with a long varus neck, corrosion, patient's BMI, and activity level may participate in creating the necessary environment for fatigue failure of the implant. PMID:26266069

  17. Multimission Modular Spacecraft (MMS). A serviceable design spacecraft

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward

    1987-01-01

    A standard spacecraft bus compatible with NASA launch vehicles, including STS, for four reference missions (Sun, Earth, stellar pointing from low Earth orbit, Earth pointing from geostationary orbit) was designed. The modular serviceable design stems from its use of passive acme screws for module attachment and scoop proof electrical connectors for electrical interfaces. A flight support system includes command and telemetry links.

  18. Modular Open-Source Software for Item Factor Analysis

    ERIC Educational Resources Information Center

    Pritikin, Joshua N.; Hunter, Micheal D.; Boker, Steven M.

    2015-01-01

    This article introduces an item factor analysis (IFA) module for "OpenMx," a free, open-source, and modular statistical modeling package that runs within the R programming environment on GNU/Linux, Mac OS X, and Microsoft Windows. The IFA module offers a novel model specification language that is well suited to programmatic generation…

  19. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  20. Modular Cognitive-Behavioral Therapy for Body Dysmorphic Disorder

    ERIC Educational Resources Information Center

    Wilhelm, Sabine; Phillips, Katharine A.; Fama, Jeanne M.; Greenberg, Jennifer L.; Steketee, Gail

    2011-01-01

    This study pilot tested a newly developed modular cognitive-behavioral therapy (CBT) treatment manual for body dysmorphic disorder (BDD). We tested feasibility, acceptability, and treatment outcome in a sample of 12 adults with primary BDD. Treatment was delivered in weekly individual sessions over 18 or 22 weeks. Standardized clinician ratings…

  1. Modular asymmetric parachute for wind-tunnel testing

    SciTech Connect

    Klimas, P.C.; Widdows, H.E.; Croll, R.H.

    1981-01-01

    The construction of a series of asymmetrical wind tunnel model parachutes designed to a modular concept is described. The static force, inflation force, and dynamic force and motion time history wind tunnel testing of up to 123 different configurations is discussed.

  2. Modularity and emergence: biology's challenge in understanding life.

    PubMed

    Lüttge, U

    2012-11-01

    This essay juxtaposes modularity and emergence in the consideration of biological systems at various scalar levels of spatio-temporal organisation. It is noted that reductionism, specialisation and modularity are basic prerequisites for understanding life. It is realised that increased progress of scientific biology in elucidating mechanisms at the level of modular components supports the accusation that the more it advances in materialistic description of details, the more it diverts from understanding the innate properties of life. It is clear that modularity, by taking the whole as the sum of its parts, is insufficient for understanding living systems. At the same time, however, there is emergence, as advocated by Robert Laughlin. Emergence after the integration of modules leads to completely new properties of individual organisms as unique unitary entities, and also of systems of organisms with synergistic and antagonistic interactions of the integrated species. The discussion is predominantly based on examples from plant biology. At hierarchically higher scalar levels emergent biological systems are networks integrating species, biotopes, ecosystems and the entire biosphere of Earth, also named Gaia by James Lovelock, in a natural scientific respect. While investigating modules remains essential, biology as a nature science needs to merge and integrate such information to be able to unfold emergence. Through efforts towards visualising and understanding emergent diversity and complexity, the research discipline of biology will provide invaluable contributions to understanding life, and thus refute the accusation that it diverts from embracing the innate properties of life. PMID:23016697

  3. Sensitivity Studies of Air Ingress Acidents in Modular HTGRs

    SciTech Connect

    Ball, Sydney J; Richards, Matt; Shepelev, Sergey

    2008-01-01

    Postulated air ingress accidents, while of very low probability in a modular high-temperature gas-cooled reactor (HTGR), are of considerable interest to the plant designer, operator, and regulator because of the possibility that the core could sustain significant damage under some circumstances. Sensitivity analyses are described that cover a wide spectrum of conditions affecting outcomes of the postulated accident sequences, for both prismatic and pebble-bed core designs. The major factors affecting potential core damage are the size and location of primary system leaks, flow path resistances, the core temperature distribution, and the long-term availability of oxygen in the incoming gas from a confinement building. Typically, all the incoming oxygen entering the core area is consumed within the reactor vessel, so it is more a matter of where, not whether, oxidation occurs. An air ingress model with example scenarios and means for mitigating damage are described. Representative designs of modular HTGRs included here are a 400-MW(th) pebble-bed reactor (PBR), and a 600-MW(th) prismatic-core modular reactor (PMR) design such as the gas-turbine modular helium reactor (GT-MHR).

  4. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOEpatents

    Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  5. Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue.

    PubMed

    Lee, Benjamin W; Liu, Bohao; Pluchinsky, Adam; Kim, Nathan; Eng, George; Vunjak-Novakovic, Gordana

    2016-04-20

    This modular assembly approach to microfabricate functional cardiovascular tissue composites enables quantitative assessment of the effects of microarchitecture on cellular function. Cardiac and endothelial modules are micromolded separately, designed to direct cardiomyocyte alignment and anisotropic contraction or vascular network formation. Assembled cardiovascular tissue composites contract synchronously, facilitating the use of this tissue-engineering platform to study structure-function relationships in the heart.

  6. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  7. Compact and modular multicolour fluorescence detector for droplet microfluidics.

    PubMed

    Cole, Russell H; de Lange, Niek; Gartner, Zev J; Abate, Adam R

    2015-07-01

    Multicolour fluorescence detection is often necessary in droplet microfluidics, but typical detection systems are complex, bulky, and expensive. We present a compact and modular detection system capable of sub-nanomolar sensitivity utilizing an optical fibre array to encode spectral information recorded by a single photodetector.

  8. Extinctions in Heterogeneous Environments and the Evolution of Modularity

    PubMed Central

    Kashtan, Nadav; Parter, Merav; Dekel, Erez; Mayo, Avi E; Alon, Uri

    2009-01-01

    Extinctions of local subpopulations are common events in nature. Here, we ask whether such extinctions can affect the design of biological networks within organisms over evolutionary timescales. We study the impact of extinction events on modularity of biological systems, a common architectural principle found on multiple scales in biology. As a model system, we use networks that evolve toward goals specified as desired input–output relationships. We use an extinction–recolonization model, in which metapopulations occupy and migrate between different localities. Each locality displays a different environmental condition (goal), but shares the same set of subgoals with other localities. We find that in the absence of extinction events, the evolved computational networks are typically highly optimal for their localities with a nonmodular structure. In contrast, when local populations go extinct from time to time, we find that the evolved networks are modular in structure. Modular circuitry is selected because of its ability to adapt rapidly to the conditions of the free niche following an extinction event. This rapid adaptation is mainly achieved through genetic recombination of modules between immigrants from neighboring local populations. This study suggests, therefore, that extinctions in heterogeneous environments promote the evolution of modular biological network structure, allowing local populations to effectively recombine their modules to recolonize niches. PMID:19473401

  9. Modular assembly of a photovoltaic solar energy receiver

    DOEpatents

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  10. Flat pack interconnection structure simplifies modular electronic assemblies

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1967-01-01

    Flat pack interconnection structure composed of stick modules simplifies modular electronic assemblies by allowing a single axis mother board. Two of the wiring planes are located in the stick module, which is the lower level of assembly, with the third wiring plane in the mother board.

  11. Constructing a Small Modular Stellarator in Latin America

    NASA Astrophysics Data System (ADS)

    Vargas, Ivan; Mora, Jaime; Otarola, Carlos; Asenjo, Jose; Zamora, Esteban; Gonzalez, Jeferson; Piedra, Carlos

    2014-10-01

    The small modular stellerator SCR-1 (Stellerator of Costa Rica 1) is a 2-field period device with a circular cross-section vessel under construction in Costa Rica (Ro = 0.238 m, < a > = 0.059 m, Ro/a > 4.0, expected plasma volume ~ 0.016 m3, 10 mm thickness 6061-T6 aluminum vacuum vessel). The magnetic field strength at the centre is around 44 mT which will be produced by 12 copper modular coils with 4.35 kA-turn each. This field is EC resonant at Ro with 2.45 GHz as 6nd harmonic, from 2/3 kW magnetrons. SCR-1 was redesigned from stellerator UST_1. As a first step, the objectives focus on training human resources and identifying problems related to the design and construction of small modular stellarators. We present the engineering problems encountered and the proposed solutions related to: thickness, material and construction method for the vacuum vessel, layout and design of ports, method of construction for coils, coils fixing, welding procedure, microwave input, control and data acquisition systems, design and test of diagnostics. Temperature, resistance, voltage and power calculations as a function of time were performed for the electrical circuit under different wire configurations per modular coil to select the power supply taking into account the available budget.

  12. Modularity beyond Perception: Evidence from the PRP Paradigm

    ERIC Educational Resources Information Center

    Magen, Hagit; Cohen, Asher

    2010-01-01

    The Dimension Action (DA) model asserts that the visual system is modular, and that each task involves multiple-response mechanisms rather than a unitary-response selection mechanism. The model has been supported by evidence from single-task interference paradigms. We use the psychological refractory period paradigm and show that dual-task…

  13. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up.

    PubMed

    Nichol, Jason W; Khademhosseini, Ali

    2009-01-01

    Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of "bottom-up" approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units.

  14. Design and Evaluation of Energy Efficient Modular Classroom Structures.

    ERIC Educational Resources Information Center

    Brown, G. Z.; And Others

    This paper describes a study that developed innovations that would enable modular builders to improve the energy performance of their classrooms without increasing their first cost. The Modern Building Systems' classroom building conforms to the stringent Oregon and Washington energy codes, and, at $18 per square foot, it is at the low end of the…

  15. Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    PubMed Central

    Heller, Daniel A.; Levi, Yair; Pelet, Jeisa M.; Doloff, Joshua C.; Wallas, Jasmine; Pratt, George W.; Jiang, Shan; Sahay, Gaurav; Schroeder, Avi; Schroeder, Josh E.; Chyan, Yieu; Zurenko, Christopher; Querbes, William; Manzano, Miguel; Kohane, Daniel S.; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, 67 nm in diameter and synthesized via an astoichiometric click-chemistry-inemulsion method, controllably display residual, free click-able functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects. PMID:23280931

  16. Integrated Modular Teaching of Human Biology for Primary Care Practitioners

    ERIC Educational Resources Information Center

    Glasgow, Michael S.

    1977-01-01

    Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…

  17. Modular Filter and Source-Management Upgrade of RADAC

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Smith, Donna C.

    2007-01-01

    In an upgrade of the Range Data Acquisition Computer (RADAC) software, a modular software object library was developed to implement required functionality for filtering of flight-vehicle-tracking data and management of tracking-data sources. (The RADAC software is used to process flight-vehicle metric data for realtime display in the Wallops Flight Facility Range Control Center and Mobile Control Center.)

  18. Modular structure of functional networks in olfactory memory.

    PubMed

    Meunier, David; Fonlupt, Pierre; Saive, Anne-Lise; Plailly, Jane; Ravel, Nadine; Royet, Jean-Pierre

    2014-07-15

    Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory has been widely applied to characterize the overall structure of data sets in the social, technological, and biological sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks whose components are gathered in the same module and work together closely, while working weakly with components from other modules. This processing is of interest for studying memory, a cognitive process that is widely distributed. We propose a new method to identify modular structure in task-related functional magnetic resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients and thus retained information about both signs and weights. The method was applied to functional data acquired during a yes-no odor recognition memory task performed by young and elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a function of response categories and age groups and calculated condition-based weighted correlation matrices. Overall, condition-based modular partitions were more homogeneous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity values were negatively correlated with memory scores in the Hit condition and positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-correlated areas

  19. Environmental versatility promotes modularity in genome-scale metabolic networks

    PubMed Central

    2011-01-01

    Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to

  20. Modular implementation of feature extraction and matching algorithms for photogrammetric stereo imagery

    NASA Astrophysics Data System (ADS)

    Kershaw, James; Hamlyn, Garry

    1994-06-01

    This paper describes the implementation of algorithms for automatically extracting and matching features in stereo pairs of images. The implementation has been designed to be as modular as possible to allow different algorithms for each stage in the matching process to be combined in the most appropriate manner for each particular problem. The modules have been implemented in the AVS environment but are designed to be portable to any platform. This work has been undertaken as part of task DEF 93/1 63 'Intelligence Analysis of Imagery', and forms part of ITD's contribution to the Visual Processing research program in the Centre for Sensor System and Information Processing. A major aim of both the task and the research program is to produce software to assist intelligence analysts in extracting three dimensional shape from imagery: the algorithms and software described here will form the first part of a module for automatically extracting depth information from stereo image pairs.