Science.gov

Sample records for sigma-delta modulator performances

  1. Performance Evaluation of Photonic Sigma Delta ADCs

    DTIC Science & Technology

    2010-12-01

    65 APPENDIX B. MATLAB CODE FOR PHOTONIC SIGMA DELTA ADC.................67 APPENDIX C. SUBROUTINE FUNCTIONS...PHOTONIC SIGMA DELTA ADC FLOW CHART 66 THIS PAGE INTENTIONALLY LEFT BLANK 67 APPENDIX B. MATLAB CODE FOR PHOTONIC SIGMA DELTA ADC Program File...addition, a MATLAB simulation designed previously was used to simulate the behavior of the photonic sigma delta ADC. It was modified to speed up the

  2. First order sigma-delta modulator in HTS bicrystal technology

    NASA Astrophysics Data System (ADS)

    Ruck, B.; Chong, Y.; Dittmann, R.; Siegel, M.

    1999-11-01

    We have designed, fabricated and successfully tested a first-order sigma-delta modulator using a High-Temperature Superconducting (HTS) multi-layer technology with bicrystal Josephson junctions. The circuit has been fabricated on an SrTiO 3 bicrystal substrate. The trilayer was fabricated by laser deposition and high-pressure sputtering. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a Single Flux Quantum (SFQ) pulse generator, a Josephson transmission line (JTL), a comparator, an integrator and an output stage. The correct operation of the modulator has been tested using dc and low frequency ac measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 6 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.

  3. Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho

    2016-11-01

    We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.

  4. Noise Simulation of Continuous-Time {sigma}{delta} Modulators

    SciTech Connect

    Arias, J.; Quintanilla, L.; Bisbal, D.; San Pablo, J.; Enriquez, L.; Vicente, J.; Barbolla, J.

    2005-08-25

    In this work, an approach for the simulation of the effect of noise sources in the performance of continuous-time {delta}{sigma} modulators is presented. Electrical noise including thermal noise, 1/f noise and clock jitter are included in a simulation program and their impact on the system performance is analyzed.

  5. Multibit sigma-delta modulator with reduced sensitivity to DAC nonlinearity

    NASA Technical Reports Server (NTRS)

    Hairapetian, A.; Zhang, Z. X.; Temes, G. C.

    1991-01-01

    A new architecture is presented for a multibit oversampled Sigma-Delta A/D convertor. A novel feedback arrangement is employed to reduce the sensitivity of the overall resolution to the nonlinearity of the multibit DAC. Simulations confirm the improved performance achieved by the proposed structure.

  6. Design of resolution/power controllable Asynchronous Sigma-Delta Modulator

    NASA Astrophysics Data System (ADS)

    Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.

    2016-12-01

    This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.

  7. Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation.

    PubMed

    Pessoa, Luis M; Coelho, Diogo; Salgado, Henrique M

    2014-07-14

    Digitized radio-over-fiber (D-RoF) transport schemes are being pointed as viable alternative solutions to their analog counterparts, in order to avoid distortion/dynamic range problems. Here we propose a novel D-RoF architecture that takes advantage of a bandpass sigma-delta modulator at the transmitter which subsequently permits the usage of a simpler/cheaper base station that avoids the employment of a digital to analog converter. The proposed architecture exploits the properties of the digital signal to enable the extraction of an higher carrier frequency through the employment of a bandpass filter. Furthermore, we present a comprehensive analysis regarding the impact of a low-cost electro-optic modulation on the quality of received demodulated signal. Finally, a comparison performance analysis between the conventional D-RoF and the proposed architecture is presented. We conclude that although the proposed architecture performs similarly to conventional D-RoF schemes, it is more competitive for either upgrading installed systems as well as for new deployments.

  8. Genetic Algorithm for the Design of Electro-Mechanical Sigma Delta Modulator MEMS Sensors

    PubMed Central

    Wilcock, Reuben; Kraft, Michael

    2011-01-01

    This paper describes a novel design methodology using non-linear models for complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM) that is based on genetic algorithms and statistical variation analysis. The proposed methodology is capable of quickly and efficiently designing high performance, high order, closed loop, near-optimal systems that are robust to sensor fabrication tolerances and electronic component variation. The use of full non-linear system models allows significant higher order non-ideal effects to be taken into account, improving accuracy and confidence in the results. To demonstrate the effectiveness of the approach, two design examples are presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was designed using the system in less than one day, with very little manual intervention. The strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the low-pass and band-pass system respectively, coupled with excellent immunities to fabrication tolerances and parameter mismatch. PMID:22163691

  9. Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors.

    PubMed

    Wilcock, Reuben; Kraft, Michael

    2011-01-01

    This paper describes a novel design methodology using non-linear models for complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM) that is based on genetic algorithms and statistical variation analysis. The proposed methodology is capable of quickly and efficiently designing high performance, high order, closed loop, near-optimal systems that are robust to sensor fabrication tolerances and electronic component variation. The use of full non-linear system models allows significant higher order non-ideal effects to be taken into account, improving accuracy and confidence in the results. To demonstrate the effectiveness of the approach, two design examples are presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was designed using the system in less than one day, with very little manual intervention. The strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the low-pass and band-pass system respectively, coupled with excellent immunities to fabrication tolerances and parameter mismatch.

  10. Single-Bit All-Digital Frequency Synthesis Using Homodyne Sigma-Delta Modulation.

    PubMed

    Sotiriadis, Paul P

    2017-02-01

    All-digital frequency synthesis using bandpass sigma-delta modulation to achieve spectrally clean single-bit output is presented and mathematically analyzed resulting in a complete model to predict the stability and output spectrum. The quadrature homodyne filter architecture is introduced resulting in efficient implementations of carrier-frequency-centered bandpass filters for the modulator. A multiplierless version of the quadrature homodyne filter architecture is also introduced to reduce complexity while maintaining a clean in-band spectrum. MATLAB and SIMULINK simulation results present the potential capabilities of the synthesizer architectures and validate the accuracy of the developed theoretical framework.

  11. Improvement of component circuits for superconducting double-loop lowpass sigma-delta modulator

    NASA Astrophysics Data System (ADS)

    Hirano, S.; Yoshida, A.; Suzuki, H.; Hasuo, S.; Tanabe, K.

    2004-10-01

    We have made a modified type of superconducting double-loop lowpass sigma-delta modulator with feedback gain of 64 operated at the sampling frequency of 4 GHz. The feedback driver consists of multi-stage SFQ splitters and a series array of 64 3J-SQUID gates. A simulation showed that a current margin of the 3J-SQUID feedback driver was enlarged by a factor of 1.5, compared to our previous 2J-SQUID feedback driver. A new high voltage gate with an SFQ storage inductor was used to increase a timing margin between externally applied high frequency sampling pulses and AC bias currents. The high voltage gate needs a smaller AC bias current, thus reducing ground ripple noise. Also, a flip-chip type probe was introduced to reduce ground ripples. The fabricated modulator was tested at 4 GHz. The noise floor in the power spectrum was reduced by almost 20 dB.

  12. A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K.

    PubMed

    Okcan, Burak; Gielen, Georges; Van Hoof, Chris

    2012-02-01

    This paper presents a third-order switched-capacitor sigma-delta modulator implemented in a standard 0.35-μm CMOS process. It operates from 300 K down to 4.2 K, achieving 70.8 dB signal-to-noise-plus-distortion ratio (SNDR) in a signal bandwidth of 5 kHz with a sampling frequency of 500 kHz at 300 K. The modulator utilizes an operational transconductance amplifier in its loop filter, whose architecture has been optimized in order to eliminate the cryogenic anomalies below the freeze-out temperature. At 4.2 K, the modulator achieves 67.7 dB SNDR consuming 21.17 μA current from a 3.3 V supply.

  13. A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K

    NASA Astrophysics Data System (ADS)

    Okcan, Burak; Gielen, Georges; Van Hoof, Chris

    2012-02-01

    This paper presents a third-order switched-capacitor sigma-delta modulator implemented in a standard 0.35-μm CMOS process. It operates from 300 K down to 4.2 K, achieving 70.8 dB signal-to-noise-plus-distortion ratio (SNDR) in a signal bandwidth of 5 kHz with a sampling frequency of 500 kHz at 300 K. The modulator utilizes an operational transconductance amplifier in its loop filter, whose architecture has been optimized in order to eliminate the cryogenic anomalies below the freeze-out temperature. At 4.2 K, the modulator achieves 67.7 dB SNDR consuming 21.17 μA current from a 3.3 V supply.

  14. A Near 1-V Operational, 0.18-µm CMOS Passive Sigma-Delta Modulator with 77dB of Dyanamic Range

    NASA Astrophysics Data System (ADS)

    Sai, Toru; Sugimoto, Yasuhiro

    A low-voltage operational capability near 1V along with low noise and distortion characteristics have been realized in a passive sigma-delta modulator. To achieve low-voltage operation, the dc voltage in signal paths in the switched-capacitor-filter section was set to be 0.2V so that sufficient gate-to-source voltages were obtained for metal-oxide-semiconductor (MOS) switches in signal paths without using a gate-voltage boosting technique. In addition, the input switch that connects the input signal from the outside to the inside of an integrated circuit chip was replaced by a passive resistor to eliminate a floating switch, and gain coefficients in the feedback and input paths were modified so that the bias voltage of the digital-to-analog converter could be set to VDD and 0V to easily activate MOS switches. As the signal swing becomes small under low-voltage operational circumstances, correlated double sampling was used to suppress the offset voltage and the 1/f noise that appeared at the input of a comparator. The modulator was fabricated using a standard CMOS 0.18-µm process, and the measured results show that the modulator realized 77dB of dynamic range for 40kHz of signal bandwidth with a 40MHz sampling rate while dissipating 2mW from a 1.1V supply voltage.

  15. Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator MEMS gyroscope using a genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Chang, Honglong; Yuan, Weizheng; Wilcock, Reuben; Kraft, Michael

    2012-10-01

    This paper describes a novel multiobjective parameter optimization method based on a genetic algorithm (GA) for the design of a sixth-order continuous-time, force feedback band-pass sigma-delta modulator (BP-ΣΔM) interface for the sense mode of a MEMS gyroscope. The design procedure starts by deriving a parameterized Simulink model of the BP-ΣΔM gyroscope interface. The system parameters are then optimized by the GA. Consequently, the optimized design is tested for robustness by a Monte Carlo analysis to find a solution that is both optimal and robust. System level simulations result in a signal-to-noise ratio (SNR) larger than 90 dB in a bandwidth of 64 Hz with a 200° s-1 angular rate input signal; the noise floor is about -100 dBV Hz-1/2. The simulations are compared to measured data from a hardware implementation. For zero input rotation with the gyroscope operating at atmospheric pressure, the spectrum of the output bitstream shows an obvious band-pass noise shaping and a deep notch at the gyroscope resonant frequency. The noise floor of measured power spectral density (PSD) of the output bitstream agrees well with simulation of the optimized system level model. The bias stability, rate sensitivity and nonlinearity of the gyroscope controlled by an optimized BP-ΣΔM closed-loop interface are 34.15° h-1, 22.3 mV °-1 s-1, 98 ppm, respectively. This compares to a simple open-loop interface for which the corresponding values are 89° h-1, 14.3 mV °-1 s-1, 7600 ppm, and a nonoptimized BP-ΣΔM closed-loop interface with corresponding values of 60° h-1, 17 mV °-1 s-1, 200 ppm.

  16. A 16-bit cascaded sigma-delta pipeline A/D converter

    NASA Astrophysics Data System (ADS)

    Liang, Li; Ruzhang, Li; Zhou, Yu; Jiabin, Zhang; Jun'an, Zhang

    2009-05-01

    A low-noise cascaded multi-bit sigma-delta pipeline analog-to-digital converter (ADC) with a low over-sampling rate is presented. The architecture is composed of a 2-order 5-bit sigma-delta modulator and a cascaded 4-stage 12-bit pipelined ADC, and operates at a low 8X oversampling rate. The static and dynamic performances of the whole ADC can be improved by using dynamic element matching technique. The ADC operates at a 4 MHz clock rate and dissipates 300 mW at a 5 V/3 V analog/digital power supply. It is developed in a 0.35 μm CMOS process and achieves an SNR of 82 dB.

  17. Sigma Delta Signal Processing on Via-Configurable Arrays

    DTIC Science & Technology

    2016-03-31

    effective approach for developing circuits like Ms and provide application examples using these techniques. Keywords: Field Programmable Analog Array...Mask Programmable Analog Array; Mixed-Signal ASIC; Sigma Delta Modulation; Structured Array; Switched Capacitor Circuits ; Via-Configurable Array...connects the required analog and digital cells to implement a mixed-signal circuit . Unlike FPGAs, VCAs contain analog cells allowing for integration of

  18. VHDL Implementation of Sigma-Delta Analog To Digital Converter

    NASA Astrophysics Data System (ADS)

    Chavan, R. N.; Chougule, D. G.

    2010-11-01

    Sigma-Delta modulation techniques provide a range of opportunities in a signal processing system for both increasing performance and data path optimization along the silicon area axis in the design space. One of the most challenging tasks in Analog to Digital Converter (ADC) design is to adapt the circuitry to ever new CMOS process technology. For digital circuits the number of gates per square mm app. doubles per chip generation. Integration of analog parts in newer deep submicron technologies is much more tough and additionally complicated because the usable voltage ranges are decreasing with every new integration step. This paper shows an approach which only uses 2 resistors and 1 capacitor which are located outside a pure digital chip. So all integration advantages of pure digital chips are preserved, there is no design effort for a new chip generation and the ADC also can be used for FPGAs. Resolutions of up to 16 bit are achievable. Sample rates in the 1 MHz region are feasible so that the approach is also useful for ADCs for xDSL technologies.

  19. Low-power adaptive spike detector based on a sigma-delta control loop.

    PubMed

    Gagnon-Turcotte, G; Sawan, M; Gosselin, B

    2015-08-01

    This paper presents a resources-optimized digital action potential (AP) detector featuring an adaptive threshold based on a new Sigma-delta control loop. The proposed AP detector is optimized for utilizing low hardware resources, which makes it suitable for implementation on most popular low-power microcontrollers units (MCU). The adaptive threshold is calculated using a digital control loop based on a Sigma-delta modulator that precisely estimates the standard deviation of the amplitude of the neuronal signal. The detector was implemented on a popular low-power MCU and fully characterized experimentally using previously recorded neural signals with different signal-to-noise ratios. A comparison of the obtained results with other thresholding approaches shows that the proposed method can compete with high performance and highly resources demanding spike detection approaches while achieving up to 100% of true positive detection rate at high SNR, and up to 63% for an SNR as low as 0 dB, while necessitating an execution time as low as 11 μs with the MCU operating at 8 MHz.

  20. Sigma Delta Dac Using Vhdl-Ams

    NASA Astrophysics Data System (ADS)

    Utage, S. A.; Dube, R. R.

    2010-11-01

    Sigma Delta Digital to analog converters (DACs) convert a binary number into a voltage directly proportional to the value of the binary number. A variety of applications use DACs including waveform generators and programmable voltage sources. This paper describes a Delta-Sigma DAC implemented in a FPGA. The only external circuitry required is a low pass filter comprised of just one resistor and one capacitor. Internal resource requirements are also minimal. The speed and flexible output structure of the FPGAs make them ideal for this application.

  1. Fiber-lattice accumulator design considerations for optical sigma delta analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Pace, Phillip E.; Bewley, S. A.; Powers, John P.

    2000-06-01

    Integrated optical sigma-delta ((Sigma) (Delta) ) analog-to- digital converters (ADCs) use a pulsed laser to oversample an input signal at two Mach-Zehnder interferometers. A fiber-lattice accumulator is embedded within a feedback loop around a single-bit quantizer to spectrally shape the quantization noise to fall outside the signal band of interest. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. Applications of integrated optical (Sigma) (Delta) ADCs include digitizing wideband radio-frequency signals directly at an antenna (digital antenna). In this paper, a novel fiber- lattice accumulator design is presented, and a coherent simulation of an integrated optical first-order, single-bit (Sigma) (Delta) ADC is reported. The accumulator leakage resulting from a mismatch in the optical circuit parameters is quantified. A time-domain analysis is presented, and the simulation results from an all-electronic (Sigma) (Delta) ADC are presented for comparison. A frequency-domain analysis of a ten times oversampling (n equals 4 bits) simulation is used to compare the dynamic performance parameters, including the spurious-free dynamic range, signal-to-noise-plus-distortion ratio, and effective number of bits. The formation of image frequencies when the accumulator is overloaded (i.e., the optical amplifier gain is too large) is also investigated.

  2. An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel L.

    High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification

  3. Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.

    1993-01-01

    The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.

  4. Design of a Low-Light-Level Image Sensor with On-Chip Sigma-Delta Analog-to- Digital Conversion

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.; Fossum, Eric R.

    1993-01-01

    The design and projected performance of a low-light-level active-pixel-sensor (APS) chip with semi-parallel analog-to-digital (A/D) conversion is presented. The individual elements have been fabricated and tested using MOSIS* 2 micrometer CMOS technology, although the integrated system has not yet been fabricated. The imager consists of a 128 x 128 array of active pixels at a 50 micrometer pitch. Each column of pixels shares a 10-bit A/D converter based on first-order oversampled sigma-delta (Sigma-Delta) modulation. The 10-bit outputs of each converter are multiplexed and read out through a single set of outputs. A semi-parallel architecture is chosen to achieve 30 frames/second operation even at low light levels. The sensor is designed for less than 12 e^- rms noise performance.

  5. ROIC with on-chip sigma-delta AD converter for HgCdTe e-APD FPA

    NASA Astrophysics Data System (ADS)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-10-01

    HgCdTe electron injection avalanche photodiodes (e-APDs) work at linear mode. A weak optical current signal is amplified orders of magnitude due to the internal avalanche mechanism and it has been demonstrated to be one of the most promising methods to focal-plane arrays (FPAs) for low-flux like hyper-spectral imaging and high-speed applications such as active imaging. This paper presents the design of a column-shared ADC for cooled e-APDs FPA. Designing a digital FPA requires fulfilling very stringent requirements in terms of power consumption, silicon area and speed. Among the various ADC architectures sigma-delta conversion is a promising solution for high-performance and medium size FPA such as 128×128. The performance of Sigma-delta ADC rather relies on the modulator structure which set over-sampling and noise shaping characteristics than on critical analog circuits. This makes them quite robust and flexible. A multistage noise shaping (MASH) 2-1 single bit architecture sigma-delta conversion with switched-capacitor circuits is designed for column-shared ADC, which is implanted in the GLOBALFOUNDRIES 0.35um CMOS process with 4-poly and 4-metal on the basis of a 100um pixel pitch. It operates under 3.3V supply and the output range of the quantizer is 2V. A quantization noise subtraction circuit in modulator is designed to subtract the quantization noise of first-stage modulator. The quantization noise of the modulator is shaped by a high-pass filter. The silicon area and power consumption are mainly determined by the decimation low pass filter. A cascaded integrator-comb (CIC) filter is designed as the digital decimator filter. CIC filter requires no multipliers and use limited storage thereby leading to more economical hardware implementation. The register word length of the filter in each stage is carefully dimensioned in order to minimize the required hardware. Furthermore, the digital filters operate with a reduced supply voltage to 1.5V. Simulation

  6. High-Speed Superconductive Decimation Filter for Sigma-Delta Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Tomu; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-07-01

    A superconducting decimation filter is required to convert high-speed output data from a superconducting sigma-delta analog to digital (A/D) modulator to low-speed data for data acquisition by room-temperature electronics. Because the operating frequency of the conventional superconducting decimation filter is lower than that of the maximum operation frequency of A/D modulator, the system performance of the superconducting A/D converter is limited by the decimation filter. We propose a decimation filter that can operate at the sampling frequency of the A/D modulator by hybridizing a shift-register-based and a counter-based decimation filters. The investigated decimation filter can be implemented with a practical circuit area. We designed and tested the investigated decimation filter. The simulation result indicates that the maximum operation frequency of the designed decimation filter is 39.8 GHz assuming the 2.5 kA/cm2 Nb fabrication process. We experimentally confirmed the low-speed operation of the designed decimation filter with the bias margin of 93.8%-110.8%.

  7. A 16-bit sigma-delta ADC applied in micro-machined inertial sensor

    NASA Astrophysics Data System (ADS)

    Qiang, Li; Xiaowei, Liu

    2015-04-01

    This paper presents a low-distortion sigma-delta (Σ-Δ) ADC for micro-machined inertial sensors. The design adopts a single-loop, fourth-order low-pass single-bit modulator with feedforward paths which can ensure the signal transfer lossless and reduce the nonlinearity and power consumption. The chip is manufactured in standard 0.5µm CMOS process, and the area is 2.2mm2. The ADC achieves 108dB signal to noise ratio (SNR) and 110dB dynamic range (DR). Total power consumption is less than 15mW with 5V supply.

  8. Adjustable Nyquist-rate System for Single-Bit Sigma-Delta ADC with Alternative FIR Architecture

    NASA Astrophysics Data System (ADS)

    Frick, Vincent; Dadouche, Foudil; Berviller, Hervé

    2016-09-01

    This paper presents a new smart and compact system dedicated to control the output sampling frequency of an analogue-to-digital converters (ADC) based on single-bit sigma-delta (ΣΔ) modulator. This system dramatically improves the spectral analysis capabilities of power network analysers (power meters) by adjusting the ADC's sampling frequency to the input signal's fundamental frequency with a few parts per million accuracy. The trade-off between straightforwardness and performance that motivated the choice of the ADC's architecture are preliminary discussed. It particularly comes along with design considerations of an ultra-steep direct-form FIR that is optimised in terms of size and operating speed. Thanks to compact standard VHDL language description, the architecture of the proposed system is particularly suitable for application-specific integrated circuit (ASIC) implementation-oriented low-power and low-cost power meter applications. Field programmable gate array (FPGA) prototyping and experimental results validate the adjustable sampling frequency concept. They also show that the system can perform better in terms of implementation and power capabilities compared to dedicated IP resources.

  9. A digital-type fluxgate magnetometer using a sigma-delta digital-to-analog converter for a sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Iguchi, Kyosuke; Matsuoka, Ayako

    2014-07-01

    One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2-13.3 of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nTrms at 0.1-10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket.

  10. A 1.2-V 165-μW 0.29-mm2 multibit Sigma-Delta ADC for hearing aids using nonlinear DACs and with over 91 dB dynamic-range.

    PubMed

    Custodio, José R; Goes, João; Paulino, Nuno; Oliveira, João P; Bruun, Erik

    2013-06-01

    This paper describes the design and experimental evaluation of a multibit Sigma-Delta (ΣΔ) modulator (ΣΔM) with enhanced dynamic range (DR) through the use of nonlinear digital-to-analog converters (DACs) in the feedback paths. This nonlinearity imposes a trade-off between DR and distortion, which is well suited to the intended hearing aid application. The modulator proposed here uses a fully-differential self-biased amplifier and a 4-bit quantizer based on fully dynamic comparators employing MOS parametric pre-amplification to improve both energy and area efficiencies. A test chip was fabricated in a 130 nm digital CMOS technology, which includes the proposed modulator with nonlinear DACs and a modulator with conventional linear DACs, for comparison purposes. The measured results show that the ΣΔM using nonlinear DACs achieves an enhancement of the DR around 8.4 dB (to 91.4 dB). Power dissipation and silicon area are about the same for the two cases. The performance achieved is comparable to that of the best reported multibit ΣΔ ADCs, with the advantage of occupying less silicon area (7.5 times lower area when compared with the most energy efficient ΣΔM).

  11. Pixel-level continuous-time incremental sigma-delta A/D converter for THz sensors

    NASA Astrophysics Data System (ADS)

    Khatib, Moustafa; Perenzoni, Matteo

    2016-04-01

    A readout channel based on continuous-time incremental sigma-delta analog-to-digital converter for FET-based terahertz (THz) imaging applications was implemented in a 0.15 μm standard CMOS technology. The designed readout circuit is suitable for implementation in pixel arrays due to its compact size and power consumption. The system-level analysis used to define the modulator parameters and to specify its analog building blocks is presented. The loop filter has been realized by using a Gm-C integrator. Circuit linearization techniques have been implemented to improve the linearity of the transconductor cell and reduce the impact of parasitic capacitances. Moreover, chopper stabilization technique is adopted in the loop filter, significantly reducing the low-frequency flicker noise thereby preserving the Noise Equivalent Power (NEP) of the FET detector within the required specifications of minimum detectable signal. The resulting input referred noise voltage is 87.5 nV/√Hz . The incremental ADC achieves 68-dB peak signal-to-noise-and-distortion-ratio (SNDR), equivalent to 11 bits effective resolution over 1 kHz signal bandwidth at 1 MHz sampling frequency. In order to meet the requirements of large sensor arrays, a first order architecture is realized. This leads to lower area occupancy and power consumption. The readout circuit draws 80 μW of power from a supply voltage of 1.8 V. The channel occupies an area of 90 x 273μm2.

  12. Robust sigma-delta generalised proportional integral observer based control of a `buck' converter with uncertain loads

    NASA Astrophysics Data System (ADS)

    Sira-Ramírez, Hebertt; Núñez, Ciro A.; Visairo, Nancy

    2010-08-01

    This article describes the design of an observer based robust linear output feedback controller for the regulation and output reference trajectory tracking tasks in switched 'buck' converter circuits feeding a completely unknown time-varying load. The state-dependent perturbation effects of the unknown load resistance are on-line estimated by means of a generalised proportional integral (GPI) observer, which represents the dual counterpart of GPI controllers introduced in Fliess, Márquez, Delaleau and Sira-Ramírez (Fliess, M., Márquez, R., Delaleau, E., and Sira-Ramírez, H. (2002), 'Correcteurs Proportionnels-intégraux Géneralisés', ESAIM: Control, Optimisation and Calculus of Variations, 7, 23-41). The reconstructed perturbation complements the controller in a cancellation effort which allows the core of the feedback controller to become a traditional proportional derivative (PD) controller. The designed average feedback controller is then implemented via a sigma-delta-modulator, which effectively translates the designed continuous average feedback control input signal into a discrete valued switched input signal driving the converter's input switch and preserving all relevant features of the average design. The Appendix collects some generalities about GPI observers.

  13. A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.

    PubMed

    Guerrero, Federico N; Spinelli, Enrique M

    2017-09-28

    Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.

  14. Photonic Front-End and Comparator Processor for a Sigma-Delta Modulator

    DTIC Science & Technology

    2008-09-01

    bipolar transistor (HBT) technology would need to be demonstrated for an on-chip integrated circuit design. 40 THIS PAGE INTENTIONALLY LEFT BLANK 41...MODELS USED .MODEL QX PNP (BF=34.188) .MODEL QY PNP (BF=32.52) .MODEL DX D(N=0.001 TT=1E-15) .MODEL NMOS NMOS(KP=1 TOX=100U VTO=0.39 W

  15. A 110-nW in-channel sigma-delta converter for large-scale neural recording implants.

    PubMed

    Rezaei, M; Maghsoudloo, E; Sawan, M; Gosselin, B

    2016-08-01

    Advancement in wireless and microsystems technology have ushered in new devices that can directly interface with the central nervous system for stimulating and/or monitoring neural circuitry. In this paper, we present an ultra low-power sigma-delta analog-to-digital converter (ADC) intended for utilization into large-scale multi-channel neural recording implants. This proposed design, which provides a resolution of 9 bits using a one-bit oversampled ADC, presents several desirable features that allow for an in-channel ADC scheme, where one sigma-delta converter is provided for each channel, enabling development of scalable systems that can interface with different types of high-density neural microprobes. The proposed circuit, which have been fabricated in a TSMC 180-nm CMOS process, employs a first order noise shaping topology with a passive integrator and a low-supply voltage of 0.6 V to achieve ultra low-power consumption and small size. The proposed ADC clearly outperforms other designs with a power consumption as low as 110 nW for a precision of 9 bits (11-fJ per conversion), a silicon area of only 82 μm × 84 μm and one of the best reported figure of merit among recently published data converters utilized in similar applications.

  16. All digital monolithic scanning readout based on Sigma-Delta analog to digital conversion

    NASA Astrophysics Data System (ADS)

    Mandl, William; Rutschow, Carl

    1992-07-01

    It is generally accepted that sensor systems can benefit from some form of on-focal-plane A/D conversion in terms of overall system noise improvement. The issue of whether or not the Delta-Sigma modulation process can be applied to the development of an approach using conventional A/D converters or cryogenic circuit materials is addressed from the standpoint of the scanning focal plane. Each pixel row of the scanning sensor is treated as a continuous analog signal source with a fixed signal bandwidth. By allocating a Delta-Sigma converter per sensor pixel row, theory predicts the oversample rate required to achieve the designed conversion resolution. The Delta-Sigma consists of two major parts. The modulator, which samples the analog input and develops a corresponding digital bit stream, and the digital signal processor, which compresses the bit stream into the Nyquist rate multibit codes and performs noise filtering, are described. Only the modulator needs to be on the focal plane since its output is digital. This reduces the development problem to one of fitting the modulator only into the allocated space and power budget per sensor.

  17. Improvements of a digital 25 μm pixel-pitch uncooled amorphous silicon TEC-less VGA IRFPA with massively parallel Sigma-Delta-ADC readout

    NASA Astrophysics Data System (ADS)

    Weiler, Dirk; Ruß, Marco; Würfel, Daniel; Lerch, Renee; Yang, Pin; Bauer, Jochen; Heß, Jennifer; Kropelnicki, Piotr; Vogt, Holger

    2011-06-01

    This paper presents the improvements of an advanced digital VGA-IRFPA developed by Fraunhofer-IMS. The uncooled IRFPA is designed for thermal imaging applications in the LWIR (8 .. 14 μm) range with a full-frame frequency of 30 Hz and a high sensitivity with NETD < 100 mK @ f/1. The microbolometer with a pixel-pitch of 25 μm consists of amorphous silicon as the sensing layer. The structure of the microbolometer has been optimized for a better performance compared to the 1st generation IRFPA1. The thermal isolation has been doubled by increasing the length and by decreasing the width of the legs. To increase the fill-factor the contact areas have been reduced. The microbolometers are read out by a novel readout architecture which utilizes massively parallel on-chip Sigma-Delta-ADCs. This results in a direct digital conversion of the resistance change of the microbolometer induced by incident infrared radiation. Two different solutions for the vacuum package have been developed. To reduce production costs a chip-scale-package is used. This vacuum package consists of an IR-transparent window with antireflection coating and a soldering frame which is fixed by a wafer-to-chip process directly on top of the read substrate. An alternative solution based on the use of a standard ceramic package is utilized as a vacuum package. This packaging solution is used for high performance applications. The IRFPAs are completely fabricated at Fraunhofer-IMS on 8" CMOS wafers with an additional surface micromachining process.

  18. Uncooled digital IRFPA-family with 17μm pixel-pitch based on amorphous silicon with massively parallel Sigma-Delta-ADC readout

    NASA Astrophysics Data System (ADS)

    Weiler, D.; Hochschulz, F.; Würfel, D.; Lerch, R.; Geruschke, T.; Wall, S.; Heß, J.; Wang, Q.; Vogt, H.

    2014-06-01

    This paper presents the results of an advanced digital IRFPA-family developed by Fraunhofer IMS. The IRFPA-family compromises the two different optical resolutions VGA (640 ×480 pixel) and QVGA (320 × 240 pixel) by using a pin-compatible detector board. The uncooled IRFPAs are designed for thermal imaging applications in the LWIR (8 .. 14μm) range with a full-frame frequency of 30 Hz and a high thermal sensitivity. The microbolometer with a pixel-pitch of 17μm consists of amorphous silicon as the sensing layer. By scaling and optimizing our previous microbolometer technology with a pixel-pitch of 25μm we enhance the thermal sensitivity of the microbolometer. The microbolometers are read out by a novel readout architecture which utilizes massively parallel on-chip Sigma-Delta-ADCs. This results in a direct digital conversion of the resistance change of the microbolometer induced by incident infrared radiation. To reduce production costs a chip-scale-package is used as vacuum package. This vacuum package consists of an IR-transparent window with an antireflection coating and a soldering frame which is fixed by a wafer-to-chip process directly on top of the CMOS-substrate. The chip-scale-package is placed onto a detector board by a chip-on-board technique. The IRFPAs are completely fabricated at Fraunhofer IMS on 8" CMOS wafers with an additional surface micromachining process. In this paper the architecture of the readout electronics, the packaging, and the electro-optical performance characterization are presented.

  19. Design and implementation of a sigma delta technology based pulse oximeter's acquisition stage

    NASA Astrophysics Data System (ADS)

    Rossi, E. E.; Peñalva, A.; Schaumburg, F.

    2011-12-01

    Pulse oximetry is a widely used tool in medical practice for estimating patient's fraction of hemoglobin bonded to oxygen. Conventional oximetry presents limitations when changes in the baseline, or low amplitude of signals involved occur. The aim of this paper is to simultaneously solve these constraints and to simplify the circuitry needed, by using ΣΔ technology. For this purpose, a board for the acquisition of the needed signals was developed, together with a PC managed software which controls it, and displays and processes in real time the information acquired. Also laboratory and field tests where designed and executed to verify the performance of this equipment in adverse situations. A simple, robust and economic instrument was achieved, capable of obtaining signals even in situations where conventional oximetry fails.

  20. Ein Unscented Kalman Filter zur Schätzung von Schaltungsnichtidealitäten eines zeitkontinuierlichen Sigma-Delta Wandlers mit impliziter Dezimation

    NASA Astrophysics Data System (ADS)

    Buhmann, A.; Keller, M.; Maurer, M.; Ortmanns, M.; Manoli, Y.

    2008-05-01

    Nichtidealitäten einer Schaltung, wie z.B. nicht ideale Charakteristik des Operationsverstärkers und Streuungen in den Filterkoeffizienten, sind dahingehend bekannt die Effizienz von zeitkontinuierlichen Sigma-Delta Wandlern in drastischer Weise zu reduzieren. Daher stellt diese Veröffentlichung eine mögliche Methode vor, um die genannten Nichtidealitäten durch eine Schätzung mit Hilfe eines Unscented Kalman Filters zu bestimmen und in einem möglichen weiteren Schritt zu korrigieren. Des Weiteren kann durch eine leichte Modifikation des vorgestellten Algorithmus auch gleichzeitig eine implizite Dezimation des Ausgangssignals durchgeführt werden. Hierdurch wird die Gesamteffizienz des vorgestellten Ansatzes gesteigert, da kein zusätzlicher Dezimationsfilter mehr benötigt wird. Simulationsergebnisse des Filteralgorithmus zeigen die prinzipielle Funktion des Algorithmus.

  1. High performance silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Thomson, D. J.; Gardes, F. Y.; Hu, Y.; Owens, N.; Debnath, K.; O'Faolain, L.; Krauss, T. F.; Lever, L.; Ikonic, Z.; Kelsall, R. W.; Myronov, M.; Leadley, D. R.; Marko, I. P.; Sweeney, S. J.; Cox, D. C.; Brimont, A.; Sanchis, P.; Duan, G.-H.; Le Liepvre, A.; Jany, C.; Lamponi, M.; Make, D.; Lelarge, F.; Fedeli, J. M.; Messaoudene, S.; Keyvaninia, S.; Roelkens, G.; Van Thourhout, D.; Liu, S.; Yang, X.; Petropoulos, P.

    2012-11-01

    In this work we present results from high performance silicon optical modulators produced within the two largest silicon photonics projects in Europe; UK Silicon Photonics (UKSP) and HELIOS. Two conventional MZI based optical modulators featuring novel self-aligned fabrication processes are presented. The first is based in 400nm overlayer SOI and demonstrates 40Gbit/s modulation with the same extinction ratio for both TE and TM polarisations, which relaxes coupling requirements to the device. The second design is based in 220nm SOI and demonstrates 40Gbits/s modulation with a 10dB extinction ratio as well modulation at 50Gbit/s for the first time. A ring resonator based optical modulator, featuring FIB error correction is presented. 40Gbit/s, 32fJ/bit operation is also shown from this device which has a 6um radius. Further to this slow light enhancement of the modulation effect is demonstrated through the use of both convention photonic crystal structures and corrugated waveguides. Fabricated conventional photonic crystal modulators have shown an enhancement factor of 8 over the fast light case. The corrugated waveguide device shows modulation efficiency down to 0.45V.cm compared to 2.2V.cm in the fast light case. 40Gbit/s modulation is demonstrated with a 3dB modulation depth from this device. Novel photonic crystal based cavity modulators are also demonstrated which offer the potential for low fibre to fibre loss. In this case preliminary modulation results at 1Gbit/s are demonstrated. Ge/SiGe Stark effect devices operating at 1300nm are presented. Finally an integrated transmitter featuring a III-V source and MZI modulator operating at 10Gbit/s is presented.

  2. Electro-Optical Modulator Performance in SOI

    NASA Astrophysics Data System (ADS)

    Mardiana, B.; Hanim, A. R.; Hazura, H.; Shaari, Sahbudin; Menon, P. S.

    2011-05-01

    Silicon has been chosen as a photonic medium due to its special characteristics that is not possessed by other materials. Here, we reported the performance of Silicon on Insulator (SOI) phase modulator. The phase modulator devices have been integrated in the silicon-on-insulator (SOI) waveguide by using the p-i-n diode structure. The electrical device performance is predicted by using the 2-D semiconductor package SILVACO (CAD) software under DC operation. The performance of the modulator is evaluated in terms of its modulation efficiency and absorption loss. Modulation efficiency (VπLπ) is minimized at a greater applied voltage. Nevertheless, the absorption loss increased at higher injected free carriers.

  3. Heterodyning technique to improve performance of delta-sigma-based beamformers.

    PubMed

    Freeman, S R; Quick, M K; Morin, M A; Anderson, R C; Desilets, C S; Linnenbrink, T E; O'Donnell, M

    1999-01-01

    Delta-sigma (DeltaSigma) modulators can implement a simpler digital ultrasound beamformer than can traditional architectures based on multi-bit analog-to-digital converters (A/D). The signal-to-noise ratio (SNR) of the DeltaSigma modulators, however, suffers from limited oversampling ratios. To improve the SNR of each channel, a mixing signal heterodynes narrowband signals to lower frequencies where the baseband DeltaSigma modulator performs better. Noise figure analyses are presented that illustrate the effectiveness of this technique in improving noise performance. Also, spectral Doppler and color flow simulations are presented that realistically emulate a 32 channel oversampled beamformer and compare these results with traditional and ideal systems.

  4. Integrated Performance Testing Workshop, Modules 6 - 11

    SciTech Connect

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  5. High-performance electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Jiaoqing, Pan; Hongliang, Zhu; Huan, Wang; Wei, Wang

    2009-09-01

    A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.

  6. Comparison of Module Performance Characterization Methods

    SciTech Connect

    KROPOSKI,B.; MARION,W.; KING,DAVID L.; BOYSON,WILLIAM EARL; KRATOCHVIL,JAY A.

    2000-10-03

    The rating and modeling of photovoltaic PW module performance has been of concern to manufacturers and system designers for over 20 years. Both the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL) have developed methodologies to predict module and array performance under actual operating conditions. This paper compares the two methods of determining the performance of PV modules, The methods translate module performance to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly, daily, and annual energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies.

  7. EXOMARS Descent Module GNC Performance

    NASA Astrophysics Data System (ADS)

    Portigliotti, S.; Capuano, M.; Montagna, M.; Martella, P.; Venditto, P.

    2007-08-01

    The ExoMars mission is the first ESA led robotic mission of the Aurora Programme and combines technology development with investigations of major scientific interest. Italy is by far the major contributor to the mission through the strong support of the Italian Space Agency (ASI). ExoMars will search for traces of past and present life, characterize the Mars geochemistry and water distribution, improve the knowledge of the Mars environment and geophysics, and identify possible surface hazards to future human exploration missions. ExoMars will also validate the technology for safe Entry, Descent and Landing (EDL) of a large size Descent Module (DM) carrying a Rover with medium range surface mobility and the access to subsurface. The ExoMars project is presently undergoing its Phase B1 with Thales Alenia Space-Italia as Industrial Prime Contractor. Additionally, as Descent Module responsible, a dedicated simulation tool is under development in Thales Alenia Space-Italia, Turin site, for the end-to-end design and validation / verification of the DM Entry Descent and Landing.

  8. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-09-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, they verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. They discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  9. Performance of Skutterudite-Based Modules

    NASA Astrophysics Data System (ADS)

    Nie, G.; Suzuki, S.; Tomida, T.; Sumiyoshi, A.; Ochi, T.; Mukaiyama, K.; Kikuchi, M.; Guo, J. Q.; Yamamoto, A.; Obara, H.

    2016-08-01

    Due to their excellent thermoelectric (TE) performance, skutterudite materials have been selected by many laboratories and companies for development of TE modules to recover power from waste heat at high temperatures (300°C to 600°C). After years of effort, we have developed reliable n- and p-type skutterudite materials showing maximum figure of merit (ZT) of 1.0 at 550°C and 0.75 at 450°C, respectively. In this work, we systematically investigated the performance of a module made using these two kinds of skutterudite. We demonstrate ˜7.2% conversion efficiency for temperature of 600°C at the hot side of the module and 50°C at the cold side, and show that the module had excellent stability in the high-temperature environment. Further improving the TE performance of our skutterudites, the conversion efficiency reached ˜8.5% under the same condition.

  10. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  11. Performance Based Education. Technology Activity Modules.

    ERIC Educational Resources Information Center

    Custer, Rodney L., Ed.

    These Technology Activity Modules are designed to serve as an implementation resource for technology education teachers as they integrate technology education with Missouri's Academic Performance Standards and provide a source of activities and activity ideas that can be used to integrate and reinforce learning across the curriculum. The modules…

  12. An 18-bit high performance audio σ-Δ D/A converter

    NASA Astrophysics Data System (ADS)

    Hao, Zhang; Xiaowei, Huang; Yan, Han; Cheung, Ray C.; Xiaoxia, Han; Hao, Wang; Guo, Liang

    2010-07-01

    A multi-bit quantized high performance sigma-delta (σ-Δ) audio DAC is presented. Compared to its single-bit counterpart, the multi-bit quantization offers many advantages, such as simpler σ-Δ modulator circuit, lower clock frequency and smaller spurious tones. With the data weighted average (DWA) mismatch shaping algorithm, element mismatch errors induced by multi-bit quantization can be pushed out of the signal band, hence the noise floor inside the signal band is greatly lowered. To cope with the crosstalk between digital and analog circuits, every analog component is surrounded by a guard ring, which is an innovative attempt. The 18-bit DAC with the above techniques, which is implemented in a 0.18 μm mixed-signal CMOS process, occupies a core area of 1.86 mm2. The measured dynamic range (DR) and peak SNDR are 96 dB and 88 dB, respectively.

  13. Functional specification of the Performance Measurement (PM) module

    NASA Technical Reports Server (NTRS)

    Berliner, J. E.

    1980-01-01

    The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.

  14. Ion Propulsion Module design and mission performance

    NASA Technical Reports Server (NTRS)

    Graf, J. E.; Boain, R. J.; Pawlik, E. V.; Pless, L. C.

    1978-01-01

    This paper describes the design options, processes and tradeoffs that occur during the establishment of viable Ion Drive vehicle and mission designs. The options identify those internal vehicle design alternatives which are being considered for future Ion Drive missions, such as sunlight concentrating arrays and direct drive thrust subsystems, and their effect on mission performance. Also, the highly interactive nature of the Ion Drive design process, which occurs between the spacecraft and mission designers, is described. The results of design tradeoffs, performed for three Ion Drive comet rendezvous missions, are presented. These results include the following: (1) the power profile is determined primarily by the trajectory while second order effects include the solar cell characteristics and array concentration factor and degradation; and (2) the dominant parameter in mission performance determination, Ion Propulsion Module (IPM) mass, and IPM design, is the total cell power evaluated without concentration, at the beginning of life and at 1 AU.

  15. Performance improvements in arrayed waveguide grating modules

    NASA Astrophysics Data System (ADS)

    Dixon, Melissa; Fondeur, Barthelemy; Liddle, Craig; Marsh, John A.; Sala, Anca-Liliana

    2002-06-01

    The future of telecom system design relies heavily on combining many optical devices into multifunctional modules with superior performance, lower cost, and smaller overall package size. The AWG module developments discussed here will afford comprehensive benefits to advanced optical networks. Current AWG development efforts focus on lowering insertion loss, reducing crosstalk, increasing channel bandwidth, decreasing channel spacing, managing dispersion, decreasing package size, and incorporating intelligent electronics. Better matching of the waveguide geometry and index of the integrated circuit to the optical fiber reduces the coupling loss. Other design optimizations to the waveguide bend radius and waveguide pitch at the slab can decrease circuit loss. High quality processing reduces the inhomogenieties that cause phase errors in AWGs and thus increase channel crosstalk. Optical design modifications in AWG waveguide tapers at the slab can change the passband shape and increase the channel bandwidth. Dispersion can be managed by better controlling the dispersion slope allowing for compensation. Innovations for temperature control circuitry and novel packaging designs and materials allow for smaller modules and reduced power consumption.

  16. Planck payload module design and performance

    NASA Astrophysics Data System (ADS)

    Riti, Jean-Bernard; Dubruel, Denis; Nadarassin, Madivanane; Martin, Philippe P.; Gavila, Emmanuel; Lasic, Thierry; de Chambure, Daniel; Guillaume, Bernard

    2003-03-01

    Planck associated to Herschel is one of the next ESA scientific missions. Both satellites will be launched in 2007 on a single ARIANE V launcher to the 2nd Lagrange libration point L2. Planck is a Principal Investigator Survey mission and the Planck spacecraft will provide the environment for two full sky surveys in the frequency range from 30 to 857 GHz. Planck aims to image the temperature anisotropies of the Cosmic Microwave Background (CMB) over the whole sky with a sensitivity of ΔT/T = 2 .10-6 and an angular resolution of 10 arc-minutes. This will be obtained thanks to a wide wavelength range telescope associated to a cryogenic Payload Module. The Planck mission leads to very stringent requirements (straylight, thermal stability) that can only be achieved by designing the spacecraft at system level, combining optical, radio frequency and thermal engineering. The PLANCK Payload Module (PPLM) is composed of a cryo-structure supporting and a 1.5 m aperture off-axis telescope equipped of two scientific instruments HFI (High Frequency Instrument) and LFI (Low Frequency Instrument). The LFI detectors are based on HETM amplifier technology and need to be cooled down to 20 K. The detectors for the HFI are bolometers operating at 0.1 K. These temperature levels are obtained using 3 different active coolers, a 20K sorption cooler stage, which need pre-cooling stages for normal operation (the coldest one is around 60 K). Finally, the telescope temperature must be lower than 60 K. To meet those requirements, a specific cryo-structure accommodating a multi-stages cryogenic passive radiator has been developed. The design of this high efficiency radiator is basically a black painted open honeycomb surface radiatively insulated from the warm spacecraft by a set of angled shields opened towards cold space, also called "V-grooves". The coldest stage offers a ~1.5 W net cooling capacity around 55 K. Specific design are implemented to guarantee the straylight performance. The

  17. WIYN tip-tilt module performance

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod

    2003-02-01

    The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.

  18. Simulation verification techniques study. Task report 4: Simulation module performance parameters and performance standards

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Shuttle simulation software modules in the environment, crew station, vehicle configuration and vehicle dynamics categories are discussed. For each software module covered, a description of the module functions and operational modes, its interfaces with other modules, its stored data, inputs, performance parameters and critical performance parameters is given. Reference data sources which provide standards of performance are identified for each module. Performance verification methods are also discussed briefly.

  19. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of

  20. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  1. Evaluation of PV Module Field Performance

    SciTech Connect

    Wohlgemuth, John; Silverman, Timothy; Miller, David C.; McNutt, Peter; Kempe, Michael; Deceglie, Michael

    2015-06-14

    This paper describes an effort to inspect and evaluate PV modules in order to determine what failure or degradation modes are occurring in field installations. This paper will report on the results of six site visits, including the Sacramento Municipal Utility District (SMUD) Hedge Array, Tucson Electric Power (TEP) Springerville, Central Florida Utility, Florida Solar Energy Center (FSEC), the TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification.

  2. Modulation axis performs circular motion in a 45° dual-drive symmetric photoelastic modulator

    NASA Astrophysics Data System (ADS)

    Li, K. W.; Wang, L. M.; Zhang, R.; Wang, Z. B.

    2016-12-01

    A 45° dual-drive symmetric photoelastic modulator is demonstrated. Two piezoelectric actuators are connected to a symmetric photoelastic crystal at an angle of 45°. When the amplitudes of the stress standing waves induced by the two piezoelectric actuators are equal and the phase difference between the two stress standing waves is /π 2 , the modulation axis performs circular motion with a frequency of half of the photoelastic modulator's resonant frequency, while the retardation remains a constant that is determined at the driving voltage amplitudes. This reveals a new polarization modulation method. We have theoretically analyzed and experimentally observed the new polarization modulation, and the retardation calibration is also reported.

  3. Modulation axis performs circular motion in a 45° dual-drive symmetric photoelastic modulator.

    PubMed

    Li, K W; Wang, L M; Zhang, R; Wang, Z B

    2016-12-01

    A 45° dual-drive symmetric photoelastic modulator is demonstrated. Two piezoelectric actuators are connected to a symmetric photoelastic crystal at an angle of 45°. When the amplitudes of the stress standing waves induced by the two piezoelectric actuators are equal and the phase difference between the two stress standing waves is π2, the modulation axis performs circular motion with a frequency of half of the photoelastic modulator's resonant frequency, while the retardation remains a constant that is determined at the driving voltage amplitudes. This reveals a new polarization modulation method. We have theoretically analyzed and experimentally observed the new polarization modulation, and the retardation calibration is also reported.

  4. Performance optimization of the ASR optical module

    NASA Astrophysics Data System (ADS)

    Meinel, W.; Meinel, E.; Meinel, A. B.

    1982-11-01

    The design, construction, and testing of a photovoltaic concentrating collector module using a dish shaped reflector is described. The reflector is .83 meters in diameter and provides sunlight at a geometric concentration intensity of 50 suns to an actively cooled cyclindrical receiver. Six prototype modules were fabricated using reflectors made of a fiberglass reinforced plastic. The maximum electrical efficiency measured was 8.4 percent. Design considerations included the effects of reflector design, receiver size and location, reflective surface errors, alignment errors, and tracking errors on receiver flux distribution. Flux profiles were measured and the shape of the reflectors was determined by using an automated method. An estimate of the costs based on a production version of the design gave an installed energy cost of $3.42 per peak watt.

  5. Performance Evaluation of a Clinical PACS Module

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Cho, Paul S.; Huang, H. K.; Mankovich, Nicholas J.; Boechat, Maria I.

    1989-05-01

    Picture archiving and communication systems (PACS) are now clinically available in limited radiologic applications. The benefits, acceptability, and reliablity of these systems have thus far been mainly speculative and anecdotal. This paper discusses the evaluation of a PACS module implemented in the pediatric radiology section of a 700-bed teaching hospital. The PACS manages all pediatric inpatient images including conventional x-rays and contrast studies (obtained with a computed radiography system), magnetic resonance images, and relevant ultrasound images. A six-monitor workstation is available for image review.

  6. Investigation into Spectral Parameters as they Impact CPV Module Performance

    SciTech Connect

    Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J.

    2011-03-01

    The CPV industry is well aware that performance of triple junction cells depends on spectral conditions but there is a lack of data quantifying this spectral dependence at the module level. This paper explores the impact of precipitable water vapor, aerosol optical depth (AOD), and optical air mass on multiple CPV module technologies on-sun in Golden, CO.

  7. Performance analysis of the ultra-linear optical intensity modulator

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Dingel, Benjamin

    2006-10-01

    The linear optical intensity modulator is a key component in any broadband optical access-based analog fiber-optic link systems such as sub-carrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. Previously, we have proposed a super-linear optical modulator, having SFDR = 130 -140 dB-Hz 2/3, based on a unique combination of phase-modulator (PM) and a weak ring resonator (RR) modulator within a Mach-Zehnder interferometer (MZI). We presented some of its unique features. In this paper, we characterize further this ultra-linear optical intensity modulator, analyze its RF performance and provide method for parameter optimization. Other excellent features of this modulator design such as high manufacturing tolerance, effect of link insertion loss, adaptive characteristic and device simplicity are also discussed.

  8. Hadfield performs regular maintenance on Biolab, in the Columbus Module

    NASA Image and Video Library

    2013-02-20

    ISS034-E-051715 (20 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs routine maintenance on Biolab in the Columbus Module aboard the International Space Station.

  9. Gerst and Swanson perform blood draw in Columbus module

    NASA Image and Video Library

    2014-06-04

    Astronaut Alexander Gerst,Expedition 40 flight engineer (background),and Expedition 40 Commander Steve Swanson are photographed performing blood sample collection in the Columbus module as part of HRF Generic Frozen Blood Collection Operations.

  10. Measurements and Characterization: Cell and Module Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization -- Cell and Module Performance. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  11. Battery Performance in Frequency Modulated Amplification Systems.

    ERIC Educational Resources Information Center

    Lyon, David J.; Swain, Graeme D.

    1989-01-01

    This paper investigates one characteristic of FM radio hearing-aid systems as used in the education of hearing impaired children: battery performance. While batteries studied performed according to manufacturer's specifications, the importance of monitoring the charging procedure cannot be overemphasized. (Author/PB)

  12. Monte Carlo simulation to analyze the performance of CPV modules

    NASA Astrophysics Data System (ADS)

    Herrero, Rebeca; Antón, Ignacio; Sala, Gabriel; De Nardis, Davide; Araki, Kenji; Yamaguchi, Masafumi

    2017-09-01

    A model to evaluate the performance of high concentrator photovoltaics (HCPV) modules (that generates current-voltage curves) has been applied together with a Monte Carlo approach to obtain a distribution of modules with a given set of characteristics (e.g., receivers electrical properties and misalignments within elementary units in modules) related to a manufacturing scenario. In this paper, the performance of CPV systems (tracker and inverter) that contain the set of simulated modules is evaluated depending on different system characteristics: inverter configuration, sorting of modules and bending of the tracker frame. Thus, the study of the HCPV technology regarding its angular constrains is fully covered by analyzing all the possible elements affecting the generated electrical power.

  13. Precise measurement of the performance of thermoelectric modules

    NASA Astrophysics Data System (ADS)

    Díaz-Chao, Pablo; Muñiz-Piniella, Andrés; Selezneva, Ekaterina; Cuenat, Alexandre

    2016-08-01

    The potential exploitation of thermoelectric modules into mass market applications such as exhaust gas heat recovery in combustion engines requires an accurate knowledge of their performance. Further expansion of the market will also require confidence on the results provided by suppliers to end-users. However, large variation in performance and maximum operating point is observed for identical modules when tested by different laboratories. Here, we present the first metrological study of the impact of mounting and testing procedures on the precision of thermoelectric modules measurement. Variability in the electrical output due to mechanical pressure or type of thermal interface materials is quantified for the first time. The respective contribution of the temperature difference and the mean temperature to the variation in the output performance is quantified. The contribution of these factors to the total uncertainties in module characterisation is detailed.

  14. Thin film module electrical configuration versus electrical performance

    NASA Technical Reports Server (NTRS)

    Morel, D. L.

    1985-01-01

    The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.

  15. Performance of an albedo collecting bifacial flat module

    SciTech Connect

    Sala, G.; Calleja, M.J.; Eguren, J.; Luque, A.; Romero, S.L.

    1984-05-01

    Bifacial photovoltaic modules have been recently developed and are now commercially available. These modules are able to collect the light reaching them from the surroundings not only on their front side, but also on their back side. This paper presents the performance on the industrially manufactured bifacial modules measured in outdoor conditions. The authors have found a very significative increase in their output power when the albedo light, diffusively reflected by the white painted floor, is collected on the back side of the module at any given condition. A model to calculate the available energy incident on the back is presented, experimentally validated and used to calculate the overall gain of collected energy. The authors obtained an increase of 57% for an array of infinite modules when the reflectivity of the floor is 0.75.

  16. Cost-Performance Analysis of Perovskite Solar Modules.

    PubMed

    Cai, Molang; Wu, Yongzhen; Chen, Han; Yang, Xudong; Qiang, Yinghuai; Han, Liyuan

    2017-01-01

    Perovskite solar cells (PSCs) are promising candidates for the next generation of solar cells because they are easy to fabricate and have high power conversion efficiencies. However, there has been no detailed analysis of the cost of PSC modules. We selected two representative examples of PSCs and performed a cost analysis of their productions: one was a moderate-efficiency module produced from cheap materials, and the other was a high-efficiency module produced from expensive materials. The costs of both modules were found to be lower than those of other photovoltaic technologies. We used the calculated module costs to estimate the levelized cost of electricity (LCOE) of PSCs. The LCOE was calculated to be 3.5-4.9 US cents/kWh with an efficiency and lifetime of greater than 12% and 15 years respectively, below the cost of traditional energy sources.

  17. Cost‐Performance Analysis of Perovskite Solar Modules

    PubMed Central

    Cai, Molang; Wu, Yongzhen; Chen, Han; Yang, Xudong; Qiang, Yinghuai

    2016-01-01

    Perovskite solar cells (PSCs) are promising candidates for the next generation of solar cells because they are easy to fabricate and have high power conversion efficiencies. However, there has been no detailed analysis of the cost of PSC modules. We selected two representative examples of PSCs and performed a cost analysis of their productions: one was a moderate‐efficiency module produced from cheap materials, and the other was a high‐efficiency module produced from expensive materials. The costs of both modules were found to be lower than those of other photovoltaic technologies. We used the calculated module costs to estimate the levelized cost of electricity (LCOE) of PSCs. The LCOE was calculated to be 3.5–4.9 US cents/kWh with an efficiency and lifetime of greater than 12% and 15 years respectively, below the cost of traditional energy sources. PMID:28105403

  18. Design, fabrication and performance of high efficiency photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.; Kreisman, W. S.; Younger, P. R.

    1981-01-01

    Design details and performance and environmental test results of newly developed high performance and reliability photovoltaic modules are presented. Efficiencies averaging 14.3% for 3040 cells were obtained by using ion implantation for cell junction and back surface field formation. 152 rectangular (6.0 cm x 4.6 cm) cells arranged with a 97% local packing density comprise the circuit assembly, and cells are wired 4 in parallel by 38 in series. The top cover of the superstrate design module is composed of tempered low-iron glass to provide transparent protection for the optical surface. Results show that this design has an encapsulation system which does not fail in the event of reverse-bias operation, and an average module efficiency of 12.2% was achieved at a 58.6W power which varied only 2% among all 20 modules.

  19. Performance comparison of modulation techniques for underlay cognitive radio transceivers

    NASA Astrophysics Data System (ADS)

    Khan, Imtiyaz; Singh, Poonam

    2013-01-01

    In this paper, we present a quantitative comparison of two agile modulation techniques employed by cognitive radio transceivers operating in a dynamic spectrum access (DSA) network. One of the modulation techniques is single carrier frequency division multiple access (SC-FDMA). The other modulation technique under study is a variant of multicarrier code division multiple access (MCCDMA). Although several studies comparing conventional OFDM and MC-CDMA has been conducted in literature to justify robust error performance of MC-CDMA, a quantitative performance evaluation of these schemes has not been performed when employed in a DSA network. In this paper we show that their performances can be significantly different from the conventional setup. Analytical expressions for the error probability of an SC-FDMA transceiver have been derived and compared with computer simulation results. The results show that the error robustness of SC-FDMA is relatively better then MC-CDMA in underlay communication.

  20. Performance of Low-Density Parity-Check Coded Modulation

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  1. Performance of Low-Density Parity-Check Coded Modulation

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  2. MSFC Skylab airlock module, volume 1. [systems design and performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The history and development of the Skylab Airlock Module and Payload Shroud is presented from initial concept through final design. A summary is given of the Airlock features and systems. System design and performance are presented for the Spent Stage Experiment Support Module, structure and mechanical systems, mass properties, thermal and environmental control systems, EVA/IVA suite system, electrical power system, sequential system, sequential system, and instrumentation system.

  3. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  4. Performance of the CLAS12 Silicon Vertex Tracker modules

    SciTech Connect

    Antonioli, Mary Ann; Boiarinov, Serguie; Bonneau, Peter R.; Elouadrhiri, Latifa; Eng, Brian J.; Gotra, Yuri N.; Kurbatov, Evgeny O.; Leffel, Mindy A.; Mandal, Saptarshi; McMullen, Marc E.; Merkin, Mikhail M.; Raydo, Benjamin J.; Teachey, Robert W,; Tucker, Ross J.; Ungaro, Maurizio; Yegneswaran, Amrit S.; Ziegler, Veronique

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  5. Performance of the CLAS12 Silicon Vertex Tracker modules

    NASA Astrophysics Data System (ADS)

    Antonioli, M. A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B.; Gotra, Y.; Kurbatov, E.; Leffel, M.; Mandal, S.; McMullen, M.; Merkin, M.; Raydo, B.; Teachey, W.; Tucker, R.; Ungaro, M.; Yegneswaran, A.; Ziegler, V.

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156 μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  6. Usachev performs maintenance on TVIS system in Service module

    NASA Image and Video Library

    2001-04-01

    ISS002-E-5137 (April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two mission commander, performs routine maintenance on the International Space Station's (ISS) Treadmill Vibration Isolation System (TVIS) in the Zvezda / Service Module. This image was recorded with a digital still camera.

  7. Airbag Landing Impact Performance Optimization for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; McKinney, John; Corliss, James M.

    2008-01-01

    This report will discuss the use of advanced simulation techniques to optimize the performance of the proposed Orion Crew Module airbag landing system design. The Boeing Company and the National Aeronautic and Space Administration s Langley Research Center collaborated in the analysis of the proposed airbag landing system for the next generation space shuttle replacement, the Orion spacecraft. Using LS-DYNA to simulate the Crew Module landing impacts, two main objectives were established and achieved: the investigation of potential methods of optimizing the airbag performance in order to reduce rebound on the anti-bottoming bags, lower overall landing loads, and increase overall Crew Module stability; and the determination of the Crew Module stability and load boundaries using the optimized airbag design, based on the potential Crew Module landing pitch angles and ground slopes in both the center of gravity forward and aft configurations. This paper describes the optimization and stability and load boundary studies and presents a summary of the results obtained and key lessons learned from this analysis.

  8. Performance Study of optical Modulator based on electrooptic effect

    NASA Astrophysics Data System (ADS)

    Palodiya, V.; Raghuwanshi, S. K.

    2016-08-01

    In this paper, we have studied and derive performance parameter of highly integrated Lithium Niobate optical modulator. This is a chirp free modulator having low switching voltage and large bandwidth. For an external modulator in which travelling-wave electrodes length L imposed the modulating switching voltage, the product of Vπ and L is fixed for a given electro optic material Lithium Niobate. We investigate to achieve a low Vπ by both magnitude of the electro-optic coefficient for a wide variety of electro-optic materials. A Sellmeier equation for the extraordinary index of congruent lithium niobate is derived. For phase-matching, predictions are accmate for temperature between room temperature 250°C and wavelength ranging from 0.4 to 5µm. The Sellmeier equations predict more accmately refractive indices at long wavelengths. Theoretical result is confirmed by simulated results. We have analysed the various parameters such as switching voltage, device performance index, time constant, transmittance, cut-off frequency, 3-dB bandwidth, power absorption coefficient and transmission bit rate of Lithium Niobate optical Modulator based on electro -optic effect.

  9. Research on Transmission Performance of Different Modulation Formats Based on Re-modulation WDM-PON

    NASA Astrophysics Data System (ADS)

    Li, Li; Feng, He

    2017-05-01

    Dispersion and nonlinear effects will increase the effect on the system when the optical information transmits in high speed and long distance. The new optical modulation technology can reduce the attenuation caused by transmission procedure. In this paper, OptiSystem and Matlab were combined to set a model by comparing the dispersion tolerance and nonlinear effect of different code modulation formats. After that, the better performance code of IRZ (Inverse Return-to-Zero) and DQPSK (Differential Quadrature Phase Shifted Keying) will be used to study their properties in 10Gbit/s re-modulation WDM-PON access model. The DQPSK was used in downlink, IRZ modulation was used in uplink adopts the IRZ modulation was used in 10 Gbit/s re-modulation WDM passive optical network access model uplink on the basis of the above method. A simulation analysis is also made between the different duty ratios of the DQPSK and IRZ. Compared with the NRZ type, the IRZ has a better anti-dispersion property, channel crosstalk suppression ability and higher spectrum efficiency although it costs 3 dB powers. At the same time, it simplifies the structure of the ONU on the premise of not increasing the power and the cost. So, it fits the large capacity requirements between user stations and the central office in the future.

  10. Theoretical Approach to Predict the Performance of Thermoelectric Generator Modules

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem H.; Fagehi, Hassan; Lee, Hosung; Attar, Alaa

    2017-02-01

    The aim of this work was to examine the validity of the thermoelectric modules' performance predicted by formulating the effective thermoelectric material properties. The three maximum parameters (output power, current, and efficiency) are defined in terms of the average temperature of the thermoelectric generator (TEG). These three maximum parameters, which are either taken from commercial TEG modules or measurements for particular operating conditions, are used to define the effective material properties (Seebeck coefficient, thermal conductivity, and electrical resistivity). The commercial performance curves provided by the manufacturer were compared with the results obtained here by the effective material properties with the simple standard thermoelectric equations. It has been found that this technique predicts the performance of four commercial thermoelectric modules with fair to good accuracy. The characteristics of the TEGs were represented using the normalized charts constructed by formulating the parameters as a fraction of over the maximum parameters. The normalized charts would be universal for any given TEG module once the thermoelectric material is known.

  11. Performance Evaluation of OWC Using Different Modulation Techniques

    NASA Astrophysics Data System (ADS)

    Goyal, Heena; Saxena, Jyoti; Dewra, Sanjeev

    2016-12-01

    In this paper, performance of an optical wireless communication (OWC) channel has been investigated using different modulation techniques such as phase shift keying (PSK), differential PSK (DPSK) and optical quadrature PSK (OQPSK). This investigation has been compared at a bit rate of 20 Gbps. The results are evaluated in terms of quality (Q) factor and bit error rate (BER) using different modulation techniques. It is observed that by using PSK modulation technique, the signal can travel up to 70 km transmission distance with acceptable BER of 3.48×10-12 and Q factor of 6.93. It is also observed that by using DPSK and OQPSK, system covers transmission distance of 80 and 90 km with acceptable values of Q factor of 6.59, 6.02 and BER of 2.34×10-11, 1.46×10-10, respectively.

  12. Solar simulators vs outdoor module performance in the Negev Desert

    SciTech Connect

    Faiman, D.

    1995-09-01

    The power output of photovoltaic cells depends on the intensity of the incoming light, its spectral content and the cell temperature. In order to be able to predict the performance of a pv system, therefore, it is of paramount importance to be able to quantify cell performance in a reproducible manner. The standard laboratory technique for this purpose is to employ a solar simulator and a calibrated reference cell. Such a setup enables module performance to be assessed under constant, standard, illumination and temperature conditions. However, this technique has three inherent weaknesses.

  13. Investigating effects of communications modulation technique on targeting performance

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Eusebio, Gerald; Huling, Edward

    2006-05-01

    One of the key challenges facing the global war on terrorism (GWOT) and urban operations is the increased need for rapid and diverse information from distributed sources. For users to get adequate information on target types and movements, they would need reliable data. In order to facilitate reliable computational intelligence, we seek to explore the communication modulation tradeoffs affecting information distribution and accumulation. In this analysis, we explore the modulation techniques of Orthogonal Frequency Division Multiplexing (OFDM), Direct Sequence Spread Spectrum (DSSS), and statistical time-division multiple access (TDMA) as a function of the bit error rate and jitter that affect targeting performance. In the analysis, we simulate a Link 16 with a simple bandpass frequency shift keying (PSK) technique using different Signal-to-Noise ratios. The communications transfer delay and accuracy tradeoffs are assessed as to the effects incurred in targeting performance.

  14. The Light Microscopy Module Design and Performance Demonstrations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.

    2003-01-01

    The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.

  15. Performance of Novel Thermoelectric Cooling Module Depending on Geometrical Factors

    NASA Astrophysics Data System (ADS)

    Derebasi, Naim; Eltez, Muhammed; Guldiken, Fikret; Sever, Aziz; Kallis, Klaus; Kilic, Halil; Ozmutlu, Emin N.

    2015-06-01

    A geometrical shape factor was investigated for optimum thermoelectric performance of a thermoelectric module using finite element analysis. The cooling power, electrical energy consumption, and coefficient of performance were analyzed using simulation with different current values passing through the thermoelectric elements for varying temperature differences between the two sides. A dramatic increase in cooling power density was obtained, since it was inversely proportional to the length of the thermoelectric legs. An artificial neural network model for each thermoelectric property was also developed using input-output relations. The models including the shape factor showed good predictive capability and agreement with simulation results. The correlation of the models was found to be 99%, and the overall prediction error was in the range of 1.5% and 1.0%, which is within acceptable limits. A thermoelectric module was produced based on the numerical results and was shown to be a promising device for use in cooling systems.

  16. Independent learning modules enhance student performance and understanding of anatomy.

    PubMed

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  17. Background sound modulates the performance of odor discrimination task.

    PubMed

    Seo, Han-Seok; Gudziol, Volker; Hähner, Antje; Hummel, Thomas

    2011-07-01

    Even though we often perceive odors in the presence of various background sounds, surprisingly little is known about the effects of background sound on odor perception. This study aimed to investigate the question whether background sound can modulate performance in an odor discrimination task. In Experiment 1, participants were asked to perform the odor discrimination task while listening to either background noise (e.g., verbal or non-verbal noise) or no additional sound (i.e., silent condition). Participants' performance in the odor discrimination task was significantly deteriorated in the presence of background noise compared with in the silent condition. Rather, the detrimental effect of verbal noise on the task performance was significantly higher than that of non-verbal noise. In Experiment 2, participants were asked to conduct the odor discrimination task while listening to either background music (Mozart's sonata for two pianos in D major, K448) or no additional sound (silent condition). Background music relative to silent condition did not significantly alter the task performance. In conclusion, our findings provide new empirical evidence that background sound modulates the performance in an odor discrimination task.

  18. Temporal prediction errors modulate task-switching performance

    PubMed Central

    Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  19. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  20. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  1. Performance of single-photon-counting PILATUS detector modules.

    PubMed

    Kraft, P; Bergamaschi, A; Broennimann, Ch; Dinapoli, R; Eikenberry, E F; Henrich, B; Johnson, I; Mozzanica, A; Schlepütz, C M; Willmott, P R; Schmitt, B

    2009-05-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition.

  2. Reciprocal Modulation of Cognitive and Emotional Aspects in Pianistic Performances

    PubMed Central

    Higuchi, Marcia K. Kodama; Fornari, José; Del Ben, Cristina M.; Graeff, Frederico G.; Leite, João Pereira

    2011-01-01

    Background High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) – loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains

  3. Reciprocal modulation of cognitive and emotional aspects in pianistic performances.

    PubMed

    Higuchi, Marcia K Kodama; Fornari, José; Del Ben, Cristina M; Graeff, Frederico G; Leite, João Pereira

    2011-01-01

    High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors)--loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution

  4. Reliability and performance experience with flat-plate photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.

  5. A High Performance Delta-Sigma Modulator for Neurosensing.

    PubMed

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md Kafiul; Yang, Zhi

    2015-08-07

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-µm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 µW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors.

  6. A High Performance Delta-Sigma Modulator for Neurosensing

    PubMed Central

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md. Kafiul; Yang, Zhi

    2015-01-01

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-μm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 μW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors. PMID:26262623

  7. High-performance IR detector modules for Army applications

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Rutzinger, S.; Schallenberg, T.; Wendler, J.; Ziegler, J.

    2013-06-01

    Since many years AIM delivers IR-modules for army applications like pilotage, weapon sights, UAVs or vehicle platforms. State-of-the-art 640x512, 15μm pitch detector modules are in production in manifold configurations optimized for specific key requirements on system level. This is possible due to a modular design, which is best suited to meet the diversity of system needs in army applications. Examples are optimization of detector-dewar length for gimbal applications, size weight and power reduction for UAVs or lifetime enhancement for vehicle platforms. In 2012 AIM presented first prototypes of megapixel detectors (1280x1024, 15μm pitch) for both spectral bands MWIR and LWIR. These large format detector arrays fulfill the demand for higher spatial resolution, which is requested for applications like rotorcraft pilotage, persistent surveillance or tasks like determination of threat level in personnel targets. Recently, a new tactical dewar has been developed for the 1280x1024 detector arrays. It is designed to withstand environmental stresses and, at the same time, to quest for a compact overall package. Furthermore, the idea of a modular design will be even more emphasized. Integration of different cooler types, like AIM's SX095 or rotary integral, will be possible without modification of the dewar. The paper will present development status of large format IR-modules at AIM as well as performance data and configuration considerations with respect to army applications.

  8. Si-photonics based passive device packaging and module performance.

    PubMed

    Song, Jeong Hwan; Zhang, Jing; Zhang, Huijuan; Li, Chao; Lo, Guo Qiang

    2011-09-12

    We report a fully packaged silicon passive waveguide device designed for a tunable filter based on a ring-resonator. Polarization diversity circuits prevent polarization dependant issues in the silicon ring-resonator. For the device packaging, the YAG laser welding technique has been used for pigtailing both of the input and output fibers. Post welding misalignment was compensated by mechanical fine tuning using the seesaw effect via power monitoring. Packaging loss less than 1.5 dB with respect to chip measurement has been achieved using 10 µm-curvature radius lensed fibers. In addition, the packaging process and the module performance are presented.

  9. How performance (non-)contingent reward modulates cognitive control.

    PubMed

    Fröber, Kerstin; Dreisbach, Gesine

    2016-07-01

    Reward has repeatedly been shown to influence cognitive control. More precisely, performance contingent reward is known to increase preparatory, proactive control. In comparison, performance non-contingent reward, that is, reward that is not dependent on a pre-specified performance criterion but is given unconditional for any response, even errors, is a rather understudied topic. Recently, Fröber and Dreisbach (2014) compared performance contingent and non-contingent reward in a single experiment. They found that non-contingent reward seems to modulate cognitive control in an oppositional way than contingent reward, namely by reducing proactive control. In the present paper, the authors further investigate this dissociation in two experiments with a reward manipulation that facilitated adaptations to changes in reward availability: reward - with performance contingency varying between subjects - was manipulated not trial-by-trial but in mini-blocks of 20 consecutive trials in an AX-Continuous Performance Task. Performance contingent reward significantly increased proactive control. The repeated experience of non-contingent reward even for errors did not result in increased error rates, but instead was indicative of stable compliance with task rules over time and with less reliance on proactive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Assess Student Performance: Skills. Second Edition. Module D-4 of Category D--Instructional Evaluation. Professional Teacher Education Module Series.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This module, one of a series of 127 performance-based teacher education learning packages focusing upon specific professional competencies of vocational education teachers, deals with assessing student performance of psychomotor skills. Included in the module are learning experiences that address the following topics: important considerations…

  11. Improving the performance of amorphous silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Catalano, A.; D'Aiello, R. V.; Dickson, C. R.

    1987-08-01

    High-performance amorphous silicon solar cells require high-quality undoped hydrogenated amorphous silicon, a conductive p-layer or n-layer window, an effective light-trapping geometry such as textured tin oxide, a reflective back contact (e.g. silver), and low-contact resistance (less than 0.5 ohm sq cm). Requirements for high module-performance require low interconnect resistance (e.g. less than 0.005 ohm sq cm for the Al-SnO2 contact), large percentage of active area, and good uniformity of material properties over large areas. New developments such as superlattice doped layers and improved tin-oxide texturing have led to efficiencies as high as 10.l9 percent in small cells (1 sq cm). Processing improvements have led to efficiencies of 8.1 percent in small cells (1 sq cm). Processing improvements have led to efficiencies of 8.1 percent in l-sq ft modules patterned entirely by laser scribing.

  12. High-Performance Coherent Population Trapping Clock with Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Tricot, François; Calosso, Claudio Eligio; Micalizio, Salvatore; François, Bruno; Boudot, Rodolphe; Guérandel, Stéphane; de Clercq, Emeric

    2017-01-01

    We demonstrate a vapor-cell atomic-clock prototype based on a continuous-wave interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and the relative phase of a bichromatic laser beam in order to increase the number of atoms trapped in a dark state, i.e., a nonabsorbing state. The narrow resonance, observed in the transmission of a Cs vapor cell, is used as a narrow frequency discriminator in an atomic clock. A detailed characterization of the CPT resonance versus numerous parameters is reported. A short-term fractional-frequency stability of 3.2 ×10-13τ-1 /2 up to a 100-s averaging time is measured. These performances are more than one order of magnitude better than industrial Rb clocks and are comparable to those of the best laboratory-prototype vapor-cell clocks. The noise-budget analysis shows that the short- and midterm frequency stability is mainly limited by the power fluctuations of the microwave used to generate the bichromatic laser. These preliminary results demonstrate that the DM-CPT technique is well suited for the development of a high-performance atomic clock, with the potential compact and robust setup due to its linear architecture. This clock could find future applications in industry, telecommunications, instrumentation, or global navigation satellite systems.

  13. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; de Saintignon, P.; Dzahini, D.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Muraz, J. F.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; Del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Bonivento, W.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu.; Augé, E.; Bourdarios, C.; Breton, D.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; Atlas Electromagnetic Liquid Argon Calorimeter Group

    2003-03-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11±0.07. An energy resolution of better than 9.5% GeV1/2/ E (sampling term) has been obtained with electron beams of up to 245 GeV. The uniformity of the response to electrons in an area of Δ η×Δ φ=1.2×0.075 has been measured to be better than 0.8%.

  14. Frequency modulated continuous wave lidar performance model for target detection

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Preece, Bradley L.

    2017-05-01

    The desire to provide the warfighter both ranging and reflected intensity information is increasing to meet expanding operational needs. LIDAR imaging systems can provide the user with intensity, range, and even velocity information of a scene. The ability to predict the performance of LIDAR systems is critical for the development of future designs without the need to conduct time consuming and costly field studies. Performance modeling of a frequency modulated continuous wave (FMCW) LIDAR system is challenging due to the addition of the chirped laser source and waveform mixing. The FMCW LIDAR model is implemented in the NV-IPM framework using the custom component generation tool. This paper presents an overview of the FMCW Lidar, the customized LIDAR components, and a series of trade studies using the LIDAR model.

  15. Noise performance of frequency modulation Kelvin force microscopy

    PubMed Central

    Deresmes, Dominique; Mélin, Thierry

    2014-01-01

    Summary Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values. PMID:24455457

  16. International Space Station power module thermal control system hydraulic performance

    SciTech Connect

    Goldberg, V.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  17. The CdTe detector module and its imaging performance.

    PubMed

    Mori, I; Takayama, T; Motomura, N

    2001-12-01

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurements were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner.

  18. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  19. Auditory and motor imagery modulate learning in music performance.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  20. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  1. Engineering sciences area and module performance and failure analysis area

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Runkle, L. D.

    1982-01-01

    Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.

  2. Performance analysis of spread spectrum modulation in data hiding

    NASA Astrophysics Data System (ADS)

    Gang, Litao; Akansu, Ali N.; Ramkumar, Mahalingam

    2001-12-01

    Watermarking or steganography technology provides a possible solution in digital multimedia copyright protection and pirate tracking. Most of the current data hiding schemes are based on spread spectrum modulation. A small value watermark signal is embedded into the content signal in some watermark domain. The information bits can be extracted via correlation. The schemes are applied both in escrow and oblivious cases. This paper reveals, through analysis and simulation, that in oblivious applications where the original signal is not available, the commonly used correlation detection is not optimal. Its maximum likelihood detection is analyzed and a feasible suboptimal detector is derived. Its performance is explored and compared with the correlation detector. Subsequently a linear embedding scheme is proposed and studied. Experiments with image data hiding demonstrates its effectiveness in applications.

  3. Performance analysis of OFDM modulation on indoor broadband PLC channels

    NASA Astrophysics Data System (ADS)

    Antonio Cortés, José; Díez, Luis; Cañete, Francisco Javier; Sánchez-Martínez, Juan José; Entrambasaguas, José Tomás

    2011-12-01

    Indoor broadband power-line communications is a suitable technology for home networking applications. In this context, orthogonal frequency-division multiplexing (OFDM) is the most widespread modulation technique. It has recently been adopted by the ITU-T Recommendation G.9960 and is also used by most of the commercial systems, whose number of carriers has gone from about 100 to a few thousands in less than a decade. However, indoor power-line channels are frequency-selective and exhibit periodic time variations. Hence, increasing the number of carriers does not always improves the performance, since it reduces the distortion because of the frequency selectivity, but increases the one caused by the channel time variation. In addition, the long impulse response of power-line channels obliges to use an insufficient cyclic prefix. Increasing its value reduces the distortion, but also the symbol rate. Therefore, there are optimum values for both modulation parameters. This article evaluates the performance of an OFDM system as a function of the number of carriers and the cyclic prefix length, determining their most appropriate values for the indoor power-line scenario. This task must be accomplished by means of time-consuming simulations employing a linear time-varying filtering, since no consensus on a tractable statistical channel model has been reached yet. However, this study presents a simpler procedure in which the distortion because of the frequency selectivity is computed using a time-invariant channel response, and an analytical expression is derived for the one caused by the channel time variation.

  4. Professional Teacher Education Module Series. Assess Student Performance: Knowledge, Module D-2 of Category D--Instructional Evaluation.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This second in a series of six learning modules on instructional evaluation is designed to give secondary and postsecondary vocational teachers help in assessing student performance as it relates to knowledge of the facts, data, related information, and procedures taught in their vocational courses. The terminal objective for the module is to…

  5. Develop Student Performance Objectives. Second Edition. Module B-2 of Category B--Instructional Planning. Professional Teacher Education Module Series.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This module is one of a series of 127 performance-based teacher education (PBTE) learning packages focusing upon specific professional competencies of vocational teachers. The competencies upon which these modules are based were identified and verified through research as being important to successful vocational teaching at both the secondary and…

  6. Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman Green interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxin; Zhang, Jian; Wu, Liying

    2007-06-01

    In order to evaluate the phase modulation performance of a 256 × 256 pixel reflecting liquid crystal spatial light modulator purchased from the US Boulder Nonlinear Systems, we identify the linear range of phase shift and evaluate the spatial nonuniformity of the modulator by measuring both phase and intensity with a Twyman-Green interferometer. Experimental results show that the 50-210 grey scales linear ranges of the phase shift established by phase and intensity measurements are in good agreement with each other, which proves that more accurate phase modulation can be achieved. The inherent backplane curvature of the modulator is less than λ/3 and the root-mean-square value of the phase nonuniformity across the modulator aperture is less than λ/10, so the backplane curvature of the modulator is the main contributor to phase distortion due to the modulator. Analysing the deviation of the root-mean-square value of the phase nonuniformity indicates that the stability of the modulator decreases with increasing grey scales. It is therefore concluded that the modulator calibrated using a single interferometer can be used for beam steering, wave-front correction and transformation.

  7. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  8. Polymer-based electro-optic modulators - Fabrication and performance

    NASA Astrophysics Data System (ADS)

    Haas, David R.; Man, H. T.; Teng, C. C.; Chiang, K. P.; Yoon, H. N.; Findakly, T. K.

    1991-02-01

    A wide bandwidth Mach-Zehnder modulator with on/off switching powers of 20 dBm, a bandwidth of up to 20 GHz, and insertion losses around 5 dB is presented which is based on HCC-1232 polymer. Attention is given to material properties of HCC-1232, the modulator design, and preliminary test results.

  9. Performance Analysis of Different Modulation Formats in Optical Communication

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Singh, Maninder; Bhatia, Kamaljit Singh; Ryait, Hardeep Singh

    2016-06-01

    In this paper, we demonstrated the variation of different parameters with quadrature amplitude modulation (QAM) and differential phase shift key (DPSK) sequence generator, which generates modulated signals, in data transmission for communication and analysed that how the difference of these sequence generators effect its resonant frequency (RF) value, eye diagram and electrical constellation representation of the system.

  10. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  11. Comparative performance testing of photovoltaic modules in tropical climates of Indonesia

    NASA Astrophysics Data System (ADS)

    Rosyid, Oo Abdul

    2016-02-01

    Solar energy is one of the most significant types of the sustainable and renewable energy sources that have been used in Indonesia. Photovoltaic (PV) is known as the direct conversion of the sunlight to electricity energy with the used of solar cells. There are number of different types of solar PV modules, from an ever increasing range of manufacturers. Each of them claims that they are the best for one reason or another. This paper reports the study results of energy yield measurements of different PV module technologies performed at the outdoor testing facility of the Energy Technology Center (B2TE-BPPT) Kawasan Puspiptek Serpong-Indonesia from March 2014 through February 2015. The purposes of the study wereto evaluate and compare the performances of three different PV modules during a medium term outdoor exposure at the tropical climate of Indonesia. Normalized energy yields (Y), module efficiency (η), and performance ratio (PR) were calculated for each module, and the effect of module temperature and solar irradiance on these parameters was investigated. Monocrystalline PV module was better in terms of module efficiency and overall power production. Meanwhile micromorph silicon (uc-Si) showed the lowest module efficiency, but the more power production compared with polycrystalline PV module. Module efficiency and performance ratio showed a decreasing trend with increase of module temperature.

  12. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  13. Photovoltaic module performance and durability following long-term field exposure

    SciTech Connect

    Ellibee, D.E.; Hansen, B.R.; King, D.L.; Kratochvil, J.A.; Quintana, M.A.

    1998-09-08

    Our investigations of both new and field-aged photovoltaic modules have indicated that, in general, today's commercially available modules area highly reliable product. However, by using new test procedures, subtle failure mechanisms have also been identified that must be addressed in order to achieve 30-year module lifetimes. This paper summarizes diagnostic test procedures, results, and implications of in-depth investigations of the performance and durability characteristics of commercial modules after long-term field exposure. A collaborative effort with U.S. module manufacturers aimed at achieving 30-year module lifetimes is also described.

  14. Performances and failure of field-aged PV modules operating in Saharan region of Algeria

    NASA Astrophysics Data System (ADS)

    Sadok, M.; Benyoucef, B.; Othmani, M.; Mehdaoui, A.

    2016-07-01

    This article deals with behaviour of PV modules, of different technologies and manufacturers, exposed for long periods in Saharan region of Algeria. These modules are exposed in Adrar in the south-western part of Algeria. The study uses experimental I-V curves of PV modules for determining their performances. The datasheet information of modules will be useful in determination of degradation rates of the modules. Three types of modules have been tested: Photowatt (PWX 500), UDTS-50 and Isofoton (I-75 and I-100 serials). Results showed that Isofoton I-100 modules present the highest degradation rate while the lowest degradation rate was reached with I-75 serial. However, these rates tallies with other studies. The visual inspection of the modules has revealed various kinds of failures and defects responsible of performances drop (EVA browning, delamination, burn marks,…).

  15. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    PubMed

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  16. Performance and palliative care: a drama module for medical students.

    PubMed

    Jeffrey, Ewan James; Goddard, Jen; Jeffrey, David

    2012-12-01

    This paper describes an innovative 2 weeks module for medical students facilitated by drama educators and a palliative medicine doctor. The module incorporates drama, end-of-life care, teamwork and reflective practice. The module contents, practical aspects of drama teaching and learning outcomes are discussed. Various themes emerged from a study of Harold Pinter's play, The Caretaker, which were relevant to clinical practice: silence, power, communication, uncertainty and unanswered questions. Drama teaching may be one way of enhancing students' confidence, increasing self- awareness, developing ethical thinking and fostering teamworking.

  17. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  18. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  19. Towards a Narrowband Photonic Sigma-Delta Digital Antenna

    DTIC Science & Technology

    2012-02-01

    should be a very high precision device with a delay path matching the photonic PRF and a waveguide structure that provides a high degree of phase and...include mode-locked lasers of many types, the use of arrayed waveguide gratings [23] and the use of fiber lattice structures [24] and optical... Jeffrey Knorr and Dr James Calusdian of the Naval Postgraduate School for their invaluable assistance, advice and support throughout this exchange

  20. Leakage current and performance loss of thin film solar modules

    NASA Astrophysics Data System (ADS)

    Gossla, Mario; Hälker, Thomas; Krull, Stefan; Rakusa, Fabia; Roth, Florian; Sinicco, Ivan

    2010-08-01

    Due to the system voltage, solar modules in power plants have to withstand continuous high bias voltages between the absorber/conductive layers of the solar module and the grounded mounting structure. Mon et al.1, 2 showed in several publications during the 1980s that the charge transferred by this electrical field is leading to strong electrochemical degradation effects in the modules, both crystalline and thin-film. The bias voltage, especially for thin film modules, can cause transparent conductive oxide (TCO) corrosion via sodium diffusion through the glass together with the presence of water molecules in the TCO/glass interface.3, 4 Based on these previous works, we analyzed the accelerated degradation effects as well as the end of life conditions of different module technologies and module designs. By means of indoor climate chamber and outdoor experiments and based on a simple model we give an example of service life time in terms of electrochemical damage due to high bias voltages caused by the PV system voltage.

  1. Siemens solar CIS photovoltaic module and system performance at the National Renewable Energy Laboratory

    SciTech Connect

    Strand, T.R.; Kroposki, B.D.; Hansen, R.

    1996-05-01

    This paper evaluates the individual module and array performance of Siemens Solar Industries` copper indium diselenide (CIS) polycrystalline thin-film technology. This is accomplished by studying module and array performance over time. Preliminary temperature coefficients for maximum power, maximum-power voltage, maximum-power current, open-circuit voltage, short-circuit current, and fill factor are determined at both the module and array level. These coefficients are used to correct module/array performance to 25{degrees}C to evaluate stability. We show that CIS exhibits a strong inverse correlation between array power and back-of-module temperature. This is due mainly to the narrow bandgap of the CIS material, which results in a strong inverse correlation between voltage and temperature. We also show that the temperature-corrected module and array performance has been relatively stable over the evaluation interval (=2 years).

  2. Siemens solar CIS photovoltaic module and system performance at the National Renewable Energy Laboratory

    SciTech Connect

    Strand, T.; Kroposki, B.; Hansen, R.; Willett, D.

    1996-05-01

    This paper evaluates the individual module and array performance of Siemens Solar Industries copper indium diselenide (CIS) polycrystalline thin-film technology. This is accomplished by studying module and array performance over time. Preliminary temperature coefficients for maximum power, maximum-power voltage, maximum-power current, open-circuit voltage, short-circuit current, and fill factor are determined at both the module and array level. These coefficients are used to correct module/array performance to 25{degrees}C to evaluate stability. The authors show that CIS exhibits a strong inverse correlation between array power and back-of-module temperature. This is due mainly to the narrow bandgap of the CIS material, which results in a strong inverse correlation between voltage and temperature. They also show that the temperature-corrected module and array performance has been relatively stable over the evaluation interval ({approx}2 years).

  3. When do negative and positive emotions modulate working memory performance?

    PubMed

    Osaka, Mariko; Yaoi, Ken; Minamoto, Takehiro; Osaka, Naoyuki

    2013-01-01

    The present study investigated when emotion modulates working memory from the perspective of neural activation. Using fMRI, we measured brain activity during the encoding and retrieval phases of a reading span test (RST) that used emotional contexts. The emotional RST required participants to read sentences that elicited negative, neural or positive emotional states while they were memorizing target words from the sentences. Compared with the neutral RST, the negative RST activated the right amygdala during the reading phase. Significant activation was also found in the parahippocampal gyrus, albeit only after activation of the amygdala became comparable to that in the neutral RST. In contrast, the positive RST activated the substantia nigra during the reading phase relative to the neutral RST. These findings suggest that negative and positive emotions modulate working memory through distinctive neural circuits. We also discuss possible relationships between emotional modulation and working memory capacity.

  4. When do negative and positive emotions modulate working memory performance?

    PubMed Central

    Osaka, Mariko; Yaoi, Ken; Minamoto, Takehiro; Osaka, Naoyuki

    2013-01-01

    The present study investigated when emotion modulates working memory from the perspective of neural activation. Using fMRI, we measured brain activity during the encoding and retrieval phases of a reading span test (RST) that used emotional contexts. The emotional RST required participants to read sentences that elicited negative, neural or positive emotional states while they were memorizing target words from the sentences. Compared with the neutral RST, the negative RST activated the right amygdala during the reading phase. Significant activation was also found in the parahippocampal gyrus, albeit only after activation of the amygdala became comparable to that in the neutral RST. In contrast, the positive RST activated the substantia nigra during the reading phase relative to the neutral RST. These findings suggest that negative and positive emotions modulate working memory through distinctive neural circuits. We also discuss possible relationships between emotional modulation and working memory capacity. PMID:23459220

  5. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  6. A side-by-side comparison of CPV module and system performance

    SciTech Connect

    Muller, Matthew; Marion, Bill; Kurtz, Sarah; Ghosal, Kanchan; Burroughs, Scott; Libby, Cara; Enbar, Nadav

    2016-02-23

    A side-by-side comparison is made between concentrator photovoltaic module and system direct current aperture efficiency data with a focus on quantifying system performance losses. The individual losses measured/calculated, when combined, are in good agreement with the total loss seen between the module and the system. Results indicate that for the given test period, the largest individual loss of 3.7% relative is due to the baseline performance difference between the individual module and the average for the 200 modules in the system. A basic empirical model is derived based on module spectral performance data and the tabulated losses between the module and the system. The model predicts instantaneous system direct current aperture efficiency with a root mean square error of 2.3% relative.

  7. Usachev performs maintenance on TVIS in Zvezda module

    NASA Image and Video Library

    2001-04-26

    ISS002-E-7015 (26 April 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander representing Rosaviakosmos, conducts maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda/Service Module. A digital still camera was used to record this image.

  8. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1978-01-01

    The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.

  9. Performance improvement of PEFC modules with cell containing low amount of platinum

    SciTech Connect

    Miyake, Y.; Kadowaki, M.; Hamada, A.

    1996-12-31

    Cell components of the PEFC module were studied to improve the module performance. The cell performance in a high air utilization region was improved by selecting an air channel design of the separator in which high air flow speed was obtained. Optimization of Teflon{reg_sign} amount on the cathode backing carbon paper also contributed the cell performance. Modifications of the gas channel design and the backing carbon paper were carried out in a 200 cm{sup 2} x 20-cell module and 36-cell module. Dependence of air utilization on module performance was remarkably improved and power density of more than 0.3 W/cm{sup 2} was achieved in spite of the platinum amount in the cells was decreased to 1.1 Mg/cm{sup 2}.

  10. Professional Teacher Education Module Series. Develop Student Performance Objectives, Module B-2 of Category B--Instructional Planning.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This second in a series of six learning modules on instructional planning is designed to give secondary and postsecondary vocational teachers skill in writing student performance objectives which spell out for teachers, students, and prospective employers exactly what is expected of students in the program. It is also intended to give experience…

  11. Adult Competency Instructional Guide Based on Adult Performance Level Studies. Career Education for Adults. Consumer Economics Module. Health Module.

    ERIC Educational Resources Information Center

    Auburn Univ., AL. Dept. of Vocational and Adult Education.

    Developed at Auburn University, Alabama, and based on Adult Performance Level (APL) research conducted at the University of Texas, the two teaching modules for adult career education in this curriculum guide are for the health and for the consumer economics curriculum areas. Focus is on development of basic skills in communication, problem…

  12. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance.

    PubMed

    Routson, Rebecca L; Clark, David J; Bowden, Mark G; Kautz, Steven A; Neptune, Richard R

    2013-07-01

    Recent studies have suggested the biomechanical subtasks of walking can be produced by a reduced set of co-excited muscles or modules. Individuals post-stroke often exhibit poor inter-muscular coordination characterized by poor timing and merging of modules that are normally independent in healthy individuals. However, whether locomotor therapy can influence module composition and timing and whether these improvements lead to improved walking performance is unclear. The goal of this study was to examine the influence of a locomotor rehabilitation therapy on module composition and timing and post-stroke hemiparetic walking performance. Twenty-seven post-stroke hemiparetic subjects participated in a 12-week locomotor intervention incorporating treadmill training with body weight support and manual trainers accompanied by training overground walking. Electromyography (EMG), kinematic and ground reaction force data were collected from subjects both pre- and post-therapy and from 19 age-matched healthy controls walking on an instrumented treadmill at their self-selected speed. Non-negative matrix factorization was used to identify the module composition and timing from the EMG data. Module timing and composition, and various measures of walking performance were compared pre- and post-therapy. In subjects with four modules pre- and post-therapy, locomotor training resulted in improved timing of the ankle plantarflexor module and a more extended paretic leg angle that allowed the subjects to walk faster and with more symmetrical propulsion. In addition, subjects with three modules pre-therapy increased their number of modules and improved walking performance post-therapy. Thus, locomotor training has the potential to influence module composition and timing, which can lead to improvements walking performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Influence of Locomotor Rehabilitation on Module Quality and Post-Stroke Hemiparetic Walking Performance

    PubMed Central

    Routson, Rebecca L.; Clark, David J.; Bowden, Mark G.; Kautz, Steven A.; Neptune, Richard R.

    2013-01-01

    Recent studies have suggested the biomechanical subtasks of walking can be produced by a reduced set of co-excited muscles or modules. Individuals post-stroke often exhibit poor inter-muscular coordination characterized by poor timing and merging of modules that are normally independent in healthy individuals. However, whether locomotor therapy can influence module composition and timing and whether these improvements lead to improved walking performance is unclear. The goal of this study was to examine the influence of a locomotor rehabilitation therapy on module composition and timing and post-stroke hemiparetic walking performance. Twenty-eight post-stroke hemiparetic subjects participated in a 12-week locomotor intervention incorporating treadmill training with body weight support and manual trainers accompanied by training overground walking. Electromyography (EMG), kinematic and ground reaction force data were collected from subjects both pre- and post-therapy and from 19 age-matched healthy controls walking on an instrumented treadmill at their self-selected speed. Non-negative matrix factorization was used to identify the module composition and timing from the EMG data. Module timing and composition, and various measures of walking performance were compared pre- and post-therapy. In subjects with four modules pre- and post-therapy, locomotor training resulted in improved timing of the ankle plantarflexor module and a more extended paretic leg angle that allowed the subjects to walk faster and with more symmetrical propulsion. In addition, subjects with three modules pre-therapy increased their number of modules and improved walking performance post-therapy. Thus, locomotor training has the potential to influence module composition and timing, which can lead to improvements walking performance. PMID:23489952

  14. Strekalov performing maintenance on Core module control panel

    NASA Image and Video Library

    1995-07-01

    NM18-302-025 (March-July 1995) --- Onboard Mir's base block module cosmonaut Gennadiy M. Strekalov, flight engineer, prepares to check the air quality control and the propulsion system of the station. Strekalov told reporters at a July 18 press conference in Houston that even though he tried not to awaken astronaut Norman E. Thagard, who was asleep nearby, he was unable to keep from disturbing the cosmonaut researcher. He went on to point out that Thagard was always very cooperative and tolerant of such interruptions.

  15. Optimization of the Mechanical and Electrical Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Bjørk, Rasmus; Pryds, Nini

    2015-11-01

    Finite-element simulation of a thermoelectric (TE) module was conducted to optimize its geometrical dimensions in terms of mechanical reliability and performance. The TE module consisted of bismuth telluride n- and p-type legs. The geometrical dimensions of the module, i.e., leg length and leg cross-sectional area, were varied, and the corresponding maximum thermal stress, output power, and efficiency of the module obtained. An optimal design for the module was then suggested based on minimizing the thermal stresses and maximizing the performance, i.e., power and efficiency. The optimal dimensions at maximum von Mises stress of 75 MPa were leg length of 2 mm to 2.5 mm and leg width of 1.5 mm to 2 mm, resulting in efficiency of 7.2%. Finally, the influence of solders, i.e., solder material between the leg, the interconnector, and the top ceramic layer, on the induced thermal stresses and module performance was investigated. The results revealed that the transition from elastic to plastic deformation in the solder decreased the induced thermal stresses significantly. Moreover, beyond the elastic limit, the stress magnitude was highly dependent on the magnitude and mechanism of plastic deformation in the module. The present study provides a basis for a unique and new optimization scheme for TE modules in terms of endurance and performance.

  16. NREL PV Module Reliability and Performance R&D Status and Accomplishments

    SciTech Connect

    Osterwald, C. R.

    2005-01-01

    This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) Module Reliability and Performance R&D Subtask, which is part of the PV Module Reliability R&D Project (a joint NREL-Sandia project).

  17. Working Smart. The Los Angeles Unified School District Workplace Literacy Project. Performance Modules. Communication Modules, Manual/Workbook. Computational Modules, Manual/Workbook.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    This document consists of performance, computational, and communication modules used by the Working Smart workplace literacy project, a project conducted for the hotel and food industry in the Los Angeles area by a public school district and several profit and nonprofit companies. Literacy instruction was merged with job requirements of the…

  18. High Performance Concentrating Photovoltaic Module Designs Employing Reflective Lens Optics

    NASA Astrophysics Data System (ADS)

    Vasylyev, Sergey V.; Vasylyev, Viktor P.

    2011-12-01

    The present study is aimed at advancing the optical component as well as optimizing the design of concentrating photovoltaic (CPV) modules in order to increase the conversion efficiency and improve the utility of CPV while obtaining the prescribed concentration ratio. In this work, we turn to non-traditional concentrating optics, namely Reflective Lenses™ (RL), first introduced in early 2000s. The optical configuration of RLs is unique since it combines the very low F/D number (hence resulting in a very low profile of the unit) of mirrors with a rear-focus of lenses and uses only a single-stage reflection. A liner-focus version of RLs, the Slat-Array Concentrator (SAC), is a capable alternative to the parabolic troughs for mid-concentration CPV. A point-focus version called the Ring-Array Concentrator (RAC) is deemed suitable for high concentration photovoltaics.

  19. Performance analysis of the dual-parallel polarization modulator based optical single-sideband modulator/frequency shifter

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Li, Jianping; Li, Zhaohui

    2016-06-01

    The performance of the dual-parallel polarization modulator based optical single-sideband modulator (PSSBM) or frequency shifter (FS) has been studied theoretically. There are various factors impacting the performance of PSSBM/FS, such as the state of polarization (SOP), imbalanced power ratio, and direct current (dc) bias control, and they all have been validated through the VPI software. Based on our simulation results, the desired high-quality SSB frequency shift can be achieved through the PSSBM/FS by applying the optimized parameters while only one dc bias control is required. The results show that PSSBM/FS has the advantages and potentiality to be a commercial product used in various scenarios.

  20. User's Manual for Data for Validating Models for PV Module Performance

    SciTech Connect

    Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

    2014-04-01

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  1. Performance of High Voltage Modules Under Abuse Operations

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.; Irlbeck, Bradley W.

    2005-01-01

    The Electric Auxiliary Power Unit (EAPU) or the Advanced Hydraulic Power System (AHPS) is a Shuttle Upgrade program. Of the two battery design approaches that were considered in support of this program, the current paper concentrates on the testing performed on the small-cell approach. Testing performed at both ComDev Space, Canada and at NASA-JSC is described in this paper. Testing included those under mission profile conditions and off-nominal abusive conditions.

  2. Analgesics and Sport Performance: Beyond the Pain-Modulating Effects.

    PubMed

    Holgado, Darias; Hopker, James; Sanabria, Daniel; Zabala, Mikel

    2017-08-04

    Analgesics are used widely in sport to treat pain and inflammation associated with injury. However, there is growing evidence that some athletes might be taking these substances in an attempt to enhance performance. Although the pharmacologic action of analgesics and their use in treating pain with and without anti-inflammatory effect is well established, their effect on sport performance is debated. The aim of this review was to evaluate the evidence of whether analgesics are capable of enhancing exercise performance and, if so, to what extent. Paracetamol has been suggested to improve endurance and repeated sprint exercise performance by reducing the activation of higher brain structures involved in pain and cognitive/affective processing. Nonsteroidal anti-inflammatory drugs affect both central and peripheral body systems, but investigation on their ergogenic effect on muscle strength development has provided equivocal results. The therapeutic use of glucocorticoids is indubitable, but clear evidence exists for a performance-enhancing effect after short-term oral administration. Based on the evidence presented in this review article, the ergogenic benefit of analgesics may warrant further consideration by regulatory bodies. In contrast to the aforementioned analgesics, there is a paucity of research on the use of opioids such as tramadol on sporting performance. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music.

    PubMed

    Nakahara, Hidehiro; Furuya, Shinichi; Masuko, Tsutomu; Francis, Peter R; Kinoshita, Hiroshi

    2011-09-01

    The present study investigated the differential effects of music-induced emotion on heart rate (HR) and its variability (HRV) while playing music on the piano and listening to a recording of the same piece of music. Sixteen pianists were monitored during tasks involving emotional piano performance, non-emotional piano performance, emotional perception, and non-emotional perception. It was found that emotional induction during both perception and performance modulated HR and HRV, and that such modulations were significantly greater during musical performance than during perception. The results confirmed that musical performance was far more effective in modulating emotion-related autonomic nerve activity than musical perception in musicians. The findings suggest the presence of a neural network of reward-emotion-associated autonomic nerve activity for musical performance that is independent of a neural network for musical perception.

  4. Modulation performance of semiconductor laser coupled with an ultra-short external cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Moustafa; Bakry, Ahmed

    2016-02-01

    We present modeling on the evaluation of the modulation performance of semiconductor laser coupled with an ultra-short external cavity in terms of the intensity modulation (IM) response, relative intensity noise (RIN), carrier to noise ratio (CNR), and frequency chirp. The modulation is characterized along the period-doubling (PD) route to chaos induced by optical feedback (OFB). We focus on the possibility of increasing the modulation bandwidth by improving the carrier-photon resonance (CPR) frequency or inducing resonant modulation due to photon-photon resonance (PPR). We show that along the route to chaos, OFB could increase the CPR frequency and improve the 3 dB-modulation bandwidth from 19 GHz to 28 GHz. When strong OFB keeps the continuous wave (CW) operation or induces periodic oscillation (PO), PPR becomes significant and reveals resonance modulation over mm-frequency passband exceeding 50 GHz. Both CNR and frequency chirp are also enhanced around the CPR and PPR frequencies. The highest CNR peak is obtained when modulating the CW or PO laser, whereas the maximum peak of chirp corresponds to non-modulated chaotic laser.

  5. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    PubMed

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-09-05

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    NASA Astrophysics Data System (ADS)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2017-05-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  7. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    NASA Astrophysics Data System (ADS)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2016-11-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  8. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  9. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a

  10. Internal performance predictions for Langley scramjet engine module

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1978-01-01

    A one dimensional theoretical method for the prediction of the internal performance of a scramjet engine is presented. The effects of changes in vehicle forebody flow parameters and characteristics on predicted thrust for the scramjet engine were evaluated using this method, and results are presented. A theoretical evaluation of the effects of changes in the scramjet engine's internal parameters is also presented. Theoretical internal performance predictions, in terms thrust coefficient and specific impulse, are provided for the scramjet engine for free stream Mach numbers of 5, 6, and 7 free stream dynamic pressure of 23,940 N/sq m forebody surface angles of 4.6 deg to 14.6 deg, and fuel equivalence ratio of 1.0.

  11. Performance of a thermionic converter module utilizing emitter and collector heat pipes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.

    1978-01-01

    A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.

  12. Travelling wave analysis on high-speed performance of Q-modulated distributed feedback laser.

    PubMed

    Zhi, Jiankun; Zhu, Hongli; Liu, Dekun; Wang, Lei; He, Jian-Jun

    2012-01-30

    The structure of a Q-modulated distributed feedback laser is designed and simulated. A large reflectivity modulation of the rear reflector is achieved by using an anti-resonant cavity formed by two deep trenches with the one between the modulator and phase section filled by a high index dielectric material. The travelling wave model is presented to analyze the high speed performance of the laser. Due to the effect of the wave propagation in the structure, the modulation extinction ratio decreases with increasing cavity length. It is shown that 40 Gb/s RZ signal modulation can be achieved with an extinction ratio of 7 dB and 10 dB, respectively, for a cavity length of 500 μm and 300 μm.

  13. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  14. Online Pre-laboratory Modules Enhance Introductory Biology Students’ Preparedness and Performance in the Laboratory

    PubMed Central

    Peteroy-Kelly, Marcy

    2010-01-01

    Introductory biology students are typically overwhelmed in the laboratory. Many of the students are unsure of how to prepare for each session. Two online pre-laboratory modules were developed to introduce the students to the concepts required for laboratory. The students studied the information in the modules and took an online quiz prior to each lab session. Of the 49 students who reviewed the first module and took the online quiz, the average quiz grade was 83.7% ± 12.8. A control group that did not review the online module had an average quiz grade of 53.6% ± 17.5. Of the 20 students who reviewed the second module and took the online quiz, the average quiz grade was 76% ± 15.0. The average quiz grade of the control group was 47.2% ± 16.5. The students were required to prepare laboratory reports for each session. Students who were required to review the modules received slightly higher grades on their laboratory reports compared to the control group. The students and faculty took a survey to determine their perceived impact of the modules on laboratory preparedness and performance. Both the faculty and students agreed that students are typically underprepared for lab (100% and 62%, respectively). Eighty-five percent of the students and all faculty felt that the modules did help them with preparation for the lab. Eighty-eight percent of the students and 76% of the faculty reported that the modules helped them to prepare their laboratory reports. These data clearly indicate that the pre-laboratory modules do enhance student preparedness and performance in the laboratory. PMID:23914280

  15. Improving performance in noise for hearing aids and cochlear implants using coherent modulation filteringa

    PubMed Central

    Won, Jong Ho; Schimmel, Steven M.; Drennan, Ward R.; Souza, Pamela E.; Atlas, Les; Rubinstein, Jay T.

    2008-01-01

    This study evaluated the maximal attainable performance of speech enhancement strategies based on coherent modulation filtering. An optimal adaptive coherent modulation filtering algorithm was designed to enhance known signals from a target talker in two-talker babble noise. The algorithm was evaluated in a closed-set, speech-recognition-in-noise task. The speech reception threshold (SRT) was measured using a one-down, one-up adaptive procedure. Five hearing-impaired subjects and five cochlear implant users were tested in three processing conditions: (1) original sounds; (2) fixed coherent modulation filtered sounds; and (3) optimal coherent modulation filtered sounds. Six normal-hearing subjects were tested with a 6-channel cochlear implant simulation of sounds processed in the same three conditions. Significant improvements in SRTs were observed when the signal was processed with the optimal coherent modulation filtering algorithm. There was no benefit when the signal was processed with the fixed modulation filter. The current study suggested that coherent modulation filtering might be a promising method for front-end processing in hearing aids and cochlear implants. An approach such as hidden Markov models could be used to generalize the optimal coherent modulation filtering algorithm to unknown utterances and to extend it to open-set speech. PMID:18295993

  16. Identifying colon cancer risk modules with better classification performance based on human signaling network.

    PubMed

    Qu, Xiaoli; Xie, Ruiqiang; Chen, Lina; Feng, Chenchen; Zhou, Yanyan; Li, Wan; Huang, Hao; Jia, Xu; Lv, Junjie; He, Yuehan; Du, Youwen; Li, Weiguo; Shi, Yuchen; He, Weiming

    2014-10-01

    Identifying differences between normal and tumor samples from a modular perspective may help to improve our understanding of the mechanisms responsible for colon cancer. Many cancer studies have shown that signaling transduction and biological pathways are disturbed in disease states, and expression profiles can distinguish variations in diseases. In this study, we integrated a weighted human signaling network and gene expression profiles to select risk modules associated with tumor conditions. Risk modules as classification features by our method had a better classification performance than other methods, and one risk module for colon cancer had a good classification performance for distinguishing between normal/tumor samples and between tumor stages. All genes in the module were annotated to the biological process of positive regulation of cell proliferation, and were highly associated with colon cancer. These results suggested that these genes might be the potential risk genes for colon cancer. Copyright © 2013. Published by Elsevier Inc.

  17. The SOUDAN 2 detector The operation and performance of the tracking calorimeter modules

    NASA Astrophysics Data System (ADS)

    Allison, W. W. M.; Alner, G. J.; Ambats, I.; Ayres, D. S.; Balka, L. J.; Barr, G. D.; Barrett, W. L.; Benjamin, D.; Bode, C.; Border, P. M.; Brooks, C. B.; Cobb, J. H.; Cockerill, D. J. A.; Coover, K.; Cotton, R. J.; Courant, H.; Dahlin, B. B.; DasGupta, U.; Dawson, J. W.; Demuth, D. M.; Edwards, V. W.; Ewen, B.; Fields, T. H.; Garcia-Garcia, C.; Gallagher, H. M.; Giles, R. H.; Giller, G. L.; Goodman, M. C.; Gray, R. N.; Heppelmann, S.; Hill, N.; Hoftiezer, J. H.; Jankowski, D. J.; Johns, K.; Joyce, T.; Kafka, T.; Kasahara, S. M. S.; Kirby-Gallagher, L. M.; Kochocki, J.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Lopez, F. V.; Lowe, M. J.; Mann, W. A.; Marshak, M. L.; May, E. N.; Maxam, D.; McMaster, L.; Milburn, R.; Miller, W. H.; Minor, C. P.; Mondal, N.; Mualem, L.; Napier, A.; Nelson, E. M.; Nickson, R.; Oliver, W.; Pearce, G. F.; Perkins, D. H.; Peterson, E. A.; Price, L. E.; Roback, D. M.; Rosen, D. B.; Ruddick, K.; Saitta, B.; Schmid, D. J.; Schlereth, J.; Schneps, J.; Schub, M. H.; Seidlein, R. V.; Shield, P. D.; Shupe, M. A.; Spear, S.; Stassinakis, A.; Sundaralingam, N.; Thomson, M. A.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; Wall, D.; Wallis, E. W. G.; Weems, L.; Werkema, S. J.; West, N.; Wielgosz, U.; Woods, C. A.; Yarker, S.

    1996-02-01

    SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and {dE }/{dx } to be recorded for charged particles traversing the tubes. The spatial resolution is 0.38 cm in the x- y plane and 0.65 cm in the z, or drift, direction. The operation and performance of the modules are discussed.

  18. Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance

    PubMed Central

    Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Kawato, Mitsuo; Lau, Hakwan

    2016-01-01

    A central controversy in metacognition studies concerns whether subjective confidence directly reflects the reliability of perceptual or cognitive processes, as suggested by normative models based on the assumption that neural computations are generally optimal. This view enjoys popularity in the computational and animal literatures, but it has also been suggested that confidence may depend on a late-stage estimation dissociable from perceptual processes. Yet, at least in humans, experimental tools have lacked the power to resolve these issues convincingly. Here, we overcome this difficulty by using the recently developed method of decoded neurofeedback (DecNef) to systematically manipulate multivoxel correlates of confidence in a frontoparietal network. Here we report that bi-directional changes in confidence do not affect perceptual accuracy. Further psychophysical analyses rule out accounts based on simple shifts in reporting strategy. Our results provide clear neuroscientific evidence for the systematic dissociation between confidence and perceptual performance, and thereby challenge current theoretical thinking. PMID:27976739

  19. Photovoltaic module and array performance characterization methods for all system operating conditions

    NASA Astrophysics Data System (ADS)

    King, David L.

    1997-02-01

    This paper provides new test methods and analytical procedures for characterizing the electrical performance of photovoltaic modules and arrays. The methods use outdoor measurements to provide performance parameters both at standard reporting conditions and for all operating conditions encountered by typical photovoltaic systems. Improvements over previously used test methods are identified, and examples of the successful application of the methodology are provided for crystalline- and amorphous-silicon modules and arrays. This work provides an improved understanding of module and array performance characteristics, and perhaps most importantly, a straight-forward yet rigorous model for predicting array performance at all operating conditions. For the first time, the influences of solar irradiance, operating temperature, solar spectrum, solar angle-of-incidence, and temperature coefficients are all addressed in a practical way that will benefit both designers and users of photovoltaics.

  20. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  1. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  2. The Performance Of SISO In Wireless Open-Access Research Platform (WARP) Using QAM Modulation

    NASA Astrophysics Data System (ADS)

    Putri Hapsari, Jenny; Anisah, Ida

    2017-04-01

    This paper shows the implementation of SISO communication system using QAM modulation in WARP. The performance of the proposed system is evaluated in terms of Bit-Error-Rate (BER) for different M-array level: 4, 8, and 16 in indoor and outdoor environments, both using LOS condition. In the analysis results, SISO performance with 4-QAM modulation achieves better performance compared to 8-QAM and 16-QAM for both environments. Meanwhile, SISO performance with QAM modulation in outdoor environment achieves better results compared to indoor environment for different M-array level. In indoor environment with transmitted power -26 dBm, BER achieved for 4-QAM, 8-QAM, and 16-QAM are 1.33 × 10-4, 2.078 × 10-2, and 8.76 × 10-2, respectively. While in outdoor environment with the same transmitted power, BER achieved for 4-QAM, 8-QAM, and 16-QAM are 0, 1.497 × 10-2 and 5.928 × 10-2, respectively. SISO performance using M-QAM modulation is better than using M-PSK modulation.

  3. Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii

    NASA Astrophysics Data System (ADS)

    Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas

    2011-12-01

    Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.

  4. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.

    PubMed

    Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina

    2017-02-20

    The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.

  5. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  6. Modeling and characterization of embedded electrode performance in transverse electrooptic modulators.

    PubMed

    Title, M A; Lee, S H

    1990-01-01

    A mathematical model with experimental verification is presented to characterize the performance of surface and embedded electrodes in 2-D electrooptic modulators. From the solution of a discretized integral equation for the electrode surface charge, the electrode capacitance and the electric field penetration and uniformity are related to the switching voltage, speed, and uniformity of the electrooptic modulation. Fabricated surface and embedded electrodes in 9/65/35 PLZT are then evaluated with respect to the predictions of the model and the saturated quadratic response of the electrooptic material. These results provide important insight into the design trade-offs of switching speed, halfwave voltage, switching energy, and modulation uniformity of surface and embedded modulator geometries.

  7. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  8. Performance characterization of an internsity-modulated fiber optic displacement sensor

    SciTech Connect

    Moro, Erik Allan; Todd, Michael D; Puckett, Santhony D

    2010-09-30

    A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

  9. Student Performance in a Pharmacotherapy Oncology Module Before and After Flipping the Classroom

    PubMed Central

    Panus, Peter; Stewart, David W.; Hagemeier, Nick E; George, Joshua

    2016-01-01

    Objective. To determine if a flipped classroom improved student examination performance in a pharmacotherapy oncology module. Design. Third-year pharmacy students in 2012 experienced the oncology module as interactive lectures with optional case studies as supplemental homework. In 2013, students experienced the same content in a primarily flipped classroom. Students were instructed to watch vodcasts (video podcasts) before in-class case studies but were not held accountable (ie, quizzed) for preclass preparation. Examination questions were identical in both cohorts. Performance on examination questions was compared between the two cohorts using analysis of covariance (ANCOVA), with prior academic performance variables (grade point average [GPA]) as covariates. Assessment. The students who experienced the flipped classroom approach performed poorer on examination questions than the cohort who experienced interactive lecture, with previous GPA used as a covariate. Conclusion. A flipped classroom does not necessarily improve student performance. Further research is needed to determine optimal classroom flipping techniques. PMID:27073284

  10. Student Performance in a Pharmacotherapy Oncology Module Before and After Flipping the Classroom.

    PubMed

    Bossaer, John B; Panus, Peter; Stewart, David W; Hagemeier, Nick E; George, Joshua

    2016-03-25

    Objective. To determine if a flipped classroom improved student examination performance in a pharmacotherapy oncology module. Design. Third-year pharmacy students in 2012 experienced the oncology module as interactive lectures with optional case studies as supplemental homework. In 2013, students experienced the same content in a primarily flipped classroom. Students were instructed to watch vodcasts (video podcasts) before in-class case studies but were not held accountable (ie, quizzed) for preclass preparation. Examination questions were identical in both cohorts. Performance on examination questions was compared between the two cohorts using analysis of covariance (ANCOVA), with prior academic performance variables (grade point average [GPA]) as covariates. Assessment. The students who experienced the flipped classroom approach performed poorer on examination questions than the cohort who experienced interactive lecture, with previous GPA used as a covariate. Conclusion. A flipped classroom does not necessarily improve student performance. Further research is needed to determine optimal classroom flipping techniques.

  11. Performance Stabilization of CdTe PV Modules using Bias and Light

    SciTech Connect

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Kurtz, S. R.

    2014-07-01

    Reversible performance changes due to light exposure frustrate repeatable performance measurements on CdTe PV modules. It is common to use extended light-exposure to ensure that measurements are representative of outdoor performance. We quantify the extent to which such a light-exposed state depends on module temperature and consider bias in the dark to aid in stabilization. We evaluate the use of dark forward bias to bring about a performance state equivalent to that obtained with light exposure, and to maintain a light-exposed state prior to STC performance measurement. Our results indicate that the most promising method for measuring a light-exposed state is to use light exposure at controlled temperature followed by prompt STC measurement with a repeatable time interval between exposure and the STC measurement.

  12. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  13. Performance of see-through prism CPV module for window integrated photovoltaics.

    PubMed

    Yamada, Noboru; Kanno, Kosuke; Hayashi, Kentaro; Tokimitsu, Toru

    2011-07-04

    We have examined the performance of a see-through photovoltaics module that uses a low-concentration prism concentrator by undertaking ray-tracing analysis and an on-site experiment. The incident angle dependency of the prism concentrator makes it possible to concentrate direct solar radiation onto solar cells and transmit diffuse solar radiation. Fewer solar cells can then be used without sacrificing the conversion efficiency or lighting performance. The module generates approximately 1.15 more electricity than a conventional module while operating with 63% less solar cell area. We also introduce a design method for the concentrator geometry that adjusts the incident angle dependency for different latitude and tilt angles.

  14. Tyurin and Voss perform maintenance on the TVIS treadmill in the Service Module

    NASA Image and Video Library

    2001-08-19

    ISS003-E-5200 (19 August 2001) --- Cosmonaut Mikhail Tyurin (left), Expedition Three flight engineer representing Rosaviakosmos, and astronaut James S. Voss, Expedition Two flight engineer, perform maintenance in the Zvezda Service Module on the International Space Station (ISS). This image was taken with a digital still camera.

  15. Tyurin and Voss perform maintenance on the TVIS treadmill in the Service Module

    NASA Image and Video Library

    2001-08-19

    ISS003-E-5192 (19 August 2001) --- Cosmonaut Mikhail Tyurin (left), Expedition Three flight engineer representing Rosaviakosmos, and astronaut James S. Voss, Expedition Two flight engineer, perform maintenance in the Zvezda Service Module on the International Space Station (ISS). This image was taken with a digital still camera.

  16. Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules

    SciTech Connect

    Pern, F. J.; Yan, F.; Mansfield, L.; Glynn, S.; Rekow, M.; Murison, R.

    2011-01-01

    We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe{sub 2} (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

  17. Performing Analyses for Waterborne Bacteria. Module 13. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on performing analyses for waterborne bacteria. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming, sterilizing and…

  18. Performing Titration Analyses for Water Quality. Module 17. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on performing titration analysis for water quality. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each part of…

  19. Effect of modulation format and jamming spectrum on performance of direct sequence spread spectrum systems

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1980-01-01

    The processing gain of a direct sequence spread spectrum system is approximately the ratio of the spreading code chip rate to the data rate. This paper provides a more accurate understanding of the performance of such systems as a function of the modulation scheme and jammer characteristics.

  20. Effect of modulation format and jamming spectrum on performance of direct sequence spread spectrum systems

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1980-01-01

    The processing gain of a direct sequence spread spectrum system is approximately the ratio of the spreading code chip rate to the data rate. This paper provides a more accurate understanding of the performance of such systems as a function of the modulation scheme and jammer characteristics.

  1. Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules: Preprint

    SciTech Connect

    Pern, F. J.; Yan, F.; Mansfield, L.; Glynn, S.; Rekow, M.; Murion, R.

    2011-07-01

    We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe2 (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

  2. Imaging performance of annular apertures. III - Apodization and modulation transfer functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1979-01-01

    Apodization functions with decreasing transmission and their opposite, functions with increasing transmission, are investigated for various central obstruction ratios. The resultant modulation transfer functions are presented for various transmission functions and central obstruction ratios. Conclusions applicable to the improvement of imaging performance are discussed.

  3. Quasi-coherent performance of convolutionally-coded continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Norris, James A.; Nieto, John W.

    2013-05-01

    Continuous Phase Modulation (CPM) schemes are advantageous for low-power radios. The constant envelope transmit signal is more efficient for both linear and non-linear amplifier architectures. A standard, coherent CPM receiver can take advantage of modulation memory and is more complex than a coherent Phase Shift Keyed receiver. But the CPM signal can be demodulated non-coherently and still take advantage of the trellis structure inherent in the modulation. With this complexity reduction, the CPM receiver is comparable in performance to a Phase Shift Keyed radio with the power utilization of a Frequency Shift-Keyed design. In this paper, we discuss two methods for increasing the modulation memory of the CPM signal. In the first method, the distribution of the transmitted symbol across multiple phase pulses is investigated and the bit error rate analyzed. In the next method we address the addition of convolutioncodes. In both cases the effects of the CPM memory to quasi-coherent demodulation is analyzed and discussed. The differences in complexity will be analyzed and the overall performance enhancements of several different modulation schemes will be illustrated. 1

  4. Performance of First-Year Health Sciences Students in a Large, Diverse, Multidisciplinary, First-Semester, Physiology Service Module

    ERIC Educational Resources Information Center

    Tufts, Mark; Higgins-Opitz, Susan B.

    2014-01-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…

  5. Performance of First-Year Health Sciences Students in a Large, Diverse, Multidisciplinary, First-Semester, Physiology Service Module

    ERIC Educational Resources Information Center

    Tufts, Mark; Higgins-Opitz, Susan B.

    2014-01-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…

  6. The International Space Station's Multi-Purpose Logistics Module, Thermal Performance of the First Five Flights

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Cho, Frank

    2003-01-01

    The Multi-Purpose Logistics Module is the primary carrier for transport of pressurized payload to the International Space Station. Performing five missions within a thirteen month span provided a unique opportunity to gather a great deal of information toward understanding and verifying the orbital performance of the vehicle. This paper will provide a brief overview of the hardware history and design capabilities followed by a summary of the missions flown, resource requirements and possibilities for the future.

  7. The International Space Station's Multi-Purpose Logistics Module, Thermal Performance of the First Five Flights

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Cho, Frank

    2003-01-01

    The Multi-Purpose Logistics Module is the primary carrier for transport of pressurized payload to the International Space Station. Performing five missions within a thirteen month span provided a unique opportunity to gather a great deal of information toward understanding and verifying the orbital performance of the vehicle. This paper will provide a brief overview of the hardware history and design capabilities followed by a summary of the missions flown, resource requirements and possibilities for the future.

  8. Energy performance of semi-transparent PV modules for applications in buildings

    NASA Astrophysics Data System (ADS)

    Fung, Yu Yan

    Owing to the increasing awareness on energy conservation and environmental protection, building-integrated photovoltaic (BIPV) has been developed rapidly in the past decade. A number of research studies have been conducted on the energy performance of BIPV systems. However, most of the previous studies focused on the systems that incorporated with opaque type PV modules, little attention has been devoted to semi-transparent type PV modules, which have been commonly integrated in modern architectures. This thesis aims at evaluating the energy performance of the semi-transparent BIPV modules, including heat gains to the indoor environment, power generation from the PV modules and daylight utilization. Solar radiation intensity on PV module's surfaces is an essential parameter for assessing energy performance of the PV modules. Different slope solar radiation models are analyzed and compared. The model that best suits Hong Kong situations is selected for the further development of the energy performance of the BIPV modules. The optimum orientation and tilted angle are determined in the analysis. In addition to the solar radiation models, a detailed investigation on the heat gain through the semi-transparent BIPV modules is carried out in this study. A one-dimensional transient heat transfer model, the SPVHG model, for evaluating the thermal performance of the semi-transparent BIPV modules is developed. The SPVHG model considers in detail the energy that is transmitted, absorbed and reflected in each element of the BIPV modules such as solar cells and glass layers. A computer program of the model is written accordingly. By applying the SPVHG model, the heat gain through the semi-transparent BIPV module of any thickness can be determined for any solar irradiance level. The annual performance can also be assessed by inputting annual weather data to the model. In order to verify the SPVHG model, laboratory tests have been carried out on semi-transparent BIPV modules. A

  9. RF Transceivers for Wireless Body Area Network Controllers

    NASA Astrophysics Data System (ADS)

    Eshra, Islam; Allam, Mootaz; Sayed, Alhassan; Benabid, Sorore; Aboushady, Hassan

    2015-11-01

    This paper focuses on the system and circuit level consideration of radio frequency front-end transceivers dedicated to WBAN controllers. We show how highly digitized transceivers employing sigma-delta modulators can achieve the frequency agility required by WBAN controllers. The paper compares the performance and highlights the pros and cons of I/Q transmitters and polar transmitters. For the receiver, different sigma-delta based RF receiver architectures are presented. These architectures are compared with more conventional architectures in terms of their suitability to WBAN controllers.

  10. Effect of the tubular-fan drum shapes on the performance of cleaning head module

    NASA Astrophysics Data System (ADS)

    Hong, C. K.; Y Cho, M.; Kim, Y. J.

    2013-12-01

    The geometrical effects of a tubular-fan drum on the performance improvement of the cleaning head module of a vacuum cleaner were investigated. In this study, the number of blades and the width of the blade were selected as the design parameters. Static pressure, eccentric vortex, turbulence kinetic energy (TKE) and suction efficiency were analysed and tabulated. Three-dimensional computational fluid dynamics method was used with an SST (Shear Stress Transfer) turbulence model to simulate the flow field at the suction of the cleaning head module using the commercial code ANSYS-CFX. Suction pressure distributions were graphically depicted for different values of the design parameters.

  11. Wakata performs microscopic analysis of the NanoRacks Module-38 Petri Dishes

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029082 (12 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, performs microscopic analysis of the NanoRacks Module-38 Petri Dishes, using Celestron Reflective Microscope, in the Kibo laboratory of the International Space Station. These Module-38 experiments are designed by students as part of a competition sponsored by the International Space School Educational Trust (ISSET). This experiment examines three-dimensional growth of slime mold in petri dishes utilizing the NanoRacks Microscopes Facility.

  12. Mach-Zehnder modulator performance on the NIF South Pole Bang Time diagnostic

    NASA Astrophysics Data System (ADS)

    Beeman, B.; MacPhee, A. G.; Kimbrough, J. R.; Chow, R.; Carpenter, A.; Bond, E.; Zayas-Rivera, Z.; Bell, P.; Celeste, J.; Clancy, T.; Miller, E. K.; Edgell, D.; Donaldson, W. R.

    2013-09-01

    We present performance data for Mach-Zehnder optical modulators fielded on the National Ignition Facility (NIF) as a potential signal path upgrade for the South Pole Bang Time diagnostic. A single channel demonstration system has been deployed utilizing two modulators operating in a 90° In phase and Quadrature (I/Q) configuration. X-ray target emission signals are split and fed into two recording systems: a reference CRT based oscilloscope, Greenfield FTD10000, and the dual Mach-Zehnder system. Results of X-ray implosion time (bang time) determination from these two recording systems are compared and presented.

  13. Mach-Zehnder Modulator Performance on the NIF South Pole Bang Time Diagnostic

    SciTech Connect

    Beeman, B.; MacPhee, A. G.; Kimbrough, J. R.; Chow, R.; Carpenter, A.; Bond, E.; Zayas-Rivera, Z.; Bell, P.; Celeste, J.; Clancy, T.; Miller, E. K.; Edgell, D.; Donaldson, W. R.

    2013-09-01

    We present performance data for Mach-Zehnder optical modulators fielded on the National Ignition Facility (NIF) as a potential signal path upgrade for the South Pole Bang Time diagnostic. A single channel demonstration system has been deployed utilizing two modulators operating in a 90-degree In phase and Quadrature (I/Q) configuration. X-ray target emission signals are split and fed into two recording systems: a reference CRT based oscilloscope, Greenfield FTD10000, and the dual Mach-Zehnder system. Results of X-ray implosion time (bang time) determination from these two recording systems are compared and presented.

  14. A tool for designing digital test objects for module performance evaluation in medical digital imaging.

    PubMed

    Kocsis, O; Costaridou, L; Efstathopoulos, E P; Lymberopoulos, D; Panayiotakis, G

    1999-01-01

    Currently, medical digital imaging systems are characterized by the introduction of additional modules such as digital display, image compression and image processing, as well as film printing and digitization. These additional modules require performance evaluation to ensure high image quality. A tool for designing computer-generated test objects applicable to performance evaluation of these modules is presented. The test objects can be directly used as digital images in the case of film printing, display, compression and image processing, or indirectly as images on film in the case of digitization. The performance evaluation approach is quality control protocol based. Digital test object design is user-driven according to specifications related to the requirements of the modules being tested. The available quality control parameters include input/output response curve, high contrast resolution, low contrast discrimination, noise, geometric distortion and field uniformity. The tool has been designed and implemented according to an object oriented approach in Visual C++ 5.0, and its user interface is based on the Microsoft Foundation Class Library version 4.2, which provides interface items such as windows, dialog boxes, lists, buttons, etc. The compatibility with DICOM 3.0 part 10 image formats specifications allows the integration of the tool in the existing software framework for medical digital imaging systems. The capability of the tool is demonstrated by direct use of the test objects in case of image processing, and indirect use of the test objects in case of film digitization.

  15. Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer

    NASA Astrophysics Data System (ADS)

    Heckman, Emily M.; Grote, James G.; Hopkins, F. Kenneth; Yaney, Perry P.

    2006-10-01

    An electro-optic (EO) planar waveguide modulator using a deoxyribonucleic acid (DNA)-based biopolymer for both the waveguide core and cladding layers has been fabricated and its performance evaluated. A cross-linked DNA-surfactant biopolymer was used for the top and bottom cladding layers and the core layer was a cross-linked DNA-surfactant biopolymer with 3wt% Disperse Red 1. The EO coefficient r33 was induced through contact poling. The fabricated device was found to exhibit EO modulating behavior. Using an estimated value of r33=0.5pm/V, a sine-squared fit to the modulating data was obtained with Vπ=263V±10%.

  16. High-performance compact optical WDM transceiver module for passive double star subscriber systems

    NASA Astrophysics Data System (ADS)

    Ikushima, Ichiro; Himi, Susumu; Hamaguchi, Tsuruki; Suzuki, Munetoshi; Maeda, Narimichi; Kodera, Hiroshi; Yamashita, Kiichi

    1995-03-01

    High-performance transceiver-type optical WDM interface modules with a volume of only 36 cc have been developed for PDS subscriber systems. The new module comprises an optical WDM sub-module, hybrid-integrated transmitter and receiver circuits. In the WDM sub-module, a planar lightwave circuit chip was hermetically sealed together with laser and photodiode chips in order to minimize the size of the transceiver module. The lightwave circuit was formed on an optical-waveguide chip by adopting a high-silica based optical-waveguide technology. The circuit has a 3-dB directional coupler for bi-directional transmission with a 1.3-micron wavelength through a single fiber and a wavelength division multiplexer between both 1.3-micron and 1.55-micron wavelengths. The overall characteristics of the fabricated WDM sub-module achieved were a responsitivity of 0.25 +/- 0.05 A/W, an insertion loss approximately 3 dB at 1.55-micron and an isolation of 35 dB between both wavelengths. Optical output power of the fabricated transceiver module was -3.8 dBm. Also, receiver sensitivity of less than -35 dBm with an overload of over -14 dBm were obtained by introducing high-speed automatic gain and threshold control techniques. Thus, an allowable span loss of over 30 dB and an optical dynamic range of over 20 dB were attained. The preamble bit length required to reach stable receiver operation was confirmed to be within three bits.

  17. Tonic blood pressure modulates the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance.

    PubMed

    Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás

    2009-09-01

    This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.

  18. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  19. Performance Simulation of a Flat-Plate Thermoelectric Module Consisting of Square Truncated Pyramid Elements

    NASA Astrophysics Data System (ADS)

    Oki, Sae; Suzuki, Ryosuke O.

    2017-05-01

    The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.

  20. Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring.

    PubMed

    Beste, Christian; Domschke, Katharina; Kolev, Vasil; Yordanova, Juliana; Baffa, Anna; Falkenstein, Michael; Konrad, Carsten

    2010-04-01

    Our study investigates the dependence of response monitoring and error detection on genetic influences modulating the serotonergic system. This was done using the event-related potentials (ERPs) after error (Ne/ERN) and correct trials (Nc/CRN). To induce a sufficient amount of errors, a standard flanker task was used. The subjects (N = 94) were genotyped for the functional 5-HT1A C(-1019)G polymorphism. The results show that the 5-HT1A C(-1019)G polymorphism specifically modulates error detection. Neurophysiological modulations on error detection were paralleled by a similar modulation of response slowing after an error, reflecting the behavioral adaptation. The 5-HT1A -1019 CC genotype group showed a larger Ne and stronger posterror slowing than the CG and GG genotype groups. More general processes of performance monitoring, as reflected in the Nc/CRN, were not affected. The finding that error-specific processes, but not general response monitoring processes, are modulated by the 5-HT1A C(-1019)G polymorphism is underlined by a wavelet analysis. In summary, the results suggest a specific effect of the 5-HT1A C(-1019)G polymorphism on error monitoring, as reflected in the Ne, and suggest a neurobiological dissociation between processes of error monitoring and general response monitoring at the level of the serotonin 1A receptor system.

  1. Entry characteristics and performance in a Masters module in Tropical Medicine: a 5-year analysis.

    PubMed

    Weigel, R; Robinson, D; Stewart, M; Assinder, S

    2016-06-01

    Postgraduate courses can contribute to better-qualified personnel in resource-limited settings. We aimed to identify how entry characteristics of applicants predict performance in order to provide support measures early. We describe demographic data and end-of-module examination marks of medical doctors who enrolled in a first semester module of two one-year MSc programmes between 2010 and 2014. We used t-tests and one-way anova to compare, and post hoc tests to locate differences of mean marks between categories of entry characteristics in univariate analysis. After exclusion of collinear variables, multiple regression examined the effect of several characteristics in multivariable analysis. Eighty-nine students (47% male) with a mean age of 32 (SD 6.4) years who received their medical degree in the UK (19%), other European (22%), African (35%) or other countries (24%) attended the 3-months module. Their mean mark was 69.1% (SD 10.9). Medical graduates from UK universities achieved significantly higher mean marks than graduates from other countries. Students' age was significantly negatively correlated with the module mark. In multiple linear regression, place of medical degree (β = -0.44, P < 0.001) and time since graduation (β = -0.28, P = 0.007) were strongest predictors of performance, explaining 32% of the variation of mean marks. Students' performance substantially differs based on their entry criteria in this 1st semester module. Non-UK graduates and mature students might benefit from early support. © 2016 John Wiley & Sons Ltd.

  2. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2016 Performance Data Update

    SciTech Connect

    Deline, Chris; Meydbray, Jenya; Donovan, Matt

    2016-09-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested. Appendix D data has been added in this update.

  3. Is Baseline Cardiac Autonomic Modulation Related to Performance and Physiological Responses Following a Supramaximal Judo Test?

    PubMed Central

    Blasco-Lafarga, Cristina; Martínez-Navarro, Ignacio; Mateo-March, Manuel

    2013-01-01

    Little research exists concerning Heart Rate (HR) Variability (HRV) following supramaximal efforts focused on upper-body explosive strength-endurance. Since they may be very demanding, it seems of interest to analyse the relationship among performance, lactate and HR dynamics (i.e. HR, HRV and complexity) following them; as well as to know how baseline cardiac autonomic modulation mediates these relationships. The present study aimed to analyse associations between baseline and post-exercise HR dynamics following a supramaximal Judo test, and their relationship with lactate, in a sample of 22 highly-trained male judoists (20.70±4.56 years). A large association between the increase in HR from resting to exercise condition and performance suggests that individuals exerted a greater sympathetic response to achieve a better performance (Rating of Perceived Exertion: 20; post-exercise peak lactate: 11.57±2.24 mmol/L; 95.76±4.13 % of age-predicted HRmax). Athletes with higher vagal modulation and lower sympathetic modulation at rest achieved both a significant larger ∆HR and a faster post-exercise lactate removal. A enhanced resting parasympathetic modulation might be therefore related to a further usage of autonomic resources and a better immediate metabolic recovery during supramaximal exertions. Furthermore, analyses of variance displayed a persistent increase in α1 and a decrease in lnRMSSD along the 15 min of recovery, which are indicative of a diminished vagal modulation together with a sympathovagal balance leaning to sympathetic domination. Eventually, time-domain indices (lnRMSSD) showed no lactate correlations, while nonlinear indices (α1 and lnSaEn) appeared to be moderate to strongly correlated with it, thus pointing to shared mechanisms between neuroautonomic and metabolic regulation. PMID:24205273

  4. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation.

    PubMed

    Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik

    2013-01-01

    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission.

  5. Performance Evaluation of the New Compound-Carrier-Modulated Signal for Future Navigation Signals

    PubMed Central

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2016-01-01

    Navigation Signal based on Compound Carrier (NSCC), is proposed as the potential future global navigation satellite system (GNSS) signal modulation scheme. NSCC, a kind of multi-carrier (MC) signal, is generated by superposition and multi-parameter adjustment of sub-carriers. Therefore, a judious choice of parameter configation is needed. The main objective of this paper is to investigate the performance of the NSCC which is influenced by these parameters and to demonstrate its structure characteristics and superiority, employing a comprehensive evaluation system. The results show that the proposed NSCC signal processes full spectral efficiency and limited out of band (OOB) emissions, satisfying the demands of crowed frequency resources. It also presents better performance in terms of spectral separation coefficients (SSCs), tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with the legacy navigation signals. NSCC modulation represents a serious candidate for navigation satellite augmentation systems, especially for signals applied in challenging environments. PMID:26828494

  6. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation

    PubMed Central

    Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik

    2013-01-01

    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission. PMID:23466520

  7. Association between EEG modulation, psychotic-like experiences and cognitive performance in the general population.

    PubMed

    Gomez-Pilar, Javier; Martín-Santiago, Oscar; Suazo, Vanessa; de Azua, Sonia Ruiz; Haidar, Mahmoud Karim; Gallardo, Ricardo; Poza, Jesús; Hornero, Roberto; Molina, Vicente

    2016-03-18

    An association between deficit of electroencephalographic (EEG) modulation during an odd-ball task and psychotic symptoms has been described in clinical samples, in agreement with the proposed role for altered salience in psychosis. To discard the possible influence of medication, the relationship between psychotic-like experiences and EEG modulation in the general population was explored. EEG and psychotic-like experiences were assessed in 194 healthy subjects during a P300 paradigm. EEG modulation was assessed as changes from pre-stimulus to response windows in spectral entropy (SE, a measurement of signal irregularity), median frequency (MF, a quantifier of the frequency distribution of oscillatory activity) and theta, alpha, beta-1, beta-2 and gamma relative power (RP, a summary of the distribution of spectral components). A significant widespread decrease in SE and MF from baseline to response was found, with a significant increase in RP for theta and a decrease for higher frequency bands, supporting an increase in EEG regularity and a slowing of brain oscillations during the response. Furthermore, a significant association was found between SE modulation and distress of negative psychotic-like experiences, as well as between verbal memory and RP modulation for beta-1. Performance in verbal fluency was associated with the increase in theta RP during the response. EEG irregularity of healthy subjects decreased at the expense of a larger contribution of theta RP and a decreased contribution of fast frequency bands. Subjects with smaller modulation showed poorer cognitive scores and greater distress of negative psychotic-like experiences. This article is protected by copyright. All rights reserved.

  8. Evaluation of an 18-couple module composed of improved performance SiGe unicouples

    SciTech Connect

    Kelly, C.E.; Klee, P.M.; Nakahara, J.F.; Hartman, R.F.

    1995-12-31

    Radioisotope Thermoelectric Generators (RTGs) have played a major role in providing spacecraft electrical power for interplanetary exploration. Silicon Germanium alloys are the thermoelectric material employed in RTGs. Over the past several years a number of investigations have reported improvements in the figure of merit of these alloys. These improvements are attractive to mission planners because they result in enhanced RTG specific power (watts/lb) and improved efficiency which leads to lower fuel costs. This paper describes the fabrication and testing of an 18-couple module device utilizing unicouples with improved SiGe alloys. The unicouples were fabricated using materials with over a 10% improvement in the 573 to 1,273 K integrated average figure-of-merit over Cassini materials. The p-type material was fabricated by the standard vacuum casting and hot pressing method while the n-type material containing GaP was fabricated by a new method of mechanical alloying and hot isostatic pressing. The unicouples were fabricated in a similar fashion to standard unicouples except that the thermoelectric materials were bonded to the SiMo hot shoe in two thermal cycles due to the disparity of the melting points. A sufficient quantity of unicouples was fabricated to assemble an 18-couple module to evaluate the thermoelectric performance of the improved SiGe materials. The module was brought up to operating temperature following the same heatup rate as previous modules. The module was stabilized at a hot shoe temperature of 1,308 K. Initial performance was compared to the established SiGe database and found to show no improvement thermally or electrically.

  9. Nomographic methodology for use in performance trade-off studies of parabolic dish solar power modules

    SciTech Connect

    Selcuk, M. K.; Fujita, T.

    1984-06-15

    A simple graphical method has been developed to undertake technical design trade-off studies for individual parabolic dish modules comprising a two-axis tracking parabolic dish with a cavity receiver and power conversion assembly at the focal point. The results of these technical studies can then be used in performing the techno-economic analyses required for determining appropriate subsystem sizing. Selected graphs that characterize the performance of subsystems within the module have been arranged in the form of a nomogram that would enable an investigator to carry out several design trade-off studies. Key performance parameters encompassed in the nomogram include receiver losses, intercept factor, engine rating, and engine efficiency. Design and operation parameters such as concentrator size, receiver type (open or windowed aperture), receiver aperture size, operating temperature of the receiver and engine, engine partial load characteristics, concentrator slope error, and the type of reflector surface, are also included in the graphical solution. Cost considerations are not included. The nomogram has been used to perform trade-off studies that have provided a basis for determining requirements for a single concentrator that could perform satisfactorily with either the selected Stirling or Brayton engine. This activity is summarized to illustrate the usage of the nomogram. Additionally, modeling relations used in developing the nomogram are presented so that the nomogram can be updated to reflect any changes in the performance characteristics of projected components.

  10. High-performance deployable structures for the support of high-concentration ratio solar array modules

    NASA Technical Reports Server (NTRS)

    Mobrem, M.

    1985-01-01

    A study conducted on high-performance deployable structures for the support of high-concentration ratio solar array modules is discussed. Serious consideration is being given to the use of high-concentration ratio solar array modules or applications such as space stations. These concentrator solar array designs offer the potential of reduced cost, reduced electrical complexity, higher power per unit area, and improved survivability. Arrays of concentrators, such as the miniaturized Cassegrainian concentrator modules, present a serious challenge to the structural design because their mass per unit area (5.7 kg/square meters) is higher than that of flexible solar array blankets, and the requirement for accurate orientation towards the Sun (plus or minus 0.5 degree) requires structures with improved accuracy potentials. In addition, use on a space station requires relatively high structural natural frequencies to avoid deleterious interactions with control systems and other large structural components. The objective here is to identify and evaluate conceptual designs of structures suitable for deploying and accurately supporting high-concentration ratio solar array modules.

  11. Performance characterization of thin-film-silicon based solar modules under clouded and clear sky conditions in comparison to crystalline silicon modules

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Rasch, R.; Behrens, G.; Hamelmann, F. U.

    2016-07-01

    For a precise prediction of the energy yield of amorphous ( a-Si) and amorphous-microcrystalline tandem ( a-Si/ μc-Si) thinfilm-silicon photovoltaic (PV) modules it is important to know their performance ratio under different light conditions. The efficiency of solar modules is an important value for the monitoring and planning of PV-systems. The efficiency of a-Si solar modules shows no significant changes in the performance ratio at clouded or clear sky conditions. The efficiency of crystalline silicon-based ( c-Si) and a-Si/ μc-Si solar modules shows a lower efficiency for fully clouded conditions without direct irradiation compared to conditions with direct irradiation (clear sky). [Figure not available: see fulltext.

  12. Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016.

    SciTech Connect

    Lave, Matthew Samuel; Stein, Joshua; Burnham, Laurie

    2017-01-01

    This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

  13. Performance of a solar-heating module for commercial-greenhouse use: Phase V. Final report

    SciTech Connect

    Buchanan, J.M.

    1981-01-01

    A large solar heat collector was constructed to assist the heat loads of a commercial greenhouse. The collector is an insulated, black-cavity with forced-air circulating to transfer the solar energy to water storage via air-to-water heat exchangers. Performance records reported herein indicate that the annual collection is 20% of the solar radiation received, and lower than the 50% originally estimated. The result is that the years before positive cash flow is increased from 10 to 25 years for a typical projection study. Recommendations are made for improving the solar collection module which, currently, has a performance that does not recommend its cavity-type design.

  14. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    NASA Astrophysics Data System (ADS)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500°C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700°C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700°C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation <4% in the electrical resistance of batches of ten pellets of both types was indicative of high reproducibility. A silver-paste-based brazing technique was used to assemble the TE elements into modules. This assembly technique afforded low and repeatable electrical contact resistance (<3 nΩ m2). A test bench was developed for measuring the performance of TE modules at high temperatures (up to 600°C), and thirty 20 mm × 20 mm TE modules were produced and tested. The results revealed the performance was reproducible, with power output reaching 1.9 ± 0.2 W for a 370 degree temperature difference. When the temperature

  15. Multiple trellis coded modulation (MTCM) performance on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The author recently introduced the notion of multiple trellis coding, in which more than one channel symbol per trellis branch is transmitted. He showed that on the ideal additive white Gaussian noise (AWGN) channel, the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal sets comparable to and in some cases better than that previously achieved only with signal constellation asymmetry. The combination of conventional trellis coding with multiple phase-shift-keyed (MPSK) signaling has recently been shown by the author to be a well-suited modulation/coding scheme for transmission over the fading mobile satellite channel. In particular, a rate 2/3 coded 8-PSK scheme operating at 4800 b/s is currently under development for use in NASA's Mobile Satellite Experiment (MSAT-X). The author applies the multiple trellis-coded modulation technique in the same fading mobile satellite environment, extending the analysis results previously found for its performance over the AWGN channel to the MSAT-X channel.

  16. InP PIC technologies for high-performance Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Ogiso, Y.; Kikuchi, N.

    2017-01-01

    We have developed compact InP-based Mach-Zehnder modulators (MZMs) for small-form-factor pluggable coherent transceivers. In this paper, we introduce InP-based photonic integration circuit (PIC) technologies for high-performance MZMs. As the first topic, we show our design concept for a multi-quantum well (MQW) with a large refractive-index change and a low excess loss for a low-loss MZM with a low driving voltage. We fabricated dual polarization (DP) inphase and quadrature modulators (IQMs) in the form of a PIC in which we monolithically integrated a quad MZM based on the designed MQW. It operated at a half-wavelength voltage of 1.9 V with an excess loss of less than 1 dB as designed. We achieved 32-Gbaud DP-QPSK operation with a 0.2-dB penalty compared with a lithium niobate modulator. We also show another newly developed high-speed IQM for future higher-speed systems. We reduced the RF signal loss of an MZM by reducing the series resistance of the overcladding and optimizing the RF electrode structure. The fabricated high-speed IQM operated at higher than 64 Gbaud with QPSK/16QM modulations. Furthermore, we present an InP-MZM integrated with a new type of spot-size converter (SSC) fabricated with a three-dimensional semiconductor process. The SSC integrated MZM exhibited an insertion loss improvement of 3 dB compared with our conventional InP-MZM for an optical system with a 4.5-μm mode field diameter. The low loss characteristics are beneficial in that they allow us to reduce the MZM-module cost thanks to an improved loss budget for optical assembly.

  17. Performance evaluation of some ARQ schemes using efficient modulation techniques and noncoherent detection

    NASA Astrophysics Data System (ADS)

    Fantacci, Romano

    1991-03-01

    The performance of generalized automatic repeat request (ARQ) schemes with continuous-phase frequency-shift-keying (CPFSK) modulation schemes and noncoherent detection is analyzed. In the proposed schemes, each bit of a block is transmitted m times consecutively to increase the transmission reliability. Efficient CPFSK schemes are considered because they represent a class of joint power- and bandwidth-efficient digital modulation schemes with constant amplitude, which can be coherently or noncoherently demodulated. The theoretically derived throughput is optimized for each bit's transmitted copies. In comparison with the classical ARQ schemes, the proposed schemes provide enhanced throughput, especially under high error rate conditions. The use of the noncoherent detection greatly reduces the receiver implementation complexity. The schemes can also be used when coherent detection is required.

  18. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    PubMed

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  19. Performance/Program Budgeting. Module Number Six of Policy/Program Analysis and Evaluation Techniques, Package VI.

    ERIC Educational Resources Information Center

    Steiss, Alan Walter

    This packet contains the instructional materials necessary for presentation of the sixth of ten modules which comprise a portion of the National Training and Development Service Urban Management Curriculum Development Project. This module focuses on performance/program budgeting which combines and extends fiscal planning and control elements from…

  20. Modeling, Simulation and Performance Analysis of Multiple-Input Multiple-Output (MIMO) Systems with Multicarrier Time Delay Diversity Modulation

    DTIC Science & Technology

    2005-09-01

    MULTIPLE - INPUT MULTIPLE - OUTPUT ( MIMO ) SYSTEMS WITH MULTICARRIER TIME DELAY DIVERSITY MODULATION by Muhammad...SUBTITLE: Modeling, Simulation and Performance Analysis of Multiple - Input Multiple - Output ( MIMO ) Systems with Multicarrier Time Delay Diversity Modulation...MISO) and multiple - input multiple - output ( MIMO ) radio communication systems with space-time codes. A MISO system and MIMO

  1. Performance Auditing. Material for Class Leader. Module Number Nine of Policy/Program Analysis and Evaluation Techniques, Package VI.

    ERIC Educational Resources Information Center

    Herbert, Leo

    This packet contains the materials necessary for presentation of the ninth of ten modules which comprise a portion of the National Training and Development Service Urban Management Curriculum Development Project. This module focuses on performance auditing which evaluates activities and operational efficiency by reviewing finances, management…

  2. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    SciTech Connect

    Johnson, William B

    2012-12-31

    The objective of this program was to demonstrate a durable, high performance water transport membrane; and a compact, low-cost, membrane-based module utilizing that membrane for use in an automotive, stationary and/or portable fuel cell water transport exchangers. Over the past 20 years, great technical progress has been made in improving power density and durability of fuel cell stacks. Yet, operating durably at high performance levels under very dry conditions, e.g., < 20% RH at 80°C or above, remains beyond even the best fuel cell membrane electrode assemblies. Thus, today it is essential to humidify the gases supplied to the fuel cell inlets. In this work, we have produced a new, inexpensive, composite membrane capable of very high water vapor transport and low air cross-over. The composite structure consists of a very thin ionomer layer (e.g., < 5 micron) sandwiched between two microporous polymer layers. The thin ionomer layer facilitates the rapid water transport and provides an impermeable layer to prevent gas cross-over. Such an approach reduces cost, but maintains performance. The microporous layer protects the thin ionomer layer from mechanical damage during handling; confers strength to the thin layer allowing it to be more durable during use; and allows it to withstand higher automotive pressures and temperatures. The composite structure will therefore allow lower total cost while still meeting automotive humidifier water transport and durability targets. Because the transport rates of these new materials are so high, existing planar membrane humidifier module designs available at the start of the program were incapable of efficiently utilizing the high rates. Therefore, the assembled team designed, tested and demonstrated an innovative, low-cost humidifier module with customized channel geometries that can take advantage of the high the water transport rates. The objectives of the program have been fully met. The optimized membrane produced in the

  3. Performance of IJF-OQPSK modulation schemes in the presence of noise, interchannel and cochannel interference

    NASA Astrophysics Data System (ADS)

    Le-Ngoc, T.; Feher, K.

    The performance of Intersymbol-Interference and Jitter Free Offset-Keyed QPSK (IJF-OQPSK) modulation techniques in the presence of adjacent-channel, co-channel interference, and additive white Gaussian noise is presented. A computer simulation method is used to evaluate the performance of a multichannel IJF-OQPSK system. Experiments are also performed to verify the simulation results. The results indicate that a spectral efficiency of 1.5 b/s/Hz can be obtained with hardlimited IJF-OQPSK channels. This is a significant improvement compared to hardlimited QPSK, OQPSK and MSK systems. It is expected that the IJF-OQPSK scheme will have applications in low-cost power and bandwidth efficient earth-stations and terrestrial radio systems with high-power amplifiers operating in saturation.

  4. Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model

    SciTech Connect

    de Almeida, Valmor F; Birdwell Jr, Joseph F; DePaoli, David W; Gauld, Ian C

    2009-10-01

    A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  5. Thermal diffusivity measurement using thermographic method and performance evaluation by impedance spectroscopy for thermoelectric module

    NASA Astrophysics Data System (ADS)

    Otsuka, Mioko; Terakado, Hiroki; Homma, Ryoei; Hasegawa, Yasuhiro; Zahidul Islam, Md.; Bastian, Georg; Stuck, Alexander

    2016-12-01

    The thermal diffusivity of two bulk thermoelectric elements and a thermoelectric module was measured by an infrared camera using a thermographic method without any contact in air at room temperature. The estimated values for the elements (3.45 × 10-6 m2/s for a BiSb sample and 1.60 × 10-6 m2/s for a BiTe sample) were slightly larger than those measured in vacuum. The difference was explained as the effect of heat convection on the surface of the samples by solving the one-dimensional heat conduction equation numerically. The thermal diffusivity of thermoelectric elements in a thermoelectric module was also estimated using the thermographic method, and values of (1.1-1.7) × 10-6 m2/s in air were obtained, depending on the element. On the basis of the measurement results, the performance of the module was estimated using impedance spectroscopy, which can estimate not only the dimensionless figure of merit but also the thermal loss and response. The thermal response and thermal loss in air were similar to those in vacuum; however, the dimensionless figure of merit was 0.82 in vacuum and 0.70 in air.

  6. Performance of the unique-word-reverse-modulation type demodulator for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Dohi, Tomohiro; Nitta, Kazumasa; Ueda, Takashi

    1993-01-01

    This paper proposes a new type of coherent demodulator, the unique-word (UW)-reverse-modulation type demodulator, for burst signal controlled by voice operated transmitter (VOX) in mobile satellite communication channels. The demodulator has three individual circuits: a pre-detection signal combiner, a pre-detection UW detector, and a UW-reverse-modulation type demodulator. The pre-detection signal combiner combines signal sequences received by two antennas and improves bit energy-to-noise power density ratio (E(sub b)/N(sub 0)) 2.5 dB to yield 10(exp -3) average bit error rate (BER) when carrier power-to-multipath power ratio (CMR) is 15 dB. The pre-detection UW detector improves UW detection probability when the frequency offset is large. The UW-reverse-modulation type demodulator realizes a maximum pull-in frequency of 3.9 kHz, the pull-in time is 2.4 seconds and frequency error is less than 20 Hz. The performances of this demodulator are confirmed through computer simulations and its effect is clarified in real-time experiments at a bit rate of 16.8 kbps using a digital signal processor (DSP).

  7. Performance modulation of α-MnO₂ nanowires by crystal facet engineering.

    PubMed

    Li, Wenxian; Cui, Xiangyuan; Zeng, Rong; Du, Guodong; Sun, Ziqi; Zheng, Rongkun; Ringer, Simon P; Dou, Shi Xue

    2015-03-11

    Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2 (1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.

  8. Design and performance of monolithic integrated electro-absorption modulated distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Cheng, YuanBing; Pan, JiaoQing; Zhou, Fan; Wang, BaoJun; Zhu, Hongliang; Zhao, Lingjuan; Wang, Wei

    2007-11-01

    High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt-joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250 μm DFB and 170 μm EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.

  9. Performance modulation of α-MnO2 nanowires by crystal facet engineering

    PubMed Central

    Li, Wenxian; Cui, Xiangyuan; Zeng, Rong; Du, Guodong; Sun, Ziqi; Zheng, Rongkun; Ringer, Simon P.; Dou, Shi Xue

    2015-01-01

    Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2 (1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations. PMID:25758232

  10. Individual differences in attentional modulation of cortical responses correlate with selective attention performance.

    PubMed

    Choi, Inyong; Wang, Le; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-08-01

    Many studies have shown that attention modulates the cortical representation of an auditory scene, emphasizing an attended source while suppressing competing sources. Yet, individual differences in the strength of this attentional modulation and their relationship with selective attention ability are poorly understood. Here, we ask whether differences in how strongly attention modulates cortical responses reflect differences in normal-hearing listeners' selective auditory attention ability. We asked listeners to attend to one of three competing melodies and identify its pitch contour while we measured cortical electroencephalographic responses. The three melodies were either from widely separated pitch ranges ("easy trials"), or from a narrow, overlapping pitch range ("hard trials"). The melodies started at slightly different times; listeners attended either the leading or lagging melody. Because of the timing of the onsets, the leading melody drew attention exogenously. In contrast, attending the lagging melody required listeners to direct top-down attention volitionally. We quantified how attention amplified auditory N1 response to the attended melody and found large individual differences in the N1 amplification, even though only correctly answered trials were used to quantify the ERP gain. Importantly, listeners with the strongest amplification of N1 response to the lagging melody in the easy trials were the best performers across other types of trials. Our results raise the possibility that individual differences in the strength of top-down gain control reflect inherent differences in the ability to control top-down attention.

  11. Optimizing the performance of modulated pulse laser systems for imaging and ranging applications

    NASA Astrophysics Data System (ADS)

    Mullen, L.; Lee, R.; Illig, D.

    2017-05-01

    Blue-green laser systems are being developed for optical imaging and ranging in the underwater environment. The imaging application requires high range resolution to distinguish between multiple targets in the scene or between multiple target features, while the ranging application benefits from measurements with high range accuracy. The group at the Naval Air Warfare Center Aircraft Division (NAWCAD) in Patuxent River, MD has been investigating the merging of wideband radar modulation schemes with a pulsed laser system for underwater imaging and ranging applications. For the imaging application, the narrow peak produced by pulse compression at the receiver offers enhanced range resolution relative to traditional short pulse approaches. For ranging, the selection of modulation frequency bands approaching 1GHz provides backscatter and forward scatter suppression and enhanced range accuracy. Both passband and baseband digital processing have been applied to data collected in laboratory water tank experiments. The results have shown that the choice of processing scheme has a significant impact on optimizing the performance of modulated pulse laser systems for either imaging or ranging applications. These different processing schemes will be discussed, and results showing the effect of the processing schemes for imaging and ranging will be presented.

  12. Coupling a transient solvent extraction module with the separations and safeguards performance model.

    SciTech Connect

    DePaoli, David W.; Birdwell, Joseph F.; Gauld, Ian C.; Cipiti, Benjamin B.; de Almeida, Valmor F.

    2009-10-01

    A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  13. Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.

    PubMed

    Buckingham, Gavin; Wong, Jeremy D; Tang, Minnie; Gribble, Paul L; Goodale, Melvyn A

    2014-01-01

    Observing the actions of others has been shown to modulate cortico-spinal excitability and affect behaviour. However, the sensorimotor consequences of observing errors are not well understood. Here, participants watched actors lift identically weighted large and small cubes which typically elicit expectation-based fingertip force errors. One group of participants observed the standard overestimation and underestimation-style errors that characterise early lifts with these cubes (Error video--EV). Another group watched the same actors performing the well-adapted error-free lifts that characterise later, well-practiced lifts with these cubes (No error video--NEV). We then examined actual object lifting performance in the subjects who watched the EV and NEV. Despite having similar cognitive expectations and perceptions of heaviness, the group that watched novice lifters making errors themselves made fewer overestimation-style errors than those who watched the expert lifts. To determine how the observation of errors alters cortico-spinal excitability, we measured motor evoked potentials in separate group of participants while they passively observed these EV and NEV. Here, we noted a novel size-based modulation of cortico-spinal excitability when observing the expert lifts, which was eradicated when watching errors. Together, these findings suggest that individuals' sensorimotor systems are sensitive to the subtle visual differences between observing novice and expert performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Interaction between personality traits and cerebrospinal fluid biomarkers of Alzheimer's disease pathology modulates cognitive performance.

    PubMed

    Tautvydaitė, Domilė; Kukreja, Deepti; Antonietti, Jean-Philippe; Henry, Hugues; von Gunten, Armin; Popp, Julius

    2017-02-02

    During adulthood, personality characteristics may contribute to the individual capacity to compensate the impact of developing cerebral Alzheimer's disease (AD) pathology on cognitive impairment in later life. In this study we aimed to investigate whether and how premorbid personality traits interact with cerebrospinal fluid (CSF) markers of AD pathology to predict cognitive performance in subjects with mild cognitive impairment or mild AD dementia and in participants with normal cognition. One hundred and ten subjects, of whom 66 were patients with mild cognitive impairment or mild AD dementia and 44 were healthy controls, had a comprehensive medical and neuropsychological examination as well as lumbar puncture to measure CSF biomarkers of AD pathology (amyloid beta1-42, phosphorylated tau and total-tau). Participants' proxies completed the Revised NEO Personality Inventory, Form R to retrospectively assess subjects' premorbid personality. In hierarchical multivariate regression analyses, including age, gender, education, APOEε4 status and cognitive level, premorbid neuroticism, conscientiousness and agreeableness modulated the effect of CSF biomarkers on cognitive performance. Low premorbid openness independently predicted lower levels of cognitive functioning after controlling for biomarker concentrations. Our findings suggest that specific premorbid personality traits are associated with cerebral AD pathology and modulate its impact on cognitive performance. Considering personality characteristics may help to appraise a person's cognitive reserve and the risk of cognitive decline in later life.

  15. Cognitive Performance as a Zeitgeber: Cognitive Oscillators and Cholinergic Modulation of the SCN Entrain Circadian Rhythms

    PubMed Central

    Gritton, Howard J.; Stasiak, Ashley M.; Sarter, Martin; Lee, Theresa M.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF) cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s) outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior. PMID:23441168

  16. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks.

    PubMed

    Gawda, Barbara; Szepietowska, Ewa

    2016-01-01

    Trait anxiety is thought to be associated with pathological anxiety, and a risk factor for psychiatric disorders. The present study examines the brain mechanisms associated with trait anxiety during the performing of verbal fluency tasks. The aim is to show how trait anxiety modulates executive functions as measured by verbal fluency, and to explore the link between verbal fluency and anxiety due to the putative negative biases in high-anxious individuals. Seven tasks of verbal fluency were used: letter "k," "f," verbs, "animals," "vehicles," "joy," and "fear." The results of 35 subjects (whole sample), and 17 subjects (nine men, eight women) selected from the whole sample for the low/high-anxious groups on the basis of Trait Anxiety scores were analyzed. The subjects were healthy, Polish speaking, right-handed and aged from 20 to 35 years old. fMRI (whole-brain analysis with FWE corrections) was used to show the neural signals under active participation in verbal fluency tasks. The results confirm that trait anxiety slightly modulates neural activation during the performance of verbal fluency tasks, especially in the more difficult tasks. Significant differences were found in brain activation during the performance of more complex tasks between individuals with low anxiety and those with high anxiety. Greater activation in the right hemisphere, frontal gyri, and cerebellum was found in people with low anxiety. The results reflect better integration of cognitive and affective capacities in individuals with low anxiety.

  17. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOEpatents

    Murray, Christopher S.; Wilt, David M.

    2000-01-01

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  18. The design and performance estimates for the propulsion module for the booster of a TSTO vehicle

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Maldonado, Jaime J.

    1991-01-01

    A NASA study of the propulsion systems for possible low-risk replacements for the Space Shuttle is presented. Results of preliminary studies to define the USAF two-stage-to-orbit (TSTO) concept to deliver 10,000 pounds to low polar orbit are described. The booster engine module consists of an over/under turbine bypass engines/ramjet engine design for acceleration from takeoff to the staging point of Mach 6.5 and approximately 100,000 feet altitude. Propulsion system performance and weight are presented with preliminary mission study results of vehicle size.

  19. [Design of high performance DSP-based gradient calculation module for MRI].

    PubMed

    Pan, Wenyu; Zhang, Fu; Luo, Hai; Zhou, Heqin

    2011-05-01

    A gradient calculation module based on high performance DSP was designed to meet the needs of digital MRI spectrometer. According to the requirements of users, this apparatus can achieve rotation transformation, pre-emphasis, shimming and other gradient calculation functions in a single chip of DSP. It then outputs gradient waveform data of channel X, Y, Z and shimming data of channel B0. Experiments show that the design has good versatility and can satisfy the functional, speed and accuracy requirements of MRI gradient calculation. It provides a practical gradient calculation solution for the development of digital spectrometer.

  20. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    SciTech Connect

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  1. Effects of communication training on real practice performance: a role-play module versus a standardized patient module.

    PubMed

    Schlegel, Claudia; Woermann, Ulrich; Shaha, Maya; Rethans, Jan-Joost; van der Vleuten, Cees

    2012-01-01

    This study investigated the effectiveness of modules involving standardized patients and role-plays on training communication skills. The first module involved standardized patients and an Objective Structured Clinical Examination (OSCE); the second module consisted of peer role-plays and a written examination. A randomized posttest-only control group design with first-year nursing students was used. The intervention group received one-to-one communication training with direct oral feedback from the standardized patient. The control group had training with peer role-playing and mutual feedback. The posttest involved students' rating their self-efficacy, and real patients and clinical supervisors evaluated their communication skills. No significant differences were found between self-efficacy and patient ratings. However, the clinical supervisors rated the intervention group's communication skills to be significantly (p < 0.0001) superior. Assessments by clinical supervisors indicate that communication training modules including standardized patients and an OSCE are superior to communication training modules with peer role-playing.

  2. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  3. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  4. The NTSR1 gene modulates the association between hippocampal structure and working memory performance.

    PubMed

    Li, Jin; Chen, Chuansheng; Lei, Xuemei; Wang, Yunxin; Chen, Chunhui; He, Qinghua; Moyzis, Robert K; Xue, Gui; Zhu, Bi; Cao, Zhongyu; Dong, Qi

    2013-07-15

    The genetic and neural basis of working memory (WM) has been extensively studied. Many dopamine (DA) related genes, including the NTSR1 gene (a DA modulator gene), have been reported to be associated with WM performance. The NTSR1 protein is predominantly expressed in the cerebral cortex and the hippocampus, the latter of which is closely involved in WM processing based on both lesion and fMRI studies. Thus far, however, no study has examined the joint effects of NTSR1 gene polymorphism and hippocampal morphology on WM performance. Participants of the current study were 330 healthy Chinese college students. WM performance was measured with a 2-back WM paradigm. Structural MRI data were acquired and then analyzed using an automated procedure with atlas-based FreeSurfer segmentation software (v 4.5.0) package. Linear regression analyses were conducted with a NTSR1 C/T polymorphism which was previously reported to be associated with WM (rs4334545), hippocampal volume, and their interaction as predictors of WM performance, with gender and intracranial volume (ICV) as covariates. Results showed a significant interaction between NTSR1 genotype and hippocampal volume (p<.05 for both the left and right hippocampi). Further analysis showed that the correlation between hippocampal volume and WM scores was significant for carriers of the NTSR1 T-allele (p<.05 for both hippocampi), but not for CC homozygotes. These results indicate that the association between hippocampal structure and WM performance was modulated by variation in the NTSR1 gene, and suggest that further studies of brain-behavior associations should take genetic background information into account.

  5. Effect of light backscattering on high-speed modulation performance in strongly injection-locked unidirectional semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Smolyakov, Gennady A.; Osinski, Marek

    2014-03-01

    Greatly enhanced high-speed modulation performance has been recently predicted in numerical calculations for a novel injection-locking scheme involving a DBR or DFB master laser monolithically integrated with a unidirectional semiconductor microring laser. In this work, we investigate the effect of light backscattering between the two counterpropagating modes on high-speed modulation performance of strongly injection-locked unidirectional semiconductor microring lasers.

  6. Keep calm! Gender differences in mental rotation performance are modulated by habitual expressive suppression.

    PubMed

    Fladung, Anne-Katharina; Kiefer, Markus

    2016-11-01

    Men have been frequently found to perform more accurately than women in mental rotation tasks. However, men and women also differ with regard to the habitual use of emotion regulation strategies, particularly with regard to expressive suppression, i.e., the suppression of emotional expression in behavior. As emotional suppression is more often used by men, emotion regulation strategies might be a variable modulating gender differences in mental rotation performance. The present study, therefore, examined the influences of gender and emotion regulation strategies on mental rotation performance accuracy and feedback processing. Twenty-eight men and 28 women matched for relevant demographic variables performed mental rotation tasks of varying difficulty over a prolonged time. Emotional feedback was given immediately after each trial. Results showed that women reported to use expressive suppression less frequently than men. Women made more errors in the mental rotation task than men confirming earlier demonstrations of gender differences. Furthermore, women were more impaired by the negative feedback as indicated by the increased likelihood of subsequent errors compared with men. Task performance of women not habitually using expressive suppression was most inferior and most strongly influenced by failure feedback compared with men. Women using expressive suppression more habitually did not significantly differ in mental rotation accuracy and feedback processing from men. Hence, expressive suppression reduces gender differences in mental rotation accuracy by improving cognitive performance following failure feedback.

  7. An evaluation of regional differences in module performance for various PV technologies using the National Solar Radiation Data Base

    SciTech Connect

    Burdick, J.; Pruett, J.; Beck, E.

    1995-09-01

    The goals of this evaluation were to improve photovoltaic module long-term performance in the areas of reliability, durability and stability and to predict module service lifetime. The strategies employed were to: Perform tests and develop test procedures; Validate ASTM & IEEE test methods; Correlate indoor & outdoor test results; Identify module failure mechanisms; and, Help find solutions to reliability problems. Eight sites were chosen, with a variety of climates, and 5 years of weather data from the National Solar Radiation Data Base (NSRDB) were examined.

  8. Performance of the Vanguard Solar Dish-Stirling Engine Module. Final report

    SciTech Connect

    Droher, J.J.; Squier, S.E.

    1986-07-01

    This report summarizes information on the performance of the Vanguard Parabolic Dish/Stirling Engine Module during an 18-month period of operational testing (February 1984 through July 1985) at Rancho Mirage, California. The test module consisted of a 10.7-m-diameter parabolic dish to collect and concentrate solar beam radiation, a solar receiver, a four-cylinder Stirling engine using hydrogen as the working gas, an induction generator, and an air-cooled radiator. Historical beam insolation data are summarized for the Palm Springs area. Gross and net output of electricity, auxiliary power requirements, system availability, and capacity factors are summarized on a monthly and annual basis. Models are presented for predicting electrical output. Operating and maintenance experience is delineated chronologically and by subsystem. The performance of each major subsystem is discussed. An assessment is made of the present and future status of the dish/Stirling system. Recommendations are made for future developmental work involving dish/Stirling applications for the utility industry.

  9. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    PubMed Central

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-01-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching. PMID:27600368

  10. Augmenting data rate performance for higher order modulation in triangular index profile multicore fiber interconnect

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra K.; Priye, Vishnu; Rahman, B. M. A.

    2016-07-01

    A triangular profile multicore fiber (MCF) optical interconnect (OI) is investigated to augment performance that typically degrades at high data rates for higher order modulation in a short reach transmission system. Firstly, probability density functions (PDFs) variation with inter-core crosstalk is calculated for 8-core MCF OI with different index profile in the core and it was observed that the triangular profile MCF OI is the most crosstalk tolerant. Next, symbol error probability (SEP) for higher order quadrature phase shift keying (QPSK) modulated signal due to inter-core crosstalk is analytically obtained and their dependence on typical characteristic parameters are examined. Further, numerical simulations are carried out to compare the error performance of QPSK for step index and triangular index MCF OI by generating eye diagram at 40 Gbps per channel. Finally, it is shown that MCF OI with triangular index profile supporting QPSK has double spectral efficiency with tolerable trade off in SEP as compared with those of binary phase shift keying (BPSK) at high data rates which is scalable up to 5 Tbps.

  11. Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance

    PubMed Central

    Marden, James H.; Fitzhugh, Gail H.; Wolf, Melisande R.; Arnold, Kristina D.; Rowan, Barry

    1999-01-01

    Calcium sensitivity of myosin cross-bridge activation in striated muscles commonly varies during ontogeny and in response to alterations in muscle usage, but the consequences for whole-organism physiology are not well known. Here we show that the relative abundances of alternatively spliced transcripts of the calcium regulatory protein troponin T (TnT) vary widely in flight muscle of Libellula pulchella dragonflies, and that the mixture of TnT splice variants explains significant portions of the variation in muscle calcium sensitivity, wing-beat frequency, and an index of aerodynamic power output during free flight. Two size-distinguishable morphs differ in their maturational pattern of TnT splicing, yet they show the same relationship between TnT transcript mixture and calcium sensitivity and between calcium sensitivity and aerodynamic power output. This consistency of effect in different developmental and physiological contexts strengthens the hypothesis that TnT isoform variation modulates muscle calcium sensitivity and whole-organism locomotor performance. Modulating muscle power output appears to provide the ecologically important ability to operate at different points along a tradeoff between performance and energetic cost. PMID:10611380

  12. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation.

    PubMed

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-09-07

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  13. Modulating memristive performance of hexagonal WO3 nanowire by water-oxidized hydrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Fang; Liu, Chang; Ling, Jing; Lei, Le; Zhou, Weichang; Tang, Dongsheng

    2016-09-01

    In a two-terminal Au/hexagonal WO3 nanowire/Au device, ions drifting or carriers self-trapping under external electrical field will modulate the Schottky barriers between the nanowire and electrodes, and then result in memristive effect. When there are water molecules adsorbed on the surface of WO3 nanowire, hydrogen ions will generate near the positively-charged electrode and transport in the condensed water film, which will enhance the memristive performance characterized by analogic resistive switching remarkably. When the bias voltage is swept repeatedly under high relative humidity level, hydrogen ions will accumulate on the surface and then implant into the lattice of the WO3 nanowire, which leads to a transition from semiconducting WO3 nanowire to metallic HxWO3 nanowire. This insulator-metal transition can be realized more easily after enough electron-hole pairs being excited by laser illumination. The concentration of hydrogen ions in HxWO3 nanowire will decrease when the device is exposed to oxygen atmosphere or the bias voltage is swept in atmosphere with low relative humidity. By modulating the concentration of hydrogen ions, conductive hydrogen tungsten bronze filament might form or rupture near electrodes when the polarity of applied voltage changes, which will endow the device with memristive performance characterized by digital resistive switching.

  14. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-01-01

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732

  15. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    PubMed

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  16. Two- and Three-dimensional High Performance, Patterned Overlay Multi-chip Module Technology

    NASA Technical Reports Server (NTRS)

    Lyke, James

    1993-01-01

    A two- and three-dimensional multi-chip module technology was developed in response to the continuum in demand for increased performance in electronic systems, as well as the desire to reduce the size, weight, and power of space systems. Though developed to satisfy the needs of military programs, such as the Strategic Defense Initiative Organization, the technology, referred to as High Density Interconnect, can also be advantageously exploited for a wide variety of commercial applications, ranging from computer workstations to instrumentation and microwave telecommunications. The robustness of the technology, as well as its high performance, make this generality in application possible. More encouraging is the possibility of this technology for achieving low cost through high volume usage.

  17. Effects of cigarette smoking on prepulse inhibition, its attentional modulation, and vigilance performance.

    PubMed

    Rissling, Anthony J; Dawson, Michael E; Schell, Anne M; Nuechterlein, Keith H

    2007-07-01

    Startle eyeblink modification was measured during a degraded stimulus continuous performance test following both smoking and overnight abstinence among student smokers to measure the effects of smoking on both early and late attentional processes. A group of nonsmokers was tested twice without nicotine manipulation. A startling noise was presented either 240 or 1200 ms following target and nontarget stimuli presented during the task. Startle inhibition at 240 ms was greater following targets than nontargets following smoking and during both nonsmoker tests, but this attentional modulation was absent following abstinence. At the 1200-ms probe position, target and nontarget stimuli produced nondifferential inhibition during both tests for both groups. Abstinence among smokers produced reliably lower vigilance performance compared to ad lib smoking. The results indicate that smoking abstinence affects the early stages of stimulus processing.

  18. Performance simulation of the ERIS pyramid wavefront sensor module in the VLT adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Agapito, Guido; Riccardi, Armando; Esposito, Simone; Le Louarn, Miska; Marchetti, Enrico

    2012-07-01

    This paper presents the performance analysis based on numerical simulations of the Pyramid Wavefront sensor Module (PWM) to be included in ERIS, the new Adaptive Optics (AO) instrument for the Adaptive Optics Facility (AOF). We have analyzed the performance of the PWM working either in a low-order or in a high-order wavefront sensing mode of operation. We show that the PWM in the high-order sensing mode can provide SR > 90% in K band using bright guide stars under median seeing conditions (0.85 arcsec seeing and 15 m/s of wind speed). In the low-order sensing mode, the PWM can sense and correct Tip-Tilt (and if requested also Focus mode) with the precision required to assist the LGS observations to get an SR > 60% and > 20% in K band, using up to a ~16.5 and ~19.5 R-magnitude guide star, respectively.

  19. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

    PubMed Central

    Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  20. IR-detection modules from SWIR to VLWIR: performance and applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Hofmann, K.; Ziegler, J.

    2009-05-01

    The predominant spectral bands for IR applications are the 3-5μm MWIR and 8-10μm LWIR. AIM covers all these bands since many years with a mature MCT technology. For weight, size, power consumption and - last but not least - cost reduction, detection modules for these applications move to a pitch of 15μm. This is in both bands still a good match referring to the optical blur spot size and detector performance. Due to the compact design, the modules are equally well suited for new programs as well as retrofits of 1st GEN systems. Typical configurations at AIM are a 640x512 MWIR module, achieving an NETD < 25 mK @ F/4.6 and 5 ms integration time equivalent to half well fill conditions and an LWIR version with NETD < 30 mK @ F/2 and 110μs integration time. The modules are available either with an integral rotary cooler for portable applications which require minimum cooling power or a split linear cooler with a flexure bearing compressor providing long lifetimes with a MTTF >20,000h as required e.g. for warning sensors in 24/7 operation. A new field of applications supplied by AIM is the short wave infrared SWIR. The major advantage of MCT, the tunable bandgap i.e. cut-off wavelength, allows to match various requirements. So far specifically driven by spaceborne programs, a 1024x256 SWIR focal plane array (FPA) integrated detector cooler assembly (IDCA) with flexure bearing cooler and pulse tube cold finger was developed. The same technology including charge transimpedance amplifier for the low flux in the SWIR is available in a half TV 384x288 configuration. The read-out integrated circuit (ROIC) provides among other features 8 outputs for high frame rates up to 450Hz. Again for spaceborne commercial but also military applications like sensors in ballistic missile defense systems AIM develops MCT based very long wave (VLWIR) detectors with a cut-off wavelength >15μm. The current status and trends at AIM on IR detection modules sensitive in spectral ranges from

  1. On the performance of Trellis coded modulation with octal phase shift keying over the TDRSS channel

    NASA Technical Reports Server (NTRS)

    Osborne, William P.; Wolcott, Ted J.; Kopp, Brian T.; Ross, Michael

    1993-01-01

    As the National Aeronautics and Space Administration moves into the 21st century with programs like Space Station Freedom, a manned mission to Mars, and the new Landsat mission, transmission demands on the Tracking and Data Relay Satellite System (TDRSS) will very likely exceed the available bandwidth. The Manual Lujan, Jr. Center for Space Telemetering and Telecommunications Systems (CSTTS) at New Mexico State University (NMSU) is studying techniques for increasing the data rate capabilities of TDRSS. These techniques include the use of advanced bandwidth efficient modulation formats to increase the data rate that can be sustained in a TDRSS transponder and the use of lossless bandwidth compression of the data to be transmitted to lower the data rate required from the user spacecraft. Based upon current technology the most promising bandwidth efficient modulation technique is Trellis Coded Modulation (TCM) operating with Octal Phase shift Keying (8PSK). Trellis Coded Modulation coding with 8PSK carrier modulation has the capability to increase the data rate which can be transmitted through the TDRSS spacecraft by a factor of 2 to 2.5 times that available with todays coded QPSK systems with only a small penalty in link performance relative to the existing systems. However, before NASA can safely employ TCM coding it is necessary to prove that this complex format can perform on the real TDRSS link as it does in labs and simulation studies. This proof-of-concept test over a live satellite channel was the objective of the construction and testing performed under this task of the NMSU NASA grant referenced above. In conjunction with NASA, NMSU's CSTTS has constructed a system to test a new candidate TDRSS modulation scheme, TCM 8PSK, that can enhance the information throughput of the TDRSS spacecraft. The test system for this project which was constructed over a period of 18 months by NMSU consisted of two racks of commercial and univeristy-designed and -built

  2. On the performance of Trellis coded modulation with octal phase shift keying over the TDRSS channel

    NASA Astrophysics Data System (ADS)

    Osborne, William P.; Wolcott, Ted J.; Kopp, Brian T.; Ross, Michael

    1993-01-01

    As the National Aeronautics and Space Administration moves into the 21st century with programs like Space Station Freedom, a manned mission to Mars, and the new Landsat mission, transmission demands on the Tracking and Data Relay Satellite System (TDRSS) will very likely exceed the available bandwidth. The Manual Lujan, Jr. Center for Space Telemetering and Telecommunications Systems (CSTTS) at New Mexico State University (NMSU) is studying techniques for increasing the data rate capabilities of TDRSS. These techniques include the use of advanced bandwidth efficient modulation formats to increase the data rate that can be sustained in a TDRSS transponder and the use of lossless bandwidth compression of the data to be transmitted to lower the data rate required from the user spacecraft. Based upon current technology the most promising bandwidth efficient modulation technique is Trellis Coded Modulation (TCM) operating with Octal Phase shift Keying (8PSK). Trellis Coded Modulation coding with 8PSK carrier modulation has the capability to increase the data rate which can be transmitted through the TDRSS spacecraft by a factor of 2 to 2.5 times that available with todays coded QPSK systems with only a small penalty in link performance relative to the existing systems. However, before NASA can safely employ TCM coding it is necessary to prove that this complex format can perform on the real TDRSS link as it does in labs and simulation studies. This proof-of-concept test over a live satellite channel was the objective of the construction and testing performed under this task of the NMSU NASA grant referenced above. In conjunction with NASA, NMSU's CSTTS has constructed a system to test a new candidate TDRSS modulation scheme, TCM 8PSK, that can enhance the information throughput of the TDRSS spacecraft. The test system for this project which was constructed over a period of 18 months by NMSU consisted of two racks of commercial and univeristy-designed and -built

  3. Final Report: Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    SciTech Connect

    Johnson, William B

    2012-12-31

    Over the past 20 years, great technical progress has been made in improving power density and durability of fuel cell stacks. Yet, operating durably at high performance levels under very dry conditions, e.g., < 20% RH at 80 °C or above, remains beyond even the best fuel cell membrane electrode assemblies. Thus, today it is essential to humidify the gases supplied to the fuel cell inlets. In this work, we have produced a new, inexpensive, composite membrane capable of very high water vapor transport and low air cross-over. The composite structure consists of a very thin ionomer layer (e.g., < 5 m) sandwiched between two microporous polymer layers. The thin ionomer layer facilitates the rapid water transport and provides an impermeable layer to prevent gas cross-over. Such an approach reduces cost, but maintains performance. The microporous layer protects the thin ionomer layer from mechanical damage during handling; confers strength to the thin layer allowing it to be more durable during use; and allows it to withstand higher automotive pressures and temperatures. The composite structure will therefore allow lower total cost while still meeting automotive humidifier water transport and durability targets. Because the transport rates of these new materials are so high, existing planar membrane humidifier module designs available at the start of the program were incapable of efficiently utilizing the high rates. Therefore, the assembled team designed, tested and demonstrated an innovative, low-cost humidifier module with customized channel geometries that can take advantage of the high the water transport rates. Program Results The objectives of the program have been fully met. The optimized membrane produced in the program has very high transport rates, nearly twice that of the closest competitive option, a homogeneous perfluorosulfonic acid (PFSA) membrane. Furthermore, the composite structure imparts significant durability advantages, allowing the membrane to

  4. Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance.

    PubMed

    Foster, Chris M; Kennedy, Kristen M; Rodrigue, Karen M

    2017-07-19

    The present study was designed to investigate the effect of a genetic risk factor for Alzheimer's disease (AD), ApolipoproteinE ε4 (APOEε4), on the ability of the brain to modulate activation in response to cognitive challenge in a lifespan sample of healthy human adults. A community-based sample of 181 cognitively intact, healthy adults were recruited from the Dallas-Fort Worth metroplex. Thirty-one APOEε4+ individuals (48% women), derived from the parent sample, were matched based on sex, age, and years of education to 31 individuals who were APOEε4-negative (APOEε4-). Ages ranged from 20 to 86 years of age. Blood oxygen level-dependent functional magnetic resonance imaging was collected during the performance of a visuospatial distance judgment task with three parametric levels of difficulty. Multiple regression was used in a whole-brain analysis with age, APOE group, and their interaction predicting functional brain modulation in response to difficulty. Results revealed an interaction between age and APOE in a large cluster localized primarily to the bilateral precuneus. APOEε4- individuals exhibited age-invariant modulation in response to task difficulty, whereas APOEε4+ individuals showed age-related reduction of modulation in response to increasing task difficulty compared with ε4- individuals. Decreased modulation in response to cognitive challenge was associated with reduced task accuracy as well as poorer name-face associative memory performance. Findings suggest that APOEε4 is associated with a reduction in the ability of the brain to dynamically modulate in response to cognitive challenge. Coupled with a significant genetic risk factor for AD, changes in modulation may provide additional information toward identifying individuals potentially at risk for cognitive decline associated with preclinical AD.SIGNIFICANCE STATEMENT Understanding how risk factors for Alzheimer's disease (AD) affect brain function and cognition in healthy adult samples

  5. Performance of strabismic subjects using a validated surgical training module: a pilot study.

    PubMed

    Barry, Gerard P; Simon, John W; Auringer, David; Dunnican, Ward; Zobal-Ratner, Jitka

    2009-08-01

    To compare the performance of patients with strabismus to that of age-matched controls in a validated surgical training module. A prospective experimental study was conducted of 14 adult patients with strabismus since childhood and absent stereopsis and of 14 age-matched controls with normal stereopsis. Each participant received instruction in the task of peg transfer on a validated surgical training device and then completed 10 consecutive timed trials. The means of the best 5 scores were compared using the 2-sample Wilcoxon rank-sum test. The average age of cases was 34.8 years (range, 15-51 years) compared with 37.8 years (range, 14-56 years) for controls. The scores for the strabismic patients ranged from 50.8 to 151.4 seconds, with a mean of 82.5 +/- 26.7 seconds. Controls ranged from 43.2 to 129 seconds, with a mean of 64.7 +/- 23.9 seconds. The Wilcoxon rank-sum test showed significantly better performance among controls (p = 0.022). Patients with strabismus performed more poorly than did age-matched controls in this model of hand-eye coordination. However, there was significant overlap between groups and several patients with strabismus performed better than the mean of the control group. Further investigation is required to elucidate the impact of strabismus on surgical performance.

  6. Analysis of a Single Year of Performance Data for Thin Film Modules Deployed at NREL and NISE

    SciTech Connect

    MacAlpine, Sara; Deceglie, Michael; Kurtz, Sarah; Bora, Birinchi; Sastry, O. S.; Singh, Yogesh Kumar; Singh, Rashmi; Rai, Supriya

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and National Institute of Solar Energy (NISE), located in the United States and India, respectively, have partnered to deploy and monitor modules of three different thin film technologies, to compare the performance and/or degradation between the two sites. This report analyzes a single year of performance data (May 2014 -- May 2015) for the three thin film technologies, exploring the modules' performance under standard test conditions and monthly performance ratios, as well as fill factors varying season, light level, and temperature.

  7. Effects of a blended learning module on self-reported learning performances in baccalaureate nursing students.

    PubMed

    Hsu, Li-Ling; Hsieh, Suh-Ing

    2011-11-01

    This article is a report of a quasi-experimental study of the effects of blended modules on nursing students' learning of ethics course content. There is yet to be an empirically supported mix of strategies on which a working blended learning model can be built for nursing education. This was a two-group pretest and post-test quasi-experimental study in 2008 involving a total of 233 students. Two of the five clusters were designated the experimental group to experience a blended learning model, and the rest were designated the control group to be given classroom lectures only. The Case Analysis Attitude Scale, Case Analysis Self-Evaluation Scale, Blended Learning Satisfaction Scale, and Metacognition Scale were used in pretests and post-tests for the students to rate their own performance. In this study, the experimental group did not register significantly higher mean scores on the Case Analysis Attitude Scale at post-test and higher mean ranks on the Case Analysis Self-Evaluation Scale, the Blended Learning Satisfaction Scale, and the Metacognition Scale at post-test than the control group. Moreover, the experimental group registered significant progress in the mean ranks on the Case Analysis Self-Evaluation Scale and the Metacognition Scale from pretest to post-test. No between-subjects effects of four scales at post-test were found. Newly developed course modules, be it blended learning or a combination of traditional and innovative components, should be tested repeatedly for effectiveness and popularity for the purpose of facilitating the ultimate creation of a most effective course module for nursing education. © 2011 Blackwell Publishing Ltd.

  8. Performance analysis of an all-optical logic gate based on a single I/Q modulator with direct detection.

    PubMed

    Zhai, Yaxue; Tang, Xianfeng; Zhang, Xiaoguang; Xi, Lixia; Zhang, Wenbo

    2016-09-01

    This paper investigates the performance of an all-optical logic gate scheme based on a single in-phase and quadrature (I/Q) modulator with direct detection. The proposed scheme of an all-optical logic gate is simple, high speed, and easily reconfigured to realize 24 logic states by adjusting bias voltages, peak-to-peak voltages of the driven RF signals, and the phase shift. As the scheme to realize logic gates is based on the irregular use of a commercially available I/Q modulator and laser source, a specialized logic gate system including a laser, I/Q modulator, and driven RF module should be optimally designed to obtain the best performance. With the system's extinction ratio (ER) and Q-factor as metrics, the performance of the proposed logic gate scheme is analyzed theoretically and numerically in this paper. We first give a new theoretical model of the I/Q modulator. Next, taking the OR gate as an example, the simulations are carried out to analyze performance under the influence of some key factors in the system. Results show that the extinction ratio of the whole system is affected by the phase shift between the two arms of the I/Q modulator and the extinction ratios of two Mach-Zehnder modulators (MZMs), while Q-factor is further influenced by the output power of the laser and the insertion loss of the MZMs in the I/Q modulator. For an I/Q modulator with MZMs having an extinction ratio of 20 dB, the minimum laser output power to obtain a system's ER higher than 16 dB is 3 dBm, while in order to obtain a Q-factor higher than 6, the output power of the laser must not be <10  dBm.

  9. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks

    PubMed Central

    Gawda, Barbara; Szepietowska, Ewa

    2016-01-01

    Trait anxiety is thought to be associated with pathological anxiety, and a risk factor for psychiatric disorders. The present study examines the brain mechanisms associated with trait anxiety during the performing of verbal fluency tasks. The aim is to show how trait anxiety modulates executive functions as measured by verbal fluency, and to explore the link between verbal fluency and anxiety due to the putative negative biases in high-anxious individuals. Seven tasks of verbal fluency were used: letter “k,” “f,” verbs, “animals,” “vehicles,” “joy,” and “fear.” The results of 35 subjects (whole sample), and 17 subjects (nine men, eight women) selected from the whole sample for the low/high-anxious groups on the basis of Trait Anxiety scores were analyzed. The subjects were healthy, Polish speaking, right-handed and aged from 20 to 35 years old. fMRI (whole-brain analysis with FWE corrections) was used to show the neural signals under active participation in verbal fluency tasks. The results confirm that trait anxiety slightly modulates neural activation during the performance of verbal fluency tasks, especially in the more difficult tasks. Significant differences were found in brain activation during the performance of more complex tasks between individuals with low anxiety and those with high anxiety. Greater activation in the right hemisphere, frontal gyri, and cerebellum was found in people with low anxiety. The results reflect better integration of cognitive and affective capacities in individuals with low anxiety. PMID:26903827

  10. Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion.

    PubMed

    Vanin, Evgeny

    2011-02-28

    Bit-Error-Ratio (BER) of intensity modulated optical orthogonal frequency division multiplexing (OFDM) system is analytically evaluated accounting for nonlinear digital baseband distortion in the transmitter and additive noise in the photo receiver. The nonlinear distortion that is caused by signal clipping and quantization is taken into consideration. The signal clipping helps to overcome the system performance limitation related to high peak-to-average power ratio (PAPR) of the OFDM signal and to minimize the value of optical power that is required for achieving specified BER. The signal quantization due to a limited bit resolution of the digital to analog converter (DAC) causes an optical power penalty in the case when the bit resolution is too low. By introducing an effective signal to noise ratio (SNR) the optimum signal clipping ratio, system BER and required optical power at the input to the receiver is evaluated for the OFDM system with multi-level quadrature amplitude modulation (QAM) applied to the optical signal subcarriers. Minimum required DAC bit resolution versus the size of QAM constellation is identified. It is demonstrated that the bit resolution of 7 and higher causes negligibly small optical power penalty at the system BER=10⁻³ when 256-QAM and a constellation of lower size is applied. The performance of the optical OFDM system is compared to the performance of the multi-level amplitude-shift keying (M-ASK) system for the same number of information bits transmitted per signal sample. It is demonstrated that in the case of the matched receiver the M-ASK system outperforms OFDM and requires 3-3.5 dB less of optical power at BER=10⁻³ when 1-4 data bits are transmitted per signal sample.

  11. Task Performance Modulates Functional Connectivity Involving the Dorsolateral Prefrontal Cortex in Patients with Schizophrenia.

    PubMed

    Wu, Shihao; Wang, Huiling; Chen, Cheng; Zou, Jilin; Huang, Huan; Li, Peifu; Zhao, Yilin; Xu, Qizhong; Zhang, Liang; Wang, Hesheng; Pandit, Sanjib; Dahal, Subodh; Chen, Jun; Zhou, Yuan; Jiang, Tianzi; Wang, Gaohua

    2017-01-01

    Previous studies have suggested that patients with schizophrenia and healthy controls exhibit differential activation of and connectivity involving the dorsolateral prefrontal cortex (DLPFC) during working memory tasks, though their findings remain inconsistent. The functional integration perspective further suggests that working memory performance also modulates differences in functional interactions of the DLPFC between patients and controls. To explore this possibility, 45 healthy controls and 45 patients with schizophrenia were recruited to perform a 2-back task during functional magnetic resonance imaging (fMRI). Each group was further divided into two subgroups based on task performance to examine the modulatory effect of performance on functional interactions of the DLPFC, as measured via psychophysiological interaction (PPI) analyses. We observed that, in patients with schizophrenia who exhibited impaired working memory capacity and decreased brain activation/deactivation, functional interactions between the right/left DLPFC and angular cortex were decreased relative to those of healthy controls. Furthermore, we observed an interaction effect of working memory performance and diagnosis on functional connectivity between the right/left DLPFC seed region and posterior regions such as the angular cortex, fusiform gyrus, and middle occipital gyrus. This interaction effect was mainly driven by the negative correlation between functional connectivity and performance in healthy controls, and by the positive correlation in patients with schizophrenia. These results demonstrate the effects of inter-individual differences in working memory performance on functional interactions between the DLPFC and posterior regions in patients with schizophrenia as well as healthy controls, which may shed new light on the neural basis of working memory.

  12. Task Performance Modulates Functional Connectivity Involving the Dorsolateral Prefrontal Cortex in Patients with Schizophrenia

    PubMed Central

    Wu, Shihao; Wang, Huiling; Chen, Cheng; Zou, Jilin; Huang, Huan; Li, Peifu; Zhao, Yilin; Xu, Qizhong; Zhang, Liang; Wang, Hesheng; Pandit, Sanjib; Dahal, Subodh; Chen, Jun; Zhou, Yuan; Jiang, Tianzi; Wang, Gaohua

    2017-01-01

    Previous studies have suggested that patients with schizophrenia and healthy controls exhibit differential activation of and connectivity involving the dorsolateral prefrontal cortex (DLPFC) during working memory tasks, though their findings remain inconsistent. The functional integration perspective further suggests that working memory performance also modulates differences in functional interactions of the DLPFC between patients and controls. To explore this possibility, 45 healthy controls and 45 patients with schizophrenia were recruited to perform a 2-back task during functional magnetic resonance imaging (fMRI). Each group was further divided into two subgroups based on task performance to examine the modulatory effect of performance on functional interactions of the DLPFC, as measured via psychophysiological interaction (PPI) analyses. We observed that, in patients with schizophrenia who exhibited impaired working memory capacity and decreased brain activation/deactivation, functional interactions between the right/left DLPFC and angular cortex were decreased relative to those of healthy controls. Furthermore, we observed an interaction effect of working memory performance and diagnosis on functional connectivity between the right/left DLPFC seed region and posterior regions such as the angular cortex, fusiform gyrus, and middle occipital gyrus. This interaction effect was mainly driven by the negative correlation between functional connectivity and performance in healthy controls, and by the positive correlation in patients with schizophrenia. These results demonstrate the effects of inter-individual differences in working memory performance on functional interactions between the DLPFC and posterior regions in patients with schizophrenia as well as healthy controls, which may shed new light on the neural basis of working memory. PMID:28289394

  13. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.

    PubMed

    Pariente, J; Loubinoux, I; Carel, C; Albucher, J F; Leger, A; Manelfe, C; Rascol, O; Chollet, F

    2001-12-01

    In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance.

  14. The AMPA modulator S 18986 improves declarative and working memory performances in aged mice.

    PubMed

    Marighetto, Aline; Valerio, Stephane; Jaffard, Robert; Mormede, Cecile; Muñoz, Carmen; Bernard, Katy; Morain, Philippe

    2008-05-01

    The aim of this study was to further characterize the memory-enhancing profile of S 18986 a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. S 18986 was studied in two mouse models of age-related memory deficits, using radial maze paradigms involving long-term/declarative memory and short-term/working memory. Aged mice exhibited severe deficits when compared with their younger counterparts in the two behavioural tests. S 18986 at the dose of 0.1 mg/kg selectively improved aged mouse performance in the test of long-term/declarative memory flexibility and exerted a beneficial effect on short-term retention of successive arm-visits in the short-term/working memory test. This study confirms the memory-enhancing properties of S 18986 and, in line with emerging data on multiple AMPA modulators, highlights the relevance of targeting AMPA receptors in the development of new memory enhancers.

  15. Workers perform checkouts of Cassini's upper experiment module and base in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers in the Payload Hazardous Servicing Facility (PHSF) perform checkouts of the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  16. Monitoring of catalyst performance in CO2 lasers using frequency modulation spectroscopy with diode lasers

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.

  17. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation.

    PubMed

    Meinzer, Marcus; Antonenko, Daria; Lindenberg, Robert; Hetzer, Stefan; Ulm, Lena; Avirame, Keren; Flaisch, Tobias; Flöel, Agnes

    2012-02-01

    Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance.

  18. Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform.

    PubMed

    Giri, Basant; Peesara, Ravichander R; Yanagisawa, Naoki; Dutta, Debashis

    Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of analytical procedures, such as sample preconcentration, that further enhance the performance of the immunoassay. In view of the scientific potential of microfluidic ELISAs, inclusion of this technique into an undergraduate curriculum is valuable in preparing the next generation of scientists and engineers. Here, an experimental module is presented for this immunoassay method that can be completed in an undergraduate laboratory setting within two 3-h periods (including all incubation and data analyses procedures) using only a microliter of sample and reagents per assay. In addition to acquainting students with the microfluidic technology, the reported module provides training in quantitating ELISAs using the kinetic format of the assay. Furthermore, it offers a useful educational tool for introducing undergraduates to basic image analysis techniques, as well as signal-to-noise ratio and limit of detection calculations that are valuable in characterizing any analytical method.

  19. Simulink models for performance analysis of high speed DQPSK modulated optical link

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Rupanshi, Chaubey, V. K.

    2016-03-01

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  20. High performance concentrating photovoltaic module designs for utility scale power generation

    NASA Astrophysics Data System (ADS)

    Plesniak, Adam; Jones, Russ; Schwartz, Joel; Martins, Guy; Hall, John; Narayanan, Authi; Whelan, David; Benítez, Pablo; Miñano, Juan C.; Cvetkovic, Aleksandra; Hernandez, Maikel; Dross, Oliver; Alvarez, Roberto

    2009-08-01

    The Boeing Company Phantom Works has developed three different prototype photovoltaic concentrator arrays since March 2007. Identified as Prototype A, B and C, the experimentally proven technical characteristics of each design are presented. The concentrator designs utilize a 1 cm2 multi-junction solar cell assembly in conjunction with SMS non-imaging optical designs [1, 2] manufactured with low-cost mass-producible technologies. Prototype A is an on-axis XR optical concentrator with a 733x geometrical concentration demonstrating a +/- 1.73° acceptance angle and 23.7% conversion efficiency. Prototype B is an off-axis free-form XR optical concentrator with a 810x geometrical concentration demonstrating a +/- 1.32° acceptance angle and 25.3% conversion efficiency. Prototype C is the most recent off-axis free-form XR optical concentrator with a 801x geometrical concentration and a theoretical +/-1.80° acceptance angle demonstrating a conversion efficiency greater than 27.0%. Prototype C is also the basis for the Boeing Proof of Design (POD) module, demonstrating an acceptance angle of +/-1.48° and a conversion efficiency of 29.4% (as of May 8, 2009). Manufacturability has been paramount during the design process, resulting in high performance concentrating photovoltaic modules using production quality components.

  1. Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform

    PubMed Central

    Giri, Basant; Peesara, Ravichander R.; Yanagisawa, Naoki; Dutta, Debashis

    2015-01-01

    Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of analytical procedures, such as sample preconcentration, that further enhance the performance of the immunoassay. In view of the scientific potential of microfluidic ELISAs, inclusion of this technique into an undergraduate curriculum is valuable in preparing the next generation of scientists and engineers. Here, an experimental module is presented for this immunoassay method that can be completed in an undergraduate laboratory setting within two 3-h periods (including all incubation and data analyses procedures) using only a microliter of sample and reagents per assay. In addition to acquainting students with the microfluidic technology, the reported module provides training in quantitating ELISAs using the kinetic format of the assay. Furthermore, it offers a useful educational tool for introducing undergraduates to basic image analysis techniques, as well as signal-to-noise ratio and limit of detection calculations that are valuable in characterizing any analytical method. PMID:26052160

  2. Simulink models for performance analysis of high speed DQPSK modulated optical link

    SciTech Connect

    Sharan, Lucky Rupanshi, Chaubey, V. K.

    2016-03-09

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  3. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance.

    PubMed

    Loderer, Christian; Wörle, Anna; Fuchs, Werner

    2012-04-03

    Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional

  4. Performance of low-power RFID tags based on modulated backscattering

    NASA Astrophysics Data System (ADS)

    Mhanna, Zeinab; Sibille, Alain; Contreras, Richard

    2017-02-01

    Ultra Wideband (UWB) modulated backscattering (MBS) passive Radio-Frequency IDentification (RFID) systems provide a promising solution to overcome many limitations of current narrowband RFID devices. This work addresses the performance of such systems from the point of view of the radio channel between the readers and the tags. Such systems will likely combine several readers, in order to provide both the detection and localization of tags operating in MBS. Two successive measurements campaigns have been carried out in an indoor reference scenario environment. The first is intended to verify the methods and serves as a way to validate the RFID backscattering measurement setup. The second represents a real use case for RFID application and allows one to quantitatively analyze the path loss of the backscattering propagation channel. xml:lang="fr"

  5. Effect of optical surface flatness performance on spatial-light-modulator-based imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Hongqiang; Wan, Yuhong; Man, Tianlong; Han, Ying

    2016-10-01

    Spatial light modulator (SLM) has various of applications in the field of imaging, beam shaping, adaptive optics and so on. While SLM is used as an aberration correction element in super-resolution microscopy, the surface flatness of SLM could affect the imaging performance of the system due to the higher sensitivity to aberrations of these kind microscopic techniques. In this paper, the optical surface flatness of SLM is measured experimentally by employing the image plane digital holography. The topography of SLM is retrieved from the captured hologram. Aiming to the application of SLM as an adaptive correction element in super resolution microscopy, the aberrations introduced by the surface flatness of SLM are further evaluated and corrected in the same optical system.

  6. Note: Symmetric modulation methodology applied in improving the performance of scanning tunneling microscopy.

    PubMed

    Ju, Bing-Feng; Zhu, Wu-Le; Zhang, Wei

    2013-12-01

    A symmetric modulation methodology is proposed to combine robust control of external disturbance, rapid response to steep sidewalls with the high speed of a traditional scanning tunneling microscopy. The 1400 × 200 μm(2) topography of a comb-like steep sidewalls micro-structure with the depth of 23 μm was acquired at a high scanning speed of 120 μms(-1) and the detectable slope angle is up to 85°. The total measuring time was only 17 min. In addition, a 4 × 4 mm(2) aluminum dual-sinusoidal array has been successfully measured with a scanning speed up to 500 μms(-1). It improved the performance of the normal scanning tunneling microscope and enables efficient and stable measurement of large-area complex micro-structures, and thus can be introduced to engineering applications.

  7. High-Performance Modulation-Doped Heterostructure-Thermopiles for Uncooled Infrared Image-Sensor Application

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Kogushi, Noriaki; Ang, Kian Siong; Hofstetter, René; Manoj, Kumar; Retnam, Louis Nicholas; Wang, Hong; Ng, Geok Ing; Jin, Chon; Pavlidis, Dimitris

    Novel thermopiles based on modulation doped AlGaAs/InGaAs and AlGaN/GaN heterostructures are proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to 4,900V/W with 110µs for AlGaAs/InGaAs, and to 460V/W with 9µs for AlGaN/GaN thermopiles, respectively. Based on integrated HEMT-MEMS technology, the AlGaAs/InGaAs 32×32 matrix FPAs are fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.

  8. ToF Performance Evaluation of PET Modules With Digital Silicon Photomultiplier Technology During MR Operation

    NASA Astrophysics Data System (ADS)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Solf, Torsten; Kiessling, Fabian; Schulz, Volkmar

    2015-06-01

    In 2012, we presented the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's digital SiPMs and is designed to be operated in a 3-T MRI. In this work we use the same platform equipped with scintillators having dimensions closer to a clinical application. This allows an investigation of the time of flight (ToF) performance of the platform and its behavior during simultaneous MR operation. We employ LYSO crystal arrays of 4×4 ×10 mm3 coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) resulting in a one-to-one coupling of crystals to read-out channels. Six sensor stacks are mounted onto a singles processing unit in a 2 ×3 arrangement. Two modules are mounted horizontally facing each other on a gantry with a crystal-to-crystal spacing of 217.6 mm (gantry position). A second arrangement places the modules at the maximum distance of approximately 410 mm inside the MR bore (maximum distance position) which brings each module close to the gradient system. The DPCs are cooled down to approximately 5-10° C under operation. We disable 20% of the worst cells and use an overvoltage of Vov = 2.0 V and 2.5 V. To obtain the best time stamps, we use the trigger scheme 1 (first photon trigger), a narrow energy window of 511 ±50 keV and a minimum required light fraction of the main pixel of more than 65% to reject intercrystal scatter. By using a 22Na point source in the isocenter of the modules, the coincidence resolution time (CRT) of the two modules is evaluated inside the MRI system without MR activity and while using highly demanding gradient sequences. Inside the B0 field without any MR activity at an overvoltage of Vov = 2.0 V, the energy resolution is 11.45% (FWHM) and the CRT is 250 ps (FWHM). At an overvoltage of Vov = 2.5 V, the energy resolution is 11.15% (FWHM) and the CRT is 240 ps (FWHM). During a heavy z-gradient sequence (EPI factor: 49, gradient strength: 30 mT/m, slew rate: 192.3 mT/m/ms, TE/TR: 12/25 ms and switching duty cycle: 67

  9. Pediatrician Maintenance of Certification Using American Board of Pediatrics' Performance Improvement Modules.

    PubMed

    Arvanitis, Marina; deJong, Neal A; Leslie, Laurel K; DeWalt, Darren A; Randolph, Gregory D; Flower, Kori B

    2017-07-01

    From 2010 to 2014, pediatricians completed Part 4 Maintenance of Certification (MOC) through practice- or organization-developed quality improvement (QI) activities approved by the American Board of Pediatrics (ABP). Organization-developed activities were online modules, such as the ABP's Performance Improvement Modules (PIMs), through which pediatricians implemented QI strategies in practice and reported quality measures. Aim 1 was to assess the proportion of pediatricians who completed practice- vs organization-developed QI activities for Part 4 MOC and to test the relationship between activities and pediatrician demographics. Aim 2 was to assess the relationship between PIM completion and improvement in care processes and outcomes as determined by PIM quality measures. For aim 1, using deidentified demographic data from the ABP, we summarized QI activity completion and performed bivariate testing by pediatrician demographics. For aim 2, using deidentified parent and pediatrician-reported quality measures from the Attention-Deficit/Hyperactivity Disorder (ADHD), Asthma, Hand Hygiene, and Influenza PIMs, we used 2-sample tests of proportions to calculate pre-post changes in quality measures. For aim 1, of 50,433 pediatricians who completed Part 4 MOC from 2010 to 2014, 22% completed practice-developed and 78% organization-developed activities. More pediatricians completed organization-developed activities, regardless of age, gender, or subspecialty status. The majority (73%) of pediatricians who completed organization-developed activities completed ABP PIMs. For aim 2, PIM completion was associated with improvement on nearly all pediatrician- and parent-reported quality measures. At the outset of the Part 4 MOC system, pediatricians most commonly completed online, organization-developed activities. Pediatricians and parents reported improvements in care processes and outcomes associated with PIMs, suggesting PIMs can be an effective means of facilitating practice

  10. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.

    PubMed

    Schultze, Volkmar; Ijsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Meyer, Hans-Georg

    2012-06-18

    We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical M(x) method using B(1) field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

  11. Effect of temperature on the performance of a bipolar transistor carrier-injected optical waveguide modulator/switch.

    PubMed

    Okada, Y

    1991-05-15

    The effect of ambient temperature on the performance of a GaAs/AlGaAs heterojunction bipolar transistor waveguide structure carrier-injected optical intensity modulator/switch is discussed. An increase in the temperature increases the achievable optical modulation ratio at the expense of increased absorption loss, and vice versa. Analysis also shows that for practical use a tolerable temperature change should be no more than approximately 10 degrees C.

  12. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    PubMed

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  13. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance

    PubMed Central

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-01-01

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700

  14. Implementing Performance-Based Vocational Education Utilizing V-TECS Catalogs. Module 7. Designing Student Materials for Self-Pacing.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This learning module on designing student materials for self-pacing is one of nine developed for use in training administrators, teachers, and prospective teachers in the utilization of Vocational-Technical Education Consortium of States (V-TECS) catalogs of performance objectives, criteria-referenced measures, and performance guides. Information…

  15. Implementing Performance-Based Vocational Education Utilizing V-TECS Catalogs. Module 4. Developing a Delivery System.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This learning module on developing a delivery system is one of nine developed for use in training administrators, teachers, and prospective teachers in the utilization of Vocational-Technical Education Consortium of States (V-TECS) catalogs of performance objectives, criteria-referenced measures, and performance guides. Readings are provided on…

  16. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  17. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  18. Manufacturing of high performance, low cost dual mirror lamp reflector modules

    NASA Astrophysics Data System (ADS)

    Shen, Li

    The Lamp Reflector Module (LRM) is a key component in every micro display projection system, which has played a dominant role in the large-screen display market today. The goal of this research is to (1) improve the Dual Mirror prototype's light output performance, (2) investigate the underlying principles of its slow output deterioration so as to help develop effective and efficient LRM thermal management for maximized lifetime performance, and (3) improve/enable low cost mass LRM manufacturing for the projection display market. The first part of this research addresses the prototype's low output problem. More sophisticated 3D Optical Ray Tracing (ORT) models were generated to provide the output prediction depending on the arc gap, system collection etendue, etc. It was concluded that upgrading the manufacturing processes, particularly the reflector shape, surface and cold mirror coating, could effectively improve the output performance. Additionally, these theoretical models are shown to be used to design a LRM with 16% output gain for the consumer Rear Projection display market. The second part of this research focuses on the issue of lifetime performance. The electrode, arc attachment and envelope evolution were monitored by camera systems. The upgraded ORT models confirmed the arc length insensitivity property of the Dual Mirror LRM being one of the major reasons for its longer native lifetime. The third part of this research focuses on issues related to the entire LRM manufacturing. A series of quality control tools were developed to help implement manufacturing process optimization. LRMs made with the upgraded manufacturing processes showed about 25% output gain over the previous prototypes. Based on the imaging property of the Dual Mirror LRM, a lower cost lamp reflector alignment method, called cold alignment, was developed. In this method, the etendue efficiency is maintained and a slower degrading and more stable lifetime output performance are achieved

  19. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise.

    PubMed

    Okano, Alexandre Hideki; Fontes, Eduardo Bodnariuc; Montenegro, Rafael Ayres; Farinatti, Paulo de Tarso Veras; Cyrino, Edilson Serpeloni; Li, Li Min; Bikson, Marom; Noakes, Timothy David

    2015-09-01

    The temporal and insular cortex (TC, IC) have been associated with autonomic nervous system (ANS) control and the awareness of emotional feelings from the body. Evidence shows that the ANS and rating of perceived exertion (RPE) regulate exercise performance. Non-invasive brain stimulation can modulate the cortical area directly beneath the electrode related to ANS and RPE, but it could also affect subcortical areas by connection within the cortico-cortical neural networks. This study evaluated the effects of transcranial direct current stimulation (tDCS) over the TC on the ANS, RPE and performance during a maximal dynamic exercise. Ten trained cyclists participated in this study (33±9 years; 171.5±5.8 cm; 72.8±9.5 kg; 10-11 training years). After 20-min of receiving either anodal tDCS applied over the left TC (T3) or sham stimulation, subjects completed a maximal incremental cycling exercise test. RPE, heart rate (HR) and R-R intervals (as a measure of ANS function) were recorded continuously throughout the tests. Peak power output (PPO) was recorded at the end of the tests. With anodal tDCS, PPO improved by ~4% (anodal tDCS: 313.2±29.9 vs 301.0±19.8 watts: sham tDCS; p=0.043), parasympathetic vagal withdrawal was delayed (anodal tDCS: 147.5±53.3 vs 125.0±35.4 watts: sham tDCS; p=0.041) and HR was reduced at submaximal workloads. RPE also increased more slowly during exercise following anodal tDCS application, but maximal RPE and HR values were not affected by cortical stimulation. The findings suggest that non-invasive brain stimulation over the TC modulates the ANS activity and the sensory perception of effort and exercise performance, indicating that the brain plays a crucial role in the exercise performance regulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems

    SciTech Connect

    Farr, J. B.; Schoenenberg, D.; Dessy, F.; De Wilde, O.; Bietzer, O.

    2013-07-15

    Purpose: The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so.Methods: The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool.Results: The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not.Conclusions: The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton

  1. A high performance DAC /DDS daughter module for the RHIC LLRF platform

    SciTech Connect

    Hayes, T.; Harvey, M.; Narayan, G.; Severino, F.; Smith, K.S.; Yuan, S.

    2011-03-28

    The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a high speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.

  2. A range/depth modulation transfer function (RMTF) framework for characterizing 3D imaging LADAR performance

    NASA Astrophysics Data System (ADS)

    Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas

    2005-05-01

    3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.

  3. Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays

    NASA Astrophysics Data System (ADS)

    Mesleh, Raed; Ikki, Salama S.; Aggoune, El-Hadi M.; Mansour, Ali

    2012-12-01

    In this article, space shift keying (SSK) modulation is used to study a wireless communication system when multiple relays are placed between the transmitter and the receiver. In SSK, the indices of the transmit antennas form the constellation symbols and no other data symbol are transmitted. The transmitter and the receiver communicate through a direct link and the existing relays. In this study, two types of relays are considered. Conventional amplify and forward relays in which all relays amplify their received signal and forward it to the destination in a round-robin fashion. In addition, decode and forward relays in which the relays that correctly detect the source signal will forward the corresponding fading gain to the destination in pre-determined orthogonal time slots are studied. The optimum decoder for both communication systems is derived and performance analysis are conducted. The exact average bit error probability (ABEP) over Rayleigh fading channels is obtained in closed-form for a source equipped with two transmit antennas and arbitrary number of relays. Furthermore, simple and general asymptotic expression for the ABEP is derived and analyzed. Numerical results are also provided, sustained by simulations which corroborate the exactness of the theoretical analysis. It is shown that both schemes perform nearly the same and the advantages and disadvantages of each are discussed.

  4. Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning.

    PubMed

    Lee, Kwang; Holley, Sandra M; Shobe, Justin L; Chong, Natalie C; Cepeda, Carlos; Levine, Michael S; Masmanidis, Sotiris C

    2017-03-22

    The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.

  5. Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2016-02-01

    High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control.

  6. Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Tellez, Jason A.; Schmidt, Jason D.

    2011-08-01

    The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma--gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma--gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying.

  7. Multicentre performance evaluation of the E170 module for modular analytics.

    PubMed

    Bieglmayer, Christian; Chan, Daniel W; Sokoll, Lori; Imdahl, Roland; Kobayashi, Masaji; Yamada, Erike; Lilje, Diana J; Luthe, Hilmar; Meissner, Jochen; Messeri, Gianni; Celli, Alessandra; Tozzi, Paola; Roth, Heinz-Jürgen; Schmidt, Frank-Peter; Mächler, Marie-Luise; Schuff-Werner, Peter; Zingler, Christiana; Smitz, Johan; Schiettecatte, Johan; Vonderschmitt, Dieter J; Pei, Patrick; Ng, Katherine; Ebert, Christoph; Kirch, Peter; Wanger, Michael; McGovern, Margaret; Stockmann, Wolfgang; Kuns, Albert

    2004-01-01

    The E170 module was evaluated at 13 sites in an international multicentre study. The objective of the study was to assess the analytical performance of 49 analytes, and to collect feedback on the system's reliability and practicability. The typical, within-run coefficients of variation (CVs) for most of the quantitative assays ranged between 1 and 2% while a range of 2-4% was achieved with the infectious disease methods. Total precision CVs were found to be within the manufacturer's expected performance ranges, demonstrating good concordance of the system's measuring channels and a high reproducibility during the 2-4-week trial period. The functional sensitivity of 11 selected assays met the clinical requirements (e.g., thyreotroponin (TSH) 0.008 mU/l, troponin T 0.02 microg/l, total prostate-specific antigen (PSA) 0.03 microg/l). The E170 showed no drift during an 8-hour period and no relevant reagent carryover. Accuracy was confirmed by ring trial experiments and method comparisons vs. Elecsys 2010. The reliability and practicability of the system's hardware and software met with, or even exceeded, the evaluator's requirements. Workflow studies showed that E170 can cover the combined workload of various routine analysers in a variety of laboratory environment. Throughput and sample processing time requirements were achieved while personnel 'hands-on-time' could be reduced.

  8. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    SciTech Connect

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Ross, Randy

    2011-06-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  9. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine.

    PubMed

    Ferraro, Elisabetta; Pin, Fabrizio; Gorini, Stefania; Pontecorvo, Laura; Ferri, Alberto; Mollace, Vincenzo; Costelli, Paola; Rosano, Giuseppe

    2016-09-01

    The loss of muscle mass (sarcopenia) and the associated reduced muscle strength are key limiting factors for elderly people's quality of life. Improving muscle performance does not necessarily correlate with increasing muscle mass. In fact, particularly in the elderly, the main explanation for muscle weakness is a reduction of muscle quality rather than a loss of muscle mass, and the main goal to be achieved is to increase muscle strength. The effectiveness of Trimetazidine (TMZ) in preventing muscle functional impairment during ageing was assessed in our laboratory. Aged mice received TMZ or vehicle for 12 consecutive days. Muscle function was evaluated at the end of the treatment by a grip test as well as by an inverted screen test at 0, 5, 7 and 12 days of TMZ treatment. After sacrifice, muscles were stored for myofiber cross-sectional area assessment and myosin heavy chain expression evaluation by western blotting. Chronic TMZ treatment does not affect the mass of both gastrocnemius and tibialis anterior muscles, while it significantly increases muscle strength. Indeed, both latency to fall and grip force are markedly enhanced in TMZ-treated versus untreated mice. In addition, TMZ administration results in higher expression of slow myosin heavy chain isoform and increased number of small-sized myofibers. We report here some data showing that the modulation of skeletal muscle metabolism by TMZ increases muscle strength in aged mice. Reprogramming metabolism might therefore be a strategy worth to be further investigated in view of improving muscle performance in the elderly.

  10. System performance analysis of time-division-multiplexing passive optical network using directly modulated lasers or colorless optical network units

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxue; Guo, Lei; Liu, Yejun; Zhou, Yufang

    2015-05-01

    As a promising technology for broadband communication, passive optical network (PON) has been deployed to support the last-mile broadband access network. In particular, time-division-multiplexing PON (TDM-PON) has been widely used owing to its mature technology and low cost. To practically implement TDM-PONs, the combination of intensity modulation and direct detection is a very promising technique because it achieves cost reduction in system installation and maintenance. However, the current intensity-modulation and direct-detection TDM-PON still suffers from some problems, which mainly include a high-power penalty, detrimental Brillouin backscattering (BB), and so on. Thus, using directly modulated lasers (DMLs) and colorless optical network units (ONUs), respectively, two intensity-modulation and direct-detection TDM-PON architectures are proposed. Using VPI (an optical simulation software developed by VPIphotonics company) simulators, we first analyze the influences on DML-based intensity-modulation and direct-detection TDM-PON (system 1) performances, which mainly include bit error rate (BER) and power penalty. Next, the BB effect on the BER of the intensity-modulation and direct-detection TDM-PON that uses colorless ONUs (system 2) is also investigated. The simulation results show that: (1) a low-power penalty is achieved without degrading the BER of system 1, and (2) the BB can be effectively reduced using phase modulation of the optical carrier in system 2.

  11. The fabrication of efficiency-improved W-series interconnect type of module by balancing the performance of single cells

    SciTech Connect

    Seo, Hyunwoong; Son, Minkyu; Hong, Jitae; Kim, Hee-Je; Lee, Dong-Yoon; An, Tae-Pung; Kim, Hyunju

    2009-12-15

    Large dye-sensitized solar cells (DSCs) are usually fabricated as module types instead of single cell types, because the overall efficiency of an area-expanded single DSC is decreased by its large surface resistances and low fill factor (FF). The general DSC module designs are the parallel grid, series interconnect, and series monolithic types. The W-series interconnect type of module has some advantages, such as its easy fabrication and simple structure. Moreover, it also avoids the reduction in the FF. However, it has an efficiency imbalance between the single cells, because of the discrepancy in their luminous intensity. Therefore, the fabrication of the W-series interconnect type of module will be cost-effective only if the problem of its efficiency imbalance is solved. In this study, the thickness of the Pt layer, which has a very high reflection rate, and that of the electrolyte layer are minimized and the transmitted light is reflected by a metallic thin film in order to increase the number of photons absorbed by the dye molecules in the module. As a result, the performance of the efficiency-balanced W-module is improved by approximately 1% as compared to that of the conventional module. (author)

  12. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance

    PubMed Central

    Allen, Jessica L.; Kautz, Steven A.; Neptune, Richard R.

    2013-01-01

    Background Post-stroke subjects with hemiparesis typically utilize a reduced number of modules or co-excited muscles compared to non-impaired controls, with at least one module resembling the merging of two or more non-impaired modules. In non-impaired walking, each module has distinct contributions to important biomechanical functions, and thus different merged module combinations post-stroke may result in different functional consequences. Methods Three-dimensional forward dynamics simulations were developed for non-impaired controls and two groups of post-stroke hemiparetic subjects with different merged module combinations to analyze how paretic leg muscle contributions to body support, forward propulsion, mediolateral control and leg swing are altered. Findings The potential of the plantarflexors to generate propulsion was impaired in both hemiparetic groups while the remaining functional consequences differed depending on which modules were merged. Paretic leg swing was impaired during pre-swing when Modules 1 (hip abductors and knee extensors during early stance) and 2 (plantarflexors during late stance) were merged and during late swing when Modules 1 and 4 (hamstrings during swing into early stance) were merged. When Modules 1 and 4 were merged, body support during early stance was also impaired. Interpretation These results suggest that improving plantarflexor ability to generate propulsion is critical during rehabilitation regardless of module composition. If Modules 1 and 2 are merged, then rehabilitation should also focus on improving paretic leg pre-swing whereas if Modules 1 and 4 are merged, then rehabilitation should also focus on improving early stance body support and late paretic leg swing. PMID:23830138

  13. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.

    PubMed

    Allen, Jessica L; Kautz, Steven A; Neptune, Richard R

    2013-07-01

    Post-stroke subjects with hemiparesis typically utilize a reduced number of modules or co-excited muscles compared to non-impaired controls, with at least one module resembling the merging of two or more non-impaired modules. In non-impaired walking, each module has distinct contributions to important biomechanical functions, and thus different merged module combinations post-stroke may result in different functional consequences. Three-dimensional forward dynamics simulations were developed for non-impaired controls and two groups of post-stroke hemiparetic subjects with different merged module combinations to analyze how paretic leg muscle contributions to body support, forward propulsion, mediolateral control and leg swing are altered. The potential of the plantarflexors to generate propulsion was impaired in both hemiparetic groups while the remaining functional consequences differed depending on which modules were merged. Paretic leg swing was impaired during pre-swing when Modules 1 (hip abductors and knee extensors during early stance), and 2 (plantarflexors during late stance) were merged and during late swing when Modules 1 and 4 (hamstrings during late swing into early stance) were merged. When Modules 1 and 4 were merged, body support during early stance was also impaired. These results suggest that improving plantarflexor ability to generate propulsion is critical during rehabilitation regardless of module composition. If Modules 1 and 2 are merged, then rehabilitation should also focus on improving paretic leg pre-swing whereas if Modules 1 and 4 are merged, then rehabilitation should also focus on improving early stance body support and late paretic leg swing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  15. Examination of millimeter-wave performance potential of modulation doped AlGaAs/GaAs FET structures

    NASA Astrophysics Data System (ADS)

    Das, M. B.

    1985-09-01

    This investigation involved a critical examination of the millimeter-wave performance requirements of the modulation-doped n-AlGaAs/GaAs FET structures. The results of this study revealed the need for a high aspect ration design for the gate structure of MODFET's for millimeter-wave performance. A detailed design procedure has also been developed for submicron gate-length MODFET's, determination of carrier saturation velocity, and power gain and noise figure performance of MODFET's.

  16. Improved methods for the measurement and modeling of PV module and system performance for all operating conditions

    SciTech Connect

    King, D.L.

    1995-11-01

    The objective of this work was to develop improved performance model for modules and systems for for all operating conditions for use in module specifications, system and BOS component design, and system rating or monitoring. The approach taken was to identify and quantify the influence of dominant factors of solar irradiance, cell temperature, angle-of-incidence; and solar spectrum; use outdoor test procedures to separate the effects of electrical, thermal, and optical performance; use fundamental cell characteristics to improve analysis; and combine factors in simple model using the common variables.

  17. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    SciTech Connect

    Moro, Erik A.

    2012-06-07

    interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.

  18. The Self-Pleasantness Judgment Modulates the Encoding Performance and the Default Mode Network Activity

    PubMed Central

    Perrone-Bertolotti, Marcela; Cerles, Melanie; Ramdeen, Kylee T.; Boudiaf, Naila; Pichat, Cedric; Hot, Pascal; Baciu, Monica

    2016-01-01

    In this functional magnetic resonance imaging (fMRI) study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal) thoughts and increase default mode network (DMN) activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention) but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention). To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding (SE) activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding (UE) recruits two key medial posterior DMN regions, the posterior cingulate cortex (PCC) and precuneus (PCU). A region of interest (ROI) analysis including classic DMN areas, revealed significantly greater involvement of the medial prefrontal cortex (mPFC) in pleasant compared to unpleasant judgments, suggesting this region’s involvement in self-referential (i.e., internal) processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful) and pleasantness was observed for the PCC, PCU and inferior frontal gyrus (IFG). Overall, our

  19. Performance evaluation of a dual-crystal APD-based detector modules for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Pepin, Catherine M.; Bérard, Philippe; Cadorette, Jules; Tétrault, Marc-André; Leroux, Jean-Daniel; Michaud, Jean-Baptiste; Robert, Stéfan; Dautet, Henri; Davies, Murray; Fontaine, Réjean; Lecomte, Roger

    2006-03-01

    Positron Emission Tomography (PET) scanners dedicated to small animal studies have seen a swift development in recent years. Higher spatial resolution, greater sensitivity and faster scanning procedures are the leading factors driving further improvements. The new LabPET TM system is a second-generation APD-based animal PET scanner that combines avalanche photodiode (APD) technology with a highly integrated, fully digital, parallel electronic architecture. This work reports on the performance characteristics of the LabPET quad detector module, which consists of LYSO/LGSO phoswich assemblies individually coupled to reach-through APDs. Individual crystals 2×2×~10 mm 3 in size are optically coupled in pair along one long side to form the phoswich detectors. Although the LYSO and LGSO photopeaks partially overlap, the good energy resolution and decay time difference allow for efficient crystal identification by pulse-shape discrimination. Conventional analog discrimination techniques result in significant misidentification, but advanced digital signal processing methods make it possible to circumvent this limitation, achieving virtually error-free decoding. Timing resolution results of 3.4 ns and 4.5 ns FWHM have been obtained for LYSO and LGSO, respectively, using analog CFD techniques. However, test bench measurements with digital techniques have shown that resolutions in the range of 2 to 4 ns FWHM can be achieved.

  20. Dopaminergic modulation of performance monitoring in Parkinson’s disease: An event-related potential study

    PubMed Central

    Seer, Caroline; Lange, Florian; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno

    2017-01-01

    Monitoring one’s actions is essential for goal-directed performance. In the event-related potential (ERP), errors are followed by fronto-centrally distributed negativities. These error(-related) negativity (Ne/ERN) amplitudes are often found to be attenuated in patients with Parkinson’s disease (PD) compared to healthy controls (HC). Although Ne/ERN has been proposed to be related to dopaminergic neuronal activity, previous research did not find evidence for effects of dopaminergic medication on Ne/ERN amplitudes in PD. We examined 13 PD patients “on” and “off” dopaminergic medication. Their response-locked ERP amplitudes (obtained on correct [Nc/CRN] and error [Ne/ERN] trials of a flanker task) were compared to those of 13 HC who were tested twice as well, without receiving dopaminergic medication. While PD patients committed more errors than HC, error rates were not significantly modulated by dopaminergic medication. PD patients showed reduced Ne/ERN amplitudes relative to HC; however, this attenuation of response-locked ERP amplitudes was not specific to errors in this study. PD-related attenuation of response-locked ERP amplitudes was most pronounced when PD patients were on medication. These results suggest overdosing of dopaminergic pathways that are relatively spared in PD, but that are related to the generation of the Ne/ERN, notably pathways targeted on the medial prefrontal cortex. PMID:28117420

  1. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)

    NASA Astrophysics Data System (ADS)

    Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.; Stan, Mark A.; Weizer, Victor G.; Jenkins, Phillip P.; Khan, Osman S.; Murray, Christopher S.; Scheiman, David; Brinker, David

    1999-03-01

    High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1×1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6% at a short-circuit current density (Jsc) of 2.0 A/cm2, under flashlamp testing. The reverse saturation current density (Jo) was 1.6×10-6 A/cm2. Jo values as low as 4.1×10-7 A/cm2 were also observed with a conventional planar cell geometry.

  2. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Technical Reports Server (NTRS)

    Lafaw, D. A.; Gardner, C. S.

    1984-01-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  3. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  4. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  5. Module 1--Shared Leadership. School Improvement Specialist Training Materials: Performance Standards, Improving Schools, and Literature Review

    ERIC Educational Resources Information Center

    Appalachia Educational Laboratory at Edvantia (NJ1), 2005

    2005-01-01

    The School Improvement Specialist Project prepared seven modules. School improvement specialists, as defined by the Appalachia Educational Laboratory at Edvantia, are change agents who work with schools to help them improve in the following areas so as to increase student achievement. These modules are intended to provide training materials for…

  6. Module 2--Learning Culture. School Improvement Specialist Training Materials: Performance Standards, Improving Schools, and Literature Review

    ERIC Educational Resources Information Center

    Appalachia Educational Laboratory at Edvantia (NJ1), 2005

    2005-01-01

    The School Improvement Specialist Project prepared seven modules. School improvement specialists, as defined by the Appalachia Educational Laboratory at Edvantia, are change agents who work with schools to help them improve in the following areas so as to increase student achievement. These modules are intended to provide training materials for…

  7. Module 4--Effective Teaching. School Improvement Specialist Training Materials: Performance Standards, Improving Schools, and Literature Review

    ERIC Educational Resources Information Center

    Appalachia Educational Laboratory at Edvantia (NJ1), 2005

    2005-01-01

    The School Improvement Specialist Project prepared seven modules. School improvement specialists, as defined by the Appalachia Educational Laboratory at Edvantia, are change agents who work with schools to help them improve in the following areas so as to increase student achievement. These modules are intended to provide training materials for…

  8. Performance of the prototype module of the GlueX electromagnetic barrel calorimeter

    SciTech Connect

    Leverington, Blake; Lolos, George; Papandreou, Zisis; Hakobyan, Rafael; Huber, Garth; Janzen, Kathryn; Semenov, Andrei; Scott, Eric; Shepherd, Matthew; Carman, Daniel; Lawrence, David; Smith, Elton; Taylor, Simon; Wolin, Elliott; Klein, Franz; Santoro, Joseph; Sober, Daniel; Kourkoumeli, Christina

    2008-11-01

    A photon beam test of the 4 m long prototype lead/scintillating-fibre module for the GlueX electromagnetic barrel calorimeter was carried out in Hall B at the Thomas Jefferson National Accelerator Facility with the objective of measuring the energy and timing resolutions of the module as well as the number of photoelectrons generated. Data were collected over an energy range of 150 - â 650 MeV at multiple positions and angles along the module. Details of the analysis at the centre of and perpendicular to the module are shown herein; the results are View the MathML source, View the MathML source ps, and 660 photoelectrons for 1 GeV at each end of the module.

  9. A High Performance Spread Spectrum Clock Generator Using Two-Point Modulation Scheme

    NASA Astrophysics Data System (ADS)

    Kao, Yao-Huang; Hsieh, Yi-Bin

    A new spread spectrum clock generator (SSCG) using two-point delta-sigma modulation is presented in this paper. Not only the divider is varied, but also the voltage controlled oscillator is modulated. This technique can enhance the modulation bandwidth so that the effect of EMI suppression is improved with lower order ΣΔ modulator and can simultaneously optimize the jitter and the modulation profile. In addition, the method of two-path is applied to the loop filter to reduce the capacitance value such that the total integration can be achieved. The proposed SSCG has been fabricated in a 0.35μm CMOS process. The clock of 400MHz with center spread ratios of 1.25% and 2.5% are verified. The peak EMI reduction is 19.73dB for the case of 2.5%. The size of chip area is 0.90×0.89mm2.

  10. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  11. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2017-03-01

    We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.

  12. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine

    PubMed Central

    Pin, Fabrizio; Gorini, Stefania; Pontecorvo, Laura; Ferri, Alberto; Mollace, Vincenzo; Costelli, Paola; Rosano, Giuseppe

    2016-01-01

    Abstract Background The loss of muscle mass (sarcopenia) and the associated reduced muscle strength are key limiting factors for elderly people's quality of life. Improving muscle performance does not necessarily correlate with increasing muscle mass. In fact, particularly in the elderly, the main explanation for muscle weakness is a reduction of muscle quality rather than a loss of muscle mass, and the main goal to be achieved is to increase muscle strength. The effectiveness of Trimetazidine (TMZ) in preventing muscle functional impairment during ageing was assessed in our laboratory. Methods Aged mice received TMZ or vehicle for 12 consecutive days. Muscle function was evaluated at the end of the treatment by a grip test as well as by an inverted screen test at 0, 5, 7 and 12 days of TMZ treatment. After sacrifice, muscles were stored for myofiber cross‐sectional area assessment and myosin heavy chain expression evaluation by western blotting. Results Chronic TMZ treatment does not affect the mass of both gastrocnemius and tibialis anterior muscles, while it significantly increases muscle strength. Indeed, both latency to fall and grip force are markedly enhanced in TMZ‐treated versus untreated mice. In addition, TMZ administration results in higher expression of slow myosin heavy chain isoform and increased number of small‐sized myofibers. Conclusions We report here some data showing that the modulation of skeletal muscle metabolism by TMZ increases muscle strength in aged mice. Reprogramming metabolism might therefore be a strategy worth to be further investigated in view of improving muscle performance in the elderly. PMID:27239426

  13. In-flight performance of the polarization modulator in the CLASP rocket experiment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-07-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non- uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  14. Deficit of entropy modulation of the EEG in schizophrenia associated to cognitive performance and symptoms. A replication study.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Hornero, Roberto; Cea-Cañas, Benjamín; Valcárcel, César; Haidar, Mahmoun-Karim; Poza, Jesús

    2017-09-05

    Spectral entropy (SE) is a measurement from information theory field that provides an estimation of EEG regularity and may be useful as a summary of its spectral properties. Previous studies using small samples reported a deficit of EEG entropy modulation in schizophrenia during cognitive activity. The present study is aimed at replicating this finding in a larger sample, to explore its cognitive and clinical correlates and to discard antipsychotic treatment as the main source of that deficit. We included 64 schizophrenia patients (21 first episodes, FE) and 65 healthy controls. We computed SE during performance of an odd-ball paradigm, at the windows prior (-300 to 0ms) and following (150 to 450ms) stimulus presentation. Modulation of SE was defined as the difference between post- and pre-stimulus windows. In comparison to controls, patients showed a deficit of SE modulation over frontal and central regions, also shown by FE patients. Baseline SE did not differ between patients and controls. Modulation deficit was directly associated with cognitive deficits and negative symptoms, and inversely with positive symptoms. SE modulation was not related to antipsychotic doses. Patients also showed a smaller change of median frequency (i.e., smaller slowing of oscillatory activity) of the EEG from pre- to post-stimulus windows. These results support that a deficit of fast modulation contributes to cognitive deficits and symptoms in schizophrenia patients. Copyright © 2017. Published by Elsevier B.V.

  15. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

    PubMed Central

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC). Results Results showed that tDCS modulated WM performance by altering the underlying oscillatory brain activity in a polarity-specific way. We observed an increase in WM performance and amplified oscillatory power in the theta and alpha bands after anodal tDCS whereas cathodal tDCS interfered with WM performance and decreased oscillatory power in the theta and alpha bands under posterior electrode sides. Conclusions The present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings. PMID:21211016

  16. An Investigation of the Relationship between Iranian EFL Learners' Cultural Intelligence and Their Performance on the IELTS Listening Modules

    ERIC Educational Resources Information Center

    Rafie, Arezoo; Khosravi, Robab; Nasiri, Mahdi

    2016-01-01

    This study aimed to investigate the relationship between Iranian EFL Learners' Cultural intelligence (CQ) and their performance on the IELTS Listening Module. Sixty advanced EFL students majoring in English translation at University of Zanjan were matched for the study through the Oxford Quick Placement Test. Cultural Intelligence Scale developed…

  17. Can Teaching Be Evaluated through Reflection on Student Performance in Continuous Assessment? A Case Study of Practical Engineering Modules

    ERIC Educational Resources Information Center

    McNabola, Aonghus; O'Farrell, Ciara

    2015-01-01

    Research and practice is presented on the use of student assessments as part of reflective practice to evaluate teaching. Case studies are presented in the delivery of Engineering modules across a number of years at undergraduate and postgraduate levels. Both student performance in continuous assessment and student feedback on assessments…

  18. High Performance Packaging Solutions for Low Cost, Reliable PV Modules: Final Subcontract Report, 26 May 2005 - 30 November 2008

    SciTech Connect

    Keotla, B. M.; Marinik, B. J.

    2009-06-01

    During this research effort, Dow Corning Corporation has addressed the PV manufacturing goals of: (i) improving PV manufacturing processes and equipment; (ii) accelerating manufacturing cost reductions of PV modules; (iii) increasing commercial product performance and reliability; and (iv) scaling up U.S. manufacturing capacity.

  19. MSFC Skylab airlock module, volume 2. [systems design and performance, systems support activity, and reliability and safety programs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.

  20. Self-Assessment of Practice Performance: Development of the ABIM Practice Improvement Module (PIM[superscript SM])

    ERIC Educational Resources Information Center

    Duffy, F. Daniel; Lynn, Lorna A.; Didura, Halyna; Hess, Brian; Caverzagie, Kelly; Grosso, Louis; Lipner, Rebecca A.; Holmboe, Eric S.

    2008-01-01

    Background: Quality measurement and improvement in practice are requirements for Maintenance of Certification by the American Board of Medical Specialties boards and a component of many pay for performance programs. Objective: To describe the development of the American Board of Internal Medicine (ABIM) Practice Improvement Module (PIM[superscript…

  1. Self-Assessment of Practice Performance: Development of the ABIM Practice Improvement Module (PIM[superscript SM])

    ERIC Educational Resources Information Center

    Duffy, F. Daniel; Lynn, Lorna A.; Didura, Halyna; Hess, Brian; Caverzagie, Kelly; Grosso, Louis; Lipner, Rebecca A.; Holmboe, Eric S.

    2008-01-01

    Background: Quality measurement and improvement in practice are requirements for Maintenance of Certification by the American Board of Medical Specialties boards and a component of many pay for performance programs. Objective: To describe the development of the American Board of Internal Medicine (ABIM) Practice Improvement Module (PIM[superscript…

  2. Refrigeration system having a modulation valve which also performs function of compressor throttling valve

    SciTech Connect

    Hanson, J.L.

    1990-12-18

    This paper discusses a method of controlling a refrigeration system having a compressor, with the compressor being driven by a prime mover. It comprises providing a controllable modulation valve which is open in the absence of electrical current flow, disposing the modulation valve in the refrigeration system in a position which enables the modulation valve to control the amount of refrigerant flow to the compressor, controlling the modulation valve in a predetermined range near a selected set point temperature according to a predetermined control algorithm, with the control algorithm otherwise allowing the modulation valve to remain open, causing the modulation valve to provide a predetermined restriction in the flow of refrigerant to the compressor for a predetermined period of time following start-up of the compressor, overriding the control algorithm, providing an overload signal in response to a predetermined overload condition of the prime mover, and causing the modulation valve to provide the predetermined restriction in the flow of refrigerant to the compressor in response to the overload signal, overriding the control algorithm.

  3. Daily and seasonal performance of angularly dependent fixed mount dual aperture holographic planar concentrator photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Russo, Juan M.; Castillo, Jose E.; Aspnes, Eric D.; Kostuk, Raymond K.; Rosenberg, Glenn

    2010-08-01

    Dual aperture holographic planar concentrator (DA-HPC) technology consists of bifacial cells separated by strips of holographic film that diffract the light from the spacing into the cells for direct incident, diffuse, roof-reflected and albedo irradiance. The holographic film is angularly dependent of the seasonal sun angle. DA-HPC modules are compared to single aperture conventional modules for clear and cloudy days as well as for a seasonal period of eight months. Direct-current IV and alternating-current power curves are used to compare modules with comparable silicon active area and cell efficiency.

  4. Optical SSB modulation using fiber Bragg grating and its transmission performance

    NASA Astrophysics Data System (ADS)

    Gong, Tao-rong; Yan, Feng-ping; Ren, Wen-hua; Feng, Su-chun; Wang, Guan-hong; Wang, Lin; Liu, Peng; Tao, Pei-lin; Jian, Shui-sheng

    2008-12-01

    The single sideband (SSB) modulation format is obtained using the narrowband fiber Bragg grating (NFBG) made by ourselves. Then The SSB modulation format and double sideband (DSB) modulation format transmit over 155 km G.652, respectively. And dispersion is compensated by chirp fiber Bragg grating (CFBG) made by us. The results show that the power penalty of SSB signal is smaller than that of DSB signal when the input power and the bit error rate (BER) are the same; when the BER is E-12, the power penalty of SSB signal is 0.8 dB smaller than that of DSB signal.

  5. Structural, thermal, and optical performance (STOP) modeling and results for the James Webb Space Telescope integrated science instrument module

    NASA Astrophysics Data System (ADS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-08-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance (STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIM's test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  6. Structural, Thermal, and Optical Performance (STOP) Modeling and Results for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-01-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  7. Method to improve the performance of the optical modulation format identification system based on asynchronous amplitude histogram

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; He, Sheng; Shang, Jin; Ke, Changjian; Fu, Songnian; Liu, Deming

    2015-06-01

    A method to improve the performance of the asynchronous amplitude histogram (AAH) based optical modulation format identification system is proposed. It is demonstrated that with additional static dispersion compensation modules (SDCMs), polarization and non-polarization multiplexed (PM/NPM) signals can be distinguished simply from the AAH peak position difference, while the stringent chromatic dispersion limit imposed on the MFI method can be expanded up to desired values by selectively enabling the SDCMs to minimize the width to area ratio (WAR) of the AAH. Numerical simulations and experiments are carried out to demonstrate the effectiveness of this method.

  8. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M. )

    1992-11-01

    We present initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for the all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25[degree]C is excited with 511 key photons, we measure a photodiode signal centered at 700 electrons (e[sup [minus

  9. Performance of first-year health sciences students in a large, diverse, multidisciplinary, first-semester, physiology service module.

    PubMed

    Higgins-Opitz, Susan B; Tufts, Mark

    2014-06-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible.

  10. Elemental Diffusion and Service Performance of Bi2Te3-Based Thermoelectric Generation Modules with Flexible Connection Electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Rong, Zhenzhou; Zhang, Chengcheng; Li, Guangqiang; Feng, Bo; Hu, Jie; Xiang, Qiusheng

    2017-02-01

    In this work, the elemental diffusion and service performance of Bi2Te3-based thermoelectric generation (TEG) modules with flexible Al electrodes were evaluated at a temperature difference of 240°C and a cold junction temperature of 50°C. The results indicated that while the maximum output power ( P max) and open circuit voltage ( U 0) first increased rapidly and then decreased gradually with service time, the dynamic inner-resistance ( R i) showed the opposite trend. Obvious defects and elemental diffusion across the interfaces were observed and resulted in the performance degradation of the TEG modules. The Ni barrier layer with a thickness of 8-10 μm could not effectively restrain the elemental diffusion for the TEG applications at the high operating temperatures. Al was not suitable as the electrode material for the Bi2Te3-based TEG modules due to its ready absorption of Se from the n-type thermoelectric legs. Encouragingly, we found that the Al electrode could restrain the diffusion of the other elements such as Bi, Te, Sb, Cu, Ni, and I. These results provided insight into the improvement of the service performance of the TEG modules.

  11. Performance results of a 300-degree linear phase modulator for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Mueller, R. O.

    1993-01-01

    A phase modulator capable of large linear phase deviation, low loss, and wide band operation with good thermal stability was developed for deep space spacecraft transponder (DST) applications at X-band (8.415 GHz) and Ka-band (32 GHz) downlinks. The design uses a two-stage circulator-coupled reflection phase shifter with constant gamma hyperabrupt varactors and an efficient modulator driver circuit to obtain a phase deviation of +/-2.5 rad with better than 8 percent linearity. The measured insertion loss is 6.6 dB +/- 0.35 dB at 8415 MHz. Measured carrier and relative sideband amplitudes resulting from phase modulation by sine wave and square modulating functions agree well with the predicted results.

  12. Serial Concatenated Trellis Coded Modulation with Iterative Decoding: Design and Performance

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1997-01-01

    In this paper, we propose a novel method to design serial concatenation of an outer convolutional code with an inner trellis code with multi-level amplitude/phase modulations and a suitable bit-by-bit iterative decoding structure.

  13. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  14. Performance results of a 300-deg linear phase modulator for spaceborne communications applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1993-01-01

    A phase modulator capable of large linear phase deviation, low loss, and wide band operation with good thermal stability was developed for deep space spacecraft transponder (DST) applications at X-band (8.415 GHz) and Ka-band (32 GHz) downlinks. The design uses a two-stage circulator-coupled reflection phase shifter with constant gamma hyperabrupt varactors and an efficient modulator driver circuit to obtain a phase deviation of +/- 2.5 rad with better than 8 percent linearity. The measured insertion loss is 6.6 dB +/- 0.35 dB at 8415 MHz. Measured carrier and relative sideband amplitudes resulting from phase modulation by sine wave and square modulating functions agree well with the predicted results.

  15. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    PubMed

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ocean acidification modulates expression of genes and physiological performance of a marine diatom.

    PubMed

    Li, Yahe; Zhuang, Shufang; Wu, Yaping; Ren, Honglin; Chen, Fangyi; Lin, Xin; Wang, Kejian; Beardall, John; Gao, Kunshan

    2017-01-01

    Ocean Acidification (OA) is known to affect various aspects of physiological performances of diatoms, but little is known about the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum, the expression of key genes associated with photosynthetic light harvesting as well as those encoding Rubisco, carbonic anhydrase, NADH dehydrogenase and nitrite reductase, are modulated by OA (1000 μatm, pHnbs 7.83). Growth and photosynthetic carbon fixation were enhanced by elevated CO2. OA treatment decreased the expression of β-carbonic anhydrase (β-ca), which functions in balancing intracellular carbonate chemistry and the CO2 concentrating mechanism (CCM). The expression of the genes encoding fucoxanthin chlorophyll a/c protein (lhcf type (fcp)), mitochondrial ATP synthase (mtATP), ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene (rbcl) and NADH dehydrogenase subunit 2 (ndh2), were down-regulated during the first four days (< 8 generations) after the cells were transferred from LC (cells grown under ambient air condition; 390 μatm; pHnbs 8.19) to OA conditions, with no significant difference between LC and HC treatments with the time elapsed. The expression of nitrite reductase (nir) was up-regulated by the OA treatment. Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expression patterns. It appeared that the enhanced photosynthetic and growth rates under OA could be attributed to stimulated nitrogen assimilation, increased CO2 availability or saved energy from down-regulation of the CCM and consequently lowered cost of protein synthesis versus that of non-nitrogenous cell components.

  17. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    PubMed Central

    Li, Yahe; Zhuang, Shufang; Wu, Yaping; Ren, Honglin; Chen, Fangyi; Lin, Xin; Wang, Kejian; Beardall, John; Gao, Kunshan

    2017-01-01

    Ocean Acidification (OA) is known to affect various aspects of physiological performances of diatoms, but little is known about the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum, the expression of key genes associated with photosynthetic light harvesting as well as those encoding Rubisco, carbonic anhydrase, NADH dehydrogenase and nitrite reductase, are modulated by OA (1000 μatm, pHnbs 7.83). Growth and photosynthetic carbon fixation were enhanced by elevated CO2. OA treatment decreased the expression of β-carbonic anhydrase (β-ca), which functions in balancing intracellular carbonate chemistry and the CO2 concentrating mechanism (CCM). The expression of the genes encoding fucoxanthin chlorophyll a/c protein (lhcf type (fcp)), mitochondrial ATP synthase (mtATP), ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene (rbcl) and NADH dehydrogenase subunit 2 (ndh2), were down-regulated during the first four days (< 8 generations) after the cells were transferred from LC (cells grown under ambient air condition; 390 μatm; pHnbs 8.19) to OA conditions, with no significant difference between LC and HC treatments with the time elapsed. The expression of nitrite reductase (nir) was up-regulated by the OA treatment. Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expression patterns. It appeared that the enhanced photosynthetic and growth rates under OA could be attributed to stimulated nitrogen assimilation, increased CO2 availability or saved energy from down-regulation of the CCM and consequently lowered cost of protein synthesis versus that of non-nitrogenous cell components. PMID:28192486

  18. High-performance IR thermography system based on Class II Thermal Imaging Common Modules

    NASA Astrophysics Data System (ADS)

    Bell, Ian G.

    1991-03-01

    The Class II Thermal Imaging Common Modules were originally developed for the U.K. Ministry of Defence as the basis of a number of high performance thermal imaging systems for use by the British Armed Forces. These systems are characterized by high spatial resolution, high thermal resolution and real time thermal image update rate. A TICM II thermal imaging system uses a cryogenically cooled eight element Cadmium- Mercury-Telluride (CMT) SPRITE (Signal PRocessing In The Element) detector which is mechanically scanned over the thermal scene to be viewed. The TALYTHERM system is based on a modified TICM II thermal image connected to an IBM PC-AT compatible computer having image processing hardware installed and running the T.E.M.P.S. (Thermal Emission Measurement and Processing System) software package for image processing and data analysis. The operation of a TICM II thermal imager is briefly described highlighting the use of the SPRITE detector which coupled with a serial/parallel scanning technique yields high temporal, spatial and thermal resolutions. The conversion of this military thermal image into thermography system is described, including a discussion of the modifications required to a standard imager. The technique for extracting temperature information from a real time thermal image and how this is implemented in a TALYTHERM system is described. The D.A.R.T. (Discrete Attenuation of Radiance Thermography) system which is based on an extensively modified TICM II thermal imager is also described. This system is capable of measuring temperatures up to 1000 degrees C whilst maintaining the temporal and spatial resolutions inherent in a TICM II imager. Finally applications of the TALYTHERM in areas such as NDT (Non Destructive Testing), medical research and military research are briefly described.

  19. Optimized MCT IR-modules for high-performance imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Eich, D.; Figgemeier, H.; Lutz, H.; Wendler, J.; Rühlich, I.; Rutzinger, S.; Schallenberg, T.

    2014-06-01

    In today's typical military operations situational awareness is a key element for mission success. In contrast to what is known from conventional warfare with typical targets such as tanks, asymmetric scenarios now dominate military operations. These scenarios require improved identification capabilities, for example the assessment of threat levels posed by personnel targets. Also, it is vital to identify and reliably distinguish between combatants, non-combatants and friendly forces. To satisfy these requirements, high-definition (HD) large format systems are well suited due to their high spatial and thermal resolution combined with high contrast. Typical applications are sights for long-range surveillance, targeting and reconnaissance platforms as well as rotorcraft pilotage sight systems. In 2012 AIM presented first prototypes of large format detectors with 1280 × 1024 elements in a 15μm pitch for both spectral bands MWIR and LWIR. The modular design allows integration of different cooler types, like AIM's split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. Large format FPAs have been fabricated using liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) grown MCT. To offer high resolution in a more compact configuration AIM started the development of a 1024 × 768 10μm pitch IRmodule. Keeping electro/optical performance is achieved by a higher specific charge handling capacity of the readout integrated circuit (ROIC) in a 0.18μm Si CMOS technology. The FPA size fits to a dewar cooler configuration used for 640 × 512 15μm pitch modules.

  20. Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model

    SciTech Connect

    Hansen, Clifford

    2015-10-01

    We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .

  1. High performance electro-optical modulator based on photonic crystal and graphene

    NASA Astrophysics Data System (ADS)

    Malekmohammad, M.; Asadi, R.

    2017-07-01

    An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.

  2. Performance of Cat’s Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    DTIC Science & Technology

    2004-01-01

    attenuation is higher and in addition they fall off as 1/R 4 instead of 1/R 2 . The MRR parameters that affect the link are the MRR’s optical antenna gain...its modulation efficiency, and it modulation bandwidth. To overcome, its large propagation losses the MRR must exhibit a high optical antenna gain...light as its retro-reflects it. Thus its optical antenna gain is the product of the classical formulas for receiver gain and transmitter gain. The

  3. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator.

    PubMed

    Patel, David; Ghosh, Samir; Chagnon, Mathieu; Samani, Alireza; Veerasubramanian, Venkat; Osman, Mohamed; Plant, David V

    2015-06-01

    The design and characterization of a slow-wave series push-pull traveling wave silicon photonic modulator is presented. At 2 V and 4 V reverse bias, the measured -3 dB electro-optic bandwidth of the modulator with an active length of 4 mm are 38 GHz and 41 GHz, respectively. Open eye diagrams are observed up to bitrates of 60 Gbps without any form of signal processing, and up to 70 Gbps with passive signal processing to compensate for the test equipment. With the use of multi-level amplitude modulation formats and digital-signal-processing, the modulator is shown to operate below a hard-decision forward error-correction threshold of 3.8×10-3 at bitrates up to 112 Gbps over 2 km of single mode optical fiber using PAM-4, and over 5 km of optical fiber with PAM-8. Energy consumed solely by the modulator is also estimated for different modulation cases.

  4. Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated.

    PubMed

    Vines, Bradley W; Nair, Dinesh; Schlaug, Gottfried

    2008-10-01

    We modulated neural excitability in the human motor cortex to investigate behavioral effects for both hands. In a previous study, we showed that decreasing excitability in the dominant motor cortex led to a decline in performance for the contralateral hand and an improvement for the ipsilateral hand; increasing excitability produced the opposite effects. Research suggests that the ipsilateral effects were mediated by interhemispheric inhibition. Physiological evidence points to an asymmetry in interhemispheric inhibition between the primary motor cortices, with stronger inhibitory projections coming from the dominant motor cortex. In the present study, we examined whether there is a hemispheric asymmetry in the effects on performance when modulating excitability in the motor cortex. Anodal and cathodal transcranial direct current stimulation were applied to the motor cortex of 17 participants, targeting the non-dominant hemisphere on one day and the dominant hemisphere on another day, along with one sham session. Participants performed a finger-sequence coordination task with each hand before and after stimulation. The dependent variable was calculated as the percentage of change in the number of correct keystrokes. We found that the effects of transcranial direct current stimulation depended upon which hemisphere was stimulated; modulating excitability in the dominant motor cortex significantly affected performance for the contralateral and ipsilateral hands, whereas modulating excitability in the non-dominant motor cortex only had a significant impact for the contralateral hand. These results provide evidence for a hemispheric asymmetry in the ipsilateral effects of modulating excitability in the motor cortex and may be important for clinical research on motor recovery.

  5. A Comprehensive 3D Finite Element Model of a Thermoelectric Module Used in a Power Generator: A Transient Performance Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Guangxi; Yu, Xiong

    2015-06-01

    Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.

  6. Enhancing performance of LCoS-SLM as adaptive optics by using computer-generated holograms modulation software

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh

    2017-05-01

    We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system

  7. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture.

    PubMed

    Zhou, Wenbin; Fan, Qingxia; Zhang, Qiang; Cai, Le; Li, Kewei; Gu, Xiaogang; Yang, Feng; Zhang, Nan; Wang, Yanchun; Liu, Huaping; Zhou, Weiya; Xie, Sishen

    2017-03-24

    It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m(-1) K(-2) and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.

  8. Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format.

    PubMed

    Li, Haibo; Hu, Rong; Yang, Qi; Luo, Ming; He, Zhixue; Jiang, Peng; Liu, Yongpiao; Li, Xiang; Yu, Shaohua

    2017-01-09

    An improved high-order delta-sigma modulator with multi-level quantizer is proposed to enable carrier aggregation of 4G-LTE signals in mobile fronthaul. Different from conventional delta-sigma modulation-based digital mobile fronthaul, a 2-bit quantizer is employed to reduce the quantization noise, which enabling the transmission via PAM-4 based IM-DD channel. Moreover, we employ the 4th-order high-pass filter (HPF) to replace the 1st-order HPF in the conventional delta-sigma modulator, resulting in a much better noise shaping performance. In the experiment, a PAM-4 based mobile fronthaul transmission of 32 aggregated 4G-LTE signals with a CPRI equivalent data rate of 39.32-Gb/s is demonstrated in a single-λ 10-Gb/s IM-DD channel. Significant improvement of 68% is achieved in the average EVM performance compared to the previous delta-sigma modulation-based digital mobile fronthaul.

  9. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbin; Fan, Qingxia; Zhang, Qiang; Cai, Le; Li, Kewei; Gu, Xiaogang; Yang, Feng; Zhang, Nan; Wang, Yanchun; Liu, Huaping; Zhou, Weiya; Xie, Sishen

    2017-03-01

    It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ~1,500 μW m-1 K-2 and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    SciTech Connect

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  11. Performance of 3-sun mirror modules on sun tracking carousels on flat roof buildings

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Avery, James; Minkin, Leonid; Maxey, Curt; Gehl, Tony; Hurt, Rick; Boehm, Robert

    2008-08-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  12. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Maxey, L Curt; Gehl, Anthony C; Hurt, Rick A; Boehm, Robert F

    2008-01-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  13. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    SciTech Connect

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-09-20

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  14. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  15. High-performance gene expression module analysis tool and its application to chemical toxicity data.

    PubMed

    Fujibuchi, Wataru; Kim, Hyeryung; Okada, Yoshifumi; Taniguchi, Takeaki; Sone, Hideko

    2009-01-01

    Gene clustering is one of the main themes of data mining approaches in bioinformatics. Although it has the power to analyze gene function, interpretation of the results becomes increasingly difficult when the number of experiments (samples) exceeds hundreds or more. A new type of clustering called "biclustering," where genes and experiments are coclustered in a large-scale of gene expression data, has been extensively studied in the last decade. We have developed "SAMURAI," an original program that detects all the biclusters or "gene modules" whose genes have similar expression patterns to query profile using the ultrafast data mining algorithm called Linear-time Closed itemset Miner (LCM). Using chemical toxicity dataset from J&J rat liver experiments, we compiled an exhaustive dictionary of gene modules by searching datasets of gene modules with each chemical exposure experiment as query. Through the module analysis, we found that our program can detect up/down-regulated gene sets that significantly represent particular GO functions or KEGG pathways, thereby unraveling reactions and mechanisms common to different toxicochemical treatments of hepatocytes.

  16. Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes

    DOE PAGES

    Li, Chang-Zhi; Liang, Po-Wei; Sulas, Dana B.; ...

    2015-04-02

    Here, we present a synergistic approach to modulate organic–perovskite interfaces and their photovoltaic behaviors by tuning the properties of n-contact fullerenes layered atop of perovskite. Fullerenes with excited charge transfer are found to not only suppress fullerene photoluminescence, but also enhance molecular polarization and transport capabilities. This results in optimized perovskite–fullerene contact.

  17. Analysis of Performance for 100 Gbit/s Dual-Polarization QPSK Modulation Format System

    NASA Astrophysics Data System (ADS)

    Li, Li; Xiao-bo, Guo; Jing, Li

    2016-03-01

    This article introduces modulation technology, coherent reception technology, the overall design and other key issues for 100 Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) modulation. Using the technologies based on digital signal processing (DSP), it realizes the long-range transmissions of 100 Gbit/s optical systems to achieve optical signal dispersion compensation, polarized solution reuse and phase estimation. The effect of this scheme is verified with OptiSystem, and the simulation results indicate, with the help of DSP module for processing of the received signal, that the last constellation is ideal and the data transmission error rate is less than 1.3 e-4. The scheme is implemented simply and has high reliability, and it also has reference significance for the optimization of coherent optical detection hardware. As they feature in high spectrum efficiency and large dispersion and PMD tolerances, the DP-QPSK modulation can improve the line efficiency, and maximize the spectral efficiency of the dense wavelength division multiplexing systems. The quality of eye diagram is high, which is clean and has decent open degree.

  18. Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes.

    PubMed

    Yi, Fei; Ou, Fang; Liu, Boyang; Huang, Yingyan; Ho, Seng-Tiong; Wang, Yiliang; Liu, Jun; Marks, Tobin J; Huang, Su; Luo, Jingdong; Jen, Alex K-Y; Dinu, Raluca; Jin, Dan

    2010-03-29

    An EO phase modulator having transparent conducting oxide electrodes and an inverted rib waveguide structure is demonstrated. This new modulator geometry employs an EO polymer having an in-device r33 = 60pm/V. The measured half-wave voltage Vpi of these devices ranges from 5.3V to 11.2V for 3.8 and 1.5 mm long devices, respectively. The lowest VpiL figure-of-merit corresponds to 0.6V-cm (7.2mW-cm(2) of power length product) in a dual-drive configuration. The trade-off between Vpi, insertion loss and modulation bandwidth is systematically analyzed. An optimized high-speed structure is proposed, with numerical simulation showing that this new structure and an in-device r33 = 150pm/V, can achieve Vpi = 0.5V in a 5mm long active length with dual drive operation. The insertion loss is targeted at 6dB, and a 3dB optical modulation bandwidth can reach > 40GHz.

  19. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  20. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    PubMed

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-02

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  1. Feedback-Related ERP Components Are Modulated by Social Distance during Non-Contingent Evaluation of Someone Else's Performance.

    PubMed

    Villuendas-González, Erwin Rogelio; González-Garrido, Andrés Antonio

    2016-01-01

    Performance monitoring depends on cortical structures that are also activated in vicarious monitoring. While many experiments have shown that vicarious and on-line monitoring have a similar basis, most such experiments have focused on simple tasks. In order to assess the effect of non-contingent feedback on vicarious monitoring, 23 young volunteer adults were evaluated: in one session, they performed a rule-based category formation task, receiving no feedback on their performance. In a second session, Event Related Potentials (ERPs) were obtained while participants passively reviewed performances attributed to themselves and peers they had previously rated as either socially close or distant. Feedback Related Negativity (FRN) and Feedback Related P300 (fP300) components were analyzed with respect to feedback valence and agent. Results show that both components can be elicited through non-contingent feedback related to prior performance. In addition, FRN waves are modulated by the valence of the feedback, and fP300 is modulated by the agent to whom performance feedback is attributed. This experiment constitutes a novel approach to the evaluation of ERP correlates of vicarious monitoring through non-contingent feedback and its relations to empathy processing.

  2. Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants

    NASA Astrophysics Data System (ADS)

    Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee

    2017-08-01

    Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.

  3. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1992-11-01

    We present initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for the all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25{degree}C is excited with 511 key photons, we measure a photodiode signal centered at 700 electrons (e{sup {minus}}) with noise of 375 e{sup {minus}} fwhm. When a four crystal / photodiode module is excited with a collimated line source of 511 key photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8{times}8 crystal / photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0{degrees}C.

  4. High-Performance and Damage-Free Magnetic Film Etching using Pulse-Time-Modulated Cl2 Plasma

    NASA Astrophysics Data System (ADS)

    Mukai, Tomonori; Hada, Hiromitsu; Tahara, Shuichi; Yoda, Hiroaki; Samukawa, Seiji

    2006-06-01

    We have developed a reactive ion etching (RIE) technique for magnetic films using pulse-time-modulated (TM) plasma. Using TM plasma etching can make the etching process high-performance and free of magnetic damage and corrosion. On the other hand, the conventional continuous wave discharge (CW) plasma etching process causes corrosion problems and degrades magnetic properties. We speculate that the negative ions injected from the TM plasma enhanced the chemical reaction on the magnetic film surface. We conclude that the TM plasma etching is a high-performance magnetic film etching process for fabricating magnetoresistive random access memory (MRAM).

  5. Performance of first-year health sciences students in a large, diverse, multidisciplinary, first-semester, physiology service module

    PubMed Central

    Tufts, Mark

    2014-01-01

    Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify “at-risk” students, it is only activated after the first semester. As a result, it is only from the second semester of their first year studies onward that at-risk students can be formally assisted. The challenge is thus to devise an appropriate strategy to identify struggling students earlier in the semester. Using questionnaires, students were asked about attendance, financing of their studies, and relevance of physiology. After the first class test, failing students were invited to complete a second questionnaire. In addition, demographic data were also collected and analyzed. Correlation analyses were undertaken of performance indicators based on the demographical data collected. The 2011 class comprised mainly sport science students (57%). The pass rate of sport science students was lower than the pass rates of other students (42% vs. 70%, P < 0.001). Most students were positive about physiology and recognized its relevance. Key issues identified were problems understanding concepts and terminology, poor study environment and skills, and lack of matriculation biology. The results of the first class test and final module marks correlated well. It is clear from this study that student performance in the first class test is a valuable tool to identify struggling students and that appropriate testing should be held as early as possible. PMID:24913452

  6. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-01-01

    Atmospheric turbulence is a major impairment that degrades the performance of free space optical (FSO) communication systems. Spatial modulation (SM) with receive spatial diversity is considered as a powerful technique to mitigate the fading effect induced by atmospheric turbulence. In this paper, the performance of free space optical spatial modulation (FSO-SM) system under Gamma-Gamma atmospheric turbulence is presented. We studied the Average Bit Error Rate (ABER) for the system by employing spatial diversity combiners such Maximum Ratio Combining (MRC) and Equal Gain Combining (EGC) at the receiving end. In particular, we provide a theoretical framework for the system error by deriving Average Pairwise Error Probability (APEP) expression using a generalized infinite power series expansion approach and union bounding technique is applied to obtain the ABER for each combiner. Based on this study, it was found that spatial diversity combiner significantly improved the system error rate where MRC outperforms the EGC. The performance of this system is also compared with other well established diversity combiner systems. The proposed system performance is further improved by convolutional coding technique and our analysis confirmed that the system performance of MRC coded system is enhanced by approximately 20 dB while EGC falls within 17 dB.

  7. Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; Di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le Van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Carminati, L.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu; Augé, E.; Bourdarios, C.; Breton, D.; Bonivento, W.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; This paper is dedicated to the memory of our colleague Dominique Sauvage, actively involved in the detector construction; beam test activities, who died accidentaly on March 16, 2002.

    2003-03-01

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% and 12.5% GeV1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5< η<3.2 (inner wheel).

  8. Performance improvement of a near-infrared acetylene sensor system by reducing residual amplitude modulation

    NASA Astrophysics Data System (ADS)

    He, Qixin; Zheng, Chuantao; Liu, Huifang; Li, Bin; Wang, Yiding; Tittel, Frank K.

    2017-05-01

    A near-infrared acetylene (C2H2) sensor was experimentally demonstrated by using a tunable diode laser absorption spectroscopy (TDLAS) technique as well as a second-harmonic wavelength modulation spectroscopy technique. A near-infrared distributed feedback (DFB) laser was used as a light source, and an interference-free absorption line located at the vibration overtone band near 1.53 µm was selected for the detection of C2H2. A self-developed, open-reflective gas sensing probe with a 30 cm path length was adopted as the C2H2 absorption pool. In order to reduce the residual amplitude modulation (RAM) caused by wavelength modulation, a divider pretreatment module was introduced into the traditional dual-channel detection structure. The line shape distortion of the extracted 2f signal was eliminated by the reduction of RAM. Under general laboratory conditions (1 atm, 25 °C), a minimum detection limit (MDL) of 540 ppbv was achieved with an averaging time of 68 s while the MDL without reducing the RAM is up to 1.03 ppmv. A good linear relationship was observed between the amplitude of the 2f signal and the C2H2 concentration within the range of 50-2000 ppm. Long-term measurements were carried out to verify the stability of the system. Using an optical fiber to connect the DFB laser with the probe, the probe can be placed in a faraway field for long-distance, in situ measurement.

  9. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  10. Performance measurements of turbo-coded bandwidth efficient modulations in the presence of a nonlinear TWTA

    NASA Astrophysics Data System (ADS)

    Grayver, E.; Dafesh, P.; Muha, M.; Moulthrop, A.

    2005-08-01

    This paper presents results obtained from an end-to-end, proof-of-concept system for a GOES-R series satellite communication system, that integrates a multilevel modulator, turbo coding, and a nonlinear traveling wave tube amplifier (TWTA). Multilevel modulation schemes allow high-speed data communications in a limited amount of spectrum, enabling higher data rates for GOES-R user downlink, as compared to the GOES user downlinks within the existing L-band allocation. Bandwidth-efficient modulations, such as 8-PSK and 16-QAM allow transmission of 3 or 4 times more data in the same amount of bandwidth than a standard BPSK modulation. This improvement, however, comes at the price of increased linearity requirements for the end-to-end link. This constraint is especially important for the power amplifier, which is typically a nonlinear device. TWTAs are frequently used on satellites for transmitter power amplification. These high-power devices operate at highest efficiency when in saturation mode. However, their transfer function is highly nonlinear in this mode, causing significant degradation in the link bit error rate (BER). Applying forward error correction based on turbo codes improves the BER by providing an additional noise margin of up to 5 dB. This paper presents measured BER curves for different Turbo codes, taken at different power levels relative to saturation. The results demonstrate that very low BER (below 10-10)can be achieved when using 8-PSK even when operating within 1 dB of saturation. This research and study was done by the Aerospace corporation in support of NOAA, and its future GOES-R series satellites.

  11. High Performance ZVT with Bus Clamping Modulation Technique for Single Phase Full Bridge Inverters

    SciTech Connect

    Xia, Yinglai; Ayyanar, Raja

    2016-03-20

    This paper proposes a topology based on bus clamping modulation and zero-voltage-transition (ZVT) technique to realize zero-voltage-switching (ZVS) for all the main switches of the full bridge inverters, and inherent ZVS and/or ZCS for the auxiliary switches. The advantages of the strategy include significant reduction in the turn-on loss of the ZVT auxiliary switches which typically account for a major part of the total loss in other ZVT circuits, and reduction in the voltage ratings of auxiliary switches. The modulation scheme and the commutation stages are analyzed in detail. Finally, a 1kW, 500 kHz switching frequency inverter of the proposed topology using SiC MOSFETs has been built to validate the theoretical analysis. The ZVT with bus clamping modulation technique of fixed timing and adaptive timing schemes are implemented in DSP TMS320F28335 resulting in full ZVS for the main switches in the full bridge inverter. The proposed scheme can save up to 33 % of the switching loss compared with no ZVT case.

  12. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  13. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.

    2017-08-01

    Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.

  14. Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out.

    PubMed

    Dokhale, P A; Silverman, R W; Shah, K S; Grazioso, R; Farrell, R; Glodo, J; McClish, M A; Entine, G; Tran, V H; Cherry, S R

    2004-09-21

    We are developing a high-resolution, high-efficiency positron emission tomography (PET) detector module with depth of interaction (DOI) capability based on a lutetium oxyorthosilicate (LSO) scintillator array coupled at both ends to position-sensitive avalanche photodiodes (PSAPDs). In this paper we present the DOI resolution, energy resolution and timing resolution results for complete detector modules. The detector module consists of a 7 x 7 matrix of LSO scintillator crystals (1 x 1 x 20 mm3 in dimension) coupled to 8 x 8 mm2 PSAPDs at both ends. Flood histograms were acquired and used to generate crystal look-up tables. The DOI resolution was measured for individual crystals within the array by using the ratio of the signal amplitudes from the two PSAPDs on an event-by-event basis. A measure of the total scintillation light produced was obtained by summing the signal amplitudes from the two PSAPDs. This summed signal was used to measure the energy resolution. The DOI resolution was measured to be 3-4 mm FWHM irrespective of the position of the crystal within the array, or the interaction location along the length of the crystal. The total light signal and energy resolution was almost independent of the depth of interaction. The measured energy resolution averaged 14% FWHM. The coincidence timing resolution measured using a pair of identical detector modules was 4.5 ns FWHM. These results are consistent with the design goals and the performance required of a compact, high-resolution and high-efficiency PET detector module for small animal and breast imaging applications.

  15. Benchmark performance analysis of an ECM-modulated air-to-air heat pump with a reciprocating compressor

    SciTech Connect

    Rice, C.K.

    1992-01-01

    A benchmark analysis was conducted to predict the maximum steady- state performance potential of a near-term modulating residential- size heat pump. Continuously variable-speed, permanent-magnet electronically commutated motors (ECMs) were assumed to modulate the compressor and the indoor and outdoor fans in conjunction with existing modulating reciprocating compressor technology. A modulating heat pump design tool was used to optimize this ECM benchmark heat pump, using speed ranges and total heat exchanger sizes per-unit-capacity equivalent to that used by the highest SEER-rated variable-speed unit presently on the market (SEER = 16.4). Parametric steady-state performance optimization was conducted at a nominal design cooling ambient of 95{degree}F (35{degree}C) and at three off-design ambients of 82{degree}F (27.8{degree}C) cooling and 47{degree}F and 17{degree}F (8.3{degree}C and {minus}8.3{degree}C) heating. In comparison to the reference commercially available residential unit, the analysis for the ECM benchmark predicted steady-state heating COPs about 35% higher and a cooling EER almost 25% higher at the nominal design cooling condition. The cooling EER at 82{degree}F (27. 8{degree}C) was 13% higher than that of the reference unit when a comparable sensible heat ratio of 0.71 was maintained, while an EER gain of 24% at the 82{degree}F (27.8{degree}C) rating point was predicted when the sensible heat ratio was relaxed to 0.83. 28 refs., 14 figs., 7 tabs.

  16. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.

    PubMed

    McCauley, Peter; Kalachev, Leonid V; Mollicone, Daniel J; Banks, Siobhan; Dinges, David F; Van Dongen, Hans P A

    2013-12-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation--and thereby sensitivity to neurobehavioral impairment from sleep loss--is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation--and thus sensitivity to sleep loss--depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work.

  17. Performance analyses of subcarrier BPSK modulation over M turbulence channels with pointing errors

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Li, Ya-tian; Wu, Jia-bin; Geng, Tian-wen; Wu, Zhiyong

    2016-05-01

    An aggregated channel model is achieved by fitting the Weibull distribution, which includes the effects of atmospheric attenuation, M distributed atmospheric turbulence and nonzero boresight pointing errors. With this approximate channel model, the bit error rate ( BER) and the ergodic capacity of free-space optical (FSO) communication systems utilizing subcarrier binary phase-shift keying (BPSK) modulation are analyzed, respectively. A closed-form expression of BER is derived by using the generalized Gauss-Lagueree quadrature rule, and the bounds of ergodic capacity are discussed. Monte Carlo simulation is provided to confirm the validity of the BER expressions and the bounds of ergodic capacity.

  18. Performance of convolution coding concatenated with MFSK modulation in a Gaussian channel

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.

    1971-01-01

    The improvement in db due to concatenation over conventional M-ary coding is studied to reduce the probability of a bit error and to increase the available bit rate for the same system parameters of error rate, transmitter power, and range. The results of calculations for orthogonal modulation with noncoherent detection and Q-level correlator quantization are presented. It is shown that the correlator outputs are quantized to one of the Q levels, and the receiver output is a vector consisting of a list of the M correlator quantum levels. The channel has Q(M) possible outputs and M possible inputs. Optimum output is approached by increasing fine quantization

  19. Electrical and Thermal Performance of 1200 V, 100 A, 200 deg C, 4H-SiC MOSFET-based Power Switch Modules

    DTIC Science & Technology

    2009-11-01

    AFRL-RZ-WP-TP-2010-2042 ELECTRICAL AND THERMAL PERFORMANCE OF 1200 V, 100 A, 200°C, 4H-SiC MOSFET -BASED POWER SWITCH MODULES (PREPRINT...June 2008 – 01 August 2009 4. TITLE AND SUBTITLE ELECTRICAL AND THERMAL PERFORMANCE OF 1200 V, 100 A, 200°C, 4H-SiC MOSFET -BASED POWER SWITCH MODULES... thermal performance characteristics of 1200 V, 100 A, 200oC (Tj), SiC MOSFET power modules configured in a dual-switch topology. Each switch-diode

  20. Performance evaluation of a novel high performance pinhole array detector module using NEMA NU-4 image quality phantom for four head SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2015-03-01

    Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.

  1. Attendance and Performance: Correlations and Motives in Lecture-Based Modules

    ERIC Educational Resources Information Center

    Clark, Gordon; Gill, Nick; Walker, Marion; Whittle, Rebecca

    2011-01-01

    Does attending lectures improve student performance? Using novel attendance data, we examine statistically the relationships between attendance and performance for first-year and third-year students. The relationship is moderately positive: very high attendance is significantly associated with an improvement in performance over very low attenders…

  2. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    SciTech Connect

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  3. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    PubMed Central

    Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina

    2016-01-01

    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver. PMID:26864633

  4. Analog RF-optic performance of 60 GHz electroabsorption duplexer module

    NASA Astrophysics Data System (ADS)

    Sim, J. S.; Choi, K. S.; Chung, Y. D.; Kim, S. B.; Kim, J.; Kang, Y. S.

    2006-09-01

    We proposed the vertical mode coupling structure (VMCS) for monolithic integration of optoelectronic devices. The electroabsorption duplexer (EAD) chip was fabricated by monolithically integrating both a waveguide photodiode (PD) and an electroabsorption modulator (EAM) in association with traveling wave electrodes. Using an EAD we presented a transceiver (TR x) module for dual functions of both electrical-to-optical (E/O) and optical-to-electrical (O/E) conversions at 60GHz band. The responsivity and the extinction ration of the EAD were 0.72 A/W and 20 dB at -4 V dc, respectively. The coupling loss between the optical fiber and the device facet was as small as 1.96 dB. The small signal 3 dB bandwidth of E/O and O/E response was 25 GHz and 8 GHz, respectively. We also investigated the issues of RF packaging in which the optoelectronic and electronic amplifier devices were co-packaged in a single housing.

  5. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    PubMed

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  6. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shanghua; Xue, Bing

    2017-04-01

    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  7. Performance of the ICAO standard core service modulation and coding techniques

    NASA Technical Reports Server (NTRS)

    Lodge, John; Moher, Michael

    1988-01-01

    Aviation binary phase shift keying (A-BPSK) is described and simulated performance results are given that demonstrate robust performance in the presence of hardlimiting amplifiers. The performance of coherently-detected A-BPSK with rate 1/2 convolutional coding are given. The performance loss due to the Rician fading was shown to be less than 1 dB over the simulated range. A partially coherent detection scheme that does not require carrier phase recovery was described. This scheme exhibits similiar performance to coherent detection, at high bit error rates, while it is superior at lower bit error rates.

  8. A Nomographic Methodology for Use in Performance Trade-Off Studies of Parabolic Dish Solar Power Modules

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Fujita, T.

    1984-01-01

    A simple graphical method was developed to undertake technical design trade-off studies for individual parabolic dish models comprising a two-axis tracking parabolic dish with a cavity receiver and power conversion assembly at the focal point. The results of these technical studies are then used in performing the techno-economic analyses required for determining appropriate subsystem sizing. Selected graphs that characterize the performance of subsystems within the module were arranged in the form of a nomogram that would enable an investigator to carry out several design trade-off studies. Key performance parameters encompassed in the nomogram include receiver losses, intercept factor, engine rating, and engine efficiency. Design and operation parameters such as concentrator size, receiver type (open or windowed aperture), receiver aperture size, operating temperature of the receiver and engine, engine partial load characteristics, concentrator slope error, and the type of reflector surface, are also included in the graphical solution. Cost considerations are not included.

  9. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K.

    2010-08-15

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  10. Experimental Performance of a Solar Thermoelectric Cogenerator Comprising Thermoelectric Modules and Parabolic Trough Concentrator without Evacuated Tube

    NASA Astrophysics Data System (ADS)

    Miao, L.; Kang, Y. P.; Li, C.; Tanemura, S.; Wan, C. L.; Iwamoto, Y.; Shen, Y.; Lin, H.

    2015-06-01

    A prototype practical solar-thermoelectric cogenerator composed of (1) a primary component of a pile of solar-selective absorber (SSA) slab, thermoelectric (TE) modules, and a depressed water flow tube (multichannel cooling heat sink, MCS), and (2) a parabolic trough concentrator with aperture area of 2m × 2m and east-west focal axis was constructed. Its cogeneration performance under the best climatic and solar insolation conditions in Guangzhou, China was tested. For simplicity, the evacuated glass tube to cover the primary component was eliminated from the system. Six Bi2Te3 TE modules were arranged in series, directly bonded to the rear surface of the solar absorber slab. The hot-side temperature of the TE module reached up to 152°C. The experimentally obtained instantaneous results for the solar to electrical conversion efficiency, heat exchange coefficient of the MCS, and overall system efficiency under the best environmental and solar insolation conditions were about 1.14%, 56.1%, and 49.5%, respectively. To justify these values, an equivalent thermal network diagram based on a single-temperature-node heat transfer model representing the respective system components was used to analyze the thermal transfer and losses of the system. Finally, electrical power of 18° W was generated, with 2 L/min of hot water at 37°C being produced and stored in the insulated container.

  11. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  12. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.

    PubMed

    Mouraviev, Vladimir; Klein, Martina; Schommer, Eric; Thiel, David D; Samavedi, Srinivas; Kumar, Anup; Leveillee, Raymond J; Thomas, Raju; Pow-Sang, Julio M; Su, Li-Ming; Mui, Engy; Smith, Roger; Patel, Vipul

    2016-03-01

    In pursuit of improving the quality of residents' education, the Southeastern Section of the American Urological Association (SES AUA) hosts an annual robotic training course for its residents. The workshop involves performing a robotic live porcine nephrectomy as well as virtual reality robotic training modules. The aim of this study was to evaluate workload levels of urology residents when performing a live porcine nephrectomy and the virtual reality robotic surgery training modules employed during this workshop. Twenty-one residents from 14 SES AUA programs participated in 2015. On the first-day residents were taught with didactic lectures by faculty. On the second day, trainees were divided into two groups. Half were asked to perform training modules of the Mimic da Vinci-Trainer (MdVT, Mimic Technologies, Inc., Seattle, WA, USA) for 4 h, while the other half performed nephrectomy procedures on a live porcine model using the da Vinci Si robot (Intuitive Surgical Inc., Sunnyvale, CA, USA). After the first 4 h the groups changed places for another 4-h session. All trainees were asked to complete the NASA-TLX 1-page questionnaire following both the MdVT simulation and live animal model sessions. A significant interface and TLX interaction was observed. The interface by TLX interaction was further analyzed to determine whether the scores of each of the six TLX scales varied across the two interfaces. The means of the TLX scores observed at the two interfaces were similar. The only significant difference was observed for frustration, which was significantly higher at the simulation than the animal model, t (20) = 4.12, p = 0.001. This could be due to trainees' familiarity with live anatomical structures over skill set simulations which remain a real challenge to novice surgeons. Another reason might be that the simulator provides performance metrics for specific performance traits as well as composite scores for entire exercises. Novice trainees experienced

  13. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Beabout, D.; Beabout, B.; Nakayama, S.; Tajima, T.

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP), a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1% for the first time and investigate the vector magnetic field. Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. In the ground tests, we confirmed that PMU has superior rotation uniformity. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity during the flight and the high precision polarization measurement of CLASP was successfully achieved.

  14. Light-induced effects-impacts to module performance measurements and reliability testing: An overview

    NASA Technical Reports Server (NTRS)

    Wronski, C. R.

    1985-01-01

    The stability of solar cells is a key factor in determining the reliability of photovoltaic modules and is of great interest in the case of solar cells having a new technology which has not yet been fully developed. In particular this question arises with hydrogenated amorphous silicon (a-Si) solar cells because a-Si exhibits reversible light induced changes in its electronic properties, commonly referred to as the Staebler-Wronski effect (SWE). Continuous progress is being made in the peak conversion efficiencies of a-Si solar cells and efficiencies in excess of 11% have been achieved. However, stability is still a problem. ARCO Solar reports results on solar cells which, after over a year's exposure to sunlight, under open circuit conditions, still have about 7% conversion efficiency. Other results show a region of fast degradation for about a month, after which the degradation diminishes rapidly.

  15. Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance

    NASA Technical Reports Server (NTRS)

    Snook, Allen David

    1993-01-01

    Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.

  16. System testing and performance characterization of the LITE Laser Transmitter Module at NASA

    NASA Astrophysics Data System (ADS)

    Cimolino, Marc C.; Petros, Mulugeta

    1992-07-01

    The Laser Transmitter Module (LTM) is a three-color Q-switched flashlamp pumped Nd:YAG laser. The original design concept was to package commercially available optics and flashlamp electronics for spaceflight with a power consumption goal of 2200 W and a weight goal of 600 lbs. The optical output was to exceed 200 mJ of IR, 400 mJ of green, and 150 mJ of UV per pulse at 10 Hz. The new space qualified laser exceeds the optical output requirements by 188 percent, 50 percent, and 13 percent in the UR, green, and UV respectively. This output needs only 1500 W at a weight of only 500 lbs. The LTM was delivered to the NASA Langley Research Center in December 1991. Optical characterization is now being completed.

  17. Performance analysis of generalized QAM modulation under η-μ and κ-μ fading

    NASA Astrophysics Data System (ADS)

    L Queiroz, Wamberto J.; Madeiro, Francisco; A Lopes, Waslon T.; Alencar, Marcelo S.

    2013-12-01

    This paper presents new closed-form expressions for the symbol error probability (SEP) of θ-QAM modulation with maximum ratio combining (MRC) receiver under η- μ and κ- μ fading. The SEP formulae, obtained from the definite integrals of the moment generating function (MGF) of the signal-to-noise ratio (SNR) at the input of the MRC receiver, are written in terms of Lauricella functions. The numerical evaluation of the expressions is carried out for the η- μ distribution, which includes important distributions as special cases, such as Hoyt, Nakagami- m, Rayleigh, and one-sided Gaussian, as well as for the κ- μ distribution, which includes Rice, Nakagami- m, Rayleigh, and one-sided Gaussian as special cases.

  18. Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids

    PubMed Central

    Danielsson, Henrik; Hällgren, Mathias; Stenfelt, Stefan; Rönnberg, Jerker; Lunner, Thomas

    2016-01-01

    The audiogram predicts <30% of the variance in speech-reception thresholds (SRTs) for hearing-impaired (HI) listeners fitted with individualized frequency-dependent gain. The remaining variance could reflect suprathreshold distortion in the auditory pathways or nonauditory factors such as cognitive processing. The relationship between a measure of suprathreshold auditory function—spectrotemporal modulation (STM) sensitivity—and SRTs in noise was examined for 154 HI listeners fitted with individualized frequency-specific gain. SRTs were measured for 65-dB SPL sentences presented in speech-weighted noise or four-talker babble to an individually programmed master hearing aid, with the output of an ear-simulating coupler played through insert earphones. Modulation-depth detection thresholds were measured over headphones for STM (2cycles/octave density, 4-Hz rate) applied to an 85-dB SPL, 2-kHz lowpass-filtered pink-noise carrier. SRTs were correlated with both the high-frequency (2–6 kHz) pure-tone average (HFA; R2 = .31) and STM sensitivity (R2 = .28). Combined with the HFA, STM sensitivity significantly improved the SRT prediction (ΔR2 = .13; total R2 = .44). The remaining unaccounted variance might be attributable to variability in cognitive function and other dimensions of suprathreshold distortion. STM sensitivity was most critical in predicting SRTs for listeners < 65 years old or with HFA <53 dB HL. Results are discussed in the context of previous work suggesting that STM sensitivity for low rates and low-frequency carriers is impaired by a reduced ability to use temporal fine-structure information to detect dynamic spectra. STM detection is a fast test of suprathreshold auditory function for frequencies <2 kHz that complements the HFA to predict variability in hearing-aid outcomes for speech perception in noise. PMID:27815546

  19. Task- and time-dependent modulation of Ia presynaptic inhibition during fatiguing contractions performed by humans.

    PubMed

    Baudry, Stéphane; Maerz, Adam H; Gould, Jeffrey R; Enoka, Roger M

    2011-07-01

    Presynaptic modulation of Ia afferents converging onto the motor neuron pool of the extensor carpi radialis (ECR) was compared during contractions (20% of maximal force) sustained to failure as subjects controlled either the angular position of the wrist while supporting an inertial load (position task) or exerted an equivalent force against a rigid restraint (force task). Test Hoffmann (H) reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. Conditioned H reflexes were obtained by stimulating either the median nerve above the elbow or at the wrist (palmar branch) to assess presynaptic inhibition of homonymous (D1 inhibition) and heteronymous Ia afferents (heteronymous Ia facilitation), respectively. The position task was briefer than the force task (P = 0.001), although the maximal voluntary force and electromyograph for ECR declined similarly at failure for both tasks. Changes in the amplitude of the conditioned H reflex were positively correlated between the two conditioning methods (P = 0.02) and differed between the two tasks (P < 0.05). The amplitude of the conditioned H reflex during the position task first increased (129 ± 20.5% of the initial value, P < 0.001) before returning to its initial value (P = 0.22), whereas it increased progressively during the force task to reach 122 ± 17.4% of the initial value at failure (P < 0.001). Moreover, changes in conditioned H reflexes were associated with the time to task failure and force fluctuations. The results suggest a task- and time-dependent modulation of presynaptic inhibition of Ia afferents during fatiguing contractions.

  20. Presynaptic modulation of Ia afferents in young and old adults when performing force and position control.

    PubMed

    Baudry, Stéphane; Maerz, Adam H; Enoka, Roger M

    2010-02-01

    The present work investigated presynaptic modulation of Ia afferents in the extensor carpi radialis (ECR) when young and old adults exerted a wrist extension force either to support an inertial load (position control) or to achieve an equivalent constant torque against a rigid restraint (force control) at 5, 10, and 15% of the maximal force. H reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. A conditioning stimulus was applied to the median nerve above the elbow to assess presynaptic inhibition of homonymous Ia afferents (D1 inhibition) or at the wrist (palmar branch) to assess the ongoing presynaptic inhibition of heteronymous Ia afferents that converge onto the ECR motor neuron pool (heteronymous Ia facilitation). The young adults had less D1 inhibition and greater heteronymous Ia facilitation during the position task (79 and 132.1%, respectively) compared with the force task (69.1 and 115.1%, respectively, P < 0.05). In contrast, the old adults exhibited no difference between the two tasks for either D1 inhibition ( approximately 72%) or heteronymous Ia facilitation ( approximately 114%). Contraction intensity did not influence the amount of D1 inhibition or heteronymous Ia facilitation for either group of subjects. The amount of antagonist coactivation was similar between tasks for young adults, whereas it was greater in the position task for old adults (P = 0.02). These data indicate that in contrast to young adults, old adults did not modulate presynaptic inhibition of Ia afferents when controlling the position of a compliant load but rather increased coactivation of the antagonist muscle.

  1. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors

    PubMed Central

    Tam, Shu K. E.; Hasan, Sibah; Hughes, Steven; Hankins, Mark W.; Foster, Russell G.; Bannerman, David M.

    2016-01-01

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. PMID:28003454

  2. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors.

    PubMed

    Tam, Shu K E; Hasan, Sibah; Hughes, Steven; Hankins, Mark W; Foster, Russell G; Bannerman, David M; Peirson, Stuart N

    2016-12-28

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. © 2016 The Authors.

  3. Exploring the Use of Sensorial LTP/LTD-Like Stimulation to Modulate Human Performance for Complex Visual Stimuli

    PubMed Central

    Pegado, Felipe; Vankrunkelsven, Hendrik; Steyaert, Jean; Boets, Bart; Op de Beeck, Hans

    2016-01-01

    Is it possible to passively induce visual learning/unlearning in humans for complex stimuli such as faces? We addressed this question in a series of behavioral studies using passive visual stimulation (flickering of faces at specific temporal frequencies) inspired by well-known synaptic mechanisms of learning: long-term potentiation (LTP) vs long-term depression (LTD). We administered a face identity change detection task before and after a passive stimulation protocol to test for potential changes in visual performance. First, with bilateral stimulation, subjects undergoing high-frequency LTP-like stimulation outperformed those submitted to low-frequency LTD-like stimulation despite equivalent baseline performance (exp. 1). Second, unilateral stimulation replicated the differential modulation of performance, but in a hemifield-specific way (exp. 2). Third, for both stimulation groups, a sudden temporary drop in performance on the stimulated side immediately after the stimulation, followed by progressive recovering, can suggest either ‘visual fatigue’ or ‘face adaptation’ effects due to the stimulation. Fourth, we tested the life-time of these modulatory effects, revealing they vanish after one hour delay (exp. 3). Fifth, a control study (exp. 4) using low-level visual stimuli also failed to show longer-term effects of sensory stimulation, despite reports of strong effects in the literature. Future studies should determine the necessary and sufficient conditions enabling robust long-term modulation of visual performance using this technique. This step is required to consider further use in fundamental research (e.g., to study neural circuits involved in selective visual processing) and potential educational or clinical applications (e.g., inhibiting socially-irrelevant aspects of face processing in autism). PMID:27341210

  4. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    PubMed

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.

  5. Stress modulates instrumental learning performances in horses (Equus caballus) in interaction with temperament.

    PubMed

    Valenchon, Mathilde; Lévy, Frédéric; Prunier, Armelle; Moussu, Chantal; Calandreau, Ludovic; Lansade, Léa

    2013-01-01

    The present study investigates how the temperament of the animal affects the influence of acute stress on the acquisition and reacquisition processes of a learning task. After temperament was assessed, horses were subjected to a stressor before or after the acquisition session of an instrumental task. Eight days later, horses were subjected to a reacquisition session without any stressor. Stress before acquisition tended to enhance the number of successes at the beginning of the acquisition session. Eight days later, during the reacquisition session, contrary to non-stressed animals, horses stressed after acquisition, and, to a lesser extent, horses stressed before acquisition, did not improve their performance between acquisition and reacquisition sessions. Temperament influenced learning performances in stressed horses only. Particularly, locomotor activity improved performances whereas fearfulness impaired them under stressful conditions. Results suggest that direct exposure to a stressor tended to increase acquisition performances, whereas a state of stress induced by the memory of a stressor, because it has been previously associated with the learning context, impaired reacquisition performances. The negative effect of a state of stress on reacquisition performances appeared to be stronger when exposure to the stressor occurred after rather than before the acquisition session. Temperament had an impact on both acquisition and reacquisition processes, but under stressful conditions only. These results suggest that stress is necessary to reveal the influence of temperament on cognitive performances.

  6. Stress Modulates Instrumental Learning Performances in Horses (Equus caballus) in Interaction with Temperament

    PubMed Central

    Valenchon, Mathilde; Lévy, Frédéric; Prunier, Armelle; Moussu, Chantal; Calandreau, Ludovic; Lansade, Léa

    2013-01-01

    The present study investigates how the temperament of the animal affects the influence of acute stress on the acquisition and reacquisition processes of a learning task. After temperament was assessed, horses were subjected to a stressor before or after the acquisition session of an instrumental task. Eight days later, horses were subjected to a reacquisition session without any stressor. Stress before acquisition tended to enhance the number of successes at the beginning of the acquisition session. Eight days later, during the reacquisition session, contrary to non-stressed animals, horses stressed after acquisition, and, to a lesser extent, horses stressed before acquisition, did not improve their performance between acquisition and reacquisition sessions. Temperament influenced learning performances in stressed horses only. Particularly, locomotor activity improved performances whereas fearfulness impaired them under stressful conditions. Results suggest that direct exposure to a stressor tended to increase acquisition performances, whereas a state of stress induced by the memory of a stressor, because it has been previously associated with the learning context, impaired reacquisition performances. The negative effect of a state of stress on reacquisition performances appeared to be stronger when exposure to the stressor occurred after rather than before the acquisition session. Temperament had an impact on both acquisition and reacquisition processes, but under stressful conditions only. These results suggest that stress is necessary to reveal the influence of temperament on cognitive performances. PMID:23626801

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    SciTech Connect

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  8. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    SciTech Connect

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  9. Comparative study on the performance of power and bandwidth efficient modulations in LMSS under fading and interference

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.

    1991-01-01

    Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.

  10. Profile Classification Module of GPM-DPR algorithm: performance of first dataset

    NASA Astrophysics Data System (ADS)

    Le, M.; Chandra, C. V.; Awaka, J.

    2014-12-01

    The Global Precipitation Measurement (GPM) mission was successfully launched in February 2014. It is the next satellite mission to obtain global precipitation measurements following success of TRMM. The GPM core satellite is equipped with a dual-frequency precipitation radar (DPR) operating at Ku and Ka band. DPR is expected to improve our knowledge of precipitation. Profile classification module of GPM-DPR is a critical module in the retrieval system for space borne radar. It involves two aspects: 1) precipitation type classification;and 2) melting region detection. Dual-frequency classification method that has been implemented into DPR algorithm relies on the microphysical properties using the difference in measured radar reflectivities at two frequencies, a quantity often called the measured dual-frequency ratio (DFRm). There are two aspects that control DFRm vertical profile: a) the non-Rayleigh scattering; b) the path- integrated attenuation. The DFRm is determined by the forward and backscattering properties of the mixed phase and rain and the backscattering properties of the ice. It holds rich information to assist in precipitation type classification and melting layer detection. In order to quantify DFRm features, a set of indices are defined. V1=(DFRm_max-DFRm_min)/(DFRm_max+DFRm_min). Where DFRm_max and DFRm_min are DFRm local max and min values. V2 is the absolute value of the mean slope for DFRm below the DFRm local min point. To further enlarge the difference between rain types, a third DFRm index V3 is defined V3=V1/V2. V3 is an effective parameter and provides a separable threshold for different rain types. The criteria for the melting layer top is defined as the height at which the slope of the DFRm profile hits a peak value. Similarly, the melting layer bottom is defined as the height the DFRm profile has a local minimum value. These criteria show good comparisons with other existing criteria. Dual-frequency classification method has been evaluated

  11. Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids.

    PubMed

    Bernstein, Joshua G W; Danielsson, Henrik; Hällgren, Mathias; Stenfelt, Stefan; Rönnberg, Jerker; Lunner, Thomas

    2016-11-04

    The audiogram predicts <30% of the variance in speech-reception thresholds (SRTs) for hearing-impaired (HI) listeners fitted with individualized frequency-dependent gain. The remaining variance could reflect suprathreshold distortion in the auditory pathways or nonauditory factors such as cognitive processing. The relationship between a measure of suprathreshold auditory function-spectrotemporal modulation (STM) sensitivity-and SRTs in noise was examined for 154 HI listeners fitted with individualized frequency-specific gain. SRTs were measured for 65-dB SPL sentences presented in speech-weighted noise or four-talker babble to an individually programmed master hearing aid, with the output of an ear-simulating coupler played through insert earphones. Modulation-depth detection thresholds were measured over headphones for STM (2cycles/octave density, 4-Hz rate) applied to an 85-dB SPL, 2-kHz lowpass-filtered pink-noise carrier. SRTs were correlated with both the high-frequency (2-6 kHz) pure-tone average (HFA; R(2 )= .31) and STM sensitivity (R(2 )= .28). Combined with the HFA, STM sensitivity significantly improved the SRT prediction (ΔR(2 )= .13; total R(2 )= .44). The remaining unaccounted variance might be attributable to variability in cognitive function and other dimensions of suprathreshold distortion. STM sensitivity was most critical in predicting SRTs for listeners < 65 years old or with HFA <53 dB HL. Results are discussed in the context of previous work suggesting that STM sensitivity for low rates and low-frequency carriers is impaired by a reduced ability to use temporal fine-structure information to detect dynamic spectra. STM detection is a fast test of suprathreshold auditory function for frequencies <2 kHz that complements the HFA to predict variability in hearing-aid outcomes for speech perception in noise. © The Author(s) 2016.

  12. The impact of pulsed RFI on the coded BER performance of the nonlinear satellite communication channel. [with BPSK modulation

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1981-01-01

    An examination is conducted of the coded bit error rate (BER) performance of a satellite communication system in which binary phase-shift-keyed (BPSK) modulation is employed, pulsed CW or pulsed noise RFI is present, and the transponder contains a nonlinearity characterized by arbitrary AM/AM and AM/PM characteristics; the RFI pulse duration is further assumed to exceed that of the information symbol. Computed performance curves consider several hypothetical RFI scenarios in which either a hard limiter or an 8 dB clipper represent the transponder amplitude nonlinearity. Results demonstrate the potential seriousness of RFI duty cycles as low as 2 percent, and the fact that CW represents the most severe form of interference.

  13. Low cost and high performance GPON, GEPON and RFoG optical network pentaplexer module design using diffractive grating approach

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen

    2016-01-01

    A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.

  14. The impact of pulsed RFI on the coded BER performance of the nonlinear satellite communication channel. [with BPSK modulation

    NASA Technical Reports Server (NTRS)

    Weinberg, A.

    1981-01-01

    An examination is conducted of the coded bit error rate (BER) performance of a satellite communication system in which binary phase-shift-keyed (BPSK) modulation is employed, pulsed CW or pulsed noise RFI is present, and the transponder contains a nonlinearity characterized by arbitrary AM/AM and AM/PM characteristics; the RFI pulse duration is further assumed to exceed that of the information symbol. Computed performance curves consider several hypothetical RFI scenarios in which either a hard limiter or an 8 dB clipper represent the transponder amplitude nonlinearity. Results demonstrate the potential seriousness of RFI duty cycles as low as 2 percent, and the fact that CW represents the most severe form of interference.

  15. Alcohol effects on performance monitoring and adjustment: affect modulation and impairment of evaluative cognitive control.

    PubMed

    Bartholow, Bruce D; Henry, Erika A; Lust, Sarah A; Saults, J Scott; Wood, Phillip K

    2012-02-01

    Alcohol is known to impair self-regulatory control of behavior, though mechanisms for this effect remain unclear. Here, we tested the hypothesis that alcohol's reduction of negative affect (NA) is a key mechanism for such impairment. This hypothesis was tested by measuring the amplitude of the error-related negativity (ERN), a component of the event-related brain potential (ERP) posited to reflect the extent to which behavioral control failures are experienced as distressing, while participants completed a laboratory task requiring self-regulatory control. Alcohol reduced both the ERN and error positivity (Pe) components of the ERP following errors and impaired typical posterror behavioral adjustment. Structural equation modeling indicated that effects of alcohol on both the ERN and posterror adjustment were significantly mediated by reductions in NA. Effects of alcohol on Pe amplitude were unrelated to posterror adjustment, however. These findings indicate a role for affect modulation in understanding alcohol's effects on self-regulatory impairment and more generally support theories linking the ERN with a distress-related response to control failures.

  16. Self-similar module for FP/LNS arithmetic in high-performance FPGA systems

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Lambert; Mohl, Stefan

    2005-06-01

    The scientific community has gratefully embraced floating-point arithmetic to escape the close attention for accuracy and precision required in fixed-point computational styles. Though its deficiencies are well known, the role of the floating-point system as standard has kept other number representation systems from coming into practice. The paper discusses the relation between fixed and floating-point numbers from a pragmatic point of view that allows to mix both systems to optimize FPGA-based hardware accelerators. The method is developed for the Mitrion "processor on demand" technology, where a computationally intensive algorithm is transformed into a dedicated. The large gap in cycle time between fixed and floating-point operations and between direct and reverse operations makes the on-chip control for the fine-grain pipelines of parallel logic very complicated. Having alternative hardware realizations available can alleviate this. The paper uses a conjunctive notation, also known as DIGILOG, to introduce a flexible means in creating configurable arithmetic of arbitrary order using a single module type. This allows the Mitrion hardware compiler to match the hardware closer to the demands of the specific algorithm. Typical applications are in molecular simulation and real-time image analysis.

  17. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed

    NASA Astrophysics Data System (ADS)

    Rinck, Philipp M.; Sitzberger, Sebastian; Zaeh, Michael F.

    2017-06-01

    In vibration assisted machining, an additional high-frequency oscillation is superimposed on the kinematics of the conventional machining process. This generates oscillations on the cutting edge in the range of a few micrometers, thereby causing a high-frequency change in the cutting speed or the feed. Consequently, a reduction of cutting forces, an increase of the tool life as well as an improvement of the workpiece quality can be achieved. In milling and grinding it has been shown that these effects are already partially present in the case of a vibration excitation in axial direction relative to the workpiece, which is perpendicular to the cutting direction. Further improvements of the process results can be achieved by superimposing a vibration in cutting direction and thus modifying the cutting speed at high frequency. The presented work shows the design of an ultrasonic actuator that enables vibration-assisted milling and grinding with ultrasonically modulated cutting speed. The actuator system superimposes a longitudinal torsional ultrasonic oscillation to the milling or grinding tool. It uses a bolt clamped Langevin transducer and a helically slotted horn, which degenerates the longitudinal vibration into a combined longitudinal torsional (L-T) vibration at the output surface. A finite element analysis is used to determine the vibration resonance frequency and mode shapes to maximize the torsional output. Afterwards, the simulation has been experimentally validated.

  18. Module Evaluation

    DTIC Science & Technology

    2006-02-01

    various testing methodologies for the evaluation and characterization of Transmit /Receive (T/R) modules for phased array radars. Discussed are techniques...for characterizing T/R modules in transmit and receive modes under ideal and emulated operation environments. Further, techniques for life testing...characteristics of T/R modules developed during the early and mid 1980’s. Data provided shows the performance in terms of gain and phase for both transmit

  19. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    SciTech Connect

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

  20. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. P.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs MMIC-based phased array antennas. This paper describes the performance of a hybrid GaAs optoelectronic integrated circuit (OEIC), along with a description of its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 305 Mbps. The performance characteristics as well as potential applications of the device are presented.

  1. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  2. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    NASA Astrophysics Data System (ADS)

    Majumder, Apratim; Helms, Phillip L.; Andrew, Trisha L.; Menon, Rajesh

    2016-03-01

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.

  3. Electrical and Optical Performance Characteristics of p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in ThermoPhotoVoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A Monolithic Interconnected Module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual Indium Gallium Arsenide (InGaAs) devices series-connected on a single semi-insulating Indium Phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An InfraRed (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74eV InGaAs, have demonstrated V(sub infinity) = 3.2 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. IR reflectance measurements (greater than 2 microns) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  4. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    SciTech Connect

    Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh; Andrew, Trisha L.

    2016-03-15

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.

  5. Load Modulation of BOLD Response and Connectivity Predicts Working Memory Performance in Younger and Older Adults

    ERIC Educational Resources Information Center

    Nagel, Irene E.; Preuschhof, Claudia; Li, Shu-Chen; Nyberg, Lars; Backman, Lars; Lindenberger, Ulman; Heekeren, Hauke R.

    2011-01-01

    Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity…

  6. Perceptions of Examiner Behavior Modulate Power Relations in Oral Performance Testing

    ERIC Educational Resources Information Center

    Plough, India C.; Bogart, Pamela S. H.

    2008-01-01

    To what extent are the discourse behaviors of examiners salient to participants of an oral performance test? This exploratory study employs a grounded ethnographic approach to investigate the perceptions of the verbal, paralinguistic and nonverbal discourse behaviors of an examiner in a one-on-one role-play task that is one of four tasks in an…

  7. Effects on cognitive performance of modulating the postprandial blood glucose profile at breakfast.

    PubMed

    Nilsson, A; Radeborg, K; Björck, I

    2012-09-01

    Considering the importance of glucose as a brain substrate, the postprandial rate of glucose delivery to the blood could be expected to affect cognitive functions. The purpose was to evaluate to what extent the rate of glucose absorption affected measures of cognitive performance in the postprandial period. In addition, cognitive performance was evaluated in relation to individual glucoregulation. A white wheat bread (WWB) enriched with guar gum (G-WWB) with the capacity to produce a low but sustained blood glucose net increment was developed. The G-WWB was evaluated in the postprandial period after breakfast with respect to effects on cognitive function (working memory and selective attention (SA)) in 40 healthy adults (49-71 years, body mass index 20-29 kg/m(2)), using a high glycaemic index WWB for comparison in a randomised crossover design. The G-WWB improved outcome in the cognitive tests (SA test) in the later postprandial period (75-225 min) in comparison with the WWB (P<0.01). Subjects with better glucoregulation performed superior in cognitive tests compared with subjects with worse glucoregulation (P<0.05). Beneficial effects on cognitive performance were observed with the G-WWB in the late postprandial period. The positive effect is suggested to emanate from improved insulin sensitivity, possibly in a combination with an enhanced neural energy supply. The results highlight the importance of carbohydrate foods that induces a low but sustained blood glucose profile in enhancing postprandial cognitive functions.

  8. Performance improvement by orthogonal pulse amplitude modulation and discrete multitone modulation signals in hybrid fiber-visible laser light communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Fangliu; He, Jing; Deng, Rui; Chen, Qinghui; Chen, Lin

    2016-10-01

    A modulation format, orthogonal pulse amplitude modulation and discrete multitone modulation (O-PAM-DMT), is experimentally demonstrated in a hybrid fiber-visible laser light communication (fiber-VLLC) system using a cost-effective directly modulated laser and blue laser diode. In addition, low overhead is achieved by utilizing only one training sequence to implement synchronization and channel estimation. Through adjusting the ratio of PAM and DMT signal, three types of O-PAM-DMT signals are investigated. After transmission over a 20-km standard single-mode fiber and 5-m free-space VLLC, the receiver sensitivity for 4.36-Gbit/s O-PAM-DMT signals can be improved by 0.4, 1.4, and 2.7 dB, respectively, at a bit error rate of 1×10-3, compared with a conventional DMT signal.

  9. Adaptability index: quantifying CT tube current modulation performance from dose and quality informatics

    NASA Astrophysics Data System (ADS)

    Ria, F.; Wilson, J. M.; Zhang, Y.; Samei, E.

    2017-03-01

    The balance between risk and benefit in modern CT scanners is governed by the automatic adaptation mechanisms that adjust x-ray flux for accommodating patient size to achieve certain image noise values. The effectiveness of this adaptation is an important aspect of CT performance and should ideally be characterized in the context of real patient cases. Objective of this study was to characterize CT performance with an index that includes image-noise and radiation dose across a clinical patient population. The study included 1526 examinations performed by three scanners, from two vendors, used for two clinical protocols (abdominopelvic and chest). The dose-patient size and noise-patient size dependencies were linearized, and a 3D-fit was performed for each protocol and each scanner with a planar function. In the fit residual plots the Root Mean Square Error (RMSE) values were estimated as a metric of CT adaptability across the patient population. The RMSE values were between 0.0344 HU1/2 and 0.0215 HU1/2: different scanners offer varying degrees of reproducibility of noise and dose across the population. This analysis could be performed with phantoms, but phantom data would only provide information concerning specific exposure parameters for a scan: instead, a general population comparison is a way to obtain new information related to the relevant clinical adaptability of scanner models. A theoretical relationship between image noise, CTDIvol and patient size was determined based on real patient data. This relationship may provide a new index related to the scanners' adaptability concerning image quality and radiation dose across a patient population.

  10. Wide deviation phase modulator

    NASA Technical Reports Server (NTRS)

    Couch, R. H.; Hearn, C. P.; Wilson, L. R.

    1974-01-01

    Modulator produces phase-modulated waveform having high modulating linearity. Technique is inherently wideband with respect to carrier frequency and can operate over decade carrier frequency range without adjustments. Circuit performance is both mathematically predictable and highly reproducible.

  11. The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains

    PubMed Central

    Sosnik, Ronen; Flash, Tamar; Sterkin, Anna; Hauptmann, Bjoern; Karni, Avi

    2014-01-01

    There is growing experimental evidence that the engagement of different brain areas in a given motor task may change with practice, although the specific brain activity patterns underlying different stages of learning, as defined by kinematic or dynamic performance indices, are not well understood. Here we studied the change in activation in motor areas during practice on sequences of handwriting-like trajectories, connecting four target points on a digitizing table “as rapidly and as accurately as possible” while lying inside an fMRI scanner. Analysis of the subjects' pooled kinematic and imaging data, acquired at the beginning, middle, and end of the training period, revealed no correlation between the amount of activation in the contralateral M1, PM (dorsal and ventral), supplementary motor area (SMA), preSMA, and Posterior Parietal Cortex (PPC) and the amount of practice per-se. Single trial analysis has revealed that the correlation between the amount of activation in the contralateral M1 and trial mean velocity was partially modulated by performance gains related effects, such as increased hand motion smoothness. Furthermore, it was found that the amount of activation in the contralateral preSMA increased when subjects shifted from generating straight point-to-point trajectories to their spatiotemporal concatenation into a smooth, curved trajectory. Altogether, our results indicate that the amount of activation in the contralateral M1, PMd, and preSMA during the learning of movement sequences is correlated with performance gains and that high level motion features (e.g., motion smoothness) may modulate, or even mask correlations between activity changes and low-level motion attributes (e.g., trial mean velocity). PMID:24795591

  12. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  13. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish

  14. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens.

    PubMed

    Ptak, Anna; Bedford, Michael R; Świątkiewicz, Sylwester; Żyła, Krzysztof; Józefiak, Damian

    2015-01-01

    Phytase is well studied and explored, however, little is known about its effects on the microbial ecology of the gastrointestinal tract. In total, 400 one-day-old female Ross 308 chicks were randomly distributed to four experimental groups. The dietary treatments were arranged as a 2 × 2 complete factorial design, with the factors being adequate (PC) or insufficient calcium (Ca) and digestible phosphor (dP)(NC) and with or without 5000 phytase units (FTU)/kg of Escherichia coli 6-phytase. The gastrointestinal tract pH values, ileal microbial communities and short-chain fatty acid concentrations in the digesta were determined. The reduction in Ca and dP concentration significantly affected pH in the crop and caeca, and addition of phytase to the NC resulted in a pH increase in the ileum. The reduction in Ca and dP concentration significantly lowered, while phytase supplementation increased ileal total bacterial counts. Additionally, the deficient diet reduced butyrate- but increased lactate-producing bacteria. The addition of phytase increased Lactobacillus sp./Enterococcus sp. whereas in case of Clostridium leptum subgroup, Clostridium coccoides-Eubacterium rectale cluster, Bifidobacterium sp. and Streptococcus/Lactococcus counts, a significant Ca and dP level x phytase interaction was found. However, the recorded interactions indicated that the effects of phytase and Ca and dP levels were not consistent. Furthermore, the reduction of Ca and dP level lowered Clostridium perfringens and Enterobacteriaceae counts. The analysis of fermentation products showed that reducing the Ca and dP content in the diet reduced total SCFA, DL-lactate, and acetic acid in the ileum whereas phytase increased concentrations of these acids in the NC group. This suggests that P is a factor which limits fermentation in the ileum. It may be concluded that phytase plays a role in modulating the gut microbiota of chicken, however, this is clearly linked with the levels of P and Ca in a diet.

  15. Improved performance of gravity-driven membrane filtration for seawater pretreatment: Implications of membrane module configuration.

    PubMed

    Wu, Bing; Christen, Tino; Tan, Hwee Sin; Hochstrasser, Florian; Suwarno, Stanislaus Raditya; Liu, Xin; Chong, Tzyy Haur; Burkhardt, Michael; Pronk, Wouter; Fane, Anthony G

    2017-05-01

    As a low energy and chemical free process, gravity-driven membrane (GDM) filtration has shown a potential for seawater pretreatment in our previous studies. In this study, a pilot submerged GDM reactor (effective volume of 720 L) was operated over 250 days and the permeate flux stabilized at 18.6 ± 1.4 L/m(2)h at a hydrostatic pressure of 40 mbar. This flux was higher than those in the lab-scale GDM reactor (16.3 ± 0.2 L/m(2)h; effective volume of 8.4 L) and in the filtration cell system (2.7 ± 0.6 L/m(2)h; feed side volume of 0.0046 L) when the same flat sheet membrane was used. Interestingly, when the filtration cell was submerged into the GDM reactor, the flux (17.2 L/m(2)h) was comparable to the submerged membrane module. Analysis of cake layer morphology and foulant properties indicated that a thicker but more porous cake layer with less accumulation of organic substances (biopolymers and humics) contributed to the improved permeate flux. This phenomenon was possibly associated with longer residence time of organic substances and sufficient space for the growth, predation, and movement of the eukaryotes in the GDM reactor. In addition, the permeate flux of the submerged hollow fibre membrane increased with decreasing packing density. It is thought that the movement of large-sized eukaryotes could be limited when the space between hollow fibres was reduced. In terms of pretreatment, the GDM systems effectively removed turbidity, viable cells, and transparent exopolymer particles from the feed seawater. Importantly, extending the reactor operation time produced a permeate with less assimilable organic carbon and biopolymers. Thus, the superior quality of the GDM permeate has the potential to alleviate subsequent reverse osmosis membrane fouling for seawater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Phytase Modulates Ileal Microbiota and Enhances Growth Performance of the Broiler Chickens

    PubMed Central

    Ptak, Anna; Bedford, Michael R.; Świątkiewicz, Sylwester; Żyła, Krzysztof; Józefiak, Damian

    2015-01-01

    Phytase is well studied and explored, however, little is known about its effects on the microbial ecology of the gastrointestinal tract. In total, 400 one-day-old female Ross 308 chicks were randomly distributed to four experimental groups. The dietary treatments were arranged as a 2 × 2 complete factorial design, with the factors being adequate (PC) or insufficient calcium (Ca) and digestible phosphor (dP)(NC) and with or without 5000 phytase units (FTU)/kg of Escherichia coli 6-phytase. The gastrointestinal tract pH values, ileal microbial communities and short-chain fatty acid concentrations in the digesta were determined. The reduction in Ca and dP concentration significantly affected pH in the crop and caeca, and addition of phytase to the NC resulted in a pH increase in the ileum. The reduction in Ca and dP concentration significantly lowered, while phytase supplementation increased ileal total bacterial counts. Additionally, the deficient diet reduced butyrate- but increased lactate-producing bacteria. The addition of phytase increased Lactobacillus sp./Enterococcus sp. whereas in case of Clostridium leptum subgroup, Clostridium coccoides - Eubacterium rectale cluster, Bifidobacterium sp. and Streptococcus/Lactococcus counts, a significant Ca and dP level x phytase interaction was found. However, the recorded interactions indicated that the effects of phytase and Ca and dP levels were not consistent. Furthermore, the reduction of Ca and dP level lowered Clostridium perfringens and Enterobacteriaceae counts. The analysis of fermentation products showed that reducing the Ca and dP content in the diet reduced total SCFA, DL-lactate, and acetic acid in the ileum whereas phytase increased concentrations of these acids in the NC group. This suggests that P is a factor which limits fermentation in the ileum. It may be concluded that phytase plays a role in modulating the gut microbiota of chicken, however, this is clearly linked with the levels of P and Ca in a

  17. Study of the Effects of Total Modulation Transfer Function Changes on Observer Performance Using Clinical Mammograms.

    NASA Astrophysics Data System (ADS)

    Bencomo, Jose Antonio Fagundez

    The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy. One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute. The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm. Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base. The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation. 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data. Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical

  18. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  19. Sustained and transient modulation of performance induced by emotional picture viewing

    PubMed Central

    Pereira, Mirtes Garcia; Volchan, Eliane; de Souza, Gabriela Guerra Leal; de Oliveira, Leticia; Campagnoli, Rafaela; Pinheiro, Walter Machado; Pessoa, Luiz

    2008-01-01

    We investigated how viewing task-irrelevant emotional pictures affects the performance of a subsequent non-emotional visual detection task. Subjects performed target-detection trials following the offset of individual unpleasant, pleasant and neutral pictures. Sustained interference occurred when subjects viewed blocked unpleasant pictures (mutilated bodies). Such slowing down of reaction time appeared to “build up” with time, consistent with the instatement of a defensive emotional state. With a randomized picture presentation, only a transient interference effect was observed, consistent with increased attentional demands during the processing of unpleasant pictures. During blocked presentation of affiliative pleasant pictures, reaction times were faster, suggesting the activation of appetitive motivational systems. Ultimately, both attentional and motivational systems are intricately tied in the brain and, together, determine behavior. PMID:17144753

  20. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR).

    PubMed

    Hammer, Eva M; Kaufmann, Tobias; Kleih, Sonja C; Blankertz, Benjamin; Kübler, Andrea

    2014-01-01

    Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person's visuo-motor control ability; and (2) subject's "attentional impulsivity". In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors.

  1. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR)

    PubMed Central

    Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea

    2014-01-01

    Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518

  2. DRD2/ANKK1 Polymorphism Modulates the Effect of Ventral Striatal Activation on Working Memory Performance

    PubMed Central

    Nymberg, Charlotte; Banaschewski, Tobias; Bokde, Arun LW; Büchel, Christian; Conrod, Patricia; Flor, Herta; Frouin, Vincent; Garavan, Hugh; Gowland, P; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Klingberg, Torkel; Reed, L; Williams, S; Lourdusamy, A; Costafreda, S; Cattrell, A; Nymberg, C; Topper, L; Smith, L; Havatzias, S; Stueber, K; Mallik, C; Clarke, T-K; Stacey, D; Wong, C Peng; Werts, H; Williams, S; Andrew, C; Desrivieres, S; Zewdie, S; Heinz, A; Häke, I; Ivanov, N; Klär, A; Reuter, J; Palafox, C; Hohmann, C; Schilling, C; Lüdemann, K; Romanowski, A; Ströhle, A; Wolff, E; Rapp, M; Ittermann, B; Brühl, R; Ihlenfeld, A; Walaszek, B; Schubert, F; Connolly, C; Jones, J; Lalor, E; McCabe, E; Ní, A; Spanagel, R; Leonardi-Essmann, F; Sommer, W; Vollstaedt-Klein, S; Poustka, L; Steiner, S; Buehler, M; Vollstedt-Klein, S; Stolzenburg, E; Schmal, C; Schirmbeck, F; Gowland, P; Heym, N; Lawrence, C; Newman, C; Huebner, T; Ripke, S; Mennigen, E; Muller, K U; Ziesch, V; Bromberg, U; Fadai, T; Lueken, L; Yacubian, J; Finsterbusch, J; Martinot, J-L; Artiges, E; Bordas, N; de Bournonville, S; Bricaud, Z; Gollier Briand, F; Lemaitre, H; Massicotte, J; Miranda, R; Penttilä, J; Barbot, A; Schwartz, Y; Lalanne, C; Frouin, V; Thyreau, B; Dalley, J; Mar, A; Subramaniam, N; Theobald, D; Richmond, N; de Rover, M; Molander, A; Jordan, E; Robinson, E; Hipolata, L; Moreno, M; Stephens, D; Ripley, T; Crombag, H; Pena, Y; Zelenika, D; Heath, S; Lanzerath, D; Heinrichs, B; Spranger, T; Fuchs, B; Speiser, C; Resch, F; Haffner, J; Parzer, P; Brunner, R; Klaassen, A; Klaassen, I; Constant, P; Mignon, X; Thomsen, T; Zysset, S; Vestboe, A; Ireland, J; Rogers, J

    2014-01-01

    Motivation is important for learning and cognition. Although dopaminergic (D2) transmission in the ventral striatum (VS) is associated with motivation, learning, and cognition are more strongly associated with function of the dorsal striatum, including activation in the caudate nucleus. A recent study found an interaction between intrinsic motivation and the DRD2/ANKK1 polymorphism (rs1800497), suggesting that A-carriers of rs1800497 are significantly more sensitive to motivation in order to improve during working memory (WM) training. Using data from the two large-scale imaging genetic data sets, IMAGEN (n=1080, age 13–15 years) and BrainChild (n∼300, age 6–27), we investigated whether rs1800497 is associated with WM. In the IMAGEN data set, we tested whether VS/caudate activation during reward anticipation was associated with WM performance and whether rs1800497 and VS/caudate activation interact to affect WM performance. We found that rs1800497 was associated with WM performance in IMAGEN and BrainChild. Higher VS and caudate activation during reward processing were significantly associated with higher WM performance (p<0.0001). An interaction was found between the DRD2/ANKK1 polymorphism rs1800497 and VS activation during reward anticipation on WM (p<0.01), such that carriers of the minor allele (A) showed a significant correlation between VS activation and WM, whereas the GG-homozygotes did not, suggesting that the effect of VS BOLD on WM is modified by inter-individual genetic differences related to D2 dopaminergic transmission. PMID:24713612

  3. DRD2/ANKK1 polymorphism modulates the effect of ventral striatal activation on working memory performance.

    PubMed

    Nymberg, Charlotte; Banaschewski, Tobias; Bokde, Arun L W; Büchel, Christian; Conrod, Patricia; Flor, Herta; Frouin, Vincent; Garavan, Hugh; Gowland, P; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Klingberg, Torkel

    2014-09-01

    Motivation is important for learning and cognition. Although dopaminergic (D2) transmission in the ventral striatum (VS) is associated with motivation, learning, and cognition are more strongly associated with function of the dorsal striatum, including activation in the caudate nucleus. A recent study found an interaction between intrinsic motivation and the DRD2/ANKK1 polymorphism (rs1800497), suggesting that A-carriers of rs1800497 are significantly more sensitive to motivation in order to improve during working memory (WM) training. Using data from the two large-scale imaging genetic data sets, IMAGEN (n=1080, age 13-15 years) and BrainChild (n∼300, age 6-27), we investigated whether rs1800497 is associated with WM. In the IMAGEN data set, we tested whether VS/caudate activation during reward anticipation was associated with WM performance and whether rs1800497 and VS/caudate activation interact to affect WM performance. We found that rs1800497 was associated with WM performance in IMAGEN and BrainChild. Higher VS and caudate activation during reward processing were significantly associated with higher WM performance (p<0.0001). An interaction was found between the DRD2/ANKK1 polymorphism rs1800497 and VS activation during reward anticipation on WM (p<0.01), such that carriers of the minor allele (A) showed a significant correlation between VS activation and WM, whereas the GG-homozygotes did not, suggesting that the effect of VS BOLD on WM is modified by inter-individual genetic differences related to D2 dopaminergic transmission.

  4. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  5. Design and performance of serial powered single-sided modules within an integrated stave assembly for the ATLAS tracker barrel upgrade

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Carrol, J.; Greenall, A.; Wormald, M.

    2010-12-01

    The design and performance of prototype single-sided modules with ABCN-25 front-end chips and 10x10 cm2 Hamamatsu silicon strip sensors is presented. A low mass module assembly has been achieved by gluing a single-sided flex circuit, with read out chips, directly onto the sensor. The design exploits the embedded shunt regulation within the ABCN-25 providing for a distributed and scalable powered architecture. This allows for multiple modules to be linked together serially to form larger stave structures of up to 12 modules. The stave's digital I/O is realised as a multi-drop LVDS bus flex cable glued to the stave core assembly using a custom receiver/transmitter ASIC (BCC). The results of preliminary electrical tests with 4 module stavelets will be presented.

  6. Audiovisual Stimulation Modulates Physical Performance and Biochemical and Hormonal Status of Athletes.

    PubMed

    Golovin, M S; Golovin, M S; Aizman, R I

    2016-09-01

    We studied the effect of audiovisual stimulation training course on physical development, functional state of the cardiovascular system, blood biochemical parameters, and hormonal status of athletes. The training course led to improvement of physical performance and adaptive capacities of the circulatory system, increase in plasma levels of total protein, albumin, and glucose and total antioxidant activity, and decrease in triglyceride, lipase, total bilirubin, calcium, and phosphorus. The concentration of hormones (cortisol, thyrotropin, triiodothyronine, and thyroxine) also decreased under these conditions. In the control group, an increase in the concentration of creatinine and uric acid and a tendency toward elevation of lowdensity lipoproteins and total antioxidant activity were observed in the absence of changes in cardiac function and physical performance; calcium and phosphorus concentrations reduced. The improvement in functional state in athletes was mainly associated with intensification of anabolic processes and suppression of catabolic reactions after audiovisual stimulation (in comparison with the control). Stimulation was followed by an increase in the number of correlations between biochemical and hormonal changes and physical performance of athletes, which attested to better integration of processes at the intersystem level.

  7. Modulation of lead-induced performance deficit in children by varying signal rate in a serial choice reaction task

    SciTech Connect

    Winneke, G.; Brockhaus, A.; Collet, W.; Kraemer, U. )

    1989-11-01

    Evidence is presented showing that serial choice reaction performance is disrupted at low blood lead levels (PbB), and that parametric variation of task characteristics modulates the degree of disruption. This evidence is based on two independent studies in 6- to 9-year-old children living in two lead smelter areas in the cities of Nordenham (N = 114) and Stolberg (N = 109) in West Germany. Average PbB was 8.2 micrograms/100 ml (4.4-23.8 micrograms/100 ml) in the Nordenham sample and 7.4 micrograms/100 ml (4.2-18.0 micrograms/100 ml) in the Stolberg sample. Serial choice reaction performance was assessed by means of the Vienna reaction device in which a random sequence of light and tone signals has to be answered by pressing appropriate response buttons. Correct (hits) and false responses (errors) were evaluated as performance measures, and signal rate was varied in order to achieve easy and difficult task conditions. Exposure-related performance deficit was more pronounced for errors than for hits, more clearcut for high than for low signal rates, and proved significant in both studies after correction for confounding using confounder models of different complexities. Some features of the observed deficit resemble clinical observations in children presenting with attention deficit disorder.

  8. Low-Temperature Ozone Exposure Technique to Modulate the Stoichiometry of WO(x) Nanorods and Optimize the Electrochromic Performance

    SciTech Connect

    Lin, F.; Li, C. P.; Chen, G.; Tenent, R. C.; Wolden, C. A.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C.

    2012-06-29

    A low-temperature ozone exposure technique was employed for the post-treatment of WO{sub x} nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WO{sub x} thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO{sub 4}-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WO{sub x}). The optical modulation at 670 nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150 C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0 s for the as-deposited film to 11.8 s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates.

  9. Effects of synchronous irradiance monitoring and correction of current-voltage curves on the outdoor performance measurements of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Doi, Takuya; Higa, Michiya; Ohshima, Hironori; Takenouchi, Takakazu; Yamagoe, Kengo

    2017-08-01

    Precise outdoor measurement of the current-voltage (I-V) curves of photovoltaic (PV) modules is desired for many applications such as low-cost onsite performance measurement, monitoring, and diagnosis. Conventional outdoor measurement technologies have a problem in that their precision is low when the solar irradiance is unstable, hence, limiting the opportunity of precise measurement only on clear sunny days. The purpose of this study is to investigate an outdoor measurement procedure, that can improve both the measurement opportunity and precision. Fast I-V curve measurements within 0.2 s and synchronous measurement of irradiance using a PV module irradiance sensor very effectively improved the precision. A small standard deviation (σ) of the module’s maximum output power (P max) in the range of 0.7-0.9% is demonstrated, based on the basis of a 6 month experiment, that mainly includes partly sunny days and cloudy days, during which the solar irradiance is unstable. The σ was further improved to 0.3-0.5% by correcting the curves for the small variation of irradiance. This indicates that the procedure of this study enables much more reproducible I-V curve measurements than a conventional usual procedure under various climatic conditions. Factors that affect measurement results are discussed, to further improve the precision.

  10. An adaptive multiple-input multiple-output analog-to-digital converter for high density neuroprosthetic electrode arrays.

    PubMed

    Chakrabartty, Shantanu; Gore, Amit; Oweiss, Karim G

    2006-01-01

    On chip signal compression is one of the key technologies driving development of energy efficient biotelemetry devices. In this paper, we describe a novel architecture for analog-to-digital (A/D) conversion that combines sigma delta conversion with the spatial data compression in a single module. The architecture called multiple-input multiple-output (MIMO) sigma-delta is based on a min-max gradient descent optimization of a regularized cost function that naturally leads to an A/D formulation. Experimental results with simulated and recorded multichannel data demonstrate the effectiveness of the proposed architecture to eliminate cross-channel redundancy in high density microelectrode data, thus superceding the performance of parallel independent data converters in terms of its energy efficiency.

  11. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  12. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  13. Stata Modules for Calculating Novel Predictive Performance Indices for Logistic Models

    PubMed Central

    Barkhordari, Mahnaz; Padyab, Mojgan; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Background Prediction is a fundamental part of prevention of cardiovascular diseases (CVD). The development of prediction algorithms based on the multivariate regression models loomed several decades ago. Parallel with predictive models development, biomarker researches emerged in an impressively great scale. The key question is how best to assess and quantify the improvement in risk prediction offered by new biomarkers or more basically how to assess the performance of a risk prediction model. Discrimination, calibration, and added predictive value have been recently suggested to be used while comparing the predictive performances of the predictive models’ with and without novel biomarkers. Objectives Lack of user-friendly statistical software has restricted implementation of novel model assessment methods while examining novel biomarkers. We intended, thus, to develop a user-friendly software that could be used by researchers with few programming skills. Materials and Methods We have written a Stata command that is intended to help researchers obtain cut point-free and cut point-based net reclassification improvement index and (NRI) and relative and absolute Integrated discriminatory improvement index (IDI) for logistic-based regression analyses.We applied the commands to a real data on women participating the Tehran lipid and glucose study (TLGS) to examine if information of a family history of premature CVD, waist circumference, and fasting plasma glucose can improve predictive performance of the Framingham’s “general CVD risk” algorithm. Results The command is addpred for logistic regression models. Conclusions The Stata package provided herein can encourage the use of novel methods in examining predictive capacity of ever-emerging plethora of novel biomarkers. PMID:27279830

  14. Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels

    NASA Technical Reports Server (NTRS)

    Moher, Michael L.; Lodge, John H.

    1990-01-01

    A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.

  15. Dopamine pathway gene variants may modulate cognitive performance in the DHS - Mind Study.

    PubMed

    Martelle, Susan E; Raffield, Laura M; Palmer, Nichole D; Cox, Amanda J; Freedman, Barry I; Hugenschmidt, Christina E; Williamson, Jeff D; Bowden, Don W

    2016-04-01

    There is an established association between type 2 diabetes and accelerated cognitive decline. The exact mechanism linking type 2 diabetes and reduced cognitive function is less clear. The monoamine system, which is extensively involved in cognition, can be altered by type 2 diabetes status. Thus, this study hypothesized that sequence variants in genes linked to dopamine metabolism and associated pathways are associated with cognitive function as assessed by the Digit Symbol Substitution Task, the Modified Mini-Mental State Examination, the Stroop Task, the Rey Auditory-Verbal Learning Task, and the Controlled Oral Word Association Task for Phonemic and Semantic Fluency in the Diabetes Heart Study, a type 2 diabetes-enriched familial cohort (n = 893). To determine the effects of candidate variants on cognitive performance, genetic association analyses were performed on the well-documented variable number tandem repeat located in the 3' untranslated region of the dopamine transporter, as well as on single-nucleotide polymorphisms covering genes in the dopaminergic pathway, the insulin signaling pathway, and the convergence of both. Next, polymorphisms in loci of interest with strong evidence for involvement in dopamine processing were extracted from genetic datasets available in a subset of the cohort (n = 572) derived from Affymetrix(®) Genome-Wide Human SNP Array 5.0 and 1000 Genomes imputation from this array. The candidate gene analysis revealed one variant from the DOPA decarboxylase gene, rs10499695, to be associated with poorer performance on a subset of Rey Auditory-Verbal Learning Task measuring retroactive interference (P = 0.001, β = -0.45). Secondary analysis of genome-wide and imputed data uncovered another DOPA decarboxylase variant, rs62445903, also associated with retroactive interference (P = 7.21 × 10(-7), β = 0.3). These data suggest a role for dopaminergic genes, specifically a gene involved in regulation of dopamine synthesis

  16. Measured and estimated performance of a fleet of shaded photovoltaic systems with string and module-level inverters

    DOE PAGES

    MacAlpine, Sara; Deline, Chris; Dobos, Aron

    2017-03-16

    Shade obstructions can significantly impact the performance of photovoltaic (PV) systems. Although there are many models for partially shaded PV arrays, there is a lack of information available regarding their accuracy and uncertainty when compared with actual field performance. This work assesses the recorded performance of 46 residential PV systems, equipped with either string-level or module-level inverters, under a variety of shading conditions. We compare their energy production data to annual PV performance predictions, with a focus on the practical models developed here for National Renewable Energy Laboratory's system advisor model software. This includes assessment of shade extent on eachmore » PV system by using traditional onsite surveys and newer 3D obstruction modelling. The electrical impact of shade is modelled by either a nonlinear performance model or assumption of linear impact with shade extent, depending on the inverter type. When applied to the fleet of residential PV systems, performance is predicted with median annual bias errors of 2.5% or less, for systems with up to 20% estimated shading loss. The partial shade models are not found to add appreciable uncertainty to annual predictions of energy production for this fleet of systems but do introduce a monthly root-mean-square error of approximately 4%-9% due to seasonal effects. Here the use of a detailed 3D model results in similar or improved accuracy over site survey methods, indicating that, with proper description of shade obstructions, modelling of partially shaded PV arrays can be done completely remotely, potentially saving time and cost.« less

  17. An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control.

    PubMed

    Hill, Holger

    2009-06-01

    Based on a previous exploratory study, the functionality of event-related potentials related to visuomotor processing and learning was investigated. Three pursuit tracking tasks (cursor control either mouse, joystick, or bimanually) revealed the greatest tracking error and greatest learning effect in the bimanual task. The smallest error without learning was found in the mouse task. Error reduction reflected visuomotor learning. In detail, target-cursor distance was reduced continuously, indicating a better fit to a changed direction, whereas response time remained at 300 ms. A central positive ERP component with an activity onset 100 ms after a directional change of the target and most likely generated in premotor areas could be assigned to response planning and execution. The magnitude of this component was modulated by within-and-between-task difficulty and size of the tracking error. Most importantly, the size of this component was sensitive to between-subject performance and increased with visuomotor learning.

  18. Memory modulation in the classroom: selective enhancement of college examination performance by arousal induced after lecture.

    PubMed

    Nielson, Kristy A; Arentsen, Timothy J

    2012-07-01

    Laboratory studies examining moderate physiological or emotional arousal induced after learning indicate that it enhances memory consolidation. Yet, no studies have yet examined this effect in an applied context. As such, arousal was induced after a college lecture and its selective effects were examined on later exam performance. Participants were divided into two groups who either watched a neutral video clip (n=66) or an arousing video clip (n=70) after lecture in a psychology course. The final examination occurred two weeks after the experimental manipulation. Only performance on the group of final exam items that covered material from the manipulated lecture were significantly different between groups. Other metrics, such as the midterm examination and the total final examination score, did not differ between groups. The results indicate that post-lecture arousal selectively increased the later retrieval of lecture material, despite the availability of the material for study before and after the manipulation. The results reinforce the role of post-learning arousal on memory consolidation processes, expanding the literature to include a real-world learning context.

  19. Performance analysis of passive optical network systems based on the IM/DD OFDM modulation technique

    NASA Astrophysics Data System (ADS)

    Wchir, Besma; Ben Abdallah, Abderrazek; Mhatli, Sofien; Jarajreh, Mutsam; Yang, Sigang; Attia, Rabah

    2016-11-01

    Motivated by the robust immunity to interference as well as the higher spectrum efficiency, Orthogonal Frequency Division Multiplexing (OFDM) has been widely considered as one of the strongest contenders for high-speed Next- Generation Passive Optical Networks (NG-PONs), which satisfies the huge surge in demand for high-speed broadband services. In the other hand, OFDM systems suffer from a high Peak-to-Average Power Ratio (PAPR) at the transmitted signal resulting in signal degradation. The simplest method to deal with the PAPR problem consists in applying deliberate clipping to the transmitted signal which significantly reduces the requirement of the received optical power. In this paper, an analytical evaluation for the performance of an IM/DD optical OFDM system is shown, this is while accounting for clipping distortion and quantification noise caused by the limited bit resolution of DAC converter. Moreover, the paper demonstrates that applying digital signal restoration at the system receiver enables further improvements in the system performances in terms of enhanced effective Signal-to-Noise Ratio (SNR) and reduced optical power that is required to achieve specified Bit-Error-Rate (BER).

  20. Performance Analysis of Coherent Optical Communication System for M-QAM Higher Modulation Level

    NASA Astrophysics Data System (ADS)

    Kaur, Amrinder; Dewra, Sanjeev

    2016-12-01

    In this paper, performance of QAM sequence generator in coherent optical communication system is investigated. Results are obtained for different square constellation types such as 4-QAM, 16-QAM, 64-QAM and 256-QAM using Hyperbolic-secant pulse generator. For the distance of 120 km and bit rate of 10 Gbps, it is investigated that 4-QAM provides maximum Q factor of 33.93 and minimum BER of 6e-253, whereas 16-QAM, 64-QAM & 256-QAM provides Q factor of 31.47, 22.85 & 8 and BER of 5e-218, 3e-116 & 2e-16, respectively. Decrement in Quality factor and increase in BER are observed with increment in the M-value of QAM. It is further observed that Eye opening decreases with increment in levels of QAM.