Uddin, M B; Chow, C M; Su, S W
2018-03-26
Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.
Wu, Shang-Lin; Liao, Lun-De; Lu, Shao-Wei; Jiang, Wei-Ling; Chen, Shi-An; Lin, Chin-Teng
2013-08-01
Electrooculography (EOG) signals can be used to control human-computer interface (HCI) systems, if properly classified. The ability to measure and process these signals may help HCI users to overcome many of the physical limitations and inconveniences in daily life. However, there are currently no effective multidirectional classification methods for monitoring eye movements. Here, we describe a classification method used in a wireless EOG-based HCI device for detecting eye movements in eight directions. This device includes wireless EOG signal acquisition components, wet electrodes and an EOG signal classification algorithm. The EOG classification algorithm is based on extracting features from the electrical signals corresponding to eight directions of eye movement (up, down, left, right, up-left, down-left, up-right, and down-right) and blinking. The recognition and processing of these eight different features were achieved in real-life conditions, demonstrating that this device can reliably measure the features of EOG signals. This system and its classification procedure provide an effective method for identifying eye movements. Additionally, it may be applied to study eye functions in real-life conditions in the near future.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
1998-06-26
METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Liu, Boquan; Polce, Evan; Sprott, Julien C.; Jiang, Jack J.
2018-01-01
Purpose: The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Study Design: Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100…
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Subasi, Abdulhamit
2013-06-01
Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-10-21
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.
Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan
2015-01-01
The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine. PMID:26506347
Automatic classification of sleep stages based on the time-frequency image of EEG signals.
Bajaj, Varun; Pachori, Ram Bilas
2013-12-01
In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Natural image classification driven by human brain activity
NASA Astrophysics Data System (ADS)
Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao
2016-03-01
Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-09-18
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.
Li, Hongkun; Zhang, Xuefeng; Xu, Fujian
2013-01-01
Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors. PMID:24051521
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Parametric Time-Frequency Analysis and Its Applications in Music Classification
NASA Astrophysics Data System (ADS)
Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar
2010-12-01
Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.
de Moura, Karina de O A; Balbinot, Alexandre
2018-05-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
Balbinot, Alexandre
2018-01-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994
Average Likelihood Methods for Code Division Multiple Access (CDMA)
2014-05-01
lengths in the range of 22 to 213 and possibly higher. Keywords: DS / CDMA signals, classification, balanced CDMA load, synchronous CDMA , decision...likelihood ratio test (ALRT). We begin this classification problem by finding the size of the spreading matrix that generated the DS - CDMA signal. As...Theoretical Background The classification of DS / CDMA signals should not be confused with the problem of multiuser detection. The multiuser detection deals
Morison, Gordon; Boreham, Philip
2018-01-01
Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030
Rana, Mohit; Prasad, Vinod A.; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha
2016-01-01
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528
A novel deep learning approach for classification of EEG motor imagery signals.
Tabar, Yousef Rezaei; Halici, Ugur
2017-02-01
Signal classification is an important issue in brain computer interface (BCI) systems. Deep learning approaches have been used successfully in many recent studies to learn features and classify different types of data. However, the number of studies that employ these approaches on BCI applications is very limited. In this study we aim to use deep learning methods to improve classification performance of EEG motor imagery signals. In this study we investigate convolutional neural networks (CNN) and stacked autoencoders (SAE) to classify EEG Motor Imagery signals. A new form of input is introduced to combine time, frequency and location information extracted from EEG signal and it is used in CNN having one 1D convolutional and one max-pooling layers. We also proposed a new deep network by combining CNN and SAE. In this network, the features that are extracted in CNN are classified through the deep network SAE. The classification performance obtained by the proposed method on BCI competition IV dataset 2b in terms of kappa value is 0.547. Our approach yields 9% improvement over the winner algorithm of the competition. Our results show that deep learning methods provide better classification performance compared to other state of art approaches. These methods can be applied successfully to BCI systems where the amount of data is large due to daily recording.
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Workshop on Algorithms for Time-Series Analysis
NASA Astrophysics Data System (ADS)
Protopapas, Pavlos
2012-04-01
abstract-type="normal">SummaryThis Workshop covered the four major subjects listed below in two 90-minute sessions. Each talk or tutorial allowed questions, and concluded with a discussion. Classification: Automatic classification using machine-learning methods is becoming a standard in surveys that generate large datasets. Ashish Mahabal (Caltech) reviewed various methods, and presented examples of several applications. Time-Series Modelling: Suzanne Aigrain (Oxford University) discussed autoregressive models and multivariate approaches such as Gaussian Processes. Meta-classification/mixture of expert models: Karim Pichara (Pontificia Universidad Católica, Chile) described the substantial promise which machine-learning classification methods are now showing in automatic classification, and discussed how the various methods can be combined together. Event Detection: Pavlos Protopapas (Harvard) addressed methods of fast identification of events with low signal-to-noise ratios, enlarging on the characterization and statistical issues of low signal-to-noise ratios and rare events.
Analysis of signals under compositional noise with applications to SONAR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, J. Derek; Wu, Wei; Srivastava, Anuj
2013-07-09
In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between themore » aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.« less
The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method
Zhang, Yanyan; Wang, Jue
2014-01-01
Many attempts have been made to effectively improve a prosthetic system controlled by the classification of surface electromyographic (SEMG) signals. Recently, the development of methodologies to extract the effective features still remains a primary challenge. Previous studies have demonstrated that the SEMG signals have nonlinear characteristics. In this study, by combining the nonlinear time series analysis and the time-frequency domain methods, we proposed the wavelet-based correlation dimension method to extract the effective features of SEMG signals. The SEMG signals were firstly analyzed by the wavelet transform and the correlation dimension was calculated to obtain the features of the SEMG signals. Then, these features were used as the input vectors of a Gustafson-Kessel clustering classifier to discriminate four types of forearm movements. Our results showed that there are four separate clusters corresponding to different forearm movements at the third resolution level and the resulting classification accuracy was 100%, when two channels of SEMG signals were used. This indicates that the proposed approach can provide important insight into the nonlinear characteristics and the time-frequency domain features of SEMG signals and is suitable for classifying different types of forearm movements. By comparing with other existing methods, the proposed method exhibited more robustness and higher classification accuracy. PMID:24868240
Liu, Boquan; Polce, Evan; Sprott, Julien C; Jiang, Jack J
2018-05-17
The purpose of this study is to introduce a chaos level test to evaluate linear and nonlinear voice type classification method performances under varying signal chaos conditions without subjective impression. Voice signals were constructed with differing degrees of noise to model signal chaos. Within each noise power, 100 Monte Carlo experiments were applied to analyze the output of jitter, shimmer, correlation dimension, and spectrum convergence ratio. The computational output of the 4 classifiers was then plotted against signal chaos level to investigate the performance of these acoustic analysis methods under varying degrees of signal chaos. A diffusive behavior detection-based chaos level test was used to investigate the performances of different voice classification methods. Voice signals were constructed by varying the signal-to-noise ratio to establish differing signal chaos conditions. Chaos level increased sigmoidally with increasing noise power. Jitter and shimmer performed optimally when the chaos level was less than or equal to 0.01, whereas correlation dimension was capable of analyzing signals with chaos levels of less than or equal to 0.0179. Spectrum convergence ratio demonstrated proficiency in analyzing voice signals with all chaos levels investigated in this study. The results of this study corroborate the performance relationships observed in previous studies and, therefore, demonstrate the validity of the validation test method. The presented chaos level validation test could be broadly utilized to evaluate acoustic analysis methods and establish the most appropriate methodology for objective voice analysis in clinical practice.
Vidaurre, D.; Rodríguez, E. E.; Bielza, C.; Larrañaga, P.; Rudomin, P.
2012-01-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods. PMID:22929924
Vidaurre, D; Rodríguez, E E; Bielza, C; Larrañaga, P; Rudomin, P
2012-10-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
2014-03-27
42 4.2.3 Number of Hops Hs . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.4 Number of Sensors M... 45 4.5 Standard deviation vs. Ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Bias...laboratory MTM multiple taper method MUSIC multiple signal classification MVDR minimum variance distortionless reposnse PSK phase shift keying QAM
Signal analysis techniques for incipient failure detection in turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, T.
1985-01-01
Signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery were developed, implemented and evaluated. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques were implemented on a computer and applied to dynamic signals. A laboratory evaluation of the methods with respect to signal detection capability is described. Plans for further technique evaluation and data base development to characterize turbopump incipient failure modes from Space Shuttle main engine (SSME) hot firing measurements are outlined.
Subsurface event detection and classification using Wireless Signal Networks.
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T
2012-11-05
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.
Subsurface Event Detection and Classification Using Wireless Signal Networks
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.
2012-01-01
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191
Applying matching pursuit decomposition time-frequency processing to UGS footstep classification
NASA Astrophysics Data System (ADS)
Larsen, Brett W.; Chung, Hugh; Dominguez, Alfonso; Sciacca, Jacob; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Allee, David R.
2013-06-01
The challenge of rapid footstep detection and classification in remote locations has long been an important area of study for defense technology and national security. Also, as the military seeks to create effective and disposable unattended ground sensors (UGS), computational complexity and power consumption have become essential considerations in the development of classification techniques. In response to these issues, a research project at the Flexible Display Center at Arizona State University (ASU) has experimented with footstep classification using the matching pursuit decomposition (MPD) time-frequency analysis method. The MPD provides a parsimonious signal representation by iteratively selecting matched signal components from a pre-determined dictionary. The resulting time-frequency representation of the decomposed signal provides distinctive features for different types of footsteps, including footsteps during walking or running activities. The MPD features were used in a Bayesian classification method to successfully distinguish between the different activities. The computational cost of the iterative MPD algorithm was reduced, without significant loss in performance, using a modified MPD with a dictionary consisting of signals matched to cadence temporal gait patterns obtained from real seismic measurements. The classification results were demonstrated with real data from footsteps under various conditions recorded using a low-cost seismic sensor.
Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E
2009-08-04
This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.
Signal processing for non-destructive testing of railway tracks
NASA Astrophysics Data System (ADS)
Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard
2018-04-01
Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.
Less-Complex Method of Classifying MPSK
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2006-01-01
An alternative to an optimal method of automated classification of signals modulated with M-ary phase-shift-keying (M-ary PSK or MPSK) has been derived. The alternative method is approximate, but it offers nearly optimal performance and entails much less complexity, which translates to much less computation time. Modulation classification is becoming increasingly important in radio-communication systems that utilize multiple data modulation schemes and include software-defined or software-controlled receivers. Such a receiver may "know" little a priori about an incoming signal but may be required to correctly classify its data rate, modulation type, and forward error-correction code before properly configuring itself to acquire and track the symbol timing, carrier frequency, and phase, and ultimately produce decoded bits. Modulation classification has long been an important component of military interception of initially unknown radio signals transmitted by adversaries. Modulation classification may also be useful for enabling cellular telephones to automatically recognize different signal types and configure themselves accordingly. The concept of modulation classification as outlined in the preceding paragraph is quite general. However, at the present early stage of development, and for the purpose of describing the present alternative method, the term "modulation classification" or simply "classification" signifies, more specifically, a distinction between M-ary and M'-ary PSK, where M and M' represent two different integer multiples of 2. Both the prior optimal method and the present alternative method require the acquisition of magnitude and phase values of a number (N) of consecutive baseband samples of the incoming signal + noise. The prior optimal method is based on a maximum- likelihood (ML) classification rule that requires a calculation of likelihood functions for the M and M' hypotheses: Each likelihood function is an integral, over a full cycle of carrier phase, of a complicated sum of functions of the baseband sample values, the carrier phase, the carrier-signal and noise magnitudes, and M or M'. Then the likelihood ratio, defined as the ratio between the likelihood functions, is computed, leading to the choice of whichever hypothesis - M or M'- is more likely. In the alternative method, the integral in each likelihood function is approximated by a sum over values of the integrand sampled at a number, 1, of equally spaced values of carrier phase. Used in this way, 1 is a parameter that can be adjusted to trade computational complexity against the probability of misclassification. In the limit as 1 approaches infinity, one obtains the integral form of the likelihood function and thus recovers the ML classification. The present approximate method has been tested in comparison with the ML method by means of computational simulations. The results of the simulations have shown that the performance (as quantified by probability of misclassification) of the approximate method is nearly indistinguishable from that of the ML method (see figure).
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Multi-label spacecraft electrical signal classification method based on DBN and random forest
Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng
2017-01-01
In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479
Multi-label spacecraft electrical signal classification method based on DBN and random forest.
Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng
2017-01-01
In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.
Li, Yang; Cui, Weigang; Luo, Meilin; Li, Ke; Wang, Lina
2018-01-25
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
Joint deconvolution and classification with applications to passive acoustic underwater multipath.
Anderson, Hyrum S; Gupta, Maya R
2008-11-01
This paper addresses the problem of classifying signals that have been corrupted by noise and unknown linear time-invariant (LTI) filtering such as multipath, given labeled uncorrupted training signals. A maximum a posteriori approach to the deconvolution and classification is considered, which produces estimates of the desired signal, the unknown channel, and the class label. For cases in which only a class label is needed, the classification accuracy can be improved by not committing to an estimate of the channel or signal. A variant of the quadratic discriminant analysis (QDA) classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids deconvolution. The proposed QDA classifier can work either directly on the signal or on features whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power features is derived. Results on simulated data and real Bowhead whale vocalizations show that jointly considering deconvolution with classification can dramatically improve classification performance over traditional methods over a range of signal-to-noise ratios.
Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao
2016-01-01
At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376
Kumar, Shiu; Mamun, Kabir; Sharma, Alok
2017-12-01
Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)
2014-01-01
A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.
Terrain-Moisture Classification Using GPS Surface-Reflected Signals
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.
2006-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM
NASA Astrophysics Data System (ADS)
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.
Epileptic seizure detection in EEG signal using machine learning techniques.
Jaiswal, Abeg Kumar; Banka, Haider
2018-03-01
Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.
Machine learning in soil classification.
Bhattacharya, B; Solomatine, D P
2006-03-01
In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Objective automated quantification of fluorescence signal in histological sections of rat lens.
Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina
2017-08-01
Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Cai, Suxian; Yang, Shanshan; Zheng, Fang; Lu, Meng; Wu, Yunfeng; Krishnan, Sridhar
2013-01-01
Analysis of knee joint vibration (VAG) signals can provide quantitative indices for detection of knee joint pathology at an early stage. In addition to the statistical features developed in the related previous studies, we extracted two separable features, that is, the number of atoms derived from the wavelet matching pursuit decomposition and the number of significant signal turns detected with the fixed threshold in the time domain. To perform a better classification over the data set of 89 VAG signals, we applied a novel classifier fusion system based on the dynamic weighted fusion (DWF) method to ameliorate the classification performance. For comparison, a single leastsquares support vector machine (LS-SVM) and the Bagging ensemble were used for the classification task as well. The results in terms of overall accuracy in percentage and area under the receiver operating characteristic curve obtained with the DWF-based classifier fusion method reached 88.76% and 0.9515, respectively, which demonstrated the effectiveness and superiority of the DWF method with two distinct features for the VAG signal analysis. PMID:23573175
Dimensional Representation and Gradient Boosting for Seismic Event Classification
NASA Astrophysics Data System (ADS)
Semmelmayer, F. C.; Kappedal, R. D.; Magana-Zook, S. A.
2017-12-01
In this research, we conducted experiments of representational structures on 5009 seismic signals with the intent of finding a method to classify signals as either an explosion or an earthquake in an automated fashion. We also applied a gradient boosted classifier. While perfect classification was not attained (approximately 88% was our best model), some cases demonstrate that many events can be filtered out as very high probability being explosions or earthquakes, diminishing subject-matter experts'(SME) workload for first stage analysis. It is our hope that these methods can be refined, further increasing the classification probability.
Seizure classification in EEG signals utilizing Hilbert-Huang transform
2011-01-01
Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool. PMID:21609459
Saa, Jaime F Delgado; Çetin, Müjdat
2012-04-01
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.
Techniques of EMG signal analysis: detection, processing, classification and applications
Hussain, M.S.; Mohd-Yasin, F.
2006-01-01
Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694
A deep learning approach for fetal QRS complex detection.
Zhong, Wei; Liao, Lijuan; Guo, Xuemei; Wang, Guoli
2018-04-20
Non-invasive foetal electrocardiography (NI-FECG) has the potential to provide more additional clinical information for detecting and diagnosing fetal diseases. We propose and demonstrate a deep learning approach for fetal QRS complex detection from raw NI-FECG signals by using a convolutional neural network (CNN) model. The main objective is to investigate whether reliable fetal QRS complex detection performance can still be obtained from features of single-channel NI-FECG signals, without canceling maternal ECG (MECG) signals. A deep learning method is proposed for recognizing fetal QRS complexes. Firstly, we collect data from set-a of the PhysioNet/computing in Cardiology Challenge database. The sample entropy method is used for signal quality assessment. Part of the bad quality signals is excluded in the further analysis. Secondly, in the proposed method, the features of raw NI-FECG signals are normalized before they are fed to a CNN classifier to perform fetal QRS complex detection. We use precision, recall, F-measure and accuracy as the evaluation metrics to assess the performance of fetal QRS complex detection. The proposed deep learning method can achieve relatively high precision (75.33%), recall (80.54%), and F-measure scores (77.85%) compared with three other well-known pattern classification methods, namely KNN, naive Bayes and SVM. the proposed deep learning method can attain reliable fetal QRS complex detection performance from the raw NI-FECG signals without canceling MECG signals. In addition, the influence of different activation functions and signal quality assessment on classification performance are evaluated, and results show that Relu outperforms the Sigmoid and Tanh on this particular task, and better classification performance is obtained with the signal quality assessment step in this study.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Surface Electromyography Signal Processing and Classification Techniques
Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.
2013-01-01
Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337
Neural network and wavelet average framing percentage energy for atrial fibrillation classification.
Daqrouq, K; Alkhateeb, A; Ajour, M N; Morfeq, A
2014-03-01
ECG signals are an important source of information in the diagnosis of atrial conduction pathology. Nevertheless, diagnosis by visual inspection is a difficult task. This work introduces a novel wavelet feature extraction method for atrial fibrillation derived from the average framing percentage energy (AFE) of terminal wavelet packet transform (WPT) sub signals. Probabilistic neural network (PNN) is used for classification. The presented method is shown to be a potentially effective discriminator in an automated diagnostic process. The ECG signals taken from the MIT-BIH database are used to classify different arrhythmias together with normal ECG. Several published methods were investigated for comparison. The best recognition rate selection was obtained for AFE. The classification performance achieved accuracy 97.92%. It was also suggested to analyze the presented system in an additive white Gaussian noise (AWGN) environment; 55.14% for 0dB and 92.53% for 5dB. It was concluded that the proposed approach of automating classification is worth pursuing with larger samples to validate and extend the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Seizure classification in EEG signals utilizing Hilbert-Huang transform.
Oweis, Rami J; Abdulhay, Enas W
2011-05-24
Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.
Li, Zhaohua; Wang, Yuduo; Quan, Wenxiang; Wu, Tongning; Lv, Bin
2015-02-15
Based on near-infrared spectroscopy (NIRS), recent converging evidence has been observed that patients with schizophrenia exhibit abnormal functional activities in the prefrontal cortex during a verbal fluency task (VFT). Therefore, some studies have attempted to employ NIRS measurements to differentiate schizophrenia patients from healthy controls with different classification methods. However, no systematic evaluation was conducted to compare their respective classification performances on the same study population. In this study, we evaluated the classification performance of four classification methods (including linear discriminant analysis, k-nearest neighbors, Gaussian process classifier, and support vector machines) on an NIRS-aided schizophrenia diagnosis. We recruited a large sample of 120 schizophrenia patients and 120 healthy controls and measured the hemoglobin response in the prefrontal cortex during the VFT using a multichannel NIRS system. Features for classification were extracted from three types of NIRS data in each channel. We subsequently performed a principal component analysis (PCA) for feature selection prior to comparison of the different classification methods. We achieved a maximum accuracy of 85.83% and an overall mean accuracy of 83.37% using a PCA-based feature selection on oxygenated hemoglobin signals and support vector machine classifier. This is the first comprehensive evaluation of different classification methods for the diagnosis of schizophrenia based on different types of NIRS signals. Our results suggested that, using the appropriate classification method, NIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.
2018-02-01
In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
Jaiswal, Abeg Kumar; Banka, Haider
2017-01-01
Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.
Optimal Methods for Classification of Digitally Modulated Signals
2013-03-01
of using a ratio of likelihood functions, the proposed approach uses the Kullback - Leibler (KL) divergence. KL...58 List of Acronyms ALRT Average LRT BPSK Binary Shift Keying BPSK-SS BPSK Spread Spectrum or CDMA DKL Kullback - Leibler Information Divergence...blind demodulation for develop classification algorithms for wider set of signals types. Two methodologies were used : Likelihood Ratio Test
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Jong, Jen-Yi
1986-01-01
An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
Gajre, Suhas S; Anand, Sneh; Singh, U; Saxena, Rajendra K
2006-01-01
Osteoarthritis (OA) of knee is the most commonly occurring non-fatal irreversible disease, mainly in the elderly population and particularly in female. Various invasive and non-invasive methods are reported for the diagnosis of this articular cartilage pathology. Well known techniques such as X-ray, computed tomography, magnetic resonance imaging, arthroscopy and arthrography are having their disadvantages, and diagnosis of OA in early stages with simple effective noninvasive method is still a biomedical engineering problem. Analyzing knee joint noninvasive signals around knee might give simple solution for diagnosis of knee OA. We used electrical impedance data from knees to compare normal and osteoarthritic subjects during the most common dynamic conditions of the knee, i.e. walking and knee swing. It was found that there is substantial difference in the properties of the walking cycle (WC) and knee swing cycle (KS) signals. In experiments on 90 pathological (combined for KS and WC signals) and 72 normal signals (combined), suitable features were drawn. Then signals were used to classify as normal or pathological. Artificial multilayer feed forward neural network was trained using back propagation algorithm for the classification. On a training data set of 54 signals for KS signals, the classification efficiency for a test set of 54 was 70.37% and 85.19% with and without normalization respectively wrt base impedance. Similarly, the training set of 27 WC signals and test set of 27 signals resulted in 77.78% and 66.67% classification efficiency. The results indicate that dynamic electrical impedance signals have potential to be used as a novel method for noninvasive diagnosis of knee OA.
Classification of EEG signals using a genetic-based machine learning classifier.
Skinner, B T; Nguyen, H T; Liu, D K
2007-01-01
This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.
Electromyogram whitening for improved classification accuracy in upper limb prosthesis control.
Liu, Lukai; Liu, Pu; Clancy, Edward A; Scheme, Erik; Englehart
2013-09-01
Time and frequency domain features of the surface electromyogram (EMG) signal acquired from multiple channels have frequently been investigated for use in controlling upper-limb prostheses. A common control method is EMG-based motion classification. We propose the use of EMG signal whitening as a preprocessing step in EMG-based motion classification. Whitening decorrelates the EMG signal and has been shown to be advantageous in other EMG applications including EMG amplitude estimation and EMG-force processing. In a study of ten intact subjects and five amputees with up to 11 motion classes and ten electrode channels, we found that the coefficient of variation of time domain features (mean absolute value, average signal length and normalized zero crossing rate) was significantly reduced due to whitening. When using these features along with autoregressive power spectrum coefficients, whitening added approximately five percentage points to classification accuracy when small window lengths were considered.
A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
Iacoviello, Daniela; Petracca, Andrea; Spezialetti, Matteo; Placidi, Giuseppe
2015-12-01
The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
NASA Astrophysics Data System (ADS)
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
2018-01-01
Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959
Optimal design of a bank of spatio-temporal filters for EEG signal classification.
Higashi, Hiroshi; Tanaka, Toshihisa
2011-01-01
The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.
A novel application of deep learning for single-lead ECG classification.
Mathews, Sherin M; Kambhamettu, Chandra; Barner, Kenneth E
2018-06-04
Detecting and classifying cardiac arrhythmias is critical to the diagnosis of patients with cardiac abnormalities. In this paper, a novel approach based on deep learning methodology is proposed for the classification of single-lead electrocardiogram (ECG) signals. We demonstrate the application of the Restricted Boltzmann Machine (RBM) and deep belief networks (DBN) for ECG classification following detection of ventricular and supraventricular heartbeats using single-lead ECG. The effectiveness of this proposed algorithm is illustrated using real ECG signals from the widely-used MIT-BIH database. Simulation results demonstrate that with a suitable choice of parameters, RBM and DBN can achieve high average recognition accuracies of ventricular ectopic beats (93.63%) and of supraventricular ectopic beats (95.57%) at a low sampling rate of 114 Hz. Experimental results indicate that classifiers built into this deep learning-based framework achieved state-of-the art performance models at lower sampling rates and simple features when compared to traditional methods. Further, employing features extracted at a sampling rate of 114 Hz when combined with deep learning provided enough discriminatory power for the classification task. This performance is comparable to that of traditional methods and uses a much lower sampling rate and simpler features. Thus, our proposed deep neural network algorithm demonstrates that deep learning-based methods offer accurate ECG classification and could potentially be extended to other physiological signal classifications, such as those in arterial blood pressure (ABP), nerve conduction (EMG), and heart rate variability (HRV) studies. Copyright © 2018. Published by Elsevier Ltd.
Measurement and classification of heart and lung sounds by using LabView for educational use.
Altrabsheh, B
2010-01-01
This study presents the design, development and implementation of a simple low-cost method of phonocardiography signal detection. Human heart and lung signals are detected by using a simple microphone through a personal computer; the signals are recorded and analysed using LabView software. Amplitude and frequency analyses are carried out for various phonocardiography pathological cases. Methods for automatic classification of normal and abnormal heart sounds, murmurs and lung sounds are presented. Various cases of heart and lung sound measurement are recorded and analysed. The measurements can be saved for further analysis. The method in this study can be used by doctors as a detection tool aid and may be useful for teaching purposes at medical and nursing schools.
Target Detection and Classification Using Seismic and PIR Sensors
2012-06-01
time series analysis via wavelet - based partitioning,” Signal Process...regard, this paper presents a wavelet - based method for target detection and classification. The proposed method has been validated on data sets of...The work reported in this paper makes use of a wavelet - based feature extraction method , called Symbolic Dynamic Filtering (SDF) [12]–[14]. The
2011-01-01
Background For brain computer interfaces (BCIs), which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS). Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1) offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2) to use motor imagery (MI) as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks. Methods 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA) and cross validation, we selected for each subject a best-performing feature combination consisting of 1) one out of three channel, 2) an analysis time interval ranging from 5-15 s after stimulation onset and 3) up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis). Results The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001), over secondary motor areas with an average classification accuracy of 81%. Conclusions Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their limitations for future approaches in single-trial classification and their relevance for neurorehabilitation. PMID:21682906
Unsupervised classification of operator workload from brain signals.
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects' error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Unsupervised classification of operator workload from brain signals
NASA Astrophysics Data System (ADS)
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666
Kernel Wiener filter and its application to pattern recognition.
Yoshino, Hirokazu; Dong, Chen; Washizawa, Yoshikazu; Yamashita, Yukihiko
2010-11-01
The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.
Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems
NASA Technical Reports Server (NTRS)
Hearn, Tristan A.
2015-01-01
This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.
Photonic Breast Tomography and Tumor Aggressiveness Assessment
2011-07-01
incorporates, in optical domain, the vector subspace classification method, Multiple Signal Classification ( MUSIC ). MUSIC was developed by Devaney...and co-workers for finding the location of scattering targets whose size is smaller than the wavelength of acoustic waves or electromagnetic waves...general area of array processing for acoustic and radar time-reversal imaging [12]. The eigenvalue equation of TR matrix is solved, and the signal and
Automotive System for Remote Surface Classification.
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-04-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.
Automotive System for Remote Surface Classification
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-01-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2017-11-01
Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.
Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan
2018-01-01
Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485
[A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].
Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng
2015-12-01
Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-12-13
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-01-01
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577
Radar modulation classification using time-frequency representation and nonlinear regression
NASA Astrophysics Data System (ADS)
De Luigi, Christophe; Arques, Pierre-Yves; Lopez, Jean-Marc; Moreau, Eric
1999-09-01
In naval electronic environment, pulses emitted by radars are collected by ESM receivers. For most of them the intrapulse signal is modulated by a particular law. To help the classical identification process, a classification and estimation of this modulation law is applied on the intrapulse signal measurements. To estimate with a good accuracy the time-varying frequency of a signal corrupted by an additive noise, one method has been chosen. This method consists on the Wigner distribution calculation, the instantaneous frequency is then estimated by the peak location of the distribution. Bias and variance of the estimator are performed by computed simulations. In a estimated sequence of frequencies, we assume the presence of false and good estimated ones, the hypothesis of Gaussian distribution is made on the errors. A robust non linear regression method, based on the Levenberg-Marquardt algorithm, is thus applied on these estimated frequencies using a Maximum Likelihood Estimator. The performances of the method are tested by using varied modulation laws and different signal to noise ratios.
NASA Astrophysics Data System (ADS)
Ghoraani, Behnaz; Krishnan, Sridhar
2009-12-01
The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.
NASA Astrophysics Data System (ADS)
Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung
2016-07-01
A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.
Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Knocke, Philip C.
2007-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
Forero M, Leonardo A; Kohler, Manoela; Vellasco, Marley M B R; Cataldo, Edson
2016-09-01
The classification of voice diseases has many applications in health, in diseases treatment, and in the design of new medical equipment for helping doctors in diagnosing pathologies related to the voice. This work uses the parameters of the glottal signal to help the identification of two types of voice disorders related to the pathologies of the vocal folds: nodule and unilateral paralysis. The parameters of the glottal signal are obtained through a known inverse filtering method, and they are used as inputs to an Artificial Neural Network, a Support Vector Machine, and also to a Hidden Markov Model, to obtain the classification, and to compare the results, of the voice signals into three different groups: speakers with nodule in the vocal folds; speakers with unilateral paralysis of the vocal folds; and speakers with normal voices, that is, without nodule or unilateral paralysis present in the vocal folds. The database is composed of 248 voice recordings (signals of vowels production) containing samples corresponding to the three groups mentioned. In this study, a larger database was used for the classification when compared with similar studies, and its classification rate is superior to other studies, reaching 97.2%. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
Classification of spontaneous EEG signals in migraine
NASA Astrophysics Data System (ADS)
Bellotti, R.; De Carlo, F.; de Tommaso, M.; Lucente, M.
2007-08-01
We set up a classification system able to detect patients affected by migraine without aura, through the analysis of their spontaneous EEG patterns. First, the signals are characterized by means of wavelet-based features, than a supervised neural network is used to classify the multichannel data. For the feature extraction, scale-dependent and scale-independent methods are considered with a variety of wavelet functions. Both the approaches provide very high and almost comparable classification performances. A complete separation of the two groups is obtained when the data are plotted in the plane spanned by two suitable neural outputs.
Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio
2017-01-01
This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883
SNR enhancement for downhole microseismic data based on scale classification shearlet transform
NASA Astrophysics Data System (ADS)
Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili
2018-06-01
Shearlet transform (ST) can be effective in 2D signal processing, due to its parabolic scaling, high directional sensitivity, and optimal sparsity. ST combined with thresholding has been successfully applied to suppress random noise. However, because of the low magnitude and high frequency of a downhole microseismic signal, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is difficult to use for denoising. In this paper, we present a scale classification ST to solve this problem. The ST is used to decompose noisy microseismic data into serval scales. By analyzing the spectrum and energy distribution of the shearlet coefficients of microseismic data, we divide the scales into two types: low-frequency scales which contain less useful signal and high-frequency scales which contain more useful signal. After classification, we use two different methods to deal with the coefficients on different scales. For the low-frequency scales, the noise is attenuated using a thresholding method. As for the high-frequency scales, we propose to use a generalized Gauss distribution model based a non-local means filter, which takes advantage of the temporal and spatial similarity of microseismic data. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.
Gharehbaghi, Arash; Linden, Maria
2017-10-12
This paper presents a novel method for learning the cyclic contents of stochastic time series: the deep time-growing neural network (DTGNN). The DTGNN combines supervised and unsupervised methods in different levels of learning for an enhanced performance. It is employed by a multiscale learning structure to classify cyclic time series (CTS), in which the dynamic contents of the time series are preserved in an efficient manner. This paper suggests a systematic procedure for finding the design parameter of the classification method for a one-versus-multiple class application. A novel validation method is also suggested for evaluating the structural risk, both in a quantitative and a qualitative manner. The effect of the DTGNN on the performance of the classifier is statistically validated through the repeated random subsampling using different sets of CTS, from different medical applications. The validation involves four medical databases, comprised of 108 recordings of the electroencephalogram signal, 90 recordings of the electromyogram signal, 130 recordings of the heart sound signal, and 50 recordings of the respiratory sound signal. Results of the statistical validations show that the DTGNN significantly improves the performance of the classification and also exhibits an optimal structural risk.
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong
2018-01-01
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262
Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui
2016-06-01
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.
NASA Astrophysics Data System (ADS)
Nomura, Yukihiro; Lu, Jianming; Sekiya, Hiroo; Yahagi, Takashi
This paper presents a speech enhancement using the classification between the dominants of speech and noise. In our system, a new classification scheme between the dominants of speech and noise is proposed. The proposed classifications use the standard deviation of the spectrum of observation signal in each band. We introduce two oversubtraction factors for the dominants of speech and noise, respectively. And spectral subtraction is carried out after the classification. The proposed method is tested on several noise types from the Noisex-92 database. From the investigation of segmental SNR, Itakura-Saito distance measure, inspection of spectrograms and listening tests, the proposed system is shown to be effective to reduce background noise. Moreover, the enhanced speech using our system generates less musical noise and distortion than that of conventional systems.
Improving zero-training brain-computer interfaces by mixing model estimators
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.
2017-06-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.
Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub
2015-01-01
An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases. PMID:26528986
Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub
2015-10-30
An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-01-01
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-11-03
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.
Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue
2017-01-01
The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.
A review of channel selection algorithms for EEG signal processing
NASA Astrophysics Data System (ADS)
Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq
2015-12-01
Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.
NASA Astrophysics Data System (ADS)
Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.
2018-01-01
Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adventitious sounds identification and extraction using temporal-spectral dominance-based features.
Jin, Feng; Krishnan, Sridhar Sri; Sattar, Farook
2011-11-01
Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds (ASs). Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused on the analysis of the evolution of symptom-related signal components in joint time-frequency (TF) plane. This paper proposes a new signal identification and extraction method for various ASs based on instantaneous frequency (IF) analysis. The presented TF decomposition method produces a noise-resistant high definition TF representation of RS signals as compared to the conventional linear TF analysis methods, yet preserving the low computational complexity as compared to those quadratic TF analysis methods. The discarded phase information in conventional spectrogram has been adopted for the estimation of IF and group delay, and a temporal-spectral dominance spectrogram has subsequently been constructed by investigating the TF spreads of the computed time-corrected IF components. The proposed dominance measure enables the extraction of signal components correspond to ASs from noisy RS signal at high noise level. A new set of TF features has also been proposed to quantify the shapes of the obtained TF contours, and therefore strongly, enhances the identification of multicomponents signals such as polyphonic wheezes. An overall accuracy of 92.4±2.9% for the classification of real RS recordings shows the promising performance of the presented method.
Wavelet packet-based insufficiency murmurs analysis method
NASA Astrophysics Data System (ADS)
Choi, Samjin; Jiang, Zhongwei
2007-12-01
In this paper, the aortic and mitral insufficiency murmurs analysis method using the wavelet packet technique is proposed for classifying the valvular heart defects. Considering the different frequency distributions between the normal sound and insufficiency murmurs in frequency domain, we used two properties such as the relative wavelet energy and the Shannon wavelet entropy which described the energy information and the entropy information at the selected frequency band, respectively. Then, the signal to murmur ratio (SMR) measures which could mean the ratio between the frequency bands for normal heart sounds and for aortic and mitral insufficiency murmurs allocated to 15.62-187.50 Hz and 187.50-703.12 Hz respectively, were employed as a classification manner to identify insufficiency murmurs. The proposed measures were validated by some case studies. The 194 heart sound signals with 48 normal and 146 abnormal sound cases acquired from 6 healthy volunteers and 30 patients were tested. The normal sound signals recorded by applying a self-produced wireless electric stethoscope system to subjects with no history of other heart complications were used. Insufficiency murmurs were grouped into two valvular heart defects such as aortic insufficiency and mitral insufficiency. These murmur subjects included no other coexistent valvular defects. As a result, the proposed insufficiency murmurs detection method showed relatively very high classification efficiency. Therefore, the proposed heart sound classification method based on the wavelet packet was validated for the classification of valvular heart defects, especially insufficiency murmurs.
Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.
Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R
2018-01-01
Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.
Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform
Tripathy, Rajesh K.; Zamora-Mendez, Alejandro; de la O Serna, José A.; Paternina, Mario R. Arrieta; Arrieta, Juan G.; Naik, Ganesh R.
2018-01-01
Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.
Automated Classification of Medical Percussion Signals for the Diagnosis of Pulmonary Injuries
NASA Astrophysics Data System (ADS)
Bhuiyan, Md Moinuddin
Used for centuries in the clinical practice, audible percussion is a method of eliciting sounds by areas of the human body either by finger tips or by a percussion hammer. Despite its advantages, pulmonary diagnostics by percussion is still highly subjective, depends on the physician's skills, and requires quiet surroundings. Automation of this well-established technique could help amplify its existing merits while removing the above drawbacks. In this study, an attempt is made to automatically decompose clinical percussion signals into a sum of Exponentially Damped Sinusoids (EDS) using Matrix Pencil Method, which in this case form a more natural basis than Fourier harmonics and thus allow for a more robust representation of the signal in the parametric space. It is found that some EDS represent transient oscillation modes of the thorax/abdomen excited by the percussion event, while others are associated with the noise. It is demonstrated that relatively few EDS are usually enough to accurately reconstruct the original signal. It is shown that combining the frequency and damping parameters of these most significant EDS allows for efficient classification of percussion signals into the two main types historically known as "resonant" and "tympanic". This classification ability can provide a basis for the automated objective diagnostics of various pulmonary pathologies including pneumothorax.
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin
2017-01-07
Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
Lu, Na; Li, Tengfei; Ren, Xiaodong; Miao, Hongyu
2017-06-01
Motor imagery classification is an important topic in brain-computer interface (BCI) research that enables the recognition of a subject's intension to, e.g., implement prosthesis control. The brain dynamics of motor imagery are usually measured by electroencephalography (EEG) as nonstationary time series of low signal-to-noise ratio. Although a variety of methods have been previously developed to learn EEG signal features, the deep learning idea has rarely been explored to generate new representation of EEG features and achieve further performance improvement for motor imagery classification. In this study, a novel deep learning scheme based on restricted Boltzmann machine (RBM) is proposed. Specifically, frequency domain representations of EEG signals obtained via fast Fourier transform (FFT) and wavelet package decomposition (WPD) are obtained to train three RBMs. These RBMs are then stacked up with an extra output layer to form a four-layer neural network, which is named the frequential deep belief network (FDBN). The output layer employs the softmax regression to accomplish the classification task. Also, the conjugate gradient method and backpropagation are used to fine tune the FDBN. Extensive and systematic experiments have been performed on public benchmark datasets, and the results show that the performance improvement of FDBN over other selected state-of-the-art methods is statistically significant. Also, several findings that may be of significant interest to the BCI community are presented in this article.
Rashid, Nasir; Iqbal, Javaid; Javed, Amna; Tiwana, Mohsin I; Khan, Umar Shahbaz
2018-01-01
Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8-30 Hz) containing most of the movement data were retained through filtering using "Arduino Uno" microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%.
Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.
Siu, Ho Chit; Shah, Julie A; Stirling, Leia A
2016-10-25
Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces.
Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography
Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.
2016-01-01
Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155
Semi-supervised anomaly detection - towards model-independent searches of new physics
NASA Astrophysics Data System (ADS)
Kuusela, Mikael; Vatanen, Tommi; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu
2012-06-01
Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.
Comparing Features for Classification of MEG Responses to Motor Imagery
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Background Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. Methods MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. Results The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. Conclusions We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system. PMID:27992574
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Curilem, Millaray; Huenupan, Fernando; Beltrán, Daniel; San Martin, Cesar; Fuentealba, Gustavo; Franco, Luis; Cardona, Carlos; Acuña, Gonzalo; Chacón, Max; Khan, M. Salman; Becerra Yoma, Nestor
2016-04-01
Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucanía Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method.
Speaker normalization and adaptation using second-order connectionist networks.
Watrous, R L
1993-01-01
A method for speaker normalization and adaption using connectionist networks is developed. A speaker-specific linear transformation of observations of the speech signal is computed using second-order network units. Classification is accomplished by a multilayer feedforward network that operates on the normalized speech data. The network is adapted for a new talker by modifying the transformation parameters while leaving the classifier fixed. This is accomplished by backpropagating classification error through the classifier to the second-order transformation units. This method was evaluated for the classification of ten vowels for 76 speakers using the first two formant values of the Peterson-Barney data. The results suggest that rapid speaker adaptation resulting in high classification accuracy can be accomplished by this method.
On the use of interaction error potentials for adaptive brain computer interfaces.
Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J
2011-12-01
We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun
2017-07-01
Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.
Classification of vocal aging using parameters extracted from the glottal signal.
Forero Mendoza, Leonardo A; Cataldo, Edson; Vellasco, Marley M B R; Silva, Marco A; Apolinário, José A
2014-09-01
This article proposes and evaluates a method to classify vocal aging using artificial neural network (ANN) and support vector machine (SVM), using the parameters extracted from the speech signal as inputs. For each recorded speech, from a corpus of male and female speakers of different ages, the corresponding glottal signal is obtained using an inverse filtering algorithm. The Mel Frequency Cepstrum Coefficients (MFCC) also extracted from the voice signal and the features extracted from the glottal signal are supplied to an ANN and an SVM with a previous selection. The selection is performed by a wrapper approach of the most relevant parameters. Three groups are considered for the aging-voice classification: young (aged 15-30 years), adult (aged 31-60 years), and senior (aged 61-90 years). The results are compared using different possibilities: with only the parameters extracted from the glottal signal, with only the MFCC, and with a combination of both. The results demonstrate that the best classification rate is obtained using the glottal signal features, which is a novel result and the main contribution of this article. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Comparing Features for Classification of MEG Responses to Motor Imagery.
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio-spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system.
2012-01-01
Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049
A subject-independent pattern-based Brain-Computer Interface
Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio
2015-01-01
While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089
Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2014-07-01
Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.
A software package for interactive motor unit potential classification using fuzzy k-NN classifier.
Rasheed, Sarbast; Stashuk, Daniel; Kamel, Mohamed
2008-01-01
We present an interactive software package for implementing the supervised classification task during electromyographic (EMG) signal decomposition process using a fuzzy k-NN classifier and utilizing the MATLAB high-level programming language and its interactive environment. The method employs an assertion-based classification that takes into account a combination of motor unit potential (MUP) shapes and two modes of use of motor unit firing pattern information: the passive and the active modes. The developed package consists of several graphical user interfaces used to detect individual MUP waveforms from a raw EMG signal, extract relevant features, and classify the MUPs into motor unit potential trains (MUPTs) using assertion-based classifiers.
Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong
2018-01-01
The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.
Signal classification using global dynamical models, Part II: SONAR data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremliovsky, M.; Kadtke, J.
1996-06-01
In Part I of this paper, we described a numerical method for nonlinear signal detection and classification which made use of techniques borrowed from dynamical systems theory. Here in Part II of the paper, we will describe an example of data analysis using this method, for data consisting of open ocean acoustic (SONAR) recordings of marine mammal transients, supplied from NUWC sources. The purpose here is two-fold: first to give a more operational description of the technique and provide rules-of-thumb for parameter choices; and second to discuss some new issues raised by the analysis of non-ideal (real-world) data sets. Themore » particular data set considered here is quite non-stationary, relatively noisy, is not clearly localized in the background, and as such provides a difficult challenge for most detection/classification schemes. {copyright} {ital 1996 American Institute of Physics.}« less
Transient classification in LIGO data using difference boosting neural network
NASA Astrophysics Data System (ADS)
Mukund, N.; Abraham, S.; Kandhasamy, S.; Mitra, S.; Philip, N. S.
2017-05-01
Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan
2017-01-01
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909
Supervised segmentation of microelectrode recording artifacts using power spectral density.
Bakstein, Eduard; Schneider, Jakub; Sieger, Tomas; Novak, Daniel; Wild, Jiri; Jech, Robert
2015-08-01
Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.
The joint use of the tangential electric field and surface Laplacian in EEG classification.
Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P
2014-01-01
We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.
NASA Astrophysics Data System (ADS)
Rodionov, A. A.; Turchin, V. I.
2017-06-01
We propose a new method of signal processing in antenna arrays, which is called the Maximum-Likelihood Signal Classification. The proposed method is based on the model in which interference includes a component with a rank-deficient correlation matrix. Using numerical simulation, we show that the proposed method allows one to ensure variance of the estimated arrival angle of the plane wave, which is close to the Cramer-Rao lower boundary and more efficient than the best-known MUSIC method. It is also shown that the proposed technique can be efficiently used for estimating the time dependence of the useful signal.
Automatic identification of bird targets with radar via patterns produced by wing flapping.
Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix
2008-09-06
Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.
Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun
2017-12-01
Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.
Javed, Amna; Tiwana, Mohsin I.; Khan, Umar Shahbaz
2018-01-01
Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8–30 Hz) containing most of the movement data were retained through filtering using “Arduino Uno” microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%. PMID:29888252
Comparison of ANN and SVM for classification of eye movements in EOG signals
NASA Astrophysics Data System (ADS)
Qi, Lim Jia; Alias, Norma
2018-03-01
Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.
Time-Frequency Distribution of Seismocardiographic Signals: A Comparative Study
Taebi, Amirtaha; Mansy, Hansen A.
2017-01-01
Accurate estimation of seismocardiographic (SCG) signal features can help successful signal characterization and classification in health and disease. This may lead to new methods for diagnosing and monitoring heart function. Time-frequency distributions (TFD) were often used to estimate the spectrotemporal signal features. In this study, the performance of different TFDs (e.g., short-time Fourier transform (STFT), polynomial chirplet transform (PCT), and continuous wavelet transform (CWT) with different mother functions) was assessed using simulated signals, and then utilized to analyze actual SCGs. The instantaneous frequency (IF) was determined from TFD and the error in estimating IF was calculated for simulated signals. Results suggested that the lowest IF error depended on the TFD and the test signal. STFT had lower error than CWT methods for most test signals. For a simulated SCG, Morlet CWT more accurately estimated IF than other CWTs, but Morlet did not provide noticeable advantages over STFT or PCT. PCT had the most consistently accurate IF estimations and appeared more suited for estimating IF of actual SCG signals. PCT analysis showed that actual SCGs from eight healthy subjects had multiple spectral peaks at 9.20 ± 0.48, 25.84 ± 0.77, 50.71 ± 1.83 Hz (mean ± SEM). These may prove useful features for SCG characterization and classification. PMID:28952511
Understanding perception of active noise control system through multichannel EEG analysis.
Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad
2018-06-01
In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.
New KF-PP-SVM classification method for EEG in brain-computer interfaces.
Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian
2014-01-01
Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.
NASA Astrophysics Data System (ADS)
Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata
2015-04-01
The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.
NASA Astrophysics Data System (ADS)
Secmen, Mustafa
2011-10-01
This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.
Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes
NASA Astrophysics Data System (ADS)
Morozov, Yu. V.; Spektor, A. A.
2017-11-01
A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.
NASA Astrophysics Data System (ADS)
Cui, Ying; Dy, Jennifer G.; Alexander, Brian; Jiang, Steve B.
2008-08-01
Various problems with the current state-of-the-art techniques for gated radiotherapy have prevented this new treatment modality from being widely implemented in clinical routine. These problems are caused mainly by applying various external respiratory surrogates. There might be large uncertainties in deriving the tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using template matching methods (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007b Phys. Med. Biol. 52 741-55). In this note, our main contribution is to provide a totally different new view of the gating problem by recasting it as a classification problem. Then, we solve this classification problem by a well-studied powerful classification method called a support vector machine (SVM). Note that the goal of an automated gating tool is to decide when to turn the beam ON or OFF. We treat ON and OFF as the two classes in our classification problem. We create our labeled training data during the patient setup session by utilizing the reference gating signal, manually determined by a radiation oncologist. We then pre-process these labeled training images and build our SVM prediction model. During treatment delivery, fluoroscopic images are continuously acquired, pre-processed and sent as an input to the SVM. Finally, our SVM model will output the predicted labels as gating signals. We test the proposed technique on five sequences of fluoroscopic images from five lung cancer patients against the reference gating signal as ground truth. We compare the performance of the SVM to our previous template matching method (Cui et al 2007b Phys. Med. Biol. 52 741-55). We find that the SVM is slightly more accurate on average (1-3%) than the template matching method, when delivering the target dose. And the average duty cycle is 4-6% longer. Given the very limited patient dataset, we cannot conclude that the SVM is more accurate and efficient than the template matching method. However, our preliminary results show that the SVM is a potentially precise and efficient algorithm for generating gating signals for radiotherapy. This work demonstrates that the gating problem can be considered as a classification problem and solved accordingly.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
Predict or classify: The deceptive role of time-locking in brain signal classification
NASA Astrophysics Data System (ADS)
Rusconi, Marco; Valleriani, Angelo
2016-06-01
Several experimental studies claim to be able to predict the outcome of simple decisions from brain signals measured before subjects are aware of their decision. Often, these studies use multivariate pattern recognition methods with the underlying assumption that the ability to classify the brain signal is equivalent to predict the decision itself. Here we show instead that it is possible to correctly classify a signal even if it does not contain any predictive information about the decision. We first define a simple stochastic model that mimics the random decision process between two equivalent alternatives, and generate a large number of independent trials that contain no choice-predictive information. The trials are first time-locked to the time point of the final event and then classified using standard machine-learning techniques. The resulting classification accuracy is above chance level long before the time point of time-locking. We then analyze the same trials using information theory. We demonstrate that the high classification accuracy is a consequence of time-locking and that its time behavior is simply related to the large relaxation time of the process. We conclude that when time-locking is a crucial step in the analysis of neural activity patterns, both the emergence and the timing of the classification accuracy are affected by structural properties of the network that generates the signal.
Auditory display of knee-joint vibration signals
NASA Astrophysics Data System (ADS)
Krishnan, Sridhar; Rangayyan, Rangaraj M.; Bell, G. Douglas; Frank, Cyril B.
2001-12-01
Sounds generated due to rubbing of knee-joint surfaces may lead to a potential tool for noninvasive assessment of articular cartilage degeneration. In the work reported in the present paper, an attempt is made to perform computer-assisted auscultation of knee joints by auditory display (AD) of vibration signals (also known as vibroarthrographic or VAG signals) emitted during active movement of the leg. Two types of AD methods are considered: audification and sonification. In audification, the VAG signals are scaled in time and frequency using a time-frequency distribution to facilitate aural analysis. In sonification, the instantaneous mean frequency and envelope of the VAG signals are derived and used to synthesize sounds that are expected to facilitate more accurate diagnosis than the original signals by improving their aural quality. Auditory classification experiments were performed by two orthopedic surgeons with 37 VAG signals including 19 normal and 18 abnormal cases. Sensitivity values (correct detection of abnormality) of 31%, 44%, and 83%, and overall classification accuracies of 53%, 40%, and 57% were obtained with the direct playback, audification, and sonification methods, respectively. The corresponding d' scores were estimated to be 1.10, -0.36, and 0.55. The high sensitivity of the sonification method indicates that the technique could lead to improved detection of knee-joint abnormalities; however, additional work is required to improve its specificity and achieve better overall performance.
Analysis of digital communication signals and extraction of parameters
NASA Astrophysics Data System (ADS)
Al-Jowder, Anwar
1994-12-01
The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).
A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal
Mohapatra, Biswajit
2018-01-01
Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis. PMID:29854361
A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal.
Nayak, Suraj K; Bit, Arindam; Dey, Anilesh; Mohapatra, Biswajit; Pal, Kunal
2018-01-01
Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honorio, J.; Goldstein, R.; Honorio, J.
We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less
Link prediction boosted psychiatry disorder classification for functional connectivity network
NASA Astrophysics Data System (ADS)
Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang
2017-02-01
Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.
Consensus Classification Using Non-Optimized Classifiers.
Brownfield, Brett; Lemos, Tony; Kalivas, John H
2018-04-03
Classifying samples into categories is a common problem in analytical chemistry and other fields. Classification is usually based on only one method, but numerous classifiers are available with some being complex, such as neural networks, and others are simple, such as k nearest neighbors. Regardless, most classification schemes require optimization of one or more tuning parameters for best classification accuracy, sensitivity, and specificity. A process not requiring exact selection of tuning parameter values would be useful. To improve classification, several ensemble approaches have been used in past work to combine classification results from multiple optimized single classifiers. The collection of classifications for a particular sample are then combined by a fusion process such as majority vote to form the final classification. Presented in this Article is a method to classify a sample by combining multiple classification methods without specifically classifying the sample by each method, that is, the classification methods are not optimized. The approach is demonstrated on three analytical data sets. The first is a beer authentication set with samples measured on five instruments, allowing fusion of multiple instruments by three ways. The second data set is composed of textile samples from three classes based on Raman spectra. This data set is used to demonstrate the ability to classify simultaneously with different data preprocessing strategies, thereby reducing the need to determine the ideal preprocessing method, a common prerequisite for accurate classification. The third data set contains three wine cultivars for three classes measured at 13 unique chemical and physical variables. In all cases, fusion of nonoptimized classifiers improves classification. Also presented are atypical uses of Procrustes analysis and extended inverted signal correction (EISC) for distinguishing sample similarities to respective classes.
Adaptive sleep-wake discrimination for wearable devices.
Karlen, Walter; Floreano, Dario
2011-04-01
Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.
Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian
2017-05-01
For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.
Non-linear molecular pattern classification using molecular beacons with multiple targets.
Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak
2013-12-01
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Kmeans-ICA based automatic method for ocular artifacts removal in a motorimagery classification.
Bou Assi, Elie; Rihana, Sandy; Sawan, Mohamad
2014-01-01
Electroencephalogram (EEG) recordings aroused as inputs of a motor imagery based BCI system. Eye blinks contaminate the spectral frequency of the EEG signals. Independent Component Analysis (ICA) has been already proved for removing these artifacts whose frequency band overlap with the EEG of interest. However, already ICA developed methods, use a reference lead such as the ElectroOculoGram (EOG) to identify the ocular artifact components. In this study, artifactual components were identified using an adaptive thresholding by means of Kmeans clustering. The denoised EEG signals have been fed into a feature extraction algorithm extracting the band power, the coherence and the phase locking value and inserted into a linear discriminant analysis classifier for a motor imagery classification.
Engagement Assessment Using EEG Signals
NASA Technical Reports Server (NTRS)
Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean
2012-01-01
In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.
REVIEW ARTICLE: Spectrophotometric applications of digital signal processing
NASA Astrophysics Data System (ADS)
Morawski, Roman Z.
2006-09-01
Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.
Shape classification of wear particles by image boundary analysis using machine learning algorithms
NASA Astrophysics Data System (ADS)
Yuan, Wei; Chin, K. S.; Hua, Meng; Dong, Guangneng; Wang, Chunhui
2016-05-01
The shape features of wear particles generated from wear track usually contain plenty of information about the wear states of a machinery operational condition. Techniques to quickly identify types of wear particles quickly to respond to the machine operation and prolong the machine's life appear to be lacking and are yet to be established. To bridge rapid off-line feature recognition with on-line wear mode identification, this paper presents a new radial concave deviation (RCD) method that mainly involves the use of the particle boundary signal to analyze wear particle features. Signal output from the RCDs subsequently facilitates the determination of several other feature parameters, typically relevant to the shape and size of the wear particle. Debris feature and type are identified through the use of various classification methods, such as linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and regression tree method (CART). The average errors of the training and test via ten-fold cross validation suggest CART is a highly suitable approach for classifying and analyzing particle features. Furthermore, the results of the wear debris analysis enable the maintenance team to diagnose faults appropriately.
NASA Astrophysics Data System (ADS)
Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.
2017-06-01
In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method.
Batres-Mendoza, Patricia; Ibarra-Manzano, Mario A; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Montoro-Sanjose, Carlos R; Romero-Troncoso, Rene J; Rostro-Gonzalez, Horacio
2017-01-01
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications.
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method
Batres-Mendoza, Patricia; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Montoro-Sanjose, Carlos R.
2017-01-01
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications. PMID:29348744
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Method and apparatus for detecting concealed weapons
Kotter, Dale K.; Fluck, Frederick D.
2006-03-14
Apparatus for classifying a ferromagnetic object within a sensing area may include a magnetic field sensor that produces magnetic field data. A signal processing system operatively associated with the magnetic field sensor includes a neural network. The neural network compares the magnetic field data with magnetic field data produced by known ferromagnetic objects to make a probabilistic determination as to the classification of the ferromagnetic object within the sensing area. A user interface operatively associated with the signal processing system produces a user-discernable output indicative of the probabilistic determination of the classification of the ferromagnetic object within a sensing area.
Tuyisenge, Viateur; Trebaul, Lena; Bhattacharjee, Manik; Chanteloup-Forêt, Blandine; Saubat-Guigui, Carole; Mîndruţă, Ioana; Rheims, Sylvain; Maillard, Louis; Kahane, Philippe; Taussig, Delphine; David, Olivier
2018-03-01
Intracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. The features quantified signals' variance, spatial-temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers. We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data. The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data. This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Method and Apparatus for Reducing Noise from Near Ocean Surface Sources
2001-10-01
reducing the acoustic noise from near-surface 4 sources using an array processing technique that utilizes 5 Multiple Signal Classification ( MUSIC ...sources without 13 degrading the signal level and quality of the TOI. The present 14 invention utilizes a unique application of the MUSIC beamforming...specific algorithm that utilizes a 5 MUSIC technique and estimates the direction of arrival (DOA) of 6 the acoustic signal signals and generates output
High resolution through-the-wall radar image based on beamspace eigenstructure subspace methods
NASA Astrophysics Data System (ADS)
Yoon, Yeo-Sun; Amin, Moeness G.
2008-04-01
Through-the-wall imaging (TWI) is a challenging problem, even if the wall parameters and characteristics are known to the system operator. Proper target classification and correct imaging interpretation require the application of high resolution techniques using limited array size. In inverse synthetic aperture radar (ISAR), signal subspace methods such as Multiple Signal Classification (MUSIC) are used to obtain high resolution imaging. In this paper, we adopt signal subspace methods and apply them to the 2-D spectrum obtained from the delay-andsum beamforming image. This is in contrast to ISAR, where raw data, in frequency and angle, is directly used to form the estimate of the covariance matrix and array response vector. Using beams rather than raw data has two main advantages, namely, it improves the signal-to-noise ratio (SNR) and can correctly image typical indoor extended targets, such as tables and cabinets, as well as point targets. The paper presents both simulated and experimental results using synthesized and real data. It compares the performance of beam-space MUSIC and Capon beamformer. The experimental data is collected at the test facility in the Radar Imaging Laboratory, Villanova University.
Affective assessment of computer users based on processing the pupil diameter signal.
Ren, Peng; Barreto, Armando; Gao, Ying; Adjouadi, Malek
2011-01-01
Detecting affective changes of computer users is a current challenge in human-computer interaction which is being addressed with the help of biomedical engineering concepts. This article presents a new approach to recognize the affective state ("relaxation" vs. "stress") of a computer user from analysis of his/her pupil diameter variations caused by sympathetic activation. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features are extracted from the preprocessed PD signal for the affective state classification. Finally, a random tree classifier is implemented, achieving an accuracy of 86.78%. In these experiments the Eye Blink Frequency (EBF), is also recorded and used for affective state classification, but the results show that the PD is a more promising physiological signal for affective assessment.
Kwon, Yea-Hoon; Shin, Sae-Byuk; Kim, Shin-Dug
2018-04-30
The purpose of this study is to improve human emotional classification accuracy using a convolution neural networks (CNN) model and to suggest an overall method to classify emotion based on multimodal data. We improved classification performance by combining electroencephalogram (EEG) and galvanic skin response (GSR) signals. GSR signals are preprocessed using by the zero-crossing rate. Sufficient EEG feature extraction can be obtained through CNN. Therefore, we propose a suitable CNN model for feature extraction by tuning hyper parameters in convolution filters. The EEG signal is preprocessed prior to convolution by a wavelet transform while considering time and frequency simultaneously. We use a database for emotion analysis using the physiological signals open dataset to verify the proposed process, achieving 73.4% accuracy, showing significant performance improvement over the current best practice models.
Multimodal Task-Driven Dictionary Learning for Image Classification
2015-12-18
1 Multimodal Task-Driven Dictionary Learning for Image Classification Soheil Bahrampour, Student Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE...Asok Ray, Fellow, IEEE, and W. Kenneth Jenkins, Life Fellow, IEEE Abstract— Dictionary learning algorithms have been suc- cessfully used for both...reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-20
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.
Multiple signal classification algorithm for super-resolution fluorescence microscopy
Agarwal, Krishna; Macháň, Radek
2016-01-01
Single-molecule localization techniques are restricted by long acquisition and computational times, or the need of special fluorophores or biologically toxic photochemical environments. Here we propose a statistical super-resolution technique of wide-field fluorescence microscopy we call the multiple signal classification algorithm which has several advantages. It provides resolution down to at least 50 nm, requires fewer frames and lower excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the timescale of the recording. The multiple signal classification algorithm shows comparable or better performance in comparison with single-molecule localization techniques and four contemporary statistical super-resolution methods for experiments of in vitro actin filaments and other independently acquired experimental data sets. We also demonstrate super-resolution at timescales of 245 ms (using 49 frames acquired at 200 frames per second) in samples of live-cell microtubules and live-cell actin filaments imaged without imaging buffers. PMID:27934858
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
NASA Astrophysics Data System (ADS)
Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.
2018-01-01
This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.
RAZOR: A Compression and Classification Solution for the Internet of Things
Danieletto, Matteo; Bui, Nicola; Zorzi, Michele
2014-01-01
The Internet of Things is expected to increase the amount of data produced and exchanged in the network, due to the huge number of smart objects that will interact with one another. The related information management and transmission costs are increasing and becoming an almost unbearable burden, due to the unprecedented number of data sources and the intrinsic vastness and variety of the datasets. In this paper, we propose RAZOR, a novel lightweight algorithm for data compression and classification, which is expected to alleviate both aspects by leveraging the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. In particular, RAZOR leverages the concept of motifs, recurrent features used for signal categorization, in order to compress data streams: in such a way, it is possible to achieve compression levels of up to an order of magnitude, while maintaining the signal distortion within acceptable bounds and allowing for simple lightweight distributed classification. In addition, RAZOR is designed to keep the computational complexity low, in order to allow its implementation in the most constrained devices. The paper provides results about the algorithm configuration and a performance comparison against state-of-the-art signal processing techniques. PMID:24451454
NASA Astrophysics Data System (ADS)
Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar
2018-04-01
Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers/researchers to improve the aforesaid performance for future prospective.
Matched field localization based on CS-MUSIC algorithm
NASA Astrophysics Data System (ADS)
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
NASA Astrophysics Data System (ADS)
Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.
2011-03-01
Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
NASA Astrophysics Data System (ADS)
Madokoro, H.; Yamanashi, A.; Sato, K.
2013-08-01
This paper presents an unsupervised scene classification method for actualizing semantic recognition of indoor scenes. Background and foreground features are respectively extracted using Gist and color scale-invariant feature transform (SIFT) as feature representations based on context. We used hue, saturation, and value SIFT (HSV-SIFT) because of its simple algorithm with low calculation costs. Our method creates bags of features for voting visual words created from both feature descriptors to a two-dimensional histogram. Moreover, our method generates labels as candidates of categories for time-series images while maintaining stability and plasticity together. Automatic labeling of category maps can be realized using labels created using adaptive resonance theory (ART) as teaching signals for counter propagation networks (CPNs). We evaluated our method for semantic scene classification using KTH's image database for robot localization (KTH-IDOL), which is popularly used for robot localization and navigation. The mean classification accuracies of Gist, gray SIFT, one class support vector machines (OC-SVM), position-invariant robust features (PIRF), and our method are, respectively, 39.7, 58.0, 56.0, 63.6, and 79.4%. The result of our method is 15.8% higher than that of PIRF. Moreover, we applied our method for fine classification using our original mobile robot. We obtained mean classification accuracy of 83.2% for six zones.
Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel
2014-10-01
An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.
Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
NASA Astrophysics Data System (ADS)
Nguyen, Chuong H.; Karavas, George K.; Artemiadis, Panagiotis
2018-02-01
Objective. In this paper, we investigate the suitability of imagined speech for brain-computer interface (BCI) applications. Approach. A novel method based on covariance matrix descriptors, which lie in Riemannian manifold, and the relevance vector machines classifier is proposed. The method is applied on electroencephalographic (EEG) signals and tested in multiple subjects. Main results. The method is shown to outperform other approaches in the field with respect to accuracy and robustness. The algorithm is validated on various categories of speech, such as imagined pronunciation of vowels, short words and long words. The classification accuracy of our methodology is in all cases significantly above chance level, reaching a maximum of 70% for cases where we classify three words and 95% for cases of two words. Significance. The results reveal certain aspects that may affect the success of speech imagery classification from EEG signals, such as sound, meaning and word complexity. This can potentially extend the capability of utilizing speech imagery in future BCI applications. The dataset of speech imagery collected from total 15 subjects is also published.
Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V
2018-04-01
Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang
2015-10-21
An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results.
Farquhar, J; Hill, N J
2013-04-01
Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.
NASA Technical Reports Server (NTRS)
Wren, Paul E. (Inventor)
1983-01-01
During a distress call, a distress location transmitter 10 generates a high frequency carrier signal 40 that is modulated by a predetermined distress waveform characteristic 29. The classification of user associated with the distress call is identified by periodically interrupting modulation 42; user classification is determined by the repetition rate of the interruptions, the interruption periods, or both.
SNR-adaptive stream weighting for audio-MES ASR.
Lee, Ki-Seung
2008-08-01
Myoelectric signals (MESs) from the speaker's mouth region have been successfully shown to improve the noise robustness of automatic speech recognizers (ASRs), thus promising to extend their usability in implementing noise-robust ASR. In the recognition system presented herein, extracted audio and facial MES features were integrated by a decision fusion method, where the likelihood score of the audio-MES observation vector was given by a linear combination of class-conditional observation log-likelihoods of two classifiers, using appropriate weights. We developed a weighting process adaptive to SNRs. The main objective of the paper involves determining the optimal SNR classification boundaries and constructing a set of optimum stream weights for each SNR class. These two parameters were determined by a method based on a maximum mutual information criterion. Acoustic and facial MES data were collected from five subjects, using a 60-word vocabulary. Four types of acoustic noise including babble, car, aircraft, and white noise were acoustically added to clean speech signals with SNR ranging from -14 to 31 dB. The classification accuracy of the audio ASR was as low as 25.5%. Whereas, the classification accuracy of the MES ASR was 85.2%. The classification accuracy could be further improved by employing the proposed audio-MES weighting method, which was as high as 89.4% in the case of babble noise. A similar result was also found for the other types of noise.
NASA Astrophysics Data System (ADS)
Bechet, P.; Mitran, R.; Munteanu, M.
2013-08-01
Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.
Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles.
Zhang, Duona; Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong
2018-03-20
Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.
Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles
Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong
2018-01-01
Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network. PMID:29558434
System and method for resolving gamma-ray spectra
Gentile, Charles A.; Perry, Jason; Langish, Stephen W.; Silber, Kenneth; Davis, William M.; Mastrovito, Dana
2010-05-04
A system for identifying radionuclide emissions is described. The system includes at least one processor for processing output signals from a radionuclide detecting device, at least one training algorithm run by the at least one processor for analyzing data derived from at least one set of known sample data from the output signals, at least one classification algorithm derived from the training algorithm for classifying unknown sample data, wherein the at least one training algorithm analyzes the at least one sample data set to derive at least one rule used by said classification algorithm for identifying at least one radionuclide emission detected by the detecting device.
A Novel Modulation Classification Approach Using Gabor Filter Network
Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed
2014-01-01
A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603
Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Mubin, Marizan; Saad, Ismail
2016-01-01
In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.
Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer
2008-01-01
Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.
EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces
NASA Astrophysics Data System (ADS)
Ashari, Rehab Bahaaddin
Brain-Computer Interfaces (BCIs) help paralyzed people who have lost some or all of their ability to communicate and control the outside environment from loss of voluntary muscle control. Most BCIs are based on the classification of multichannel electroencephalography (EEG) signals recorded from users as they respond to external stimuli or perform various mental activities. The classification process is fraught with difficulties caused by electrical noise, signal artifacts, and nonstationarity. One approach to reducing the effects of similar difficulties in other domains is the use of principal angles between subspaces, which has been applied mostly to video sequences. This dissertation studies and examines different ideas using principal angles and subspaces concepts. It introduces a novel mathematical approach for comparing sets of EEG signals for use in new BCI technology. The success of the presented results show that principal angles are also a useful approach to the classification of EEG signals that are recorded during a BCI typing application. In this application, the appearance of a subject's desired letter is detected by identifying a P300-wave within a one-second window of EEG following the flash of a letter. Smoothing the signals before using them is the only preprocessing step that was implemented in this study. The smoothing process based on minimizing the second derivative in time is implemented to increase the classification accuracy instead of using the bandpass filter that relies on assumptions on the frequency content of EEG. This study examines four different ways of removing outliers that are based on the principal angles and shows that the outlier removal methods did not help in the presented situations. One of the concepts that this dissertation focused on is the effect of the number of trials on the classification accuracies. The achievement of the good classification results by using a small number of trials starting from two trials only, should make this approach more appropriate for online BCI applications. In order to understand and test how EEG signals are different from one subject to another, different users are tested in this dissertation, some with motor impairments. Furthermore, the concept of transferring information between subjects is examined by training the approach on one subject and testing it on the other subject using the training subject's EEG subspaces to classify the testing subject's trials.
Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L
2012-02-01
Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-09-16
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-01-01
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach. PMID:28926953
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification
Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-01-01
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference. PMID:29186075
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.
Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-11-29
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.
Signal processing for passive detection and classification of underwater acoustic signals
NASA Astrophysics Data System (ADS)
Chung, Kil Woo
2011-12-01
This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship spectra and were measured at distances up to 7 km. The combination of cross-correlation and DEMON methods allows separation of the acoustic signatures of ships in busy urban environments. Finally, we consider the extension of this algorithm for vessel tracking using phase measurement of the DEMON signal recorded by two or more hydrophones. Tests conducted in the Hudson River and NY Bay confirmed opportunity of Direction of Arrival (DOA) funding using the phase DEMON method.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Multi-channel non-invasive fetal electrocardiography detection using wavelet decomposition
NASA Astrophysics Data System (ADS)
Almeida, Javier; Ruano, Josué; Corredor, Germán.; Romo-Bucheli, David; Navarro-Vargas, José Ricardo; Romero, Eduardo
2017-11-01
Non-invasive fetal electrocardiography (fECG) has attracted the medical community because of the importance of fetal monitoring. However, its implementation in clinical practice is challenging: the fetal signal has a low Signal- to-Noise-Ratio and several signal sources are present in the maternal abdominal electrocardiography (AECG). This paper presents a novel method to detect the fetal signal from a multi-channel maternal AECG. The method begins by applying filters and signal detrending the AECG signals. Afterwards, the maternal QRS complexes are identified and subtracted. The residual signals are used to detect the fetal QRS complex. Intervals of these signals are analyzed by using a wavelet decomposition. The resulting representation feds a previously trained Random Forest (RF) classifier that identifies signal intervals associated to fetal QRS complex. The method was evaluated on a public available dataset: the Physionet2013 challenge. A set of 50 maternal AECG records were used to train the RF classifier. The evaluation was carried out in signals intervals extracted from additional 25 maternal AECG. The proposed method yielded an 83:77% accuracy in the fetal QRS complex classification task.
NASA Astrophysics Data System (ADS)
Jiang, Li; Shi, Tielin; Xuan, Jianping
2012-05-01
Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.
Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B
2015-06-01
The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.
The Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph
1993-12-01
actual feature extraction was done, It was decided to use the K-nearest neighbor ( KNN ) the data was preprocessed. The electrocardiogram classifier in...showing heart pulse, and a low frequency not known beforehand, and the KNN classifier does not component showing blood volume. The derivative of...the characteristics of the conventional KNN these six derived signals were detrended and filtered, classification method is that it assigns each
NASA Astrophysics Data System (ADS)
Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.
2018-01-01
The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.
Agarwal, Krishna; Macháň, Radek; Prasad, Dilip K
2018-03-21
Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.
Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study
NASA Astrophysics Data System (ADS)
Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin
2011-03-01
Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.
Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R
2015-05-01
The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.
Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound
Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.
2012-01-01
Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643
1989-12-01
Ohio ’aPw iorlipuab muo i 0I2, AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL...ENG/89D- 10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL NEURAL NETWORKS THESIS John W. DeBerry...Captain, USAF AFIT/GE/ENG/89D- 10 Approved for public release; distribution unlimited. AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
Umut, İlhan; Çentik, Güven
2016-01-01
The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present. PMID:27213008
Umut, İlhan; Çentik, Güven
2016-01-01
The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present.
Multi-class SVM model for fMRI-based classification and grading of liver fibrosis
NASA Astrophysics Data System (ADS)
Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.
2010-03-01
We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...
2017-04-24
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
Guo, Lili; Qi, Junwei; Xue, Wei
2018-01-01
This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. PMID:29439495
Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang
2015-01-01
An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results. PMID:26506350
Speech emotion recognition methods: A literature review
NASA Astrophysics Data System (ADS)
Basharirad, Babak; Moradhaseli, Mohammadreza
2017-10-01
Recently, attention of the emotional speech signals research has been boosted in human machine interfaces due to availability of high computation capability. There are many systems proposed in the literature to identify the emotional state through speech. Selection of suitable feature sets, design of a proper classifications methods and prepare an appropriate dataset are the main key issues of speech emotion recognition systems. This paper critically analyzed the current available approaches of speech emotion recognition methods based on the three evaluating parameters (feature set, classification of features, accurately usage). In addition, this paper also evaluates the performance and limitations of available methods. Furthermore, it highlights the current promising direction for improvement of speech emotion recognition systems.
Automatic classification of bottles in crates
NASA Astrophysics Data System (ADS)
Aas, Kjersti; Eikvil, Line; Bremnes, Dag; Norbryhn, Andreas
1995-03-01
This paper presents a statistical method for classification of bottles in crates for use in automatic return bottle machines. For the automatons to reimburse the correct deposit, a reliable recognition is important. The images are acquired by a laser range scanner coregistering the distance to the object and the strength of the reflected signal. The objective is to identify the crate and the bottles from a library with a number of legal types. The bottles with significantly different size are separated using quite simple methods, while a more sophisticated recognizer is required to distinguish the more similar bottle types. Good results have been obtained when testing the method developed on bottle types which are difficult to distinguish using simple methods.
Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D
2006-01-01
This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.
Park, Sang-Hoon; Lee, David; Lee, Sang-Goog
2018-02-01
For the last few years, many feature extraction methods have been proposed based on biological signals. Among these, the brain signals have the advantage that they can be obtained, even by people with peripheral nervous system damage. Motor imagery electroencephalograms (EEG) are inexpensive to measure, offer a high temporal resolution, and are intuitive. Therefore, these have received a significant amount of attention in various fields, including signal processing, cognitive science, and medicine. The common spatial pattern (CSP) algorithm is a useful method for feature extraction from motor imagery EEG. However, performance degradation occurs in a small-sample setting (SSS), because the CSP depends on sample-based covariance. Since the active frequency range is different for each subject, it is also inconvenient to set the frequency range to be different every time. In this paper, we propose the feature extraction method based on a filter bank to solve these problems. The proposed method consists of five steps. First, motor imagery EEG is divided by a using filter bank. Second, the regularized CSP (R-CSP) is applied to the divided EEG. Third, we select the features according to mutual information based on the individual feature algorithm. Fourth, parameter sets are selected for the ensemble. Finally, we classify using ensemble based on features. The brain-computer interface competition III data set IVa is used to evaluate the performance of the proposed method. The proposed method improves the mean classification accuracy by 12.34%, 11.57%, 9%, 4.95%, and 4.47% compared with CSP, SR-CSP, R-CSP, filter bank CSP (FBCSP), and SR-FBCSP. Compared with the filter bank R-CSP ( , ), which is a parameter selection version of the proposed method, the classification accuracy is improved by 3.49%. In particular, the proposed method shows a large improvement in performance in the SSS.
[Surface electromyography signal classification using gray system theory].
Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai
2004-12-01
A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.
Visual and tactile interfaces for bi-directional human robot communication
NASA Astrophysics Data System (ADS)
Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin
2013-05-01
Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.
Improving Generalization Based on l1-Norm Regularization for EEG-Based Motor Imagery Classification
Zhao, Yuwei; Han, Jiuqi; Chen, Yushu; Sun, Hongji; Chen, Jiayun; Ke, Ang; Han, Yao; Zhang, Peng; Zhang, Yi; Zhou, Jin; Wang, Changyong
2018-01-01
Multichannel electroencephalography (EEG) is widely used in typical brain-computer interface (BCI) systems. In general, a number of parameters are essential for a EEG classification algorithm due to redundant features involved in EEG signals. However, the generalization of the EEG method is often adversely affected by the model complexity, considerably coherent with its number of undetermined parameters, further leading to heavy overfitting. To decrease the complexity and improve the generalization of EEG method, we present a novel l1-norm-based approach to combine the decision value obtained from each EEG channel directly. By extracting the information from different channels on independent frequency bands (FB) with l1-norm regularization, the method proposed fits the training data with much less parameters compared to common spatial pattern (CSP) methods in order to reduce overfitting. Moreover, an effective and efficient solution to minimize the optimization object is proposed. The experimental results on dataset IVa of BCI competition III and dataset I of BCI competition IV show that, the proposed method contributes to high classification accuracy and increases generalization performance for the classification of MI EEG. As the training set ratio decreases from 80 to 20%, the average classification accuracy on the two datasets changes from 85.86 and 86.13% to 84.81 and 76.59%, respectively. The classification performance and generalization of the proposed method contribute to the practical application of MI based BCI systems. PMID:29867307
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
Sleep staging with movement-related signals.
Jansen, B H; Shankar, K
1993-05-01
Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.
ICA-Based Imagined Conceptual Words Classification on EEG Signals.
Imani, Ehsan; Pourmohammad, Ali; Bagheri, Mahsa; Mobasheri, Vida
2017-01-01
Independent component analysis (ICA) has been used for detecting and removing the eye artifacts conventionally. However, in this research, it was used not only for detecting the eye artifacts, but also for detecting the brain-produced signals of two conceptual danger and information category words. In this cross-sectional research, electroencephalography (EEG) signals were recorded using Micromed and 19-channel helmet devices in unipolar mode, wherein Cz electrode was selected as the reference electrode. In the first part of this research, the statistical community test case included four men and four women, who were 25-30 years old. In the designed task, three groups of traffic signs were considered, in which two groups referred to the concept of danger, and the third one referred to the concept of information. In the second part, the three volunteers, two men and one woman, who had the best results, were chosen from among eight participants. In the second designed task, direction arrows (up, down, left, and right) were used. For the 2/8 volunteers in the rest times, very high-power alpha waves were observed from the back of the head; however, in the thinking times, they were different. According to this result, alpha waves for changing the task from thinking to rest condition took at least 3 s for the two volunteers, and it was at most 5 s until they went to the absolute rest condition. For the 7/8 volunteers, the danger and information signals were well classified; these differences for the 5/8 volunteers were observed in the right hemisphere, and, for the other three volunteers, the differences were observed in the left hemisphere. For the second task, simulations showed that the best classification accuracies resulted when the time window was 2.5 s. In addition, it also showed that the features of the autoregressive (AR)-15 model coefficients were the best choices for extracting the features. For all the states of neural network except hardlim discriminator function, the classification accuracies were almost the same and not very different. Linear discriminant analysis (LDA) in comparison with the neural network yielded higher classification accuracies. ICA is a suitable algorithm for recognizing of the word's concept and its place in the brain. Achieved results from this experiment were the same compared with the results from other methods such as functional magnetic resonance imaging and methods based on the brain signals (EEG) in the vowel imagination and covert speech. Herein, the highest classification accuracy was obtained by extracting the target signal from the output of the ICA and extracting the features of coefficients AR model with time interval of 2.5 s. Finally, LDA resulted in the highest classification accuracy more than 60%.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo
2015-05-01
An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.
NASA Astrophysics Data System (ADS)
Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao
2017-03-01
Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.
Rotationally Invariant Image Representation for Viewing Direction Classification in Cryo-EM
Zhao, Zhizhen; Singer, Amit
2014-01-01
We introduce a new rotationally invariant viewing angle classification method for identifying, among a large number of cryo-EM projection images, similar views without prior knowledge of the molecule. Our rotationally invariant features are based on the bispectrum. Each image is denoised and compressed using steerable principal component analysis (PCA) such that rotating an image is equivalent to phase shifting the expansion coefficients. Thus we are able to extend the theory of bispectrum of 1D periodic signals to 2D images. The randomized PCA algorithm is then used to efficiently reduce the dimensionality of the bispectrum coefficients, enabling fast computation of the similarity between any pair of images. The nearest neighbors provide an initial classification of similar viewing angles. In this way, rotational alignment is only performed for images with their nearest neighbors. The initial nearest neighbor classification and alignment are further improved by a new classification method called vector diffusion maps. Our pipeline for viewing angle classification and alignment is experimentally shown to be faster and more accurate than reference-free alignment with rotationally invariant K-means clustering, MSA/MRA 2D classification, and their modern approximations. PMID:24631969
Classifying BCI signals from novice users with extreme learning machine
NASA Astrophysics Data System (ADS)
Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.
2017-07-01
Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.
Reconstruction of ECG signals in presence of corruption.
Ganeshapillai, Gartheeban; Liu, Jessica F; Guttag, John
2011-01-01
We present an approach to identifying and reconstructing corrupted regions in a multi-parameter physiological signal. The method, which uses information in correlated signals, is specifically designed to preserve clinically significant aspects of the signals. We use template matching to jointly segment the multi-parameter signal, morphological dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template. In experiments carried out on the MIT-BIH Arrhythmia Database, a two-parameter database with many clinically significant arrhythmias, our method improved the classification accuracy of the beat type by more than 7 times on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 2.5 times.
A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.
Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar
2018-05-01
This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.
A MUSIC-based method for SSVEP signal processing.
Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei
2016-03-01
The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.
NASA Astrophysics Data System (ADS)
Ross, Z. E.; Meier, M. A.; Hauksson, E.
2017-12-01
Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael
2015-01-01
Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.
NASA Astrophysics Data System (ADS)
McClanahan, James Patrick
Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.
Development of an automated ultrasonic testing system
NASA Astrophysics Data System (ADS)
Shuxiang, Jiao; Wong, Brian Stephen
2005-04-01
Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.
Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung
2017-06-14
Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.
Real-time classification of signals from three-component seismic sensors using neural nets
NASA Astrophysics Data System (ADS)
Bowman, B. C.; Dowla, F.
1992-05-01
Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.
A new similarity index for nonlinear signal analysis based on local extrema patterns
NASA Astrophysics Data System (ADS)
Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher
2018-02-01
Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.
O'Reilly, Martin; Whelan, Darragh; Caulfield, Brian; Ward, Tomas E
2017-01-01
Background Inertial sensors are one of the most commonly used sources of data for human activity recognition (HAR) and exercise detection (ED) tasks. The time series produced by these sensors are generally analyzed through numerical methods. Machine learning techniques such as random forests or support vector machines are popular in this field for classification efforts, but they need to be supported through the isolation of a potentially large number of additionally crafted features derived from the raw data. This feature preprocessing step can involve nontrivial digital signal processing (DSP) techniques. However, in many cases, the researchers interested in this type of activity recognition problems do not possess the necessary technical background for this feature-set development. Objective The study aimed to present a novel application of established machine vision methods to provide interested researchers with an easier entry path into the HAR and ED fields. This can be achieved by removing the need for deep DSP skills through the use of transfer learning. This can be done by using a pretrained convolutional neural network (CNN) developed for machine vision purposes for exercise classification effort. The new method should simply require researchers to generate plots of the signals that they would like to build classifiers with, store them as images, and then place them in folders according to their training label before retraining the network. Methods We applied a CNN, an established machine vision technique, to the task of ED. Tensorflow, a high-level framework for machine learning, was used to facilitate infrastructure needs. Simple time series plots generated directly from accelerometer and gyroscope signals are used to retrain an openly available neural network (Inception), originally developed for machine vision tasks. Data from 82 healthy volunteers, performing 5 different exercises while wearing a lumbar-worn inertial measurement unit (IMU), was collected. The ability of the proposed method to automatically classify the exercise being completed was assessed using this dataset. For comparative purposes, classification using the same dataset was also performed using the more conventional approach of feature-extraction and classification using random forest classifiers. Results With the collected dataset and the proposed method, the different exercises could be recognized with a 95.89% (3827/3991) accuracy, which is competitive with current state-of-the-art techniques in ED. Conclusions The high level of accuracy attained with the proposed approach indicates that the waveform morphologies in the time-series plots for each of the exercises is sufficiently distinct among the participants to allow the use of machine vision approaches. The use of high-level machine learning frameworks, coupled with the novel use of machine vision techniques instead of complex manually crafted features, may facilitate access to research in the HAR field for individuals without extensive digital signal processing or machine learning backgrounds. PMID:28778851
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
Latifoğlu, Fatma; Kodaz, Halife; Kara, Sadik; Güneş, Salih
2007-08-01
This study was conducted to distinguish between atherosclerosis and healthy subjects. Hence, we have employed the maximum envelope of the carotid artery Doppler sonograms derived from Fast Fourier Transformation-Welch method and Artificial Immune Recognition System (AIRS). The fuzzy appearance of the carotid artery Doppler signals makes physicians suspicious about the existence of diseases and sometimes causes false diagnosis. Our technique gets around this problem using AIRS to decide and assist the physician to make the final judgment in confidence. AIRS has reached 99.29% classification accuracy using 10-fold cross validation. Results show that the proposed method classified Doppler signals successfully.
Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam
2018-05-08
When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.
Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise
NASA Astrophysics Data System (ADS)
Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru
2004-05-01
The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
Uehara, Takashi; Sartori, Matteo; Tanaka, Toshihisa; Fiori, Simone
2017-06-01
The estimation of covariance matrices is of prime importance to analyze the distribution of multivariate signals. In motor imagery-based brain-computer interfaces (MI-BCI), covariance matrices play a central role in the extraction of features from recorded electroencephalograms (EEGs); therefore, correctly estimating covariance is crucial for EEG classification. This letter discusses algorithms to average sample covariance matrices (SCMs) for the selection of the reference matrix in tangent space mapping (TSM)-based MI-BCI. Tangent space mapping is a powerful method of feature extraction and strongly depends on the selection of a reference covariance matrix. In general, the observed signals may include outliers; therefore, taking the geometric mean of SCMs as the reference matrix may not be the best choice. In order to deal with the effects of outliers, robust estimators have to be used. In particular, we discuss and test the use of geometric medians and trimmed averages (defined on the basis of several metrics) as robust estimators. The main idea behind trimmed averages is to eliminate data that exhibit the largest distance from the average covariance calculated on the basis of all available data. The results of the experiments show that while the geometric medians show little differences from conventional methods in terms of classification accuracy in the classification of electroencephalographic recordings, the trimmed averages show significant improvement for all subjects.
Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang
2018-03-27
Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.
Development of gait segmentation methods for wearable foot pressure sensors.
Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C
2012-01-01
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Frollo, Ivan
2017-12-01
The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech quality are functional and produce fully comparable results with the standard evaluation based on the listening test method.
Systematic Model-in-the-Loop Test of Embedded Control Systems
NASA Astrophysics Data System (ADS)
Krupp, Alexander; Müller, Wolfgang
Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.
Fourier-based classification of protein secondary structures.
Shu, Jian-Jun; Yong, Kian Yan
2017-04-15
The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by analyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein secondary structures can be classified by means of these newly-proposed indices. Copyright © 2017 Elsevier Inc. All rights reserved.
Mala, S.; Latha, K.
2014-01-01
Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185
Mala, S; Latha, K
2014-01-01
Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.
Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André
2016-01-01
The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646
Automatic removal of eye-movement and blink artifacts from EEG signals.
Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun
2010-03-01
Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.
Multi-step EMG Classification Algorithm for Human-Computer Interaction
NASA Astrophysics Data System (ADS)
Ren, Peng; Barreto, Armando; Adjouadi, Malek
A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase
NASA Astrophysics Data System (ADS)
Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten
2016-04-01
Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase.
Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De
2016-04-01
One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification.
She, Qingshan; Ma, Yuliang; Meng, Ming; Luo, Zhizeng
2015-01-01
Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of electroencephalography signals, accurate and real-time multiclass classification is always challenging. In order to solve this problem, a multiclass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this paper. First, two-class posterior probability model is constructed to approximate the posterior probability by the ranking continuous output techniques and Platt's estimating method. Secondly, a solution of multiclass probabilistic outputs for twin SVM is provided by combining every pair of class probabilities according to the method of pairwise coupling. Finally, the proposed method is compared with multiclass SVM and twin SVM via voting, and multiclass posterior probability SVM using different coupling approaches. The efficacy on the classification accuracy and time complexity of the proposed method has been demonstrated by both the UCI benchmark datasets and real world EEG data from BCI Competition IV Dataset 2a, respectively.
2001-10-25
34 An Introduction to statsitical signal processing". Stanford University and University of Maryland, 1996 [8]Donna Van Wynsberge, Charles R. Noback , Robert Carola " Human Anatomy and Physiology" third edition, 1996
Dominguez Veiga, Jose Juan; O'Reilly, Martin; Whelan, Darragh; Caulfield, Brian; Ward, Tomas E
2017-08-04
Inertial sensors are one of the most commonly used sources of data for human activity recognition (HAR) and exercise detection (ED) tasks. The time series produced by these sensors are generally analyzed through numerical methods. Machine learning techniques such as random forests or support vector machines are popular in this field for classification efforts, but they need to be supported through the isolation of a potentially large number of additionally crafted features derived from the raw data. This feature preprocessing step can involve nontrivial digital signal processing (DSP) techniques. However, in many cases, the researchers interested in this type of activity recognition problems do not possess the necessary technical background for this feature-set development. The study aimed to present a novel application of established machine vision methods to provide interested researchers with an easier entry path into the HAR and ED fields. This can be achieved by removing the need for deep DSP skills through the use of transfer learning. This can be done by using a pretrained convolutional neural network (CNN) developed for machine vision purposes for exercise classification effort. The new method should simply require researchers to generate plots of the signals that they would like to build classifiers with, store them as images, and then place them in folders according to their training label before retraining the network. We applied a CNN, an established machine vision technique, to the task of ED. Tensorflow, a high-level framework for machine learning, was used to facilitate infrastructure needs. Simple time series plots generated directly from accelerometer and gyroscope signals are used to retrain an openly available neural network (Inception), originally developed for machine vision tasks. Data from 82 healthy volunteers, performing 5 different exercises while wearing a lumbar-worn inertial measurement unit (IMU), was collected. The ability of the proposed method to automatically classify the exercise being completed was assessed using this dataset. For comparative purposes, classification using the same dataset was also performed using the more conventional approach of feature-extraction and classification using random forest classifiers. With the collected dataset and the proposed method, the different exercises could be recognized with a 95.89% (3827/3991) accuracy, which is competitive with current state-of-the-art techniques in ED. The high level of accuracy attained with the proposed approach indicates that the waveform morphologies in the time-series plots for each of the exercises is sufficiently distinct among the participants to allow the use of machine vision approaches. The use of high-level machine learning frameworks, coupled with the novel use of machine vision techniques instead of complex manually crafted features, may facilitate access to research in the HAR field for individuals without extensive digital signal processing or machine learning backgrounds. ©Jose Juan Dominguez Veiga, Martin O'Reilly, Darragh Whelan, Brian Caulfield, Tomas E Ward. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 04.08.2017.
Subauditory Speech Recognition based on EMG/EPG Signals
NASA Technical Reports Server (NTRS)
Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)
2003-01-01
Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.
EMG finger movement classification based on ANFIS
NASA Astrophysics Data System (ADS)
Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.
2018-04-01
An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.
Classification of Respiratory Sounds by Using An Artificial Neural Network
2001-10-28
CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is
Amanpour, Behzad; Erfanian, Abbas
2013-01-01
An important issue in designing a practical brain-computer interface (BCI) is the selection of mental tasks to be imagined. Different types of mental tasks have been used in BCI including left, right, foot, and tongue motor imageries. However, the mental tasks are different from the actions to be controlled by the BCI. It is desirable to select a mental task to be consistent with the desired action to be performed by BCI. In this paper, we investigated the detecting the imagination of the hand grasping, hand opening, and hand reaching in one hand using electroencephalographic (EEG) signals. The results show that the ERD/ERS patterns, associated with the imagination of hand grasping, opening, and reaching are different. For classification of brain signals associated with these mental tasks and feature extraction, a method based on wavelet packet, regularized common spatial pattern (CSP), and mutual information is proposed. The results of an offline analysis on five subjects show that the two-class mental tasks can be classified with an average accuracy of 77.6% using proposed method. In addition, we examine the proposed method on datasets IVa from BCI Competition III and IIa from BCI Competition IV.
Methods for automatically analyzing humpback song units.
Rickwood, Peter; Taylor, Andrew
2008-03-01
This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.
2017-09-01
unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber events, such as a...Furthermore, we identify unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber...2]. The applications build flow rules using network topology information provided by the control plane [1]. Since the control plane is able to
Probabilistic classifiers with high-dimensional data
Kim, Kyung In; Simon, Richard
2011-01-01
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not “anticonservative” using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set. PMID:21087946
Multivariate analysis of full-term neonatal polysomnographic data.
Gerla, V; Paul, K; Lhotska, L; Krajca, V
2009-01-01
Polysomnography (PSG) is one of the most important noninvasive methods for studying maturation of the child brain. Sleep in infants is significantly different from sleep in adults. This paper addresses the problem of computer analysis of neonatal polygraphic signals. We applied methods designed for differentiating three important neonatal behavioral states: quiet sleep, active sleep, and wakefulness. The proportion of these states is a significant indicator of the maturity of the newborn brain in clinical practice. In this study, we used data provided by the Institute for Care of Mother and Child, Prague (12 newborn infants of similar postconceptional age). The data were scored by an experienced physician to four states (wake, quiet sleep, active sleep, movement artifact). For accurate classification, it was necessary to determine the most informative features. We used a method based on power spectral density (PSD) applied to each EEG channel. We also used features derived from electrooculogram (EOG), electromyogram (EMG), ECG, and respiration [pneumogram (PNG)] signals. The most informative feature was the measure of regularity of respiration from the PNG signal. We designed an algorithm for interpreting these characteristics. This algorithm was based on Markov models. The results of automatic detection of sleep states were compared to the "sleep profiles" determined visually. We evaluated both the success rate and the true positive rate of the classification, and statistically significant agreement of the two scorings was found. Two variants, for learning and for testing, were applied, namely learning from the data of all 12 newborns and tenfold cross-validation, and learning from the data of 11 newborns and testing on the data from the 12th newborn. We utilized information obtained from several biological signals (EEG, ECG, PNG, EMG, EOG) for our final classification. We reached the final success rate of 82.5%. The true positive rate was 81.8% and the false positive rate was 6.1%. The most important step in the whole process is feature extraction and feature selection. In this process, we used visualization as an additional tool that helped us to decide which features to select. Proper selection of features may significantly influence the success rate of the classification. We made a visual comparison of the computed features with the manual scoring provided by the expert. A hidden Markov model was used for classification. The advantage of this model is that it determines the future behavior of the process by its present state. In this way, it preserves information about temporal development.
Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung
2018-03-23
Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.
EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B
2015-03-30
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Quaternion-valued single-phase model for three-phase power system
NASA Astrophysics Data System (ADS)
Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin
2018-03-01
In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
Peker, Musa; Şen, Baha; Gürüler, Hüseyin
2015-02-01
The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time.
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.
Wang, Yubo; Veluvolu, Kalyana C
2017-01-01
The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.
Classification of subsurface objects using singular values derived from signal frames
Chambers, David H; Paglieroni, David W
2014-05-06
The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
Applying cybernetic technology to diagnose human pulmonary sounds.
Chen, Mei-Yung; Chou, Cheng-Han
2014-06-01
Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.
Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003
Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.
Application of Wavelet Transform for PDZ Domain Classification
Daqrouq, Khaled; Alhmouz, Rami; Balamesh, Ahmed; Memic, Adnan
2015-01-01
PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification. PMID:25860375
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki
2017-07-01
The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).
A signal-based fault detection and classification method for heavy haul wagons
NASA Astrophysics Data System (ADS)
Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan
2017-12-01
This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.
Highlight summarization in golf videos using audio signals
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Kim, Jin Young
2008-01-01
In this paper, we present an automatic summarization of highlights in golf videos based on audio information alone without video information. The proposed highlight summarization system is carried out based on semantic audio segmentation and detection on action units from audio signals. Studio speech, field speech, music, and applause are segmented by means of sound classification. Swing is detected by the methods of impulse onset detection. Sounds like swing and applause form a complete action unit, while studio speech and music parts are used to anchor the program structure. With the advantage of highly precise detection of applause, highlights are extracted effectively. Our experimental results obtain high classification precision on 18 golf games. It proves that the proposed system is very effective and computationally efficient to apply the technology to embedded consumer electronic devices.
Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.
Srinivasan, Jayaraman; Adithya, V
2015-01-01
Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process.
Some Dimensions of Auditory Sonar Signal Perception and Their Relationships to Target Classification
1981-02-13
a priori how the sample of experimental stimuli related to the classification stereotypes of experienced sonar personnel, Question 6 was addressed by...projections on some of the experimentally identified dimensions are associ- ated with a high degree of classification success, but signals that lack ,strong...11 Hypotheses ......................... 11 Procedure ....... .. .. ......................... 11 Experimental Stimuli
Long-range dismount activity classification: LODAC
NASA Astrophysics Data System (ADS)
Garagic, Denis; Peskoe, Jacob; Liu, Fang; Cuevas, Manuel; Freeman, Andrew M.; Rhodes, Bradley J.
2014-06-01
Continuous classification of dismount types (including gender, age, ethnicity) and their activities (such as walking, running) evolving over space and time is challenging. Limited sensor resolution (often exacerbated as a function of platform standoff distance) and clutter from shadows in dense target environments, unfavorable environmental conditions, and the normal properties of real data all contribute to the challenge. The unique and innovative aspect of our approach is a synthesis of multimodal signal processing with incremental non-parametric, hierarchical Bayesian machine learning methods to create a new kind of target classification architecture. This architecture is designed from the ground up to optimally exploit correlations among the multiple sensing modalities (multimodal data fusion) and rapidly and continuously learns (online self-tuning) patterns of distinct classes of dismounts given little a priori information. This increases classification performance in the presence of challenges posed by anti-access/area denial (A2/AD) sensing. To fuse multimodal features, Long-range Dismount Activity Classification (LODAC) develops a novel statistical information theoretic approach for multimodal data fusion that jointly models multimodal data (i.e., a probabilistic model for cross-modal signal generation) and discovers the critical cross-modal correlations by identifying components (features) with maximal mutual information (MI) which is efficiently estimated using non-parametric entropy models. LODAC develops a generic probabilistic pattern learning and classification framework based on a new class of hierarchical Bayesian learning algorithms for efficiently discovering recurring patterns (classes of dismounts) in multiple simultaneous time series (sensor modalities) at multiple levels of feature granularity.
Emotion recognition based on physiological changes in music listening.
Kim, Jonghwa; André, Elisabeth
2008-12-01
Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\\% and 70\\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme.
Empirical evaluation of data normalization methods for molecular classification.
Huang, Huei-Chung; Qin, Li-Xuan
2018-01-01
Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers-an increasingly important application of microarrays in the era of personalized medicine. In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy.
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini
2011-01-01
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.
Utilizing gamma band to improve mental task based brain-computer interface design.
Palaniappan, Ramaswamy
2006-09-01
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.
Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh
2017-11-01
Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
Employing wavelet-based texture features in ammunition classification
NASA Astrophysics Data System (ADS)
Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.
2017-05-01
Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques
Fast multi-scale feature fusion for ECG heartbeat classification
NASA Astrophysics Data System (ADS)
Ai, Danni; Yang, Jian; Wang, Zeyu; Fan, Jingfan; Ai, Changbin; Wang, Yongtian
2015-12-01
Electrocardiogram (ECG) is conducted to monitor the electrical activity of the heart by presenting small amplitude and duration signals; as a result, hidden information present in ECG data is difficult to determine. However, this concealed information can be used to detect abnormalities. In our study, a fast feature-fusion method of ECG heartbeat classification based on multi-linear subspace learning is proposed. The method consists of four stages. First, baseline and high frequencies are removed to segment heartbeat. Second, as an extension of wavelets, wavelet-packet decomposition is conducted to extract features. With wavelet-packet decomposition, good time and frequency resolutions can be provided simultaneously. Third, decomposed confidences are arranged as a two-way tensor, in which feature fusion is directly implemented with generalized N dimensional ICA (GND-ICA). In this method, co-relationship among different data information is considered, and disadvantages of dimensionality are prevented; this method can also be used to reduce computing compared with linear subspace-learning methods (PCA). Finally, support vector machine (SVM) is considered as a classifier in heartbeat classification. In this study, ECG records are obtained from the MIT-BIT arrhythmia database. Four main heartbeat classes are used to examine the proposed algorithm. Based on the results of five measurements, sensitivity, positive predictivity, accuracy, average accuracy, and t-test, our conclusion is that a GND-ICA-based strategy can be used to provide enhanced ECG heartbeat classification. Furthermore, large redundant features are eliminated, and classification time is reduced.
Assessment of pedophilia using hemodynamic brain response to sexual stimuli.
Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Neutze, Janina; Deuschl, Günther; Mehdorn, Hubertus; Siebner, Hartwig; Bosinski, Hartmut
2012-02-01
Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability. To evaluate whether spatial response pattern to sexual stimuli as revealed by a change in the blood oxygen level-dependent signal facilitates the identification of pedophiles. During functional magnetic resonance imaging, pedophilic and nonpedophilic participants were briefly exposed to same- and opposite-sex images of nude children and adults. We calculated differences in blood oxygen level-dependent signals to child and adult sexual stimuli for each participant. The corresponding contrast images were entered into a group analysis to calculate whole-brain difference maps between groups. We calculated an expression value that corresponded to the group result for each participant. These expression values were submitted to 2 different classification algorithms: Fisher linear discriminant analysis and κ -nearest neighbor analysis. This classification procedure was cross-validated using the leave-one-out method. Section of Sexual Medicine, Medical School, Christian Albrechts University of Kiel, Kiel, Germany. We recruited 24 participants with pedophilia who were sexually attracted to either prepubescent girls (n = 11) or prepubescent boys (n = 13) and 32 healthy male controls who were sexually attracted to either adult women (n = 18) or adult men (n = 14). Sensitivity and specificity scores of the 2 classification algorithms. The highest classification accuracy was achieved by Fisher linear discriminant analysis, which showed a mean accuracy of 95% (100% specificity, 88% sensitivity). Functional brain response patterns to sexual stimuli contain sufficient information to identify pedophiles with high accuracy. The automatic classification of these patterns is a promising objective tool to clinically diagnose pedophilia.
Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin
2015-01-01
Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.
Performance Comparison of Superresolution Array Processing Algorithms. Revised
1998-06-15
plane waves is finite is the MUSIC algorithm [16]. MUSIC , which denotes Multiple Signal Classification, is an extension of the method of Pisarenko [18... MUSIC Is but one member of a class of methods based upon the decomposition of covariance data into eigenvectors and eigenvalues. Such techniques...techniques relative to the classical methods, however, results for MUSIC are included in this report. All of the techniques reviewed have application to
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi
2016-09-01
The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.
Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer
2015-01-01
This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.
Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario
2015-09-01
Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.
A System for Heart Sounds Classification
Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander
2014-01-01
The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113
NASA Astrophysics Data System (ADS)
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
Method of Menu Selection by Gaze Movement Using AC EOG Signals
NASA Astrophysics Data System (ADS)
Kanoh, Shin'ichiro; Futami, Ryoko; Yoshinobu, Tatsuo; Hoshimiya, Nozomu
A method to detect the direction and the distance of voluntary eye gaze movement from EOG (electrooculogram) signals was proposed and tested. In this method, AC-amplified vertical and horizontal transient EOG signals were classified into 8-class directions and 2-class distances of voluntary eye gaze movements. A horizontal and a vertical EOGs during eye gaze movement at each sampling time were treated as a two-dimensional vector, and the center of gravity of the sample vectors whose norms were more than 80% of the maximum norm was used as a feature vector to be classified. By the classification using the k-nearest neighbor algorithm, it was shown that the averaged correct detection rates on each subject were 98.9%, 98.7%, 94.4%, respectively. This method can avoid strict EOG-based eye tracking which requires DC amplification of very small signal. It would be useful to develop robust human interfacing systems based on menu selection for severely paralyzed patients.
A machine learning approach to multi-level ECG signal quality classification.
Li, Qiao; Rajagopalan, Cadathur; Clifford, Gari D
2014-12-01
Current electrocardiogram (ECG) signal quality assessment studies have aimed to provide a two-level classification: clean or noisy. However, clinical usage demands more specific noise level classification for varying applications. This work outlines a five-level ECG signal quality classification algorithm. A total of 13 signal quality metrics were derived from segments of ECG waveforms, which were labeled by experts. A support vector machine (SVM) was trained to perform the classification and tested on a simulated dataset and was validated using data from the MIT-BIH arrhythmia database (MITDB). The simulated training and test datasets were created by selecting clean segments of the ECG in the 2011 PhysioNet/Computing in Cardiology Challenge database, and adding three types of real ECG noise at different signal-to-noise ratio (SNR) levels from the MIT-BIH Noise Stress Test Database (NSTDB). The MITDB was re-annotated for five levels of signal quality. Different combinations of the 13 metrics were trained and tested on the simulated datasets and the best combination that produced the highest classification accuracy was selected and validated on the MITDB. Performance was assessed using classification accuracy (Ac), and a single class overlap accuracy (OAc), which assumes that an individual type classified into an adjacent class is acceptable. An Ac of 80.26% and an OAc of 98.60% on the test set were obtained by selecting 10 metrics while 57.26% (Ac) and 94.23% (OAc) were the numbers for the unseen MITDB validation data without retraining. By performing the fivefold cross validation, an Ac of 88.07±0.32% and OAc of 99.34±0.07% were gained on the validation fold of MITDB. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Electroencephalography (EEG) Based Control in Assistive Mobile Robots: A Review
NASA Astrophysics Data System (ADS)
Krishnan, N. Murali; Mariappan, Muralindran; Muthukaruppan, Karthigayan; Hijazi, Mohd Hanafi Ahmad; Kitt, Wong Wei
2016-03-01
Recently, EEG based control in assistive robot usage has been gradually increasing in the area of biomedical field for giving quality and stress free life for disabled and elderly people. This study reviews the deployment of EGG based control in assistive robots, especially for those who in need and neurologically disabled. The main objective of this paper is to describe the methods used for (i) EEG data acquisition and signal preprocessing, (ii) feature extraction and (iii) signal classification methods. Besides that, this study presents the specific research challenges in the designing of these control systems and future research directions.
Kernel and divergence techniques in high energy physics separations
NASA Astrophysics Data System (ADS)
Bouř, Petr; Kůs, Václav; Franc, Jiří
2017-10-01
Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.
Machine learning methods for credibility assessment of interviewees based on posturographic data.
Saripalle, Sashi K; Vemulapalli, Spandana; King, Gregory W; Burgoon, Judee K; Derakhshani, Reza
2015-01-01
This paper discusses the advantages of using posturographic signals from force plates for non-invasive credibility assessment. The contributions of our work are two fold: first, the proposed method is highly efficient and non invasive. Second, feasibility for creating an autonomous credibility assessment system using machine-learning algorithms is studied. This study employs an interview paradigm that includes subjects responding with truthful and deceptive intent while their center of pressure (COP) signal is being recorded. Classification models utilizing sets of COP features for deceptive responses are derived and best accuracy of 93.5% for test interval is reported.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-05-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.
Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics
NASA Astrophysics Data System (ADS)
Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio
2018-01-01
The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.
Emotional State Classification in Virtual Reality Using Wearable Electroencephalography
NASA Astrophysics Data System (ADS)
Suhaimi, N. S.; Teo, J.; Mountstephens, J.
2018-03-01
This paper presents the classification of emotions on EEG signals. One of the key issues in this research is the lack of mental classification using VR as the medium to stimulate emotion. The approach towards this research is by using K-nearest neighbor (KNN) and Support Vector Machine (SVM). Firstly, each of the participant will be required to wear the EEG headset and recording their brainwaves when they are immersed inside the VR. The data points are then marked if they showed any physical signs of emotion or by observing the brainwave pattern. Secondly, the data will then be tested and trained with KNN and SVM algorithms. The accuracy achieved from both methods were approximately 82% throughout the brainwave spectrum (α, β, γ, δ, θ). These methods showed promising results and will be further enhanced using other machine learning approaches in VR stimulus.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico
2014-08-01
Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.
Dottori, Martin; Sedeño, Lucas; Martorell Caro, Miguel; Alifano, Florencia; Hesse, Eugenia; Mikulan, Ezequiel; García, Adolfo M; Ruiz-Tagle, Amparo; Lillo, Patricia; Slachevsky, Andrea; Serrano, Cecilia; Fraiman, Daniel; Ibanez, Agustin
2017-06-19
Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.
Comparing transformation methods for DNA microarray data
Thygesen, Helene H; Zwinderman, Aeilko H
2004-01-01
Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method. PMID:15202953
Comparing transformation methods for DNA microarray data.
Thygesen, Helene H; Zwinderman, Aeilko H
2004-06-17
When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.
Elhaj, Fatin A; Salim, Naomie; Harris, Arief R; Swee, Tan Tian; Ahmed, Taqwa
2016-04-01
Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support vector machine and radial basis function method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-11-30
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raziff, Abdul Rafiez Abdul; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran
2017-10-01
Gait recognition is widely used in many applications. In the application of the gait identification especially in people, the number of classes (people) is many which may comprise to more than 20. Due to the large amount of classes, the usage of single classification mapping (direct classification) may not be suitable as most of the existing algorithms are mostly designed for the binary classification. Furthermore, having many classes in a dataset may result in the possibility of having a high degree of overlapped class boundary. This paper discusses the application of multiclass classifier mappings such as one-vs-all (OvA), one-vs-one (OvO) and random correction code (RCC) on handheld based smartphone gait signal for person identification. The results is then compared with a single J48 decision tree for benchmark. From the result, it can be said that using multiclass classification mapping method thus partially improved the overall accuracy especially on OvO and RCC with width factor more than 4. For OvA, the accuracy result is worse than a single J48 due to a high number of classes.
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.
Anderson, Charles W; Knight, James N; O'Connor, Tim; Kirby, Michael J; Sokolov, Artem
2006-06-01
Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.
Comparison of two target classification techniques
NASA Astrophysics Data System (ADS)
Chen, J. S.; Walton, E. K.
1986-01-01
Radar target classification techniques based on backscatter measurements in the resonance region (1.0-20.0 MHz) are discussed. Attention is given to two novel methods currently being tested at the radar range of Ohio State University. The methods include: (1) the nearest neighbor (NN) algorithm for determining the radar cross section (RCS) magnitude and range corrected phase at various operating frequencies; and (2) an inverse Fourier transformation of the complex multifrequency radar returns of the time domain, followed by cross correlation analysis. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise ratio for different types of processing. The results of the comparison are discussed in detail.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
NASA Astrophysics Data System (ADS)
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
NASA Astrophysics Data System (ADS)
Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat
2018-01-01
Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.
Matched signal detection on graphs: Theory and application to brain imaging data classification.
Hu, Chenhui; Sepulcre, Jorge; Johnson, Keith A; Fakhri, Georges E; Lu, Yue M; Li, Quanzheng
2016-01-15
Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data. Copyright © 2015. Published by Elsevier Inc.
Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang
2016-09-01
With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.
Empirical evaluation of data normalization methods for molecular classification
Huang, Huei-Chung
2018-01-01
Background Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers—an increasingly important application of microarrays in the era of personalized medicine. Methods In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. Results In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Conclusion Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy. PMID:29666754
Effects of eye artifact removal methods on single trial P300 detection, a comparative study.
Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea
2014-01-15
Electroencephalographic signals are commonly contaminated by eye artifacts, even if recorded under controlled conditions. The objective of this work was to quantitatively compare standard artifact removal methods (regression, filtered regression, Infomax, and second order blind identification (SOBI)) and two artifact identification approaches for independent component analysis (ICA) methods, i.e. ADJUST and correlation. To this end, eye artifacts were removed and the cleaned datasets were used for single trial classification of P300 (a type of event related potentials elicited using the oddball paradigm). Statistical analysis of the results confirms that the combination of Infomax and ADJUST provides a relatively better performance (0.6% improvement on average of all subject) while the combination of SOBI and correlation performs the worst. Low-pass filtering the data at lower cutoffs (here 4 Hz) can also improve the classification accuracy. Without requiring any artifact reference channel, the combination of Infomax and ADJUST improves the classification performance more than the other methods for both examined filtering cutoffs, i.e., 4 Hz and 25 Hz. Copyright © 2013 Elsevier B.V. All rights reserved.
A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine
Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini
2013-01-01
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136
Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin
2014-07-03
Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems.
Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan
2016-10-01
Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.
Hyperspectral small animal fluorescence imaging: spectral selection imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul
2008-02-01
Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.
NASA Astrophysics Data System (ADS)
Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.
2015-08-01
Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Bianchi, Anna M; Mendez, Martin O
2010-01-01
In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
Underwater target classification using wavelet packets and neural networks.
Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J
2000-01-01
In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.
NASA Astrophysics Data System (ADS)
Alehosseini, Ali; A. Hejazi, Maryam; Mokhtari, Ghassem; B. Gharehpetian, Gevork; Mohammadi, Mohammad
2015-06-01
In this paper, the Bayesian classifier is used to detect and classify the radial deformation and axial displacement of transformer windings. The proposed method is tested on a model of transformer for different volumes of radial deformation and axial displacement. In this method, ultra-wideband (UWB) signal is sent to the simplified model of the transformer winding. The received signal from the winding model is recorded and used for training and testing of Bayesian classifier in different axial displacement and radial deformation states of the winding. It is shown that the proposed method has a good accuracy to detect and classify the axial displacement and radial deformation of the winding.
Brauchli Pernus, Yolanda; Nan, Cassandra; Verstraeten, Thomas; Pedenko, Mariia; Osokogu, Osemeke U; Weibel, Daniel; Sturkenboom, Miriam; Bonhoeffer, Jan
2016-12-12
Safety signal detection in spontaneous reporting system databases and electronic healthcare records is key to detection of previously unknown adverse events following immunization. Various statistical methods for signal detection in these different datasources have been developed, however none are geared to the pediatric population and none specifically to vaccines. A reference set comprising pediatric vaccine-adverse event pairs is required for reliable performance testing of statistical methods within and across data sources. The study was conducted within the context of the Global Research in Paediatrics (GRiP) project, as part of the seventh framework programme (FP7) of the European Commission. Criteria for the selection of vaccines considered in the reference set were routine and global use in the pediatric population. Adverse events were primarily selected based on importance. Outcome based systematic literature searches were performed for all identified vaccine-adverse event pairs and complemented by expert committee reports, evidence based decision support systems (e.g. Micromedex), and summaries of product characteristics. Classification into positive (PC) and negative control (NC) pairs was performed by two independent reviewers according to a pre-defined algorithm and discussed for consensus in case of disagreement. We selected 13 vaccines and 14 adverse events to be included in the reference set. From a total of 182 vaccine-adverse event pairs, we classified 18 as PC, 113 as NC and 51 as unclassifiable. Most classifications (91) were based on literature review, 45 were based on expert committee reports, and for 46 vaccine-adverse event pairs, an underlying pathomechanism was not plausible classifying the association as NC. A reference set of vaccine-adverse event pairs was developed. We propose its use for comparing signal detection methods and systems in the pediatric population. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gorthi, Sai Siva; Rajshekhar, Gannavarpu; Rastogi, Pramod
2010-06-01
Recently, a high-order instantaneous moments (HIM)-operator-based method was proposed for accurate phase estimation in digital holographic interferometry. The method relies on piece-wise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients from the HIM operator using single-tone frequency estimation. The work presents a comparative analysis of the performance of different single-tone frequency estimation techniques, like Fourier transform followed by optimization, estimation of signal parameters by rotational invariance technique (ESPRIT), multiple signal classification (MUSIC), and iterative frequency estimation by interpolation on Fourier coefficients (IFEIF) in HIM-operator-based methods for phase estimation. Simulation and experimental results demonstrate the potential of the IFEIF technique with respect to computational efficiency and estimation accuracy.
Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.
Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk
2016-09-27
A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Guo, Lei; Abbosh, Amin
2018-05-01
For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Lin, Yuan-Pin; Yang, Yi-Hsuan; Jung, Tzyy-Ping
2014-01-01
Electroencephalography (EEG)-based emotion classification during music listening has gained increasing attention nowadays due to its promise of potential applications such as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and implicit multimedia tagging and triggering. However, music is an ecologically valid and complex stimulus that conveys certain emotions to listeners through compositions of musical elements. Using solely EEG signals to distinguish emotions remained challenging. This study aimed to assess the applicability of a multimodal approach by leveraging the EEG dynamics and acoustic characteristics of musical contents for the classification of emotional valence and arousal. To this end, this study adopted machine-learning methods to systematically elucidate the roles of the EEG and music modalities in the emotion modeling. The empirical results suggested that when whole-head EEG signals were available, the inclusion of musical contents did not improve the classification performance. The obtained performance of 74~76% using solely EEG modality was statistically comparable to that using the multimodality approach. However, if EEG dynamics were only available from a small set of electrodes (likely the case in real-life applications), the music modality would play a complementary role and augment the EEG results from around 61-67% in valence classification and from around 58-67% in arousal classification. The musical timber appeared to replace less-discriminative EEG features and led to improvements in both valence and arousal classification, whereas musical loudness was contributed specifically to the arousal classification. The present study not only provided principles for constructing an EEG-based multimodal approach, but also revealed the fundamental insights into the interplay of the brain activity and musical contents in emotion modeling.
Lin, Yuan-Pin; Yang, Yi-Hsuan; Jung, Tzyy-Ping
2014-01-01
Electroencephalography (EEG)-based emotion classification during music listening has gained increasing attention nowadays due to its promise of potential applications such as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and implicit multimedia tagging and triggering. However, music is an ecologically valid and complex stimulus that conveys certain emotions to listeners through compositions of musical elements. Using solely EEG signals to distinguish emotions remained challenging. This study aimed to assess the applicability of a multimodal approach by leveraging the EEG dynamics and acoustic characteristics of musical contents for the classification of emotional valence and arousal. To this end, this study adopted machine-learning methods to systematically elucidate the roles of the EEG and music modalities in the emotion modeling. The empirical results suggested that when whole-head EEG signals were available, the inclusion of musical contents did not improve the classification performance. The obtained performance of 74~76% using solely EEG modality was statistically comparable to that using the multimodality approach. However, if EEG dynamics were only available from a small set of electrodes (likely the case in real-life applications), the music modality would play a complementary role and augment the EEG results from around 61–67% in valence classification and from around 58–67% in arousal classification. The musical timber appeared to replace less-discriminative EEG features and led to improvements in both valence and arousal classification, whereas musical loudness was contributed specifically to the arousal classification. The present study not only provided principles for constructing an EEG-based multimodal approach, but also revealed the fundamental insights into the interplay of the brain activity and musical contents in emotion modeling. PMID:24822035
Analysis of swallowing sounds using hidden Markov models.
Aboofazeli, Mohammad; Moussavi, Zahra
2008-04-01
In recent years, acoustical analysis of the swallowing mechanism has received considerable attention due to its diagnostic potentials. This paper presents a hidden Markov model (HMM) based method for the swallowing sound segmentation and classification. Swallowing sound signals of 15 healthy and 11 dysphagic subjects were studied. The signals were divided into sequences of 25 ms segments each of which were represented by seven features. The sequences of features were modeled by HMMs. Trained HMMs were used for segmentation of the swallowing sounds into three distinct phases, i.e., initial quiet period, initial discrete sounds (IDS) and bolus transit sounds (BTS). Among the seven features, accuracy of segmentation by the HMM based on multi-scale product of wavelet coefficients was higher than that of the other HMMs and the linear prediction coefficient (LPC)-based HMM showed the weakest performance. In addition, HMMs were used for classification of the swallowing sounds of healthy subjects and dysphagic patients. Classification accuracy of different HMM configurations was investigated. When we increased the number of states of the HMMs from 4 to 8, the classification error gradually decreased. In most cases, classification error for N=9 was higher than that of N=8. Among the seven features used, root mean square (RMS) and waveform fractal dimension (WFD) showed the best performance in the HMM-based classification of swallowing sounds. When the sequences of the features of IDS segment were modeled separately, the accuracy reached up to 85.5%. As a second stage classification, a screening algorithm was used which correctly classified all the subjects but one healthy subject when RMS was used as characteristic feature of the swallowing sounds and the number of states was set to N=8.
Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps
NASA Technical Reports Server (NTRS)
Stroeer, A.; Blackburn, L.; Camp, J.
2011-01-01
Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.
A frequency domain analysis of respiratory variations in the seismocardiogram signal.
Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A
2013-01-01
The seismocardiogram (SCG) signal traditionally measured using a chest-mounted accelerometer contains low-frequency (0-100 Hz) cardiac vibrations that can be used to derive diagnostically relevant information about cardiovascular and cardiopulmonary health. This work is aimed at investigating the effects of respiration on the frequency domain characteristics of SCG signals measured from 18 healthy subjects. Toward this end, the 0-100 Hz SCG signal bandwidth of interest was sub-divided into 5 Hz and 10 Hz frequency bins to compare the spectral energy in corresponding frequency bins of the SCG signal measured during three key conditions of respiration--inspiration, expiration, and apnea. Statistically significant differences were observed between the power in ensemble averaged inspiratory and expiratory SCG beats and between ensemble averaged inspiratory and apneaic beats across the 18 subjects for multiple frequency bins in the 10-40 Hz frequency range. Accordingly, the spectral analysis methods described in this paper could provide complementary and improved classification of respiratory modulations in the SCG signal over and above time-domain SCG analysis methods.
Affective Computing and the Impact of Gender and Age
Rukavina, Stefanie; Gruss, Sascha; Hoffmann, Holger; Tan, Jun-Wen; Walter, Steffen; Traue, Harald C.
2016-01-01
Affective computing aims at the detection of users’ mental states, in particular, emotions and dispositions during human-computer interactions. Detection can be achieved by measuring multimodal signals, namely, speech, facial expressions and/or psychobiology. Over the past years, one major approach was to identify the best features for each signal using different classification methods. Although this is of high priority, other subject-specific variables should not be neglected. In our study, we analyzed the effect of gender, age, personality and gender roles on the extracted psychobiological features (derived from skin conductance level, facial electromyography and heart rate variability) as well as the influence on the classification results. In an experimental human-computer interaction, five different affective states with picture material from the International Affective Picture System and ULM pictures were induced. A total of 127 subjects participated in the study. Among all potentially influencing variables (gender has been reported to be influential), age was the only variable that correlated significantly with psychobiological responses. In summary, the conducted classification processes resulted in 20% classification accuracy differences according to age and gender, especially when comparing the neutral condition with four other affective states. We suggest taking age and gender specifically into account for future studies in affective computing, as these may lead to an improvement of emotion recognition accuracy. PMID:26939129
Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés
2016-07-15
Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.
Acoustic firearm discharge detection and classification in an enclosed environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul
2016-05-01
Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.
Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor
2010-05-01
Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal
Leak detection in gas pipeline by acoustic and signal processing - A review
NASA Astrophysics Data System (ADS)
Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.
2015-12-01
The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.
Li, Pengfei; Jiang, Yongying; Xiang, Jiawei
2014-01-01
To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves
NASA Astrophysics Data System (ADS)
Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan
2017-06-01
The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.
Signal peptide discrimination and cleavage site identification using SVM and NN.
Kazemian, H B; Yusuf, S A; White, K
2014-02-01
About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.
Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.
Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha
2016-08-01
Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.
2017-01-01
Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070
Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G
2017-01-01
Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
Classifying High-noise EEG in Complex Environments for Brain-computer Interaction Technologies
2012-02-01
differentiation in the brain signal that our classification approach seeks to identify despite the noise in the recorded EEG signal and the complexity of...performed two offline classifications , one using BCILab (1), the other using LibSVM (2). Distinct classifiers were trained for each individual in...order to improve individual classifier performance (3). The highest classification performance results were obtained using individual frequency bands
Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree
2008-04-01
REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.
Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed
2018-01-01
The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shokrollahi, Mehrnaz; Krishnan, Sridhar; Dopsa, Dustin D; Muir, Ryan T; Black, Sandra E; Swartz, Richard H; Murray, Brian J; Boulos, Mark I
2016-11-01
Stroke is a leading cause of death and disability in adults, and incurs a significant economic burden to society. Periodic limb movements (PLMs) in sleep are repetitive movements involving the great toe, ankle, and hip. Evolving evidence suggests that PLMs may be associated with high blood pressure and stroke, but this relationship remains underexplored. Several issues limit the study of PLMs including the need to manually score them, which is time-consuming and costly. For this reason, we developed a novel automated method for nocturnal PLM detection, which was shown to be correlated with (a) the manually scored PLM index on polysomnography, and (b) white matter hyperintensities on brain imaging, which have been demonstrated to be associated with PLMs. Our proposed algorithm consists of three main stages: (1) representing the signal in the time-frequency plane using time-frequency matrices (TFM), (2) applying K-nonnegative matrix factorization technique to decompose the TFM matrix into its significant components, and (3) applying kernel sparse representation for classification (KSRC) to the decomposed signal. Our approach was applied to a dataset that consisted of 65 subjects who underwent polysomnography. An overall classification of 97 % was achieved for discrimination of the aforementioned signals, demonstrating the potential of the presented method.
Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
Jang, Eun-Hye; Park, Byoung-Jun; Park, Mi-Sook; Kim, Sang-Hyeob; Sohn, Jin-Hun
2015-06-18
The aim of the study was to examine the differences of boredom, pain, and surprise. In addition to that, it was conducted to propose approaches for emotion recognition based on physiological signals. Three emotions, boredom, pain, and surprise, are induced through the presentation of emotional stimuli and electrocardiography (ECG), electrodermal activity (EDA), skin temperature (SKT), and photoplethysmography (PPG) as physiological signals are measured to collect a dataset from 217 participants when experiencing the emotions. Twenty-seven physiological features are extracted from the signals to classify the three emotions. The discriminant function analysis (DFA) as a statistical method, and five machine learning algorithms (linear discriminant analysis (LDA), classification and regression trees (CART), self-organizing map (SOM), Naïve Bayes algorithm, and support vector machine (SVM)) are used for classifying the emotions. The result shows that the difference of physiological responses among emotions is significant in heart rate (HR), skin conductance level (SCL), skin conductance response (SCR), mean skin temperature (meanSKT), blood volume pulse (BVP), and pulse transit time (PTT), and the highest recognition accuracy of 84.7% is obtained by using DFA. This study demonstrates the differences of boredom, pain, and surprise and the best emotion recognizer for the classification of the three emotions by using physiological signals.
Robust Indoor Human Activity Recognition Using Wireless Signals.
Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang
2015-07-15
Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
Features selection and classification to estimate elbow movements
NASA Astrophysics Data System (ADS)
Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.
2015-11-01
In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-01-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666
Common component classification: what can we learn from machine learning?
Anderson, Ariana; Labus, Jennifer S; Vianna, Eduardo P; Mayer, Emeran A; Cohen, Mark S
2011-05-15
Machine learning methods have been applied to classifying fMRI scans by studying locations in the brain that exhibit temporal intensity variation between groups, frequently reporting classification accuracy of 90% or better. Although empirical results are quite favorable, one might doubt the ability of classification methods to withstand changes in task ordering and the reproducibility of activation patterns over runs, and question how much of the classification machines' power is due to artifactual noise versus genuine neurological signal. To examine the true strength and power of machine learning classifiers we create and then deconstruct a classifier to examine its sensitivity to physiological noise, task reordering, and across-scan classification ability. The models are trained and tested both within and across runs to assess stability and reproducibility across conditions. We demonstrate the use of independent components analysis for both feature extraction and artifact removal and show that removal of such artifacts can reduce predictive accuracy even when data has been cleaned in the preprocessing stages. We demonstrate how mistakes in the feature selection process can cause the cross-validation error seen in publication to be a biased estimate of the testing error seen in practice and measure this bias by purposefully making flawed models. We discuss other ways to introduce bias and the statistical assumptions lying behind the data and model themselves. Finally we discuss the complications in drawing inference from the smaller sample sizes typically seen in fMRI studies, the effects of small or unbalanced samples on the Type 1 and Type 2 error rates, and how publication bias can give a false confidence of the power of such methods. Collectively this work identifies challenges specific to fMRI classification and methods affecting the stability of models. Copyright © 2010 Elsevier Inc. All rights reserved.
Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli.
Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Mehdorn, Hubertus; Bosinski, Hartmut; Siebner, Hartwig
2009-06-01
The assessment of sexual orientation is of importance to the diagnosis and treatment of sex offenders and paraphilic disorders. Phallometry is considered gold standard in objectifying sexual orientation, yet this measurement has been criticized because of its intrusiveness and limited reliability. To evaluate whether the spatial response pattern to sexual stimuli as revealed by a change in blood oxygen level-dependent (BOLD) signal can be used for individual classification of sexual orientation. We used a preexisting functional MRI (fMRI) data set that had been acquired in a nonclinical sample of 12 heterosexual men and 14 homosexual men. During fMRI, participants were briefly exposed to pictures of same-sex and opposite-sex genitals. Data analysis involved four steps: (i) differences in the BOLD response to female and male sexual stimuli were calculated for each subject; (ii) these contrast images were entered into a group analysis to calculate whole-brain difference maps between homosexual and heterosexual participants; (iii) a single expression value was computed for each subject expressing its correspondence to the group result; and (iv) based on these expression values, Fisher's linear discriminant analysis and the kappa-nearest neighbor classification method were used to predict the sexual orientation of each subject. Sensitivity and specificity of the two classification methods in predicting individual sexual orientation. Both classification methods performed well in predicting individual sexual orientation with a mean accuracy of >85% (Fisher's linear discriminant analysis: 92% sensitivity, 85% specificity; kappa-nearest neighbor classification: 88% sensitivity, 92% specificity). Despite the small sample size, the functional response patterns of the brain to sexual stimuli contained sufficient information to predict individual sexual orientation with high accuracy. These results suggest that fMRI-based classification methods hold promise for the diagnosis of paraphilic disorders (e.g., pedophilia).
Lee, Boon-Giin; Lee, Boon-Leng; Chung, Wan-Young
2014-01-01
Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG) and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz) regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT) method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI) technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM) and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals. PMID:25264954
2013-01-01
Background Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals. Methods Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature ‘Hurst’ was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers – Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm. Results Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively. Conclusions The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. PMID:23680041
Signature extension: An approach to operational multispectral surveys
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Morgenstern, J. P.
1973-01-01
Two data processing techniques were suggested as applicable to the large area survey problem. One approach was to use unsupervised classification (clustering) techniques. Investigation of this method showed that since the method did nothing to reduce the signal variability, the use of this method would be very time consuming and possibly inaccurate as well. The conclusion is that unsupervised classification techniques of themselves are not a solution to the large area survey problem. The other method investigated was the use of signature extension techniques. Such techniques function by normalizing the data to some reference condition. Thus signatures from an isolated area could be used to process large quantities of data. In this manner, ground information requirements and computer training are minimized. Several signature extension techniques were tested. The best of these allowed signatures to be extended between data sets collected four days and 80 miles apart with an average accuracy of better than 90%.
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
Particle Swarm Optimization approach to defect detection in armour ceramics.
Kesharaju, Manasa; Nagarajah, Romesh
2017-03-01
In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.
Liu, Bernard A
2017-01-01
Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.
Removal of BCG artifacts using a non-Kirchhoffian overcomplete representation.
Dyrholm, Mads; Goldman, Robin; Sajda, Paul; Brown, Truman R
2009-02-01
We present a nonlinear unmixing approach for extracting the ballistocardiogram (BCG) from EEG recorded in an MR scanner during simultaneous acquisition of functional MRI (fMRI). First, an overcomplete basis is identified in the EEG based on a custom multipath EEG electrode cap. Next, the overcomplete basis is used to infer non-Kirchhoffian latent variables that are not consistent with a conservative electric field. Neural activity is strictly Kirchhoffian while the BCG artifact is not, and the representation can hence be used to remove the artifacts from the data in a way that does not attenuate the neural signals needed for optimal single-trial classification performance. We compare our method to more standard methods for BCG removal, namely independent component analysis and optimal basis sets, by looking at single-trial classification performance for an auditory oddball experiment. We show that our overcomplete representation method for removing BCG artifacts results in better single-trial classification performance compared to the conventional approaches, indicating that the derived neural activity in this representation retains the complex information in the trial-to-trial variability.
Yang, Jiaojiao; Guo, Qian; Li, Wenjie; Wang, Suhong; Zou, Ling
2016-04-01
This paper aims to assist the individual clinical diagnosis of children with attention-deficit/hyperactivity disorder using electroencephalogram signal detection method.Firstly,in our experiments,we obtained and studied the electroencephalogram signals from fourteen attention-deficit/hyperactivity disorder children and sixteen typically developing children during the classic interference control task of Simon-spatial Stroop,and we completed electroencephalogram data preprocessing including filtering,segmentation,removal of artifacts and so on.Secondly,we selected the subset electroencephalogram electrodes using principal component analysis(PCA)method,and we collected the common channels of the optimal electrodes which occurrence rates were more than 90%in each kind of stimulation.We then extracted the latency(200~450ms)mean amplitude features of the common electrodes.Finally,we used the k-nearest neighbor(KNN)classifier based on Euclidean distance and the support vector machine(SVM)classifier based on radial basis kernel function to classify.From the experiment,at the same kind of interference control task,the attention-deficit/hyperactivity disorder children showed lower correct response rates and longer reaction time.The N2 emerged in prefrontal cortex while P2 presented in the inferior parietal area when all kinds of stimuli demonstrated.Meanwhile,the children with attention-deficit/hyperactivity disorder exhibited markedly reduced N2 and P2amplitude compared to typically developing children.KNN resulted in better classification accuracy than SVM classifier,and the best classification rate was 89.29%in StI task.The results showed that the electroencephalogram signals were different in the brain regions of prefrontal cortex and inferior parietal cortex between attention-deficit/hyperactivity disorder and typically developing children during the interference control task,which provided a scientific basis for the clinical diagnosis of attention-deficit/hyperactivity disorder individuals.
NASA Astrophysics Data System (ADS)
Mantini, D.; Alleva, G.; Comani, S.
2005-10-01
Fetal magnetocardiography (fMCG) allows monitoring the fetal heart function through algorithms able to retrieve the fetal cardiac signal, but no standardized automatic model has become available so far. In this paper, we describe an automatic method that restores the fetal cardiac trace from fMCG recordings by means of a weighted summation of fetal components separated with independent component analysis (ICA) and identified through dedicated algorithms that analyse the frequency content and temporal structure of each source signal. Multichannel fMCG datasets of 66 healthy and 4 arrhythmic fetuses were used to validate the automatic method with respect to a classical procedure requiring the manual classification of fetal components by an expert investigator. ICA was run with input clusters of different dimensions to simulate various MCG systems. Detection rates, true negative and false positive component categorization, QRS amplitude, standard deviation and signal-to-noise ratio of reconstructed fetal signals, and real and per cent QRS differences between paired fetal traces retrieved automatically and manually were calculated to quantify the performances of the automatic method. Its robustness and reliability, particularly evident with the use of large input clusters, might increase the diagnostic role of fMCG during the prenatal period.
NASA Astrophysics Data System (ADS)
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.
Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza
2017-04-01
Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.
2010-05-01
This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a base platform for a future integrated system that will incorporate services such as notifications for field station power failures, disruption of data flow, occurring SEs, and even other types of measurement and analysis processes such as the integration of a special analysis algorithm based on the ratio of short term to long term signal average.
An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...
Kashihara, Koji
2014-01-01
Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression. PMID:25206321
Kashihara, Koji
2014-01-01
Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression.
Using self-organizing maps to classify humpback whale song units and quantify their similarity.
Allen, Jenny A; Murray, Anita; Noad, Michael J; Dunlop, Rebecca A; Garland, Ellen C
2017-10-01
Classification of vocal signals can be undertaken using a wide variety of qualitative and quantitative techniques. Using east Australian humpback whale song from 2002 to 2014, a subset of vocal signals was acoustically measured and then classified using a Self-Organizing Map (SOM). The SOM created (1) an acoustic dictionary of units representing the song's repertoire, and (2) Cartesian distance measurements among all unit types (SOM nodes). Utilizing the SOM dictionary as a guide, additional song recordings from east Australia were rapidly (manually) transcribed. To assess the similarity in song sequences, the Cartesian distance output from the SOM was applied in Levenshtein distance similarity analyses as a weighting factor to better incorporate unit similarity in the calculation (previously a qualitative process). SOMs provide a more robust and repeatable means of categorizing acoustic signals along with a clear quantitative measurement of sound type similarity based on acoustic features. This method can be utilized for a wide variety of acoustic databases especially those containing very large datasets and can be applied across the vocalization research community to help address concerns surrounding inconsistency in manual classification.
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc
2016-10-01
Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.
Identification and classification of upper limb motions using PCA.
Veer, Karan; Vig, Renu
2018-03-28
This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.
STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadely, Ross; Willman, Beth; Hogg, David W.
2012-11-20
Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r {approx}> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM <0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training datamore » to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVM{sub best}) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM{sub real}) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering {approx}80% completeness, with purity of {approx}60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM{sub best}, HB, ML, and SVM{sub real}. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.« less
Classification of ictal and seizure-free HRV signals with focus on lateralization of epilepsy.
Behbahani, Soroor; Dabanloo, Nader Jafarnia; Nasrabadi, Ali Motie; Dourado, Antonio
2016-01-01
Epileptic onsets often affect the autonomic function of the body during a seizure, whether it is in ictal, interictal or post-ictal periods. The different effects of localization and lateralization of seizures on heart rate variability (HRV) emphasize the importance of autonomic function changes in epileptic patients. On the other hand, the detection of seizures is of primary interests in evaluating the epileptic patients. In the current paper, we analyzed the HRV signal to develop a reliable offline seizure-detection algorithm to focus on the effects of lateralization on HRV. We assessed the HRV during 5-min segments of continuous electrocardiogram (ECG) recording with a total number of 170 seizures occurred in 16 patients, composed of 86 left-sided and 84 right-sided focus seizures. Relatively high and low-frequency components of the HRV were computed using spectral analysis. Poincaré parameters of each heart rate time series considered as non-linear features. We fed these features to the Support Vector Machines (SVMs) to find a robust classification method to classify epileptic and non-epileptic signals. Leave One Out Cross-Validation (LOOCV) approach was used to demonstrate the consistency of the classification results. Our obtained classification accuracy confirms that the proposed scheme has a potential in classifying HRV signals to epileptic and non-epileptic classes. The accuracy rates for right-sided and left-sided focus seizures were obtained as 86.74% and 79.41%, respectively. The main finding of our study is that the patients with right-sided focus epilepsy showed more reduction in parasympathetic activity and more increase in sympathetic activity. It can be a marker of impaired vagal activity associated with increased cardiovascular risk and arrhythmias. Our results suggest that lateralization of the seizure onset zone could exert different influences on heart rate changes. A right-sided seizure would cause an ictal tachycardia whereas a left-sided seizure would result in an ictal bradycardia.
Scherer, Klaus R.; Schuller, Björn W.
2018-01-01
In the present study, we applied Machine Learning (ML) methods to identify psychobiological markers of cognitive processes involved in the process of emotion elicitation as postulated by the Component Process Model (CPM). In particular, we focused on the automatic detection of five appraisal checks—novelty, intrinsic pleasantness, goal conduciveness, control, and power—in electroencephalography (EEG) and facial electromyography (EMG) signals. We also evaluated the effects on classification accuracy of averaging the raw physiological signals over different numbers of trials, and whether the use of minimal sets of EEG channels localized over specific scalp regions of interest are sufficient to discriminate between appraisal checks. We demonstrated the effectiveness of our approach on two data sets obtained from previous studies. Our results show that novelty and power appraisal checks can be consistently detected in EEG signals above chance level (binary tasks). For novelty, the best classification performance in terms of accuracy was achieved using features extracted from the whole scalp, and by averaging across 20 individual trials in the same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance was obtained by using the signals from four pre-selected EEG channels averaged across all trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate that accurate classification can be achieved with a relatively small number of trials and channels, but that averaging across a larger number of individual trials is beneficial for the classification for both appraisal checks. We were not able to detect any evidence of the appraisal checks under study in the EMG data. The proposed methodology is a promising tool for the study of the psychophysiological mechanisms underlying emotional episodes, and their application to the development of computerized tools (e.g., Brain-Computer Interface) for the study of cognitive processes involved in emotions. PMID:29293572
Coutinho, Eduardo; Gentsch, Kornelia; van Peer, Jacobien; Scherer, Klaus R; Schuller, Björn W
2018-01-01
In the present study, we applied Machine Learning (ML) methods to identify psychobiological markers of cognitive processes involved in the process of emotion elicitation as postulated by the Component Process Model (CPM). In particular, we focused on the automatic detection of five appraisal checks-novelty, intrinsic pleasantness, goal conduciveness, control, and power-in electroencephalography (EEG) and facial electromyography (EMG) signals. We also evaluated the effects on classification accuracy of averaging the raw physiological signals over different numbers of trials, and whether the use of minimal sets of EEG channels localized over specific scalp regions of interest are sufficient to discriminate between appraisal checks. We demonstrated the effectiveness of our approach on two data sets obtained from previous studies. Our results show that novelty and power appraisal checks can be consistently detected in EEG signals above chance level (binary tasks). For novelty, the best classification performance in terms of accuracy was achieved using features extracted from the whole scalp, and by averaging across 20 individual trials in the same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance was obtained by using the signals from four pre-selected EEG channels averaged across all trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate that accurate classification can be achieved with a relatively small number of trials and channels, but that averaging across a larger number of individual trials is beneficial for the classification for both appraisal checks. We were not able to detect any evidence of the appraisal checks under study in the EMG data. The proposed methodology is a promising tool for the study of the psychophysiological mechanisms underlying emotional episodes, and their application to the development of computerized tools (e.g., Brain-Computer Interface) for the study of cognitive processes involved in emotions.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks
NASA Technical Reports Server (NTRS)
Smith, Aaron; Evans, Michael; Downey, Joseph
2017-01-01
National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
NASA Astrophysics Data System (ADS)
Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.
2013-04-01
Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.
MUSIC imaging method for electromagnetic inspection of composite multi-layers
NASA Astrophysics Data System (ADS)
Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique
2015-03-01
A first-order asymptotic formulation of the electric field scattered by a small inclusion (with respect to the wavelength in dielectric regime or to the skin depth in conductive regime) embedded in composite material is given. It is validated by comparison with results obtained using a Method of Moments (MoM). A non-iterative MUltiple SIgnal Classification (MUSIC) imaging method is utilized in the same configuration to locate the position of small defects. The effectiveness of the imaging algorithm is illustrated through some numerical examples.
Detection of epileptic seizure in EEG signals using linear least squares preprocessing.
Roshan Zamir, Z
2016-09-01
An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pathological speech signal analysis and classification using empirical mode decomposition.
Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar
2013-07-01
Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.
Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.
Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen
2016-01-01
Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p < 0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical practice and which do not have an accelerometer built-in.
NASA Astrophysics Data System (ADS)
Zhang, Meijun; Tang, Jian; Zhang, Xiaoming; Zhang, Jiaojiao
2016-03-01
The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.
Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T
2017-01-07
One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.
Automatic classification of background EEG activity in healthy and sick neonates
NASA Astrophysics Data System (ADS)
Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj
2010-02-01
The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.
NASA Astrophysics Data System (ADS)
Barton, Sinead J.; Kerr, Laura T.; Domijan, Katarina; Hennelly, Bryan M.
2016-04-01
Raman micro-spectroscopy is an optoelectronic technique that can be used to evaluate the chemical composition of biological samples and has been shown to be a powerful diagnostic tool for the investigation of various cancer related diseases including bladder, breast, and cervical cancer. Raman scattering is an inherently weak process with approximately 1 in 107 photons undergoing scattering and for this reason, noise from the recording system can have a significant impact on the quality of the signal, and its suitability for diagnostic classification. The main sources of noise in the recorded signal are shot noise, CCD dark current, and CCD readout noise. Shot noise results from the low signal photon count while dark current results from thermally generated electrons in the semiconductor pixels. Both of these noise sources are time dependent; readout noise is time independent but is inherent in each individual recording and results in the fundamental limit of measurement, arising from the internal electronics of the camera. In this paper, each of the aforementioned noise sources are analysed in isolation, and used to experimentally validate a mathematical model. This model is then used to simulate spectra that might be acquired under various experimental conditions including the use of different cameras, different source wavelength, and power etc. Simulated noisy datasets of T24 and RT112 cell line spectra are generated based on true cell Raman spectrum irradiance values (recorded using very long exposure times) and the addition of simulated noise. These datasets are then input to multivariate classification using Principal Components Analysis and Linear Discriminant Analysis. This method enables an investigation into the effect of noise on the sensitivity and specificity of Raman based classification under various experimental conditions and using different equipment.
Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging
Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao
2016-01-01
Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114
Empirical Wavelet Transform Based Features for Classification of Parkinson's Disease Severity.
Oung, Qi Wei; Muthusamy, Hariharan; Basah, Shafriza Nisha; Lee, Hoileong; Vijean, Vikneswaran
2017-12-29
Parkinson's disease (PD) is a type of progressive neurodegenerative disorder that has affected a large part of the population till now. Several symptoms of PD include tremor, rigidity, slowness of movements and vocal impairments. In order to develop an effective diagnostic system, a number of algorithms were proposed mainly to distinguish healthy individuals from the ones with PD. However, most of the previous works were conducted based on a binary classification, with the early PD stage and the advanced ones being treated equally. Therefore, in this work, we propose a multiclass classification with three classes of PD severity level (mild, moderate, severe) and healthy control. The focus is to detect and classify PD using signals from wearable motion and audio sensors based on both empirical wavelet transform (EWT) and empirical wavelet packet transform (EWPT) respectively. The EWT/EWPT was applied to decompose both speech and motion data signals up to five levels. Next, several features are extracted after obtaining the instantaneous amplitudes and frequencies from the coefficients of the decomposed signals by applying the Hilbert transform. The performance of the algorithm was analysed using three classifiers - K-nearest neighbour (KNN), probabilistic neural network (PNN) and extreme learning machine (ELM). Experimental results demonstrated that our proposed approach had the ability to differentiate PD from non-PD subjects, including their severity level - with classification accuracies of more than 90% using EWT/EWPT-ELM based on signals from motion and audio sensors respectively. Additionally, classification accuracy of more than 95% was achieved when EWT/EWPT-ELM is applied to signals from integration of both signal's information.
Annotation and prediction of stress and workload from physiological and inertial signals.
Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals.
LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques
NASA Technical Reports Server (NTRS)
Thompson, David E.; Thirumalainambi, Rajkumar
2006-01-01
This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.
Grid mapping: a novel method of signal quality evaluation on a single lead electrocardiogram.
Li, Yanjun; Tang, Xiaoying
2017-12-01
Diagnosis of long-term electrocardiogram (ECG) calls for automatic and accurate methods of ECG signal quality estimation, not only to lighten the burden of the doctors but also to avoid misdiagnoses. In this paper, a novel waveform-based method of phase-space reconstruction for signal quality estimation on a single lead ECG was proposed by projecting the amplitude of the ECG and its first order difference into grid cells. The waveform of a single lead ECG was divided into non-overlapping episodes (T s = 10, 20, 30 s), and the number of grids in both the width and the height of each map are in the range [20, 100] (N X = N Y = 20, 30, 40, … 90, 100). The blank pane ratio (BPR) and the entropy were calculated from the distribution of ECG sampling points which were projected into the grid cells. Signal Quality Indices (SQI) bSQI and eSQI were calculated according to the BPR and the entropy, respectively. The MIT-BIH Noise Stress Test Database was used to test the performance of bSQI and eSQI on ECG signal quality estimation. The signal-to-noise ratio (SNR) during the noisy segments of the ECG records in the database is 24, 18, 12, 6, 0 and - 6 dB, respectively. For the SQI quantitative analysis, the records were divided into three groups: good quality group (24, 18 dB), moderate group (12, 6 dB) and bad quality group (0, - 6 dB). The classification among good quality group, moderate quality group and bad quality group were made by linear support-vector machine with the combination of the BPR, the entropy, the bSQI and the eSQI. The classification accuracy was 82.4% and the Cohen's Kappa coefficient was 0.74 on a scale of N X = 40 and T s = 20 s. In conclusion, the novel grid mapping offers an intuitive and simple approach to achieving signal quality estimation on a single lead ECG.
Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio
2010-09-01
Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By using a set of features directly derived from raw data, we obtained promising results. Furthermore, although the technique has been developed within the scope of isometric force and torque signal analysis, it can be applied to other detection problems where several simple detectors are available. Copyright (c) 2010 Elsevier B.V. All rights reserved.
An Analysis of Periodic Components in BL Lac Object S5 0716 +714 with MUSIC Method
NASA Astrophysics Data System (ADS)
Tang, J.
2012-01-01
Multiple signal classification (MUSIC) algorithms are introduced to the estimation of the period of variation of BL Lac objects.The principle of MUSIC spectral analysis method and theoretical analysis of the resolution of frequency spectrum using analog signals are included. From a lot of literatures, we have collected a lot of effective observation data of BL Lac object S5 0716 + 714 in V, R, I bands from 1994 to 2008. The light variation periods of S5 0716 +714 are obtained by means of the MUSIC spectral analysis method and periodogram spectral analysis method. There exist two major periods: (3.33±0.08) years and (1.24±0.01) years for all bands. The estimation of the period of variation of the algorithm based on the MUSIC spectral analysis method is compared with that of the algorithm based on the periodogram spectral analysis method. It is a super-resolution algorithm with small data length, and could be used to detect the period of variation of weak signals.
Classification of change detection and change blindness from near-infrared spectroscopy signals
NASA Astrophysics Data System (ADS)
Tanaka, Hirokazu; Katura, Takusige
2011-08-01
Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.
Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram
2015-08-01
In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.
A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
NASA Astrophysics Data System (ADS)
Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.
2018-06-01
Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Telephone-quality pathological speech classification using empirical mode decomposition.
Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S
2011-01-01
This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.
A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.
Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E
2016-01-01
Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.
Modified DCTNet for audio signals classification
NASA Astrophysics Data System (ADS)
Xian, Yin; Pu, Yunchen; Gan, Zhe; Lu, Liang; Thompson, Andrew
2016-10-01
In this paper, we investigate DCTNet for audio signal classification. Its output feature is related to Cohen's class of time-frequency distributions. We introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature extraction. The A-DCTNet applies the idea of constant-Q transform, with its center frequencies of filterbanks geometrically spaced. The A-DCTNet is adaptive to different acoustic scales, and it can better capture low frequency acoustic information that is sensitive to human audio perception than features such as Mel-frequency spectral coefficients (MFSC). We use features extracted by the A-DCTNet as input for classifiers. Experimental results show that the A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art performance in bird song classification rate, and improve artist identification accuracy in music data. They demonstrate A-DCTNet's applicability to signal processing problems.
Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines
Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi
2016-01-01
The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures. PMID:27023563
NASA Astrophysics Data System (ADS)
Vergallo, P.; Lay-Ekuakille, A.
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to have a significant improvement compared to the classical MUSIC method, with a small margin of uncertainty about the exact location of the sources. In fact, the constraints of the spatial sparsity on the signal field allow to concentrate power in the directions of active sources, and consequently it is possible to calculate the position of the sources within the considered volume conductor. Later, the method is tested on the real EEG data too. The result is in accordance with the clinical report even if improvements are necessary to have further accurate estimates of the positions of the sources.
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification.
Li, Mi; Xu, Hongpei; Liu, Xingwang; Lu, Shengfu
2018-04-27
Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. This paper provided better frequency bands and channels reference for emotion recognition based on EEG.
Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.
Raj, Sandeep; Ray, Kailash Chandra; Shankar, Om
2016-11-01
The increase in the number of deaths due to cardiovascular diseases (CVDs) has gained significant attention from the study of electrocardiogram (ECG) signals. These ECG signals are studied by the experienced cardiologist for accurate and proper diagnosis, but it becomes difficult and time-consuming for long-term recordings. Various signal processing techniques are studied to analyze the ECG signal, but they bear limitations due to the non-stationary behavior of ECG signals. Hence, this study aims to improve the classification accuracy rate and provide an automated diagnostic solution for the detection of cardiac arrhythmias. The proposed methodology consists of four stages, i.e. filtering, R-peak detection, feature extraction and classification stages. In this study, Wavelet based approach is used to filter the raw ECG signal, whereas Pan-Tompkins algorithm is used for detecting the R-peak inside the ECG signal. In the feature extraction stage, discrete orthogonal Stockwell transform (DOST) approach is presented for an efficient time-frequency representation (i.e. morphological descriptors) of a time domain signal and retains the absolute phase information to distinguish the various non-stationary behavior ECG signals. Moreover, these morphological descriptors are further reduced in lower dimensional space by using principal component analysis and combined with the dynamic features (i.e based on RR-interval of the ECG signals) of the input signal. This combination of two different kinds of descriptors represents each feature set of an input signal that is utilized for classification into subsequent categories by employing PSO tuned support vector machines (SVM). The proposed methodology is validated on the baseline MIT-BIH arrhythmia database and evaluated under two assessment schemes, yielding an improved overall accuracy of 99.18% for sixteen classes in the category-based and 89.10% for five classes (mapped according to AAMI standard) in the patient-based assessment scheme respectively to the state-of-art diagnosis. The results reported are further compared to the existing methodologies in literature. The proposed feature representation of cardiac signals based on symmetrical features along with PSO based optimization technique for the SVM classifier reported an improved classification accuracy in both the assessment schemes evaluated on the benchmark MIT-BIH arrhythmia database and hence can be utilized for automated computer-aided diagnosis of cardiac arrhythmia beats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Stoeger, Angela S.; Zeppelzauer, Matthias; Baotic, Anton
2015-01-01
Animal vocal signals are increasingly used to monitor wildlife populations and to obtain estimates of species occurrence and abundance. In the future, acoustic monitoring should function not only to detect animals, but also to extract detailed information about populations by discriminating sexes, age groups, social or kin groups, and potentially individuals. Here we show that it is possible to estimate age groups of African elephants (Loxodonta africana) based on acoustic parameters extracted from rumbles recorded under field conditions in a National Park in South Africa. Statistical models reached up to 70 % correct classification to four age groups (infants, calves, juveniles, adults) and 95 % correct classification when categorising into two groups (infants/calves lumped into one group versus adults). The models revealed that parameters representing absolute frequency values have the most discriminative power. Comparable classification results were obtained by fully automated classification of rumbles by high-dimensional features that represent the entire spectral envelope, such as MFCC (75 % correct classification) and GFCC (74 % correct classification). The reported results and methods provide the scientific foundation for a future system that could potentially automatically estimate the demography of an acoustically monitored elephant group or population. PMID:25821348
NASA Astrophysics Data System (ADS)
Gao, Lin; Cheng, Wei; Zhang, Jinhua; Wang, Jue
2016-08-01
Brain-computer interface (BCI) systems provide an alternative communication and control approach for people with limited motor function. Therefore, the feature extraction and classification approach should differentiate the relative unusual state of motion intention from a common resting state. In this paper, we sought a novel approach for multi-class classification in BCI applications. We collected electroencephalographic (EEG) signals registered by electrodes placed over the scalp during left hand motor imagery, right hand motor imagery, and resting state for ten healthy human subjects. We proposed using the Kolmogorov complexity (Kc) for feature extraction and a multi-class Adaboost classifier with extreme learning machine as base classifier for classification, in order to classify the three-class EEG samples. An average classification accuracy of 79.5% was obtained for ten subjects, which greatly outperformed commonly used approaches. Thus, it is concluded that the proposed method could improve the performance for classification of motor imagery tasks for multi-class samples. It could be applied in further studies to generate the control commands to initiate the movement of a robotic exoskeleton or orthosis, which finally facilitates the rehabilitation of disabled people.
Esfahani, Mohammad Shahrokh; Dougherty, Edward R
2015-01-01
Phenotype classification via genomic data is hampered by small sample sizes that negatively impact classifier design. Utilization of prior biological knowledge in conjunction with training data can improve both classifier design and error estimation via the construction of the optimal Bayesian classifier. In the genomic setting, gene/protein signaling pathways provide a key source of biological knowledge. Although these pathways are neither complete, nor regulatory, with no timing associated with them, they are capable of constraining the set of possible models representing the underlying interaction between molecules. The aim of this paper is to provide a framework and the mathematical tools to transform signaling pathways to prior probabilities governing uncertainty classes of feature-label distributions used in classifier design. Structural motifs extracted from the signaling pathways are mapped to a set of constraints on a prior probability on a Multinomial distribution. Being the conjugate prior for the Multinomial distribution, we propose optimization paradigms to estimate the parameters of a Dirichlet distribution in the Bayesian setting. The performance of the proposed methods is tested on two widely studied pathways: mammalian cell cycle and a p53 pathway model.
Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.
Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat
2017-12-01
EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.
HMM-ModE: implementation, benchmarking and validation with HMMER3
2014-01-01
Background HMM-ModE is a computational method that generates family specific profile HMMs using negative training sequences. The method optimizes the discrimination threshold using 10 fold cross validation and modifies the emission probabilities of profiles to reduce common fold based signals shared with other sub-families. The protocol depends on the program HMMER for HMM profile building and sequence database searching. The recent release of HMMER3 has improved database search speed by several orders of magnitude, allowing for the large scale deployment of the method in sequence annotation projects. We have rewritten our existing scripts both at the level of parsing the HMM profiles and modifying emission probabilities to upgrade HMM-ModE using HMMER3 that takes advantage of its probabilistic inference with high computational speed. The method is benchmarked and tested on GPCR dataset as an accurate and fast method for functional annotation. Results The implementation of this method, which now works with HMMER3, is benchmarked with the earlier version of HMMER, to show that the effect of local-local alignments is marked only in the case of profiles containing a large number of discontinuous match states. The method is tested on a gold standard set of families and we have reported a significant reduction in the number of false positive hits over the default HMM profiles. When implemented on GPCR sequences, the results showed an improvement in the accuracy of classification compared with other methods used to classify the familyat different levels of their classification hierarchy. Conclusions The present findings show that the new version of HMM-ModE is a highly specific method used to differentiate between fold (superfamily) and function (family) specific signals, which helps in the functional annotation of protein sequences. The use of modified profile HMMs of GPCR sequences provides a simple yet highly specific method for classification of the family, being able to predict the sub-family specific sequences with high accuracy even though sequences share common physicochemical characteristics between sub-families. PMID:25073805
NASA Astrophysics Data System (ADS)
Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin
2018-02-01
A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mantini, D; Franciotti, R; Romani, G L; Pizzella, V
2008-03-01
The major limitation for the acquisition of high-quality magnetoencephalography (MEG) recordings is the presence of disturbances of physiological and technical origins: eye movements, cardiac signals, muscular contractions, and environmental noise are serious problems for MEG signal analysis. In the last years, multi-channel MEG systems have undergone rapid technological developments in terms of noise reduction, and many processing methods have been proposed for artifact rejection. Independent component analysis (ICA) has already shown to be an effective and generally applicable technique for concurrently removing artifacts and noise from the MEG recordings. However, no standardized automated system based on ICA has become available so far, because of the intrinsic difficulty in the reliable categorization of the source signals obtained with this technique. In this work, approximate entropy (ApEn), a measure of data regularity, is successfully used for the classification of the signals produced by ICA, allowing for an automated artifact rejection. The proposed method has been tested using MEG data sets collected during somatosensory, auditory and visual stimulation. It was demonstrated to be effective in attenuating both biological artifacts and environmental noise, in order to reconstruct clear signals that can be used for improving brain source localizations.
A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions
Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri
2016-01-01
In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165
Functional Near Infrared Spectroscopy: Watching the Brain in Flight
NASA Technical Reports Server (NTRS)
Harrivel, Angela; Hearn, Tristan
2012-01-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors
BioSig: The Free and Open Source Software Library for Biomedical Signal Processing
Vidaurre, Carmen; Sander, Tilmann H.; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals. PMID:21437227
BioSig: the free and open source software library for biomedical signal processing.
Vidaurre, Carmen; Sander, Tilmann H; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals.
Functional Near Infrared Spectroscopy: Watching the Brain in Flight
NASA Technical Reports Server (NTRS)
Harrivel, Angela; Hearn, Tristan A.
2012-01-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Smolinski, Tomasz G; Buchanan, Roger; Boratyn, Grzegorz M; Milanova, Mariofanna; Prinz, Astrid A
2006-01-01
Background Independent Component Analysis (ICA) proves to be useful in the analysis of neural activity, as it allows for identification of distinct sources of activity. Applied to measurements registered in a controlled setting and under exposure to an external stimulus, it can facilitate analysis of the impact of the stimulus on those sources. The link between the stimulus and a given source can be verified by a classifier that is able to "predict" the condition a given signal was registered under, solely based on the components. However, the ICA's assumption about statistical independence of sources is often unrealistic and turns out to be insufficient to build an accurate classifier. Therefore, we propose to utilize a novel method, based on hybridization of ICA, multi-objective evolutionary algorithms (MOEA), and rough sets (RS), that attempts to improve the effectiveness of signal decomposition techniques by providing them with "classification-awareness." Results The preliminary results described here are very promising and further investigation of other MOEAs and/or RS-based classification accuracy measures should be pursued. Even a quick visual analysis of those results can provide an interesting insight into the problem of neural activity analysis. Conclusion We present a methodology of classificatory decomposition of signals. One of the main advantages of our approach is the fact that rather than solely relying on often unrealistic assumptions about statistical independence of sources, components are generated in the light of a underlying classification problem itself. PMID:17118151
Grasp movement decoding from premotor and parietal cortex.
Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg
2011-10-05
Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.
Xue, Bing; Qu, Xiaodong; Fang, Guangyou; Ji, Yicai
2017-01-01
In this paper, the methods and analysis for estimating the location of a three-dimensional (3-D) single source buried in lossy medium are presented with uniform circular array (UCA). The mathematical model of the signal in the lossy medium is proposed. Using information in the covariance matrix obtained by the sensors’ outputs, equations of the source location (azimuth angle, elevation angle, and range) are obtained. Then, the phase and amplitude of the covariance matrix function are used to process the source localization in the lossy medium. By analyzing the characteristics of the proposed methods and the multiple signal classification (MUSIC) method, the computational complexity and the valid scope of these methods are given. From the results, whether the loss is known or not, we can choose the best method for processing the issues (localization in lossless medium or lossy medium). PMID:28574467
Improved EEG Event Classification Using Differential Energy.
Harati, A; Golmohammadi, M; Lopez, S; Obeid, I; Picone, J
2015-12-01
Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this paper, we present a comparison of a variety of approaches to estimating and postprocessing features. To further aid in discrimination of periodic signals from aperiodic signals, we add a differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the largest publicly available EEG corpus and an exceedingly challenging task due to the clinical nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled with first and second derivatives, provides a substantial reduction in the overall error rate. The combination of differential energy and derivatives produces a 24 % absolute reduction in the error rate and improves our ability to discriminate between signal events and background noise. This relatively simple approach proves to be comparable to other popular feature extraction approaches such as wavelets, but is much more computationally efficient.
Blind source separation and localization using microphone arrays
NASA Astrophysics Data System (ADS)
Sun, Longji
The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and therefore supports real-time implementation.
2011-01-01
Background Previously proposed classifications for carotid plaque and cerebral parenchymal hemorrhages are used to estimate the age of hematoma according to its signal intensities on T1w and T2w MR images. Using these classifications, we systematically investigated the value of cardiovascular magnetic resonance (CMR) in determining the age of vessel wall hematoma (VWH) in patients with spontaneous cervical artery dissection (sCAD). Methods 35 consecutive patients (mean age 43.6 ± 9.8 years) with sCAD received a cervical multi-sequence 3T CMR with fat-saturated black-blood T1w-, T2w- and TOF images. Age of sCAD was defined as time between onset of symptoms (stroke, TIA or Horner's syndrome) and the CMR scan. VWH were categorized into hyperacute, acute, early subacute, late subacute and chronic based on their signal intensities on T1w- and T2w images. Results The mean age of sCAD was 2.0, 5.8, 15.7 and 58.7 days in patients with acute, early subacute, late subacute and chronic VWH as classified by CMR (p < 0.001 for trend). Agreement was moderate between VWH types in our study and the previously proposed time scheme of signal evolution for cerebral hemorrhage, Cohen's kappa 0.43 (p < 0.001). There was a strong agreement of CMR VWH classification compared to the time scheme which was proposed for carotid intraplaque hematomas with Cohen's kappa of 0.74 (p < 0.001). Conclusions Signal intensities of VWH in sCAD vary over time and multi-sequence CMR can help to determine the age of an arterial dissection. Furthermore, findings of this study suggest that the time course of carotid hematomas differs from that of cerebral hematomas. PMID:22122756
NASA Astrophysics Data System (ADS)
Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.
2012-01-01
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.
Balouchestani, Mohammadreza; Krishnan, Sridhar
2014-01-01
Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming
2017-07-01
Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.
Chambon, Stanislas; Galtier, Mathieu N; Arnal, Pierrick J; Wainrib, Gilles; Gramfort, Alexandre
2018-04-01
Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of the signal of a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEGs), electrooculograms (EOGs), electrocardiograms, and electromyograms (EMGs). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or extracting handcrafted features, that exploits all multivariate and multimodal polysomnography (PSG) signals (EEG, EMG, and EOG), and that can exploit the temporal context of each 30-s window of data. For each modality, the first layer learns linear spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up to 20 EEG channels demonstrate that our network architecture yields the state-of-the-art performance. Our study reveals a number of insights on the spatiotemporal distribution of the signal of interest: a good tradeoff for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels. Also exploiting 1 min of data before and after each data segment offers the strongest improvement when a limited number of channels are available. As sleep experts, our system exploits the multivariate and multimodal nature of PSG signals in order to deliver the state-of-the-art classification performance with a small computational cost.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang
2014-01-01
This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668
Abedi, Behzad; Abbasi, Ataollah; Goshvarpour, Atefeh
2017-05-01
In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are different. In the present study, we aimed to examine the effects of listening to traditional Persian music on electrocardiogram (ECG) signals in young women. Twenty-two healthy females participated in this study. ECG signals were recorded under two conditions: rest and music. For each ECG signal, 20 morphological and wavelet-based features were selected. Artificial neural network (ANN) and probabilistic neural network (PNN) classifiers were used for the classification of ECG signals during and before listening to music. Collected data were separated into two data sets: train and test. Classification accuracies of 88% and 97% were achieved in train data sets using ANN and PNN, respectively. In addition, the test data set was employed for evaluating the classifiers, and classification rates of 84% and 93% were obtained using ANN and PNN, respectively. The present study investigated the effect of music on ECG signals based on wavelet transform and morphological features. The results obtained here can provide a good understanding on the effects of music on ECG signals to researchers.
Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N
2012-01-01
The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Template-DTW based on inertial signals: Preliminary results for step characterization.
Mantilla, Juan; Oudre, Laurent; Barrois, Remi; Vienne, Alienor; Ricard, Damien
2017-07-01
In this paper, we present a method for the creation of a library of inertial signals based on Dynamic Time Warping (DTW) for step characterization, with preliminary results in control subjects and patients with neurological diseases. Subjects performed a protocol including a 10 m straight walking, then turn back and walking for additional 10 m. The library is constructed with inertial signals (acceleration and angular velocities recorded in three directions) aligned with the DTW. Templates in the library are obtained for a specific cohort and for the different walking phases of the protocol. They are compared to the signal of a single subject by calculating a Pearson correlation coefficient. The method has been tested on a database of 864 exercises, obtained from 71 healthy controls, 24 patients with Parkinson disease and 48 patients with Radiation Induced Leukoencephalopathy (RIL). Pearson correlation classification reports a precision of about 85% for step detection. For exercise characterization the sensitivity is about 57%, 56% and 82% for Parkinson, RIL and control subjects respectively.
Park, Jong-Uk; Lee, Hyo-Ki; Lee, Junghun; Urtnasan, Erdenebayar; Kim, Hojoong; Lee, Kyoung-Joung
2015-09-01
This study proposes a method of automatically classifying sleep apnea/hypopnea events based on sleep states and the severity of sleep-disordered breathing (SDB) using photoplethysmogram (PPG) and oxygen saturation (SpO2) signals acquired from a pulse oximeter. The PPG was used to classify sleep state, while the severity of SDB was estimated by detecting events of SpO2 oxygen desaturation. Furthermore, we classified sleep apnea/hypopnea events by applying different categorisations according to the severity of SDB based on a support vector machine. The classification results showed sensitivity performances and positivity predictive values of 74.2% and 87.5% for apnea, 87.5% and 63.4% for hypopnea, and 92.4% and 92.8% for apnea + hypopnea, respectively. These results represent better or comparable outcomes compared to those of previous studies. In addition, our classification method reliably detected sleep apnea/hypopnea events in all patient groups without bias in particular patient groups when our algorithm was applied to a variety of patient groups. Therefore, this method has the potential to diagnose SDB more reliably and conveniently using a pulse oximeter.
Sidek, Khairul; Khali, Ibrahim
2012-01-01
In this paper, a person identification mechanism implemented with Cardioid based graph using electrocardiogram (ECG) is presented. Cardioid based graph has given a reasonably good classification accuracy in terms of differentiating between individuals. However, the current feature extraction method using Euclidean distance could be further improved by using Mahalanobis distance measurement producing extracted coefficients which takes into account the correlations of the data set. Identification is then done by applying these extracted features to Radial Basis Function Network. A total of 30 ECG data from MITBIH Normal Sinus Rhythm database (NSRDB) and MITBIH Arrhythmia database (MITDB) were used for development and evaluation purposes. Our experimentation results suggest that the proposed feature extraction method has significantly increased the classification performance of subjects in both databases with accuracy from 97.50% to 99.80% in NSRDB and 96.50% to 99.40% in MITDB. High sensitivity, specificity and positive predictive value of 99.17%, 99.91% and 99.23% for NSRDB and 99.30%, 99.90% and 99.40% for MITDB also validates the proposed method. This result also indicates that the right feature extraction technique plays a vital role in determining the persistency of the classification accuracy for Cardioid based person identification mechanism.
Non-invasive Fetal ECG Signal Quality Assessment for Multichannel Heart Rate Estimation.
Andreotti, Fernando; Graser, Felix; Malberg, Hagen; Zaunseder, Sebastian
2017-12-01
The noninvasive fetal ECG (NI-FECG) from abdominal recordings offers novel prospects for prenatal monitoring. However, NI-FECG signals are corrupted by various nonstationary noise sources, making the processing of abdominal recordings a challenging task. In this paper, we present an online approach that dynamically assess the quality of NI-FECG to improve fetal heart rate (FHR) estimation. Using a naive Bayes classifier, state-of-the-art and novel signal quality indices (SQIs), and an existing adaptive Kalman filter, FHR estimation was improved. For the purpose of training and validating the proposed methods, a large annotated private clinical dataset was used. The suggested classification scheme demonstrated an accuracy of Krippendorff's alpha in determining the overall quality of NI-FECG signals. The proposed Kalman filter outperformed alternative methods for FHR estimation achieving accuracy. The proposed algorithm was able to reliably reflect changes of signal quality and can be used in improving FHR estimation. NI-ECG signal quality estimation and multichannel information fusion are largely unexplored topics. Based on previous works, multichannel FHR estimation is a field that could strongly benefit from such methods. The developed SQI algorithms as well as resulting classifier were made available under a GNU GPL open-source license and contributed to the FECGSYN toolbox.
Adaptive coding of MSS imagery. [Multi Spectral band Scanners
NASA Technical Reports Server (NTRS)
Habibi, A.; Samulon, A. S.; Fultz, G. L.; Lumb, D.
1977-01-01
A number of adaptive data compression techniques are considered for reducing the bandwidth of multispectral data. They include adaptive transform coding, adaptive DPCM, adaptive cluster coding, and a hybrid method. The techniques are simulated and their performance in compressing the bandwidth of Landsat multispectral images is evaluated and compared using signal-to-noise ratio and classification consistency as fidelity criteria.
Rolling element bearings diagnostics using the Symbolic Aggregate approXimation
NASA Astrophysics Data System (ADS)
Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.
2015-08-01
Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.
A fresh look at functional link neural network for motor imagery-based brain-computer interface.
Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid
2018-05-04
Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J
2008-01-01
ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.
NASA Astrophysics Data System (ADS)
Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram
2013-03-01
By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.
Probe classification of on-off type DNA microarray images with a nonlinear matching measure
NASA Astrophysics Data System (ADS)
Ryu, Munho; Kim, Jong Dae; Min, Byoung Goo; Kim, Jongwon; Kim, Y. Y.
2006-01-01
We propose a nonlinear matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA microarray, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized covariance and the median for 2390 patient samples tested on the human papillomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less
Method and apparatus for enhanced detection of toxic agents
Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong
2013-10-01
A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.
Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization.
Mäkelä, Niko; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J
2018-02-15
Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto- or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.
Cyran, Krzysztof A.
2018-01-01
This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks. PMID:29849544