NASA Technical Reports Server (NTRS)
Casasent, D.
1978-01-01
The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.
FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing
NASA Technical Reports Server (NTRS)
Berner, Stephan; DeLeon, Phillip
1999-01-01
One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.
Analysis of acoustic emission signals and monitoring of machining processes
Govekar; Gradisek; Grabec
2000-03-01
Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.
Signal Processing and Interpretation Using Multilevel Signal Abstractions.
1986-06-01
mappings expressed in the Fourier domain. Pre- viously proposed causal analysis techniques for diagnosis are based on the analysis of intermediate data ...can be processed either as individual one-dimensional waveforms or as multichannel data 26 I P- - . . . ." " ." h9. for source detection and direction...microphone data . The signal processing for both spectral analysis of microphone signals and direc- * tion determination of acoustic sources involves
Poplová, Michaela; Sovka, Pavel; Cifra, Michal
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
Poplová, Michaela; Sovka, Pavel
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207
Directional dual-tree rational-dilation complex wavelet transform.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2014-01-01
Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.
Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian
2014-06-25
Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.
An overview of data acquisition, signal coding and data analysis techniques for MST radars
NASA Technical Reports Server (NTRS)
Rastogi, P. K.
1986-01-01
An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed.
System for monitoring an industrial or biological process
Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.
1998-01-01
A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.
System for monitoring an industrial or biological process
Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.
1998-06-30
A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.
The detection and analysis of point processes in biological signals
NASA Technical Reports Server (NTRS)
Anderson, D. J.; Correia, M. J.
1977-01-01
A pragmatic approach to the detection and analysis of discrete events in biomedical signals is taken. Examples from both clinical and basic research are provided. Introductory sections discuss not only discrete events which are easily extracted from recordings by conventional threshold detectors but also events embedded in other information carrying signals. The primary considerations are factors governing event-time resolution and the effects limits to this resolution have on the subsequent analysis of the underlying process. The analysis portion describes tests for qualifying the records as stationary point processes and procedures for providing meaningful information about the biological signals under investigation. All of these procedures are designed to be implemented on laboratory computers of modest computational capacity.
Digital signal processing for velocity measurements in dynamical material's behaviour studies.
Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves
2014-03-01
In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.
Fourier analysis and signal processing by use of the Moebius inversion formula
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.
1990-01-01
A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.
Modeling laser velocimeter signals as triply stochastic Poisson processes
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
Platform for Post-Processing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don J.
2010-01-01
Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.
Techniques of EMG signal analysis: detection, processing, classification and applications
Hussain, M.S.; Mohd-Yasin, F.
2006-01-01
Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
Book: Marine Bioacoustic Signal Processing and Analysis
2011-09-30
physicists , and mathematicians . However, more and more biologists and psychologists are starting to use advanced signal processing techniques and...Book: Marine Bioacoustic Signal Processing and Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT ...chapters than it should be, since the project must be finished by Dec. 31. I have started setting aside 2 hours of uninterrupted per workday to work
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Sensitivity Analysis in RIPless Compressed Sensing
2014-10-01
SECURITY CLASSIFICATION OF: The compressive sensing framework finds a wide range of applications in signal processing and analysis. Within this...Analysis of Compressive Sensing Solutions Report Title The compressive sensing framework finds a wide range of applications in signal processing and...compressed sensing. More specifically, we show that in a noiseless and RIP-less setting [11], the recovery process of a compressed sensing framework is
Applied digital signal processing systems for vortex flowmeter with digital signal processing.
Xu, Ke-Jun; Zhu, Zhi-Hai; Zhou, Yang; Wang, Xiao-Fen; Liu, San-Shan; Huang, Yun-Zhi; Chen, Zhi-Yuan
2009-02-01
The spectral analysis is combined with digital filter to process the vortex sensor signal for reducing the effect of disturbance at low frequency from pipe vibrations and increasing the turndown ratio. Using digital signal processing chip, two kinds of digital signal processing systems are developed to implement these algorithms. One is an integrative system, and the other is a separated system. A limiting amplifier is designed in the input analog condition circuit to adapt large amplitude variation of sensor signal. Some technique measures are taken to improve the accuracy of the output pulse, speed up the response time of the meter, and reduce the fluctuation of the output signal. The experimental results demonstrate the validity of the digital signal processing systems.
Energy spectrum analysis - A model of echolocation processing. [in animals
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Titlebaum, E. L.
1976-01-01
The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.
Informational approach to the analysis of acoustic signals
NASA Astrophysics Data System (ADS)
Senkevich, Yuriy; Dyuk, Vyacheslav; Mishchenko, Mikhail; Solodchuk, Alexandra
2017-10-01
The example of linguistic processing of acoustic signals of a seismic event would be an information approach to the processing of non-stationary signals. The method for converting an acoustic signal into an information message is described by identifying repetitive self-similar patterns. The definitions of the event selection indicators in the symbolic recording of the acoustic signal are given. The results of processing an acoustic signal by a computer program realizing the processing of linguistic data are shown. Advantages and disadvantages of using software algorithms are indicated.
Defense Applications of Signal Processing
1999-08-27
class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has
Interactive Digital Signal Processor
NASA Technical Reports Server (NTRS)
Mish, W. H.
1985-01-01
Interactive Digital Signal Processor, IDSP, consists of set of time series analysis "operators" based on various algorithms commonly used for digital signal analysis. Processing of digital signal time series to extract information usually achieved by applications of number of fairly standard operations. IDSP excellent teaching tool for demonstrating application for time series operators to artificially generated signals.
NASA Astrophysics Data System (ADS)
Uma Maheswari, R.; Umamaheswari, R.
2017-02-01
Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.
AOD furnace splash soft-sensor in the smelting process based on improved BP neural network
NASA Astrophysics Data System (ADS)
Ma, Haitao; Wang, Shanshan; Wu, Libin; Yu, Ying
2017-11-01
In view of argon oxygen refining low carbon ferrochrome production process, in the splash of smelting process as the research object, based on splash mechanism analysis in the smelting process , using multi-sensor information fusion and BP neural network modeling techniques is proposed in this paper, using the vibration signal, the audio signal and the flame image signal in the furnace as the characteristic signal of splash, the vibration signal, the audio signal and the flame image signal in the furnace integration and modeling, and reconstruct splash signal, realize the splash soft measurement in the smelting process, the simulation results show that the method can accurately forecast splash type in the smelting process, provide a new method of measurement for forecast splash in the smelting process, provide more accurate information to control splash.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus
2012-01-02
Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop. Copyright © 2011 Elsevier Inc. All rights reserved.
Adaptive filtering in biological signal processing.
Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A
1990-01-01
The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.
Introduction to Radar Signal and Data Processing: The Opportunity
2006-09-01
SpA) Director of Analysis of Integrated Systems Group Via Tiburtina Km. 12.400 00131 Rome ITALY e.mail: afarina@selex-si.com Key words: radar...signal processing, data processing, adaptivity, space-time adaptive processing, knowledge based systems , CFAR. 1. SUMMARY This paper introduces to...the lecture series dedicated to the knowledge-based radar signal and data processing. Knowledge-based expert system (KBS) is in the realm of
Signal-processing analysis of the MC2823 radar fuze: an addendum concerning clutter effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelinek, D.A.
1978-07-01
A detailed analysis of the signal processing of the MC2823 radar fuze was published by Thompson in 1976 which enabled the computation of dud probability versus signal-to-noise ratio where the noise was receiver noise. An addendum to Thompson's work was published by Williams in 1978 that modified the weighting function used by Thompson. The analysis presented herein extends the work of Thompson to include the effects of clutter (the non-signal portion of the echo from a terrain) using the new weighting function. This extension enables computation of dud probability versus signal-to-total-noise ratio where total noise is the sum of themore » receiver-noise power and the clutter power.« less
Application of homomorphic signal processing to stress wave factor analysis
NASA Technical Reports Server (NTRS)
Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.
1985-01-01
The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.
Real time automatic detection of bearing fault in induction machine using kurtogram analysis.
Tafinine, Farid; Mokrani, Karim
2012-11-01
A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Harvey, David M.
2012-03-01
Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.
2012-02-09
different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16
Additive Factors Analysis of Inhibitory Processing in the Stop-Signal Paradigm
ERIC Educational Resources Information Center
van den Wildenberg, W.P.M.; van der Molen, M.W.
2004-01-01
This article reports an additive factors analysis of choice reaction and selective stop processes manipulated in a stop-signal paradigm. Three experiments were performed in which stimulus discriminability (SD) and stimulus-response compatibility (SRC) were manipulated in a factorial fashion. In each experiment, the effects of SD and SRC were…
Digital signal processing algorithms for automatic voice recognition
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1987-01-01
The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.
Spectroscopic analysis and control
Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles
2017-04-18
Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.
Time-frequency signal analysis and synthesis - The choice of a method and its application
NASA Astrophysics Data System (ADS)
Boashash, Boualem
In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and instantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as 'asymptotic'. For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.
Time-Frequency Signal Analysis And Synthesis The Choice Of A Method And Its Application
NASA Astrophysics Data System (ADS)
Boashash, Boualem
1988-02-01
In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and in-stantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as "asymptotic". For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.
Sensor, signal, and image informatics - state of the art and current topics.
Lehmann, T M; Aach, T; Witte, H
2006-01-01
The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.
Naik, Ganesh R; Arjunan, Sridhar; Kumar, Dinesh
2011-06-01
The surface electromyography (sEMG) signal separation and decphompositions has always been an interesting research topic in the field of rehabilitation and medical research. Subtle myoelectric control is an advanced technique concerned with the detection, processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews recent research and development in independent component analysis and Fractal dimensional analysis for sEMG pattern recognition, and presents state-of-the-art achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.
Pavlov, A N; Pavlova, O N; Abdurashitov, A S; Sindeeva, O A; Semyachkina-Glushkovskaya, O V; Kurths, J
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
NASA Astrophysics Data System (ADS)
Pavlov, A. N.; Pavlova, O. N.; Abdurashitov, A. S.; Sindeeva, O. A.; Semyachkina-Glushkovskaya, O. V.; Kurths, J.
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae
Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.
2015-01-01
Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826
LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network
NASA Astrophysics Data System (ADS)
Cha, Daehyun; Hwang, Chansik
Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
Nonstationary signal analysis in episodic memory retrieval
NASA Astrophysics Data System (ADS)
Ku, Y. G.; Kawasumi, Masashi; Saito, Masao
2004-04-01
The problem of blind source separation from a mixture that has nonstationarity can be seen in signal processing, speech processing, spectral analysis and so on. This study analyzed EEG signal during episodic memory retrieval using ICA and TVAR. This paper proposes a method which combines ICA and TVAR. The signal from the brain not only exhibits the nonstationary behavior, but also contain artifacts. EEG data at the frontal lobe (F3) from the scalp is collected during the episodic memory retrieval task. The method is applied to EEG data for analysis. The artifact (eye movement) is removed by ICA, and a single burst (around 6Hz) is obtained by TVAR, suggesting that the single burst is related to the brain activity during the episodic memory retrieval.
Thanaraj, Palani; Roshini, Mable; Balasubramanian, Parvathavarthini
2016-11-14
The fetal electrocardiogram (FECG) signals are essential to monitor the health condition of the baby. Fetal heart rate (FHR) is commonly used for diagnosing certain abnormalities in the formation of the heart. Usually, non-invasive abdominal electrocardiogram (AbECG) signals are obtained by placing surface electrodes in the abdomen region of the pregnant woman. AbECG signals are often not suitable for the direct analysis of fetal heart activity. Moreover, the strength and magnitude of the FECG signals are low compared to the maternal electrocardiogram (MECG) signals. The MECG signals are often superimposed with the FECG signals that make the monitoring of FECG signals a difficult task. Primary goal of the paper is to separate the fetal electrocardiogram (FECG) signals from the unwanted maternal electrocardiogram (MECG) signals. A multivariate signal processing procedure is proposed here that combines the Multivariate Empirical Mode Decomposition (MEMD) and Independent Component Analysis (ICA). The proposed method is evaluated with clinical abdominal signals taken from three pregnant women (N= 3) recorded during the 38-41 weeks of the gestation period. The number of fetal R-wave detected (NEFQRS), the number of unwanted maternal peaks (NMQRS), the number of undetected fetal R-wave (NUFQRS) and the FHR detection accuracy quantifies the performance of our method. Clinical investigation with three test subjects shows an overall detection accuracy of 92.8%. Comparative analysis with benchmark signal processing method such as ICA suggests the noteworthy performance of our method.
NASA Astrophysics Data System (ADS)
Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.
2016-05-01
Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.
Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, Darrell; Azevado, Stephen
1986-06-01
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
siGnum: graphical user interface for EMG signal analysis.
Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh
2015-01-01
Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.
[Analysis of scatterer microstructure feature based on Chirp-Z transform cepstrum].
Guo, Jianzhong; Lin, Shuyu
2007-12-01
The fundamental research field of medical ultrasound has been the characterization of tissue scatterers. The signal processing method is widely used in this research field. A new method of Chirp-Z Transform Cepstrum for mean spacing estimation of tissue scatterers using ultrasonic scattered signals has been developed. By using this method together with conventional AR cepstrum method, we processed the backscattered signals of mimic tissue and pig liver in vitro. The results illustrated that the Chirp-Z Transform Cepstrum method is effective for signal analysis of ultrasonic scattering and characterization of tissue scatterers, and it can improve the resolution for mean spacing estimation of tissue scatterers.
Halámek, Jan; Zhou, Jian; Halámková, Lenka; Bocharova, Vera; Privman, Vladimir; Wang, Joseph; Katz, Evgeny
2011-11-15
Biomolecular logic systems processing biochemical input signals and producing "digital" outputs in the form of YES/NO were developed for analysis of physiological conditions characteristic of liver injury, soft tissue injury, and abdominal trauma. Injury biomarkers were used as input signals for activating the logic systems. Their normal physiological concentrations were defined as logic-0 level, while their pathologically elevated concentrations were defined as logic-1 values. Since the input concentrations applied as logic 0 and 1 values were not sufficiently different, the output signals being at low and high values (0, 1 outputs) were separated with a short gap making their discrimination difficult. Coupled enzymatic reactions functioning as a biomolecular signal processing system with a built-in filter property were developed. The filter process involves a partial back-conversion of the optical-output-signal-yielding product, but only at its low concentrations, thus allowing the proper discrimination between 0 and 1 output values.
User's manual SIG: a general-purpose signal processing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1983-10-25
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Terrien, Jérémy; Marque, Catherine; Germain, Guy
2008-05-01
Time-frequency representations (TFRs) of signals are increasingly being used in biomedical research. Analysis of such representations is sometimes difficult, however, and is often reduced to the extraction of ridges, or local energy maxima. In this paper, we describe a new ridge extraction method based on the image processing technique of active contours or snakes. We have tested our method on several synthetic signals and for the analysis of uterine electromyogram or electrohysterogram (EHG) recorded during gestation in monkeys. We have also evaluated a postprocessing algorithm that is especially suited for EHG analysis. Parameters are evaluated on real EHG signals in different gestational periods. The presented method gives good results when applied to synthetic as well as EHG signals. We have been able to obtain smaller ridge extraction errors when compared to two other methods specially developed for EHG. The gradient vector flow (GVF) snake method, or GVF-snake method, appears to be a good ridge extraction tool, which could be used on TFR of mono or multicomponent signals with good results.
NASA Technical Reports Server (NTRS)
Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.
1987-01-01
The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.
Shuttle payload S-band communications study
NASA Technical Reports Server (NTRS)
Springett, J. C.
1979-01-01
The work to identify, evaluate, and make recommendations concerning the functions and interfaces of those orbiter avionic subsystems which are dedicated to, or play some part in, handling communication signals (telemetry and command) to/from payloads (spacecraft) that will be carried into orbit by the shuttle is reported. Some principal directions of the research are: (1) analysis of the ability of the various avionic equipment to interface with and appropriately process payload signals; (2) development of criteria which will foster equipment compatibility with diverse types of payloads and signals; (3) study of operational procedures, especially those affecting signal acquisition; (4) trade-off analysis for end-to-end data link performance optimization; (5) identification of possible hardware design weakness which might degrade signal processing performance.
Study of interhemispheric asymmetries in electroencephalographic signals by frequency analysis
NASA Astrophysics Data System (ADS)
Zapata, J. F.; Garzón, J.
2011-01-01
This study provides a new method for the detection of interhemispheric asymmetries in patients with continuous video-electroencephalography (EEG) monitoring at Intensive Care Unit (ICU), using wavelet energy. We obtained the registration of EEG signals in 42 patients with different pathologies, and then we proceeded to perform signal processing using the Matlab program, we compared the abnormalities recorded in the report by the neurophysiologist, the images of each patient and the result of signals analysis with the Discrete Wavelet Transform (DWT). Conclusions: there exists correspondence between the abnormalities found in the processing of the signal with the clinical reports of findings in patients; according to previous conclusion, the methodology used can be a useful tool for diagnosis and early quantitative detection of interhemispheric asymmetries.
Audio signal analysis for tool wear monitoring in sheet metal stamping
NASA Astrophysics Data System (ADS)
Ubhayaratne, Indivarie; Pereira, Michael P.; Xiang, Yong; Rolfe, Bernard F.
2017-02-01
Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.
Digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.
1980-01-01
A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.
Moret-Bonillo, Vicente; Alvarez-Estévez, Diego; Fernández-Leal, Angel; Hernández-Pereira, Elena
2014-01-01
This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints.
Moret-Bonillo, Vicente; Alvarez-Estévez, Diego; Fernández-Leal, Angel; Hernández-Pereira, Elena
2014-01-01
This work deals with the development of an intelligent approach for clinical decision making in the diagnosis of the Sleep Apnea/Hypopnea Syndrome, SAHS, from the analysis of respiratory signals and oxygen saturation in arterial blood, SaO2. In order to accomplish the task the proposed approach makes use of different artificial intelligence techniques and reasoning processes being able to deal with imprecise data. These reasoning processes are based on fuzzy logic and on temporal analysis of the information. The developed approach also takes into account the possibility of artifacts in the monitored signals. Detection and characterization of signal artifacts allows detection of false positives. Identification of relevant diagnostic patterns and temporal correlation of events is performed through the implementation of temporal constraints. PMID:25035712
Mahmud, Mufti; Vassanelli, Stefano
2016-01-01
In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dys)functions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed). This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semi)automated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc.), and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are being faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data. PMID:27313507
Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.
Hardy, Simon; Robillard, Pierre N
2008-01-15
Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.
Pastore, Vito Paolo; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo
2018-01-01
We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SPICODYN, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SPICODYN processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.
An Introduction to Data Analysis in Asteroseismology
NASA Astrophysics Data System (ADS)
Campante, Tiago L.
A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.
New signal processing technique for density profile reconstruction using reflectometry.
Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C
2011-08-01
Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.
Signal Processing Applications Of Wigner-Ville Analysis
NASA Astrophysics Data System (ADS)
Whitehouse, H. J.; Boashash, B.
1986-04-01
The Wigner-Ville distribution (WVD), a form of time-frequency analysis, is shown to be useful in the analysis of a variety of non-stationary signals both deterministic and stochastic. The properties of the WVD are reviewed and alternative methods of calculating the WVD are discussed. Applications are presented.
Department of Cybernetic Acoustics
NASA Astrophysics Data System (ADS)
The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.
Bayesian Inference for Signal-Based Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.
2015-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http
Study of photon correlation techniques for processing of laser velocimeter signals
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1977-01-01
The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.
Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis; Atkins, David C; Narayanan, Shrikanth S
2016-05-01
Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, and facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation and offer a series of open problems for future research.
Simulate different environments TDLAS On the analysis of the test signal strength
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Tao; Jia, Xiaodong
2014-12-01
TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .
DOT National Transportation Integrated Search
2006-05-08
This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...
Is complex signal processing for bone conduction hearing aids useful?
Kompis, Martin; Kurz, Anja; Pfiffner, Flurin; Senn, Pascal; Arnold, Andreas; Caversaccio, Marco
2014-05-01
To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.
NASA Astrophysics Data System (ADS)
Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor
2004-07-01
Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.
Du, Jiaying; Gerdtman, Christer; Lindén, Maria
2018-04-06
Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.
Gerdtman, Christer
2018-01-01
Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412
Signal-processing theory for the TurboRogue receiver
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1995-01-01
Signal-processing theory for the TurboRogue receiver is presented. The signal form is traced from its formation at the GPS satellite, to the receiver antenna, and then through the various stages of the receiver, including extraction of phase and delay. The analysis treats the effects of ionosphere, troposphere, signal quantization, receiver components, and system noise, covering processing in both the 'code mode' when the P code is not encrypted and in the 'P-codeless mode' when the P code is encrypted. As a possible future improvement to the current analog front end, an example of a highly digital front end is analyzed.
Design and Performance of the Astro-E/XRS Signal Processing System
NASA Technical Reports Server (NTRS)
Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.
1999-01-01
We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.
Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E
2009-08-04
This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.
Distributed Estimation using Bayesian Consensus Filtering
2014-06-06
Convergence rate analysis of distributed gossip (linear parameter) estimation: Fundamental limits and tradeoffs,” IEEE J. Sel. Topics Signal Process...Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “ Gossip algorithms for distributed signal processing,” Proc. of the IEEE, vol. 98, no. 11, pp
A simple analytical model for signal amplification by reversible exchange (SABRE) process.
Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V
2016-01-07
We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.
Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine
Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng
2012-01-01
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296
Gao, Liyang; Chen, Bing; Li, Jinhong; Yang, Fan; Cen, Xuecheng; Liao, Zhuangbing; Long, Xiao’ao
2017-01-01
The Wnt signaling pathway is necessary for the development of the central nervous system and is associated with tumorigenesis in various cancers. However, the mechanism of the Wnt signaling pathway in glioma cells has yet to be elucidated. Small-molecule Wnt modulators such as ICG-001 and AZD2858 were used to inhibit and stimulate the Wnt/β-catenin signaling pathway. Techniques including cell proliferation assay, colony formation assay, Matrigel cell invasion assay, cell cycle assay and Genechip microarray were used. Gene Ontology Enrichment Analysis and Gene Set Enrichment Analysis have enriched many biological processes and signaling pathways. Both the inhibiting and stimulating Wnt/β-catenin signaling pathways could influence the cell cycle, moreover, reduce the proliferation and survival of U87 glioma cells. However, Affymetrix expression microarray indicated that biological processes and networks of signaling pathways between stimulating and inhibiting the Wnt/β-catenin signaling pathway largely differ. We propose that Wnt/β-catenin signaling pathway might prove to be a valuable therapeutic target for glioma. PMID:28837560
SERS as a tool for in vitro toxicology.
Fisher, Kate M; McLeish, Jennifer A; Jamieson, Lauren E; Jiang, Jing; Hopgood, James R; McLaughlin, Stephen; Donaldson, Ken; Campbell, Colin J
2016-06-23
Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.
The Seismic Tool-Kit (STK): an open source software for seismology and signal processing.
NASA Astrophysics Data System (ADS)
Reymond, Dominique
2016-04-01
We present an open source software project (GNU public license), named STK: Seismic ToolKit, that is dedicated mainly for seismology and signal processing. The STK project that started in 2007, is hosted by SourceForge.net, and count more than 19 500 downloads at the date of writing. The STK project is composed of two main branches: First, a graphical interface dedicated to signal processing (in the SAC format (SAC_ASCII and SAC_BIN): where the signal can be plotted, zoomed, filtered, integrated, derivated, ... etc. (a large variety of IFR and FIR filter is proposed). The estimation of spectral density of the signal are performed via the Fourier transform, with visualization of the Power Spectral Density (PSD) in linear or log scale, and also the evolutive time-frequency representation (or sonagram). The 3-components signals can be also processed for estimating their polarization properties, either for a given window, or either for evolutive windows along the time. This polarization analysis is useful for extracting the polarized noises, differentiating P waves, Rayleigh waves, Love waves, ... etc. Secondly, a panel of Utilities-Program are proposed for working in a terminal mode, with basic programs for computing azimuth and distance in spherical geometry, inter/auto-correlation, spectral density, time-frequency for an entire directory of signals, focal planes, and main components axis, radiation pattern of P waves, Polarization analysis of different waves (including noize), under/over-sampling the signals, cubic-spline smoothing, and linear/non linear regression analysis of data set. A MINimum library of Linear AlGebra (MIN-LINAG) is also provided for computing the main matrix process like: QR/QL decomposition, Cholesky solve of linear system, finding eigen value/eigen vectors, QR-solve/Eigen-solve of linear equations systems ... etc. STK is developed in C/C++, mainly under Linux OS, and it has been also partially implemented under MS-Windows. Usefull links: http://sourceforge.net/projects/seismic-toolkit/ http://sourceforge.net/p/seismic-toolkit/wiki/browse_pages/
Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis
NASA Astrophysics Data System (ADS)
Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.
2016-09-01
Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.
Software system for data management and distributed processing of multichannel biomedical signals.
Franaszczuk, P J; Jouny, C C
2004-01-01
The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.
Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis; Atkins, David C.; Narayanan, Shrikanth S.
2017-01-01
Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation, and offer a series of open problems for future research. PMID:27017830
Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai
2018-01-01
Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950
Analysis of the sleep quality of elderly people using biomedical signals.
Moreno-Alsasua, L; Garcia-Zapirain, B; Mendez-Zorrilla, A
2015-01-01
This paper presents a technical solution that analyses sleep signals captured by biomedical sensors to find possible disorders during rest. Specifically, the method evaluates electrooculogram (EOG) signals, skin conductance (GSR), air flow (AS), and body temperature. Next, a quantitative sleep quality analysis determines significant changes in the biological signals, and any similarities between them in a given time period. Filtering techniques such as the Fourier transform method and IIR filters process the signal and identify significant variations. Once these changes have been identified, all significant data is compared and a quantitative and statistical analysis is carried out to determine the level of a person's rest. To evaluate the correlation and significant differences, a statistical analysis has been calculated showing correlation between EOG and AS signals (p=0,005), EOG, and GSR signals (p=0,037) and, finally, the EOG and Body temperature (p=0,04). Doctors could use this information to monitor changes within a patient.
NASA Astrophysics Data System (ADS)
Schelkanova, Irina; Toronov, Vladislav
2011-07-01
Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques and in cognitive neuroscience, the development of the apparatuses and signal processing methods for these applications is still a hot research topic. The main unresolved problem in functional NIRS is the separation of functional signals from the contaminations by systemic and local physiological fluctuations. This problem was approached by using various signal processing methods, including blind signal separation techniques. In particular, principal component analysis (PCA) and independent component analysis (ICA) were applied to the data acquired at the same wavelength and at multiple sites on the human or animal heads during functional activation. These signal processing procedures resulted in a number of principal or independent components that could be attributed to functional activity but their physiological meaning remained unknown. On the other hand, the best physiological specificity is provided by broadband NIRS. Also, a comparison with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals. In this study we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we found very few different components which corresponded to fMRI signals at different locations in the brain and to different physiological chromophores.
Surface Electromyography Signal Processing and Classification Techniques
Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.
2013-01-01
Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337
Johnson, Heath E; Haugh, Jason M
2013-12-02
This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.
Identification and human condition analysis based on the human voice analysis
NASA Astrophysics Data System (ADS)
Mieshkov, Oleksandr Yu.; Novikov, Oleksandr O.; Novikov, Vsevolod O.; Fainzilberg, Leonid S.; Kotyra, Andrzej; Smailova, Saule; Kozbekova, Ainur; Imanbek, Baglan
2017-08-01
The paper presents a two-stage biotechnical system for human condition analysis that is based on analysis of human voice signal. At the initial stage, the voice signal is pre-processed and its characteristics in time domain are determined. At the first stage, the developed system is capable of identifying the person in the database on the basis of the extracted characteristics. At the second stage, the model of a human voice is built on the basis of the real voice signals after clustering the whole database.
Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks
NASA Astrophysics Data System (ADS)
Duffy, Diane E.; McIntosh, Allen A.; Rosenstein, Mark; Willinger, Walter
1994-04-01
In this paper, we report on an ongoing statistical analysis of actual CCSN traffic data. The data consist of approximately 170 million signaling messages collected from a variety of different working CCS subnetworks. The key findings from our analysis concern: (1) the characteristics of both the telephone call arrival process and the signaling message arrival process; (2) the tail behavior of the call holding time distribution; and (3) the observed performance of the CCSN with respect to a variety of performance and reliability measurements.
NASA Astrophysics Data System (ADS)
Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.
2010-07-01
Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.
Lin, Chin-Teng; Chen, Yu-Chieh; Huang, Teng-Yi; Chiu, Tien-Ting; Ko, Li-Wei; Liang, Sheng-Fu; Hsieh, Hung-Yi; Hsu, Shang-Hwa; Duann, Jeng-Ren
2008-05-01
Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.
2011-01-01
Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182
A portable system for acquiring and removing motion artefact from ECG signals
NASA Astrophysics Data System (ADS)
Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.
2007-07-01
A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.
ERIC Educational Resources Information Center
Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.
2014-01-01
Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…
2-D Acousto-Optic Signal Processors for Simultaneous Spectrum Analysis and Direction Finding
1990-11-01
National Dfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS 00 AND DIRECTION FINDING (U) by NM Jim P.Y...Wr pdft .1w I0~1111191 3 05089 National DIfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND DIRECTION...Processing, J.T. Tippet et al., Eds., Chapter 38, pp. 715-748, MIT Press, Cambridge 1965. [6] A.E. Spezio," Acousto - optics for Electronic Warfare
Unruh, W.P.
1987-03-23
Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.
Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang
2017-02-06
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.
BioSig: The Free and Open Source Software Library for Biomedical Signal Processing
Vidaurre, Carmen; Sander, Tilmann H.; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals. PMID:21437227
BioSig: the free and open source software library for biomedical signal processing.
Vidaurre, Carmen; Sander, Tilmann H; Schlögl, Alois
2011-01-01
BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals.
Detection and Processing Techniques of FECG Signal for Fetal Monitoring
2009-01-01
Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system. PMID:19495912
NASA Astrophysics Data System (ADS)
Kiyashko, B. V.
1995-10-01
Partially coherent optical systems for signal processing are considered. The transfer functions are formed in these systems by interference of polarised light transmitted by an anisotropic medium. It is shown that such systems can perform various integral transformations of both optical and electric signals, in particular, two-dimensional Fourier and Fresnel transformations, as well as spectral analysis of weak light sources. It is demonstrated that such systems have the highest luminosity and vibration immunity among the systems with interference formation of transfer functions. An experimental investigation is reported of the application of these systems in the processing of signals from a linear hydroacoustic antenna array, and in measurements of the optical spectrum and of the intrinsic noise.
Polarization-insensitive techniques for optical signal processing
NASA Astrophysics Data System (ADS)
Salem, Reza
2006-12-01
This thesis investigates polarization-insensitive methods for optical signal processing. Two signal processing techniques are studied: clock recovery based on two-photon absorption in silicon and demultiplexing based on cross-phase modulation in highly nonlinear fiber. The clock recovery system is tested at an 80 Gb/s data rate for both back-to-back and transmission experiments. The demultiplexer is tested at a 160 Gb/s data rate in a back-to-back experiment. We experimentally demonstrate methods for eliminating polarization dependence in both systems. Our experimental results are confirmed by theoretical and numerical analysis.
High efficiency processing for reduced amplitude zones detection in the HRECG signal
NASA Astrophysics Data System (ADS)
Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.
2016-04-01
Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.
Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution
NASA Technical Reports Server (NTRS)
Zoladz, T. F.; Jones, J. H.; Jong, J.
1992-01-01
A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.
NASA Astrophysics Data System (ADS)
Reymond, D.
2016-12-01
We present an open source software project (GNU public license), named STK: Seismic Tool-Kit, that is dedicated mainly for learning signal processing and seismology. The STK project that started in 2007, is hosted by SourceForge.net, and count more than 20000 downloads at the date of writing.The STK project is composed of two main branches:First, a graphical interface dedicated to signal processing (in the SAC format (SAC_ASCII and SAC_BIN): where the signal can be plotted, zoomed, filtered, integrated, derivated, ... etc. (a large variety of IFR and FIR filter is proposed). The passage in the frequency domain via the Fourier transform is used to introduce the estimation of spectral density of the signal , with visualization of the Power Spectral Density (PSD) in linear or log scale, and also the evolutive time-frequency representation (or sonagram). The 3-components signals can be also processed for estimating their polarization properties, either for a given window, or either for evolutive windows along the time. This polarization analysis is useful for extracting the polarized noises, differentiating P waves, Rayleigh waves, Love waves, ... etc. Secondly, a panel of Utilities-Program are proposed for working in a terminal mode, with basic programs for computing azimuth and distance in spherical geometry, inter/auto-correlation, spectral density, time-frequency for an entire directory of signals, focal planes, and main components axis, radiation pattern of P waves, Polarization analysis of different waves (including noise), under/over-sampling the signals, cubic-spline smoothing, and linear/non linear regression analysis of data set. STK is developed in C/C++, mainly under Linux OS, and it has been also partially implemented under MS-Windows. STK has been used in some schools for viewing and plotting seismic records provided by IRIS, and it has been used as a practical support for teaching the basis of signal processing. Useful links:http://sourceforge.net/projects/seismic-toolkit/http://sourceforge.net/p/seismic-toolkit/wiki/browse_pages/
Multivariate analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendavid, Josh; Fisher, Wade C.; Junk, Thomas R.
2016-01-01
The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually bothmore » be improved by separating signal events from background events with higher efficiency and purity.« less
Benefits of Software GPS Receivers for Enhanced Signal Processing
2000-01-01
1 Published in GPS SOLUTIONS 4(1) Summer, 2000, pages 56-66. Benefits of Software GPS Receivers for Enhanced Signal Processing Alison Brown...Diego, CA 92110-3127 Number of Pages: 24 Number of Figures: 20 ABSTRACT In this paper the architecture of a software GPS receiver is described...and an analysis is included of the performance of a software GPS receiver when tracking the GPS signals in challenging environments. Results are
Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu
2013-08-29
This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform
Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong
2016-01-01
We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Eliminating Bias In Acousto-Optical Spectrum Analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Lesh, James R.
1992-01-01
Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.
IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM’s image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis. PMID:25612319
IQM: an extensible and portable open source application for image and signal analysis in Java.
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM's image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis.
High-performance wavelet engine
NASA Astrophysics Data System (ADS)
Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.
1993-11-01
Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.
Scalable Parallel Algorithms for Multidimensional Digital Signal Processing
1991-12-31
Proceedings, San Diego CL., August 1989, pp. 132-146. 53 [13] A. L. Gorin, L. Auslander, and A. Silberger . Balanced computation of 2D trans- forms on a tree...Speech, Signal Processing. ASSP-34, Oct. 1986,pp. 1301-1309. [24] A. Norton and A. Silberger . Parallelization and performance analysis of the Cooley-Tukey
Sample-Starved Large Scale Network Analysis
2016-05-05
As reported in our journal publication (G. Marjanovic and A. O. Hero, ”l0 Sparse Inverse Covariance Estimation,” IEEE Trans on Signal Processing, vol... Marjanovic and A. O. Hero, ”l0 Sparse Inverse Covariance Estimation,” in IEEE Trans on Signal Processing, vol. 63, no. 12, pp. 3218-3231, May 2015. 6. G
A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1989-01-01
Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.
Model of the best-of-N nest-site selection process in honeybees.
Reina, Andreagiovanni; Marshall, James A R; Trianni, Vito; Bose, Thomas
2017-05-01
The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N-1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
Model of the best-of-N nest-site selection process in honeybees
NASA Astrophysics Data System (ADS)
Reina, Andreagiovanni; Marshall, James A. R.; Trianni, Vito; Bose, Thomas
2017-05-01
The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future colony's fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior nest and N -1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
Lau, Sarah J.; Moore, David G.; Stair, Sarah L.; ...
2016-01-01
Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linearmore » relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This study describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.« less
Neurophysiological analysis of echolocation in bats
NASA Technical Reports Server (NTRS)
Suga, N.
1972-01-01
An analysis of echolocation and signal processing in brown bats is presented. Data cover echo detection, echo ranging, echolocalization, and echo analysis. Efforts were also made to identify the part of the brain that carries out the most essential processing function for echolocation. Results indicate the inferior colliculus and the auditory nuclei function together to process this information.
Novel sonar signal processing tool using Shannon entropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quazi, A.H.
1996-06-01
Traditionally, conventional signal processing extracts information from sonar signals using amplitude, signal energy or frequency domain quantities obtained using spectral analysis techniques. The object is to investigate an alternate approach which is entirely different than that of traditional signal processing. This alternate approach is to utilize the Shannon entropy as a tool for the processing of sonar signals with emphasis on detection, classification, and localization leading to superior sonar system performance. Traditionally, sonar signals are processed coherently, semi-coherently, and incoherently, depending upon the a priori knowledge of the signals and noise. Here, the detection, classification, and localization technique will bemore » based on the concept of the entropy of the random process. Under a constant energy constraint, the entropy of a received process bearing finite number of sample points is maximum when hypothesis H{sub 0} (that the received process consists of noise alone) is true and decreases when correlated signal is present (H{sub 1}). Therefore, the strategy used for detection is: (I) Calculate the entropy of the received data; then, (II) compare the entropy with the maximum value; and, finally, (III) make decision: H{sub 1} is assumed if the difference is large compared to pre-assigned threshold and H{sub 0} is otherwise assumed. The test statistics will be different between entropies under H{sub 0} and H{sub 1}. Here, we shall show the simulated results for detecting stationary and non-stationary signals in noise, and results on detection of defects in a Plexiglas bar using an ultrasonic experiment conducted by Hughes. {copyright} {ital 1996 American Institute of Physics.}« less
An open-loop system design for deep space signal processing applications
NASA Astrophysics Data System (ADS)
Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi
2018-06-01
A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.
Independent component analysis algorithm FPGA design to perform real-time blind source separation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke
2015-05-01
The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.
Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Jong, Jen-Yi
1986-01-01
An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.
Advanced methods in NDE using machine learning approaches
NASA Astrophysics Data System (ADS)
Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank
2018-04-01
Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.
Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph
2015-01-01
An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.
NASA Astrophysics Data System (ADS)
Blok, A. S.; Bukhenskii, A. F.; Krupitskii, É. I.; Morozov, S. V.; Pelevin, V. Yu; Sergeenko, T. N.; Yakovlev, V. I.
1995-10-01
An investigation is reported of acousto-optical and fibre-optic Fourier processors of electric signals, based on semiconductor lasers. A description is given of practical acousto-optical processors with an analysis band 120 MHz wide, a resolution of 200 kHz, and 7 cm × 8 cm × 18 cm dimensions. Fibre-optic Fourier processors are considered: they represent a new class of devices which are promising for the processing of gigahertz signals.
Improving the signal analysis for in vivo photoacoustic flow cytometry
NASA Astrophysics Data System (ADS)
Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin
2015-03-01
At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.
EMG amplifier with wireless data transmission
NASA Astrophysics Data System (ADS)
Kowalski, Grzegorz; Wildner, Krzysztof
2017-08-01
Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.
Digital signal processing the Tevatron BPM signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cancelo, G.; James, E.; Wolbers, S.
2005-05-01
The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less
Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang
2018-01-01
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335
NASA Astrophysics Data System (ADS)
Chen, Xiaoguang; Liang, Lin; Liu, Fei; Xu, Guanghua; Luo, Ailing; Zhang, Sicong
2012-05-01
Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.
[Application of the mixed programming with Labview and Matlab in biomedical signal analysis].
Yu, Lu; Zhang, Yongde; Sha, Xianzheng
2011-01-01
This paper introduces the method of mixed programming with Labview and Matlab, and applies this method in a pulse wave pre-processing and feature detecting system. The method has been proved suitable, efficient and accurate, which has provided a new kind of approach for biomedical signal analysis.
Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process
NASA Technical Reports Server (NTRS)
Racette, Paul
2010-01-01
Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.
A feasibility study on age-related factors of wrist pulse using principal component analysis.
Jang-Han Bae; Young Ju Jeon; Sanghun Lee; Jaeuk U Kim
2016-08-01
Various analysis methods for examining wrist pulse characteristics are needed for accurate pulse diagnosis. In this feasibility study, principal component analysis (PCA) was performed to observe age-related factors of wrist pulse from various analysis parameters. Forty subjects in the age group of 20s and 40s were participated, and their wrist pulse signal and respiration signal were acquired with the pulse tonometric device. After pre-processing of the signals, twenty analysis parameters which have been regarded as values reflecting pulse characteristics were calculated and PCA was performed. As a results, we could reduce complex parameters to lower dimension and age-related factors of wrist pulse were observed by combining-new analysis parameter derived from PCA. These results demonstrate that PCA can be useful tool for analyzing wrist pulse signal.
Methods for automatically analyzing humpback song units.
Rickwood, Peter; Taylor, Andrew
2008-03-01
This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.
A real time ECG signal processing application for arrhythmia detection on portable devices
NASA Astrophysics Data System (ADS)
Georganis, A.; Doulgeraki, N.; Asvestas, P.
2017-11-01
Arrhythmia describes the disorders of normal heart rate, which, depending on the case, can even be fatal for a patient with severe history of heart disease. The purpose of this work is to develop an application for heart signal visualization, processing and analysis in Android portable devices e.g. Mobile phones, tablets, etc. The application is able to retrieve the signal initially from a file and at a later stage this signal is processed and analysed within the device so that it can be classified according to the features of the arrhythmia. In the processing and analysing stage, different algorithms are included among them the Moving Average and Pan Tompkins algorithm as well as the use of wavelets, in order to extract features and characteristics. At the final stage, testing is performed by simulating our application in real-time records, using the TCP network protocol for communicating the mobile with a simulated signal source. The classification of ECG beat to be processed is performed by neural networks.
NASA Astrophysics Data System (ADS)
Fan, Qingju; Wu, Yonghong
2015-08-01
In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.
ERIC Educational Resources Information Center
Onaral, Banu; And Others
This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…
A new similarity index for nonlinear signal analysis based on local extrema patterns
NASA Astrophysics Data System (ADS)
Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher
2018-02-01
Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.
Synthesis, Analysis, and Processing of Fractal Signals
1991-10-01
coordinator in hockey, squash, volleyball, and softball, but also for reminding me periodically that 1/f noise can exist outside a computer. More...similar signals as Fourier-based representations are for stationary and periodic signals. Furthermore, because wave- let transformations can be...and periodic signals. Furthermore, just as the discovery of fast Fourier transform (FFT) algorithms dramatically increased the viability the Fourier
Characterization of a 300-GHz Transmission System for Digital Communications
NASA Astrophysics Data System (ADS)
Hudlička, Martin; Salhi, Mohammed; Kleine-Ostmann, Thomas; Schrader, Thorsten
2017-08-01
The paper presents the characterization of a 300-GHz transmission system for modern digital communications. The quality of the modulated signal at the output of the system (error vector magnitude, EVM) is measured using a vector signal analyzer. A method using a digital real-time oscilloscope and consecutive mathematical processing in a computer is shown for analysis of signals with bandwidths exceeding that of state-of-the-art vector signal analyzers. The uncertainty of EVM measured using the real-time oscilloscope is open to analysis. Behaviour of the 300-GHz transmission system is studied with respect to various modulation schemes and different signal symbol rates.
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
1999-11-01
represents the linear time invariant (LTI) response of the combined analysis /synthesis system while the second repre- sents the aliasing introduced into...effectively to implement voice scrambling systems based on time - frequency permutation . The most general form of such a system is shown in Fig. 22 where...92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO LECTURE SERIES 216 Application of Mathematical Signal Processing Techniques to Mission Systems (1
Research and Implementation of Heart Sound Denoising
NASA Astrophysics Data System (ADS)
Liu, Feng; Wang, Yutai; Wang, Yanxiang
Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
NASA Astrophysics Data System (ADS)
Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng
2018-01-01
Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).
A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs
NASA Astrophysics Data System (ADS)
Javed, Faizan; Venkatachalam, P. A.; H, Ahmad Fadzil M.
2006-04-01
In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition & Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions.
Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis.
Aboy, Mateo; Hornero, Roberto; Abásolo, Daniel; Alvarez, Daniel
2006-11-01
Lempel-Ziv complexity (LZ) and derived LZ algorithms have been extensively used to solve information theoretic problems such as coding and lossless data compression. In recent years, LZ has been widely used in biomedical applications to estimate the complexity of discrete-time signals. Despite its popularity as a complexity measure for biosignal analysis, the question of LZ interpretability and its relationship to other signal parameters and to other metrics has not been previously addressed. We have carried out an investigation aimed at gaining a better understanding of the LZ complexity itself, especially regarding its interpretability as a biomedical signal analysis technique. Our results indicate that LZ is particularly useful as a scalar metric to estimate the bandwidth of random processes and the harmonic variability in quasi-periodic signals.
Comparing single- and dual-process models of memory development.
Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert
2017-11-01
This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.
Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.
This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less
Plant TOR signaling components
John, Florian; Roffler, Stefan; Wicker, Thomas; Ringli, Christoph
2011-01-01
Cell growth is a process that needs to be tightly regulated. Cells must be able to sense environmental factors like nutrient abundance, the energy level or stress signals and coordinate growth accordingly. The Target Of Rapamycin (TOR) pathway is a major controller of growth-related processes in all eukaryotes. If environmental conditions are favorable, the TOR pathway promotes cell and organ growth and restrains catabolic processes like autophagy. Rapamycin is a specific inhibitor of the TOR kinase and acts as a potent inhibitor of TOR signaling. As a consequence, interfering with TOR signaling has a strong impact on plant development. This review summarizes the progress in the understanding of the biological significance and the functional analysis of the TOR pathway in plants. PMID:22057328
Emg Signal Analysis of Healthy and Neuropathic Individuals
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa
2017-08-01
Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.
Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis
NASA Astrophysics Data System (ADS)
Pavan Kumar, T.; Prabhakar Reddy, P.
2017-08-01
Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the weldments and compared for determining the weld quality.
NASA Astrophysics Data System (ADS)
Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi
2013-04-01
This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.
Signal Feature Analysis Using Neural Networks & Psychoacoustics
1993-05-01
large class file on the DAT recording . This processing produced signals which ranged in length from 13200 and 39650 points. The extractions produced ... recorded . This signal set, denoted as "Air" signals , lacked the parameter of angle but added the parameter of striker (metal, plastic, and wood...the subjects were recorded . These became r.4 w data for confusion matrices which described how often a subject confused the class of a signal
NASA Astrophysics Data System (ADS)
Lu, Jia; Zhang, Xiaoxing; Xiong, Hao
The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.
Systems analysis of arrestin pathway functions.
Maudsley, Stuart; Siddiqui, Sana; Martin, Bronwen
2013-01-01
To fully appreciate the diversity and specificity of complex cellular signaling events, such as arrestin-mediated signaling from G protein-coupled receptor activation, a complex systems-level investigation currently appears to be the best option. A rational combination of transcriptomics, proteomics, and interactomics, all coherently integrated with applied next-generation bioinformatics, is vital for the future understanding of the development, translation, and expression of GPCR-mediated arrestin signaling events in physiological contexts. Through a more nuanced, systems-level appreciation of arrestin-mediated signaling, the creation of arrestin-specific molecular response "signatures" should be made simple and ultimately amenable to drug discovery processes. Arrestin-based signaling paradigms possess important aspects, such as its specific temporal kinetics and ability to strongly affect transcriptional activity, that make it an ideal test bed for next-generation of drug discovery bioinformatic approaches such as multi-parallel dose-response analysis, data texturization, and latent semantic indexing-based natural language data processing and feature extraction. Copyright © 2013 Elsevier Inc. All rights reserved.
Uniform, optimal signal processing of mapped deep-sequencing data.
Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2013-07-01
Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.
Tunney, Richard J.; Mullett, Timothy L.; Moross, Claudia J.; Gardner, Anna
2012-01-01
The butcher-on-the-bus is a rhetorical device or hypothetical phenomenon that is often used to illustrate how recognition decisions can be based on different memory processes (Mandler, 1980). The phenomenon describes a scenario in which a person is recognized but the recognition is accompanied by a sense of familiarity or knowing characterized by an absence of contextual details such as the person’s identity. We report two recognition memory experiments that use signal detection analyses to determine whether this phenomenon is evidence for a recollection plus familiarity model of recognition or is better explained by a univariate signal detection model. We conclude that there is an interaction between confidence estimates and remember-know judgments which is not explained fully by either single-process signal detection or traditional dual-process models. PMID:22745631
Fractal Signals & Space-Time Cartoons
NASA Astrophysics Data System (ADS)
Oetama, H. C. Jakob; Maksoed, W. H.
2016-03-01
In ``Theory of Scale Relativity'', 1991- L. Nottale states whereas ``scale relativity is a geometrical & fractal space-time theory''. It took in comparisons to ``a unified, wavelet based framework for efficiently synthetizing, analyzing ∖7 processing several broad classes of fractal signals''-Gregory W. Wornell:``Signal Processing with Fractals'', 1995. Furthers, in Fig 1.1. a simple waveform from statistically scale-invariant random process [ibid.,h 3 ]. Accompanying RLE Technical Report 566 ``Synthesis, Analysis & Processing of Fractal Signals'' as well as from Wornell, Oct 1991 herewith intended to deducts =a Δt + (1 - β Δ t) ...in Petersen, et.al: ``Scale invariant properties of public debt growth'',2010 h. 38006p2 to [1/{1- (2 α (λ) /3 π) ln (λ/r)}depicts in Laurent Nottale,1991, h 24. Acknowledgment devotes to theLates HE. Mr. BrigadierGeneral-TNI[rtd].Prof. Ir. HANDOJO.
Structural analysis of vibroacoustical processes
NASA Technical Reports Server (NTRS)
Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.
1973-01-01
The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.
2015-01-01
Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor, with a dismal mean survival even with the current standard of care. Although in vitro cell systems can provide mechanistic insight into the regulatory networks governing GBM cell proliferation and migration, clinical samples provide a more physiologically relevant view of oncogenic signaling networks. However, clinical samples are not widely available and may be embedded for histopathologic analysis. With the goal of accurately identifying activated signaling networks in GBM tumor samples, we investigated the impact of embedding in optimal cutting temperature (OCT) compound followed by flash freezing in LN2 vs immediate flash freezing (iFF) in LN2 on protein expression and phosphorylation-mediated signaling networks. Quantitative proteomic and phosphoproteomic analysis of 8 pairs of tumor specimens revealed minimal impact of the different sample processing strategies and highlighted the large interpatient heterogeneity present in these tumors. Correlation analyses of the differentially processed tumor sections identified activated signaling networks present in selected tumors and revealed the differential expression of transcription, translation, and degradation associated proteins. This study demonstrates the capability of quantitative mass spectrometry for identification of in vivo oncogenic signaling networks from human tumor specimens that were either OCT-embedded or immediately flash-frozen. PMID:24927040
Zhao, Ming; Huang, Run; Peng, Leilei
2012-11-19
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-01-01
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535
The Role of Interpretation and Diagnosis in Signal Processing
1988-01-01
122b. TELEPHONE (Incude Area Code) 2cOFIESYMBOL Elisabeth Colford - RLE Contract Reports I(617)258-5871I DO Form 1473, JUN 84 Previous editions ame...6] S. Lee, E. Milios, R. Greiner , and J. Rossiter. Signal ab- stractions in the machine analysis of radar signals for ice profiling. In International
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V
2010-01-01
The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.
A review of signals used in sleep analysis
Roebuck, A; Monasterio, V; Gederi, E; Osipov, M; Behar, J; Malhotra, A; Penzel, T; Clifford, GD
2014-01-01
This article presents a review of signals used for measuring physiology and activity during sleep and techniques for extracting information from these signals. We examine both clinical needs and biomedical signal processing approaches across a range of sensor types. Issues with recording and analysing the signals are discussed, together with their applicability to various clinical disorders. Both univariate and data fusion (exploiting the diverse characteristics of the primary recorded signals) approaches are discussed, together with a comparison of automated methods for analysing sleep. PMID:24346125
Performance Analysis of Visible Light Communication Using CMOS Sensors.
Do, Trong-Hop; Yoo, Myungsik
2016-02-29
This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.
Performance Analysis of Visible Light Communication Using CMOS Sensors
Do, Trong-Hop; Yoo, Myungsik
2016-01-01
This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis. PMID:26938535
Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao
2016-01-01
At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376
[Computers in biomedical research: I. Analysis of bioelectrical signals].
Vivaldi, E A; Maldonado, P
2001-08-01
A personal computer equipped with an analog-to-digital conversion card is able to input, store and display signals of biomedical interest. These signals can additionally be submitted to ad-hoc software for analysis and diagnosis. Data acquisition is based on the sampling of a signal at a given rate and amplitude resolution. The automation of signal processing conveys syntactic aspects (data transduction, conditioning and reduction); and semantic aspects (feature extraction to describe and characterize the signal and diagnostic classification). The analytical approach that is at the basis of computer programming allows for the successful resolution of apparently complex tasks. Two basic principles involved are the definition of simple fundamental functions that are then iterated and the modular subdivision of tasks. These two principles are illustrated, respectively, by presenting the algorithm that detects relevant elements for the analysis of a polysomnogram, and the task flow in systems that automate electrocardiographic reports.
Analysis of radiometric signal in sedimentating suspension flow in open channel
NASA Astrophysics Data System (ADS)
Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech
2015-05-01
The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.
Analysis of digital communication signals and extraction of parameters
NASA Astrophysics Data System (ADS)
Al-Jowder, Anwar
1994-12-01
The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).
Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.
Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein
2017-12-13
As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, W.K.; Hubbard, B.
1997-11-04
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.
Method and apparatus for digitally based high speed x-ray spectrometer
Warburton, William K.; Hubbard, Bradley
1997-01-01
A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.
Method and apparatus for assessing weld quality
Smartt, Herschel B.; Kenney, Kevin L.; Johnson, John A.; Carlson, Nancy M.; Clark, Denis E.; Taylor, Paul L.; Reutzel, Edward W.
2001-01-01
Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.
Effect of the state of internal boundaries on granite fracture nature under quasi-static compression
NASA Astrophysics Data System (ADS)
Damaskinskaya, E. E.; Panteleev, I. A.; Kadomtsev, A. G.; Naimark, O. B.
2017-05-01
Based on an analysis of the spatial distribution of hypocenters of acoustic emission signal sources and an analysis of the energy distributions of acoustic emission signals, the effect of the liquid phase and a weak electric field on the spatiotemporal nature of granite sample fracture is studied. Experiments on uniaxial compression of granite samples of natural moisture showed that the damage accumulation process is twostage: disperse accumulation of damages is followed by localized accumulation of damages in the formed macrofracture nucleus region. In energy distributions of acoustic emission signals, this transition is accompanied by a change in the distribution shape from exponential to power-law. Granite water saturation qualitatively changes the damage accumulation nature: the process is delocalized until macrofracture with the exponential energy distribution of acoustic emission signals. An exposure to a weak electric field results in a selective change in the damage accumulation nature in the sample volume.
Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
Reyes, Ivan; Nazeran, Homer; Franco, Mario; Haltiwanger, Emily
2012-01-01
The photoplethysmographic (PPG) signal has the potential to aid in the acquisition and analysis of heart rate variability (HRV) signal: a non-invasive quantitative marker of the autonomic nervous system that could be used to assess cardiac health and other physiologic conditions. A low-power wireless PPG device was custom-developed to monitor, acquire and analyze the arterial pulse in the finger. The system consisted of an optical sensor to detect arterial pulse as variations in reflected light intensity, signal conditioning circuitry to process the reflected light signal, a microcontroller to control PPG signal acquisition, digitization and wireless transmission, a receiver to collect the transmitted digital data and convert them back to their analog representations. A personal computer was used to further process the captured PPG signals and display them. A MATLAB program was then developed to capture the PPG data, detect the RR peaks, perform spectral analysis of the PPG data, and extract the HRV signal. A user-friendly graphical user interface (GUI) was developed in LabView to display the PPG data and their spectra. The performance of each module (sensing unit, signal conditioning, wireless transmission/reception units, and graphical user interface) was assessed individually and the device was then tested as a whole. Consequently, PPG data were obtained from five healthy individuals to test the utility of the wireless system. The device was able to reliably acquire the PPG signals from the volunteers. To validate the accuracy of the MATLAB codes, RR peak information from each subject was fed into Kubios software as a text file. Kubios was able to generate a report sheet with the time domain and frequency domain parameters of the acquired data. These features were then compared against those calculated by MATLAB. The preliminary results demonstrate that the prototype wireless device could be used to perform HRV signal acquisition and analysis.
Signal processing for smart cards
NASA Astrophysics Data System (ADS)
Quisquater, Jean-Jacques; Samyde, David
2003-06-01
In 1998, Paul Kocher showed that when a smart card computes cryptographic algorithms, for signatures or encryption, its consumption or its radiations leak information. The keys or the secrets hidden in the card can then be recovered using a differential measurement based on the intercorrelation function. A lot of silicon manufacturers use desynchronization countermeasures to defeat power analysis. In this article we detail a new resynchronization technic. This method can be used to facilitate the use of a neural network to do the code recognition. It becomes possible to reverse engineer a software code automatically. Using data and clock separation methods, we show how to optimize the synchronization using signal processing. Then we compare these methods with watermarking methods for 1D and 2D signal. The very last watermarking detection improvements can be applied to signal processing for smart cards with very few modifications. Bayesian processing is one of the best ways to do Differential Power Analysis, and it is possible to extract a PIN code from a smart card in very few samples. So this article shows the need to continue to set up effective countermeasures for cryptographic processors. Although the idea to use advanced signal processing operators has been commonly known for a long time, no publication explains that results can be obtained. The main idea of differential measurement is to use the cross-correlation of two random variables and to repeat consumption measurements on the processor to be analyzed. We use two processors clocked at the same external frequency and computing the same data. The applications of our design are numerous. Two measurements provide the inputs of a central operator. With the most accurate operator we can improve the signal noise ratio, re-synchronize the acquisition clock with the internal one, or remove jitter. The analysis based on consumption or electromagnetic measurements can be improved using our structure. At first sight the same results can be obtained with only one smart card, but this idea is not completely true because the statistical properties of the signal are not the same. As the two smart cards are submitted to the same external noise during the measurement, it is more easy to reduce the influence of perturbations. This paper shows the importance of accurate countermeasures against differential analysis.
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis
NASA Astrophysics Data System (ADS)
Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.
2017-09-01
Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.
Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569
Qiu, Lingling; Jiang, Bo; Fang, Jia; Shen, Yike; Fang, Zhongxiang; Rm, Saravana Kumar; Yi, Keke; Shen, Chenjia; Yan, Daoliang; Zheng, Bingsong
2016-11-17
Hickory (Carya cathayensis), a woody plant with high nutritional and economic value, is widely planted in China. Due to its long juvenile phase, grafting is a useful technique for large-scale cultivation of hickory. To reveal the molecular mechanism during the graft process, we sequenced the transcriptomes of graft union in hickory. In our study, six RNA-seq libraries yielded a total of 83,676,860 clean short reads comprising 4.19 Gb of sequence data. A large number of differentially expressed genes (DEGs) at three time points during the graft process were identified. In detail, 777 DEGs in the 7 d vs 0 d (day after grafting) comparison were classified into 11 enriched Gene Ontology (GO) categories, and 262 DEGs in the 14 d vs 0 d comparison were classified into 15 enriched GO categories. Furthermore, an overview of the PPI network was constructed by these DEGs. In addition, 20 genes related to the auxin-and cytokinin-signaling pathways were identified, and some were validated by qRT-PCR analysis. Our comprehensive analysis provides basic information on the candidate genes and hormone signaling pathways involved in the graft process in hickory and other woody plants.
Stanford Hardware Development Program
NASA Technical Reports Server (NTRS)
Peterson, A.; Linscott, I.; Burr, J.
1986-01-01
Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.
S-192 analysis: Conventional and special data processing techniques. [Michigan
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Morganstern, J.; Cicone, R.; Sarno, J.; Lambeck, P.; Malila, W.
1975-01-01
The author has identified the following significant results. Multispectral scanner data gathered over test sites in southeast Michigan were analyzed. This analysis showed the data to be somewhat deficient especially in terms of the limited signal range in most SDOs and also in regard to SDO-SDO misregistration. Further analysis showed that the scan line straightening algorithm increased the misregistration of the data. Data were processed using the conic format. The effects of such misregistration on classification accuracy was analyzed via simulation and found to be significant. Results of employing conventional as well as special, unresolved object, processing techniques were disappointing due, at least in part, to the limited signal range and noise content of the data. Application of a second class of special processing techniques, signature extension techniques, yielded better results. Two of the more basic signature extension techniques seemed to be useful in spite of the difficulties.
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
NASA Astrophysics Data System (ADS)
Lee, Dong-Sup; Cho, Dae-Seung; Kim, Kookhyun; Jeon, Jae-Jin; Jung, Woo-Jin; Kang, Myeng-Hwan; Kim, Jae-Ho
2015-01-01
Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.
Eventogram: A Visual Representation of Main Events in Biomedical Signals.
Elgendi, Mohamed
2016-09-22
Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main events within the processed signal. This paper attempts to provide an event-related framework to overcome the drawbacks of the traditional visualization methods and describe the main events within the biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram signals are used in the analysis to demonstrate the differences between the traditional visualization methods, and their performance is compared against the proposed method, referred to as the " eventogram " in this paper. The proposed method is based on two event-related moving averages that visualizes the main time-domain events in the processed biomedical signals. The traditional visualization methods were unable to find dominant events in processed signals while the eventogram was able to visualize dominant events in signals in terms of duration and morphology. Moreover, eventogram -based detection algorithms succeeded with detecting main events in different biomedical signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured unique patterns and signatures of physiological events, which could be used to visualize and identify abnormal waveforms in any quasi-periodic signal.
Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
Tombini, Mario; Rigosa, Jacopo; Zappasodi, Filippo; Porcaro, Camillo; Citi, Luca; Carpaneto, Jacopo; Rossini, Paolo Maria; Micera, Silvestro
2012-01-01
Interfacing an amputee's upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals. To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands. Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks. Artificial intelligence classifiers were implemented to analyze LIFE signals recorded while the participant tried to perform 3 different hand and finger movements as pictures representing these tasks were randomly presented on a screen. In the final week, the participant was trained to perform the same movements with a robotic hand prosthesis through modulation of tf-LIFE-4 signals. To improve the classification performance, an event-related desynchronization/synchronization (ERD/ERS) procedure was applied to EEG data to identify the exact timing of each motor command. Real-time control of neural (motor) output was achieved by the participant. By focusing electroneurographic (ENG) signal analysis in an EEG-driven time window, movement classification performance improved. After training, the participant regained normal modulation of background rhythms for movement preparation (α/β band desynchronization) in the sensorimotor area contralateral to the missing limb. Moreover, coherence analysis found a restored α band synchronization of Rolandic area with frontal and parietal ipsilateral regions, similar to that observed in the opposite hemisphere for movement of the intact hand. Of note, phantom limb pain (PLP) resolved for several months. Combining information from both cortical (EEG) and stump nerve (ENG) signals improved the classification performance compared with tf-LIFE signals processing alone; training led to cortical reorganization and mitigation of PLP.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
Non-invasive assessment of skeletal muscle activity
NASA Astrophysics Data System (ADS)
Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per
2005-10-01
After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
SIG: a general-purpose signal processing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1986-02-01
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. It also accommodates other representations for data such as transfer function polynomials. Signal processing operations include digital filtering, auto/cross spectral density, transfer function/impulse response, convolution, Fourier transform, and inverse Fourier transform. Graphical operations provide display of signals and spectra, including plotting, cursor zoom, families of curves, and multiple viewport plots. SIG provides two user interfaces with a menu mode for occasional users and a command mode for more experienced users. Capability exits for multiple commands per line, commandmore » files with arguments, commenting lines, defining commands, automatic execution for each item in a repeat sequence, etc. SIG is presently available for VAX(VMS), VAX (BERKELEY 4.2 UNIX), SUN (BERKELEY 4.2 UNIX), DEC-20 (TOPS-20), LSI-11/23 (TSX), and DEC PRO 350 (TSX). 4 refs., 2 figs.« less
Window and Overlap Processing Effects on Power Estimates from Spectra
NASA Astrophysics Data System (ADS)
Trethewey, M. W.
2000-03-01
Fast Fourier transform (FFT) spectral processing is based on the assumption of stationary ergodic data. In engineering practice, the assumption is often violated and non-stationary data processed. Data windows are commonly used to reduce leakage by decreasing the signal amplitudes near the boundaries of the discrete samples. With certain combinations of non-stationary signals and windows, the temporal weighting may attenuate important signal characteristics to adversely affect any subsequent processing. In other words, the window artificially reduces a significant section of the time signal. Consequently, spectra and overall power estimated from the affected samples are unreliable. FFT processing can be particularly problematic when the signal consists of randomly occurring transients superimposed on a more continuous signal. Overlap processing is commonly used in this situation to improve the estimates. However, the results again depend on the temporal character of the signal in relation to the window weighting. A worst-case scenario, a short-duration half sine pulse, is used to illustrate the relationship between overlap percentage and resulting power estimates. The power estimates are shown to depend on the temporal behaviour of the square of overlapped window segments. An analysis shows that power estimates may be obtained to within 0.27 dB for the following windows and overlap combinations: rectangular (0% overlap), Hanning (62.5% overlap), Hamming (60.35% overlap) and flat-top (82.25% overlap).
Information Acquisition, Analysis and Integration
2016-08-03
of sensing and processing, theory, applications, signal processing, image and video processing, machine learning , technology transfer. 16. SECURITY... learning . 5. Solved elegantly old problems like image and video debluring, intro- ducing new revolutionary approaches. 1 DISTRIBUTION A: Distribution...Polatkan, G. Sapiro, D. Blei, D. B. Dunson, and L. Carin, “ Deep learning with hierarchical convolution factor analysis,” IEEE 6 DISTRIBUTION A
SIG: a general-purpose signal processing program. User's manual. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1985-05-09
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-domain and frequenccy-domain signals. The manual contains a complete description of the SIG program from the user's stand-point. A brief exercise in using SIG is shown. Complete descriptions are given of each command in the SIG core. General information about the SIG structure, command processor, and graphics options are provided. An example usage of SIG for solving a problem is developed, and error message formats are briefly discussed. (LEW)
Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI
NASA Technical Reports Server (NTRS)
Gulkis, S.
1989-01-01
The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.
Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI.
Gulkis, S
1989-01-01
The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.
Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI
NASA Astrophysics Data System (ADS)
Gulkis, Samuel
The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.
Multi-Dimensional Signal Processing Research Program
1981-09-30
applications to real-time image processing and analysis. A specific long-range application is the automated processing of aerial reconnaissance imagery...Non-supervised image segmentation is a potentially im- portant operation in the automated processing of aerial reconnaissance pho- tographs since it
Two Dimensional Processing Of Speech And Ecg Signals Using The Wigner-Ville Distribution
NASA Astrophysics Data System (ADS)
Boashash, Boualem; Abeysekera, Saman S.
1986-12-01
The Wigner-Ville Distribution (WVD) has been shown to be a valuable tool for the analysis of non-stationary signals such as speech and Electrocardiogram (ECG) data. The one-dimensional real data are first transformed into a complex analytic signal using the Hilbert Transform and then a 2-dimensional image is formed using the Wigner-Ville Transform. For speech signals, a contour plot is determined and used as a basic feature. for a pattern recognition algorithm. This method is compared with the classical Short Time Fourier Transform (STFT) and is shown, to be able to recognize isolated words better in a noisy environment. The same method together with the concept of instantaneous frequency of the signal is applied to the analysis of ECG signals. This technique allows one to classify diseased heart-beat signals. Examples are shown.
Parallel Processing with Digital Signal Processing Hardware and Software
NASA Technical Reports Server (NTRS)
Swenson, Cory V.
1995-01-01
The assembling and testing of a parallel processing system is described which will allow a user to move a Digital Signal Processing (DSP) application from the design stage to the execution/analysis stage through the use of several software tools and hardware devices. The system will be used to demonstrate the feasibility of the Algorithm To Architecture Mapping Model (ATAMM) dataflow paradigm for static multiprocessor solutions of DSP applications. The individual components comprising the system are described followed by the installation procedure, research topics, and initial program development.
SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.
2013-12-01
Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.
2009-09-01
SAS Statistical Analysis Software SE Systems Engineering SEP Systems Engineering Process SHP Shaft Horsepower SIGINT Signals Intelligence......management occurs (OSD 2002). The Systems Engineering Process (SEP), displayed in Figure 2, is a comprehensive , iterative and recursive problem
Evaluation of interaction dynamics of concurrent processes
NASA Astrophysics Data System (ADS)
Sobecki, Piotr; Białasiewicz, Jan T.; Gross, Nicholas
2017-03-01
The purpose of this paper is to present the wavelet tools that enable the detection of temporal interactions of concurrent processes. In particular, the determination of interaction coherence of time-varying signals is achieved using a complex continuous wavelet transform. This paper has used electrocardiogram (ECG) and seismocardiogram (SCG) data set to show multiple continuous wavelet analysis techniques based on Morlet wavelet transform. MATLAB Graphical User Interface (GUI), developed in the reported research to assist in quick and simple data analysis, is presented. These software tools can discover the interaction dynamics of time-varying signals, hence they can reveal their correlation in phase and amplitude, as well as their non-linear interconnections. The user-friendly MATLAB GUI enables effective use of the developed software what enables to load two processes under investigation, make choice of the required processing parameters, and then perform the analysis. The software developed is a useful tool for researchers who have a need for investigation of interaction dynamics of concurrent processes.
Encoder fault analysis system based on Moire fringe error signal
NASA Astrophysics Data System (ADS)
Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu
2018-02-01
Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.
Power-law statistics of neurophysiological processes analyzed using short signals
NASA Astrophysics Data System (ADS)
Pavlova, Olga N.; Runnova, Anastasiya E.; Pavlov, Alexey N.
2018-04-01
We discuss the problem of quantifying power-law statistics of complex processes from short signals. Based on the analysis of electroencephalograms (EEG) we compare three interrelated approaches which enable characterization of the power spectral density (PSD) and show that an application of the detrended fluctuation analysis (DFA) or the wavelet-transform modulus maxima (WTMM) method represents a useful way of indirect characterization of the PSD features from short data sets. We conclude that despite DFA- and WTMM-based measures can be obtained from the estimated PSD, these tools outperform the standard spectral analysis when characterization of the analyzed regime should be provided based on a very limited amount of data.
Signals Intelligence - Processing - Analysis - Classification
2009-10-01
Example: Language identification from audio signals. In a certain mission, a set of languages seems important beforehand. These languages will – with a...Uebler, Ulla (2003) The Visualisation of Diverse Intelligence. In Proceedings NATO (Research and Technology Agency) conference on “Military Data
NASA Astrophysics Data System (ADS)
Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.
2015-10-01
Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.
NASA Technical Reports Server (NTRS)
Pedings, Marc
2007-01-01
RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.
Chirp Scaling Algorithms for SAR Processing
NASA Technical Reports Server (NTRS)
Jin, M.; Cheng, T.; Chen, M.
1993-01-01
The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1976-01-01
A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.
NASA Astrophysics Data System (ADS)
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Wigner-Ville distribution and Gabor transform in Doppler ultrasound signal processing.
Ghofrani, S; Ayatollahi, A; Shamsollahi, M B
2003-01-01
Time-frequency distributions have been used extensively for nonstationary signal analysis, they describe how the frequency content of a signal is changing in time. The Wigner-Ville distribution (WVD) is the best known. The draw back of WVD is cross-term artifacts. An alternative to the WVD is Gabor transform (GT), a signal decomposition method, which displays the time-frequency energy of a signal on a joint t-f plane without generating considerable cross-terms. In this paper the WVD and GT of ultrasound echo signals are computed analytically.
Biomedical signal and image processing.
Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro
2011-01-01
Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.
NASA Technical Reports Server (NTRS)
Wilson, Lonnie A.
1987-01-01
Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.
NASA Astrophysics Data System (ADS)
Bennett, Kochise; Chernyak, Vladimir Y.; Mukamel, Shaul
2017-03-01
The nonlinear optical response of a system of molecules often contains contributions whereby the products of lower-order processes in two separate molecules give signals that appear on top of a genuine direct higher-order process with a single molecule. These many-body contributions are known as cascading and complicate the interpretation of multidimensional stimulated Raman and other nonlinear signals. In a quantum electrodynamic treatment, these cascading processes arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field, i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We predict the relative phase of the direct and cascading nonlinear signals and its dependence on the microscopic dynamics as well as the sample geometry. This phase may be used to identify experimental conditions for distinguishing the direct and cascading signals by their phase. Higher-order cascading processes involving the exchange of several photons between more than two molecules are discussed.
Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang
2017-01-01
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment. PMID:28165059
Data Unfolding with Wiener-SVD Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Li, X.; Qian, X.
Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.
Data Unfolding with Wiener-SVD Method
Tang, W.; Li, X.; Qian, X.; ...
2017-10-04
Here, data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.
NASA Technical Reports Server (NTRS)
Watson, H. K.
1971-01-01
Digital computer program determines tolerance values of end to end signal chain or flow path, given preselected probability value. Technique is useful in the synthesis and analysis phases of subsystem design processes.
Selection signature in domesticated animals.
Pan, Zhang-yuan; He, Xiao-yun; Wang, Xiang-yu; Guo, Xiao-fei; Cao, Xiao-han; Hu, Wen-ping; Di, Ran; Liu, Qiu-yue; Chu, Ming-xing
2016-12-20
Domesticated animals play an important role in the life of humanity. All these domesticated animals undergo same process, first domesticated from wild animals, then after long time natural and artificial selection, formed various breeds that adapted to the local environment and human needs. In this process, domestication, natural and artificial selection will leave the selection signal in the genome. The research on these selection signals can find functional genes directly, is one of the most important strategies in screening functional genes. The current studies of selection signal have been performed in pigs, chickens, cattle, sheep, goats, dogs and other domestic animals, and found a great deal of functional genes. This paper provided an overview of the types and the detected methods of selection signal, and outlined researches of selection signal in domestic animals, and discussed the key issues in selection signal analysis and its prospects.
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
Research on vibration signal of engine based on subband energy method
NASA Astrophysics Data System (ADS)
Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua
2017-04-01
Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.
Setting the standards for signal transduction research.
Saez-Rodriguez, Julio; Alexopoulos, Leonidas G; Stolovitzky, Gustavo
2011-02-15
Major advances in high-throughput technology platforms, coupled with increasingly sophisticated computational methods for systematic data analysis, have provided scientists with tools to better understand the complexity of signaling networks. In this era of massive and diverse data collection, standardization efforts that streamline data gathering, analysis, storage, and sharing are becoming a necessity. Here, we give an overview of current technologies to study signal transduction. We argue that along with the opportunities the new technologies open, their heterogeneous nature poses critical challenges for data handling that are further increased when data are to be integrated in mathematical models. Efficient standardization through markup languages and data annotation is a sine qua non condition for a systems-level analysis of signaling processes. It remains to be seen the extent to which and the speed at which the emerging standardization efforts will be embraced by the signaling community.
Efficient heart beat detection using embedded system electronics
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.
50 CFR 37.53 - Submission of data and information.
Code of Federal Regulations, 2011 CFR
2011-10-01
... processing. (c) Processed geophysical information shall be submitted with extraneous signals and interference... of data gathering or utilization, i.e., acquisition, processing, reprocessing, analysis, and... survey conducted under the permittee's permit, including digital navigational data, if obtained, and...
50 CFR 37.53 - Submission of data and information.
Code of Federal Regulations, 2010 CFR
2010-10-01
... processing. (c) Processed geophysical information shall be submitted with extraneous signals and interference... of data gathering or utilization, i.e., acquisition, processing, reprocessing, analysis, and... survey conducted under the permittee's permit, including digital navigational data, if obtained, and...
50 CFR 37.53 - Submission of data and information.
Code of Federal Regulations, 2012 CFR
2012-10-01
... processing. (c) Processed geophysical information shall be submitted with extraneous signals and interference... of data gathering or utilization, i.e., acquisition, processing, reprocessing, analysis, and... survey conducted under the permittee's permit, including digital navigational data, if obtained, and...
50 CFR 37.53 - Submission of data and information.
Code of Federal Regulations, 2014 CFR
2014-10-01
... processing. (c) Processed geophysical information shall be submitted with extraneous signals and interference... of data gathering or utilization, i.e., acquisition, processing, reprocessing, analysis, and... survey conducted under the permittee's permit, including digital navigational data, if obtained, and...
50 CFR 37.53 - Submission of data and information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... processing. (c) Processed geophysical information shall be submitted with extraneous signals and interference... of data gathering or utilization, i.e., acquisition, processing, reprocessing, analysis, and... survey conducted under the permittee's permit, including digital navigational data, if obtained, and...
Kukreti, B M; Sharma, G K
2012-05-01
Accurate and speedy estimations of ppm range uranium and thorium in the geological and rock samples are most useful towards ongoing uranium investigations and identification of favorable radioactive zones in the exploration field areas. In this study with the existing 5 in. × 4 in. NaI(Tl) detector setup, prevailing background and time constraints, an enhanced geometrical setup has been worked out to improve the minimum detection limits for primordial radioelements K(40), U(238) and Th(232). This geometrical setup has been integrated with the newly introduced, digital signal processing based MCA system for the routine spectrometric analysis of low concentration rock samples. Stability performance, during the long counting hours, for digital signal processing MCA system and its predecessor NIM bin based MCA system has been monitored, using the concept of statistical process control. Monitored results, over a time span of few months, have been quantified in terms of spectrometer's parameters such as Compton striping constants and Channel sensitivities, used for evaluating primordial radio element concentrations (K(40), U(238) and Th(232)) in geological samples. Results indicate stable dMCA performance, with a tendency of higher relative variance, about mean, particularly for Compton stripping constants. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2014-05-01
In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.
Psychoacoustic processing of test signals
NASA Astrophysics Data System (ADS)
Kadlec, Frantisek
2003-10-01
For the quantitative evaluation of electroacoustic system properties and for psychoacoustic testing it is possible to utilize harmonic signals with fixed frequency, sweeping signals, random signals or their combination. This contribution deals with the design of various test signals with emphasis on audible perception. During the digital generation of signals, some additional undesirable frequency components and noise are produced, which are dependent on signal amplitude and sampling frequency. A mathematical analysis describes the origin of this distortion. By proper selection of signal frequency and amplitude it is possible to minimize those undesirable components. An additional step is to minimize the audible perception of this signal distortion by the application of additional noise (dither). For signals intended for listening tests a dither with triangular or Gaussian probability density function was found to be most effective. Signals modified this way may be further improved by the application of noise shaping, which transposes those undesirable products into frequency regions where they are perceived less, according to psychoacoustic principles. The efficiency of individual processing steps was confirmed both by measurements and by listening tests. [Work supported by the Czech Science Foundation.
NASA Astrophysics Data System (ADS)
Lee, Sang-Kwon
This thesis is concerned with the development of a useful engineering technique to detect and analyse faults in rotating machinery. The methods developed are based on the advanced signal processing such as the adaptive signal processing and higher-order time frequency methods. The two-stage Adaptive Line Enhancer (ALE), using adaptive signal processing, has been developed for increasing the Signal to Noise Ratio of impulsive signals. The enhanced signal can then be analysed using time frequency methods to identify fault characteristics. However, if after pre-processing by the two stage ALE, the SNR of the signals is low, the residual noise often hinders clear identification of the fault characteristics in the time-frequency domain. In such cases, higher order time-frequency methods have been proposed and studied. As examples of rotating machinery, the internal combustion engine and an industrial gear box are considered in this thesis. The noise signal from an internal combustion engine and vibration signal measured on a gear box are studied in detail. Typically an impulsive signal manifests itself when the fault occurs in the machinery and is embedded in background noise, such as the fundamental frequency and its harmonic orders of the rotation speed and broadband noise. The two-stage ALE is developed for reducing this background noise. Conditions for the choice of adaptive filter parameters are studied and suitable adaptive algorithms given. The enhanced impulsive signal is analysed in the time- frequency domain using the Wigner higher order moment spectra (WHOMS) and the multi-time WHOMS (which is a dual form of the WHOMS). The WHOMS suffers from unwanted cross-terms, which increase dramatically as the order increases. Novel expressions for the cross-terms in WHOMS have been presented. The number of cross-terms can be reduced by taking the principal slice of the WHOMS. The residual cross-terms are smoothed by using a general class of kernel functions and the γ-method kernel function which is a novel development in this thesis. The WVD and the sliced WHOMS for synthesised signals and measured data from rotating machinery are analysed. The estimated ROC (Receive Operating Characteristic) curves for these methods are computed. These results lead to the conclusion that the detection performance when using the sliced WHOMS, for impulsive signals in embedded in broadband noise, is better than that of the Wigner-Ville distribution. Real data from a faulty car engine and faulty industrial gears are analysed. The car engine radiates an impulsive noise signal due to the loosening of a spark plug. The faulty industrial gear produces an impulsive vibration signal due to a spall on the tooth face in gear. The two- stage ALE and WHOMS are successfully applied to detection and analysis of these impulsive signals.
Review of current GPS methodologies for producing accurate time series and their error sources
NASA Astrophysics Data System (ADS)
He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping
2017-05-01
The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.
NASA Astrophysics Data System (ADS)
Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.
2010-05-01
This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a base platform for a future integrated system that will incorporate services such as notifications for field station power failures, disruption of data flow, occurring SEs, and even other types of measurement and analysis processes such as the integration of a special analysis algorithm based on the ratio of short term to long term signal average.
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Correlation analysis of respiratory signals by using parallel coordinate plots.
Saatci, Esra
2018-01-01
The understanding of the bonds and the relationships between the respiratory signals, i.e. the airflow, the mouth pressure, the relative temperature and the relative humidity during breathing may provide the improvement on the measurement methods of respiratory mechanics and sensor designs or the exploration of the several possible applications in the analysis of respiratory disorders. Therefore, the main objective of this study was to propose a new combination of methods in order to determine the relationship between respiratory signals as a multidimensional data. In order to reveal the coupling between the processes two very different methods were used: the well-known statistical correlation analysis (i.e. Pearson's correlation and cross-correlation coefficient) and parallel coordinate plots (PCPs). Curve bundling with the number intersections for the correlation analysis, Least Mean Square Time Delay Estimator (LMS-TDE) for the point delay detection and visual metrics for the recognition of the visual structures were proposed and utilized in PCP. The number of intersections was increased when the correlation coefficient changed from high positive to high negative correlation between the respiratory signals, especially if whole breath was processed. LMS-TDE coefficients plotted in PCP indicated well-matched point delay results to the findings in the correlation analysis. Visual inspection of PCB by visual metrics showed range, dispersions, entropy comparisons and linear and sinusoidal-like relationships between the respiratory signals. It is demonstrated that the basic correlation analysis together with the parallel coordinate plots perceptually motivates the visual metrics in the display and thus can be considered as an aid to the user analysis by providing meaningful views of the data. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel analysis method for near infrared spectroscopy based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Zhou, Zhenyu; Yang, Hongyu; Liu, Yun; Ruan, Zongcai; Luo, Qingming; Gong, Hui; Lu, Zuhong
2007-05-01
Near Infrared Imager (NIRI) has been widely used to access the brain functional activity non-invasively. We use a portable, multi-channel and continuous-wave NIR topography instrument to measure the concentration changes of each hemoglobin species and map cerebral cortex functional activation. By extracting some essential features from the BOLD signals, optical tomography is able to be a new way of neuropsychological studies. Fourier spectral analysis provides a common framework for examining the distribution of global energy in the frequency domain. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. The hemoglobin species concentration changes are of such kind. In this work we develop a new signal processing method using Hilbert-Huang transform to perform spectral analysis of the functional NIRI signals. Compared with wavelet based multi-resolution analysis (MRA), we demonstrated the extraction of task related signal for observation of activation in the prefrontal cortex (PFC) in vision stimulation experiment. This method provides a new analysis tool for functional NIRI signals. Our experimental results show that the proposed approach provides the unique method for reconstructing target signal without losing original information and enables us to understand the episode of functional NIRI more precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.
2014-06-01
The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software.more » The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values« less
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
Multitaper spectral analysis of atmospheric radar signals
NASA Astrophysics Data System (ADS)
Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.
2004-11-01
Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.
Double Fourier analysis for Emotion Identification in Voiced Speech
NASA Astrophysics Data System (ADS)
Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.
2016-04-01
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.
Modern Techniques in Acoustical Signal and Image Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J V
2002-04-04
Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve thismore » goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.« less
Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B
2014-09-01
Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ayres-de-Campos, Diogo; Rei, Mariana; Nunes, Inês; Sousa, Paulo; Bernardes, João
2017-01-01
SisPorto 4.0 is the most recent version of a program for the computer analysis of cardiotocographic (CTG) signals and ST events, which has been adapted to the 2015 International Federation of Gynaecology and Obstetrics (FIGO) guidelines for intrapartum foetal monitoring. This paper provides a detailed description of the analysis performed by the system, including the signal-processing algorithms involved in identification of basic CTG features and the resulting real-time alerts.
NASA Technical Reports Server (NTRS)
Hesler, J. P.; Hwang, Y. C.; Zampini, J. J.
1972-01-01
The fabrication and evaluation of 10 engineering prototype ground signal processing systems of three converter types are reported for use with satellite television. Target cost converters and cost sensitivity analysis are discussed along with the converter configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yanmei; Li, Xinli; Bai, Yan
The measurement of multiphase flow parameters is of great importance in a wide range of industries. In the measurement of multiphase, the signals from the sensors are extremely weak and often buried in strong background noise. It is thus desirable to develop effective signal processing techniques that can detect the weak signal from the sensor outputs. In this paper, two methods, i.e., lock-in-amplifier (LIA) and improved Duffing chaotic oscillator are compared to detect and process the weak signal. For sinusoidal signal buried in noise, the correlation detection with sinusoidal reference signal is simulated by using LIA. The improved Duffing chaoticmore » oscillator method, which based on the Wigner transformation, can restore the signal waveform and detect the frequency. Two methods are combined to detect and extract the weak signal. Simulation results show the effectiveness and accuracy of the proposed improved method. The comparative analysis shows that the improved Duffing chaotic oscillator method can restrain noise strongly since it is sensitive to initial conditions.« less
Pappachan, Bobby K; Caesarendra, Wahyu; Tjahjowidodo, Tegoeh; Wijaya, Tomi
2017-01-01
Process monitoring using indirect methods relies on the usage of sensors. Using sensors to acquire vital process related information also presents itself with the problem of big data management and analysis. Due to uncertainty in the frequency of events occurring, a higher sampling rate is often used in real-time monitoring applications to increase the chances of capturing and understanding all possible events related to the process. Advanced signal processing methods are used to further decipher meaningful information from the acquired data. In this research work, power spectrum density (PSD) of sensor data acquired at sampling rates between 40–51.2 kHz was calculated and the corelation between PSD and completed number of cycles/passes is presented. Here, the progress in number of cycles/passes is the event this research work intends to classify and the algorithm used to compute PSD is Welch’s estimate method. A comparison between Welch’s estimate method and statistical methods is also discussed. A clear co-relation was observed using Welch’s estimate to classify the number of cycles/passes. The paper also succeeds in classifying vibration signal generated by the spindle from the vibration signal acquired during finishing process. PMID:28556809
NASA Astrophysics Data System (ADS)
Bykovskiĭ, Yu A.; Zheregi, V. G.; Kulchin, Yurii N.; Poryadin, Yu D.; Smirnov, V. L.; Fomichev, N. N.
1990-05-01
An investigation was made of a multichannel LiNbO3 waveguide modulator of light in space and time, suitable for processing of analog and digital signals. This modulator had 26 channels and the half-wave control voltage was 4.5 V. A theoretical analysis and an experimental study were made of the functional performance of this modulator depending on the channel interconnections and on the nature of the signals applied to the modulator. The feasibility of processing analog and digital signals was studied.
Sayanthooran, Saravanabavan; Gunerathne, Lishanthe; Abeysekera, Tilak D J; Magana-Arachchi, Dhammika N
2018-05-28
Chronic kidney disease of unknown etiology (CKDu), having epidemic characteristics, is being diagnosed increasingly in certain tropical regions of the world, mainly Latin America and Sri Lanka. They have been observed primarily in farming communities and current hypotheses point toward many environmental and occupational triggers. CKDu does not have common etiologies of chronic kidney disease (CKD) such as hypertension, diabetes, or autoimmune disease. We aimed to understand the molecular processes underlying CKDu in Sri Lanka using transcriptome analysis. RNA extracted from whole blood was reverse transcribed and used for microarray analysis using the Human HT-12 v.4 array (Illumina). Pathway analysis was carried out using ingenuity pathway analysis (IPA-Qiagen). Microarray results were validated using real-time PCR of five selected genes. Pathways related to innate immune response, including interferon signaling, inflammasome signaling and TREM1 signaling had the most significant positive activation z scores, where as EIF2 signaling and mTOR signaling had the most significant negative activation z scores. Pathways previously linked to fluoride toxicity; G-protein activation, Cdc42 signaling, Rac signaling and RhoA signaling were activated in CKDu patients. The most significantly activated biological functions were cell death, cell movement and antimicrobial response. Significant toxicological functions were mitochondrial dysfunction, oxidative stress and apoptosis. Based on the molecular pathway analysis in CKDu patients and review of literature, viral infections and fluoride toxicity appear to be contributing to the molecular mechanisms underlying CKDu.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; ...
2016-01-27
We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less
Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis
NASA Astrophysics Data System (ADS)
Rzepecka, Zofia; Kalita, Jakub
2016-04-01
It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin
We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less
Unsupervised pattern recognition methods in ciders profiling based on GCE voltammetric signals.
Jakubowska, Małgorzata; Sordoń, Wanda; Ciepiela, Filip
2016-07-15
This work presents a complete methodology of distinguishing between different brands of cider and ageing degrees, based on voltammetric signals, utilizing dedicated data preprocessing procedures and unsupervised multivariate analysis. It was demonstrated that voltammograms recorded on glassy carbon electrode in Britton-Robinson buffer at pH 2 are reproducible for each brand. By application of clustering algorithms and principal component analysis visible homogenous clusters were obtained. Advanced signal processing strategy which included automatic baseline correction, interval scaling and continuous wavelet transform with dedicated mother wavelet, was a key step in the correct recognition of the objects. The results show that voltammetry combined with optimized univariate and multivariate data processing is a sufficient tool to distinguish between ciders from various brands and to evaluate their freshness. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
Evolutionary design optimization of traffic signals applied to Quito city
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process. PMID:29236733
Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.
Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan
2018-06-19
Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group's direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Progress on automated data analysis algorithms for ultrasonic inspection of composites
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Forsyth, David S.; Welter, John T.
2015-03-01
Progress is presented on the development and demonstration of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. New algorithms have been implemented to reliably identify indications in time-of-flight images near the front and back walls of composite panels. Adaptive call criteria have also been applied to address sensitivity to variation in backwall signal level, panel thickness variation, and internal signal noise. ADA processing results are presented for a variety of test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions. Software tools have been developed to support both ADA algorithm design and certification, producing a statistical evaluation of indication results and false calls using a matching process with predefined truth tables. Parametric studies were performed to evaluate detection and false call results with respect to varying algorithm settings.
AFIT/AFOSR Workshop on the Role of Wavelets in Signal Processing Applications
1992-08-28
Stein and G. Weiss, "Fourier analysis on Eucildean spaces," Princeton University Press, 1971. [V] G. Vitali, Sulla condizione di chiusura di un sistema ...present the more general framework into wavelets fit, suggesting hence companion ways of time-scale analysis for self-similar and 1/f-type processes
Method of Laser Vibration Defect Analysis
2010-06-04
415. In one embodiment, the frequencies from the reflected ultrasonic wave 430 are sensed and transformed to an electrical signal by transducer...actuator and sensor patches, respectively. Then, a process module loads sensor signal data to identify wave modes, determine the time of arrival of...conditions. An interrogation system includes at least one wave generator for generating a wave signal and optical fiber sensors applied to a structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreyer, J
2007-09-18
During my internship at Lawrence Livermore National Laboratory I worked with microcalorimeter gamma-ray and fast-neutron detectors based on superconducting Transition Edge Sensors (TESs). These instruments are being developed for fundamental science and nuclear non-proliferation applications because of their extremely high energy resolution; however, this comes at the expense of a small pixel size and slow decay times. The small pixel sizes are being addressed by developing detector arrays while the low count rate is being addressed by developing Digital Signal Processors (DSPs) that allow higher throughput than traditional pulse processing algorithms. Traditionally, low-temperature microcalorimeter pulses have been processed off-line withmore » optimum filtering routines based on the measured spectral characteristics of the signal and the noise. These optimum filters rely on the spectral content of the signal being identical for all events, and therefore require capturing the entire pulse signal without pile-up. In contrast, the DSP algorithm being developed is based on differences in signal levels before and after a trigger event, and therefore does not require the waveform to fully decay, or even the signal level to be close to the base line. The readout system allows for real time data acquisition and analysis at count rates exceeding 100 Hz for pulses with several {approx}ms decay times with minimal loss of energy resolution. Originally developed for gamma-ray analysis with HPGe detectors we have modified the hardware and firmware of the system to accommodate the slower TES signals and optimized the parameters of the filtering algorithm to maximize either resolution or throughput. The following presents an overview of the digital signal processing hardware and discusses the results of characterization measurements made to determine the systems performance.« less
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291
A MUSIC-based method for SSVEP signal processing.
Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei
2016-03-01
The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.
A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.
Ying, Rex; Wall, Christine E
2016-12-08
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implantable electronics: emerging design issues and an ultra light-weight security solution.
Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup
2010-01-01
Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Belkić, Karen
2018-01-01
This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.
ERIC Educational Resources Information Center
Delaney, Michael F.
1984-01-01
This literature review on chemometrics (covering December 1981 to December 1983) is organized under these headings: personal supermicrocomputers; education and books; statistics; modeling and parameter estimation; resolution; calibration; signal processing; image analysis; factor analysis; pattern recognition; optimization; artificial…
An automatic classifier of emotions built from entropy of noise.
Ferreira, Jacqueline; Brás, Susana; Silva, Carlos F; Soares, Sandra C
2017-04-01
The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion. © 2016 Society for Psychophysiological Research.
Wavelet application to the time series analysis of DORIS station coordinates
NASA Astrophysics Data System (ADS)
Bessissi, Zahia; Terbeche, Mekki; Ghezali, Boualem
2009-06-01
The topic developed in this article relates to the residual time series analysis of DORIS station coordinates using the wavelet transform. Several analysis techniques, already developed in other disciplines, were employed in the statistical study of the geodetic time series of stations. The wavelet transform allows one, on the one hand, to provide temporal and frequential parameter residual signals, and on the other hand, to determine and quantify systematic signals such as periodicity and tendency. Tendency is the change in short or long term signals; it is an average curve which represents the general pace of the signal evolution. On the other hand, periodicity is a process which is repeated, identical to itself, after a time interval called the period. In this context, the topic of this article consists, on the one hand, in determining the systematic signals by wavelet analysis of time series of DORIS station coordinates, and on the other hand, in applying the denoising signal to the wavelet packet, which makes it possible to obtain a well-filtered signal, smoother than the original signal. The DORIS data used in the treatment are a set of weekly residual time series from 1993 to 2004 from eight stations: DIOA, COLA, FAIB, KRAB, SAKA, SODB, THUB and SYPB. It is the ign03wd01 solution expressed in stcd format, which is derived by the IGN/JPL analysis center. Although these data are not very recent, the goal of this study is to detect the contribution of the wavelet analysis method on the DORIS data, compared to the other analysis methods already studied.
Bayesian estimation of self-similarity exponent
NASA Astrophysics Data System (ADS)
Makarava, Natallia; Benmehdi, Sabah; Holschneider, Matthias
2011-08-01
In this study we propose a Bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional Brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-Gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.
The R-package eseis - A toolbox to weld geomorphic, seismologic, spatial, and time series analysis
NASA Astrophysics Data System (ADS)
Dietze, Michael
2017-04-01
Environmental seismology is the science of investigating the seismic signals that are emitted by Earth surface processes. This emerging field provides unique opportunities to identify, locate, track and inspect a wide range of the processes that shape our planet. Modern broadband seismometers are sensitive enough to detect signals from sources as weak as wind interacting with the ground and as powerful as collapsing mountains. This places the field of environmental seismology at the seams of many geoscientific disciplines and requires integration of a series of specialised analysis techniques. R provides the perfect environment for this challenge. The package eseis uses the foundations laid by a series of existing packages and data types tailored to solve specialised problems (e.g., signal, sp, rgdal, Rcpp, matrixStats) and thus provides access to efficiently handling large streams of seismic data (> 300 million samples per station and day). It supports standard data formats (mseed, sac), preparation techniques (deconvolution, filtering, rotation), processing methods (spectra, spectrograms, event picking, migration for localisation) and data visualisation. Thus, eseis provides a seamless approach to the entire workflow of environmental seismology and passes the output to related analysis fields with temporal, spatial and modelling focus in R.
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun
2017-11-23
This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.
Monitoring the quality of welding based on welding current and ste analysis
NASA Astrophysics Data System (ADS)
Mazlan, Afidatusshimah; Daniyal, Hamdan; Izzani Mohamed, Amir; Ishak, Mahadzir; Hadi, Amran Abdul
2017-10-01
Qualities of welding play an important part in industry especially in manufacturing field. Post-welding non-destructive test is one of the importance process to ensure the quality of welding but it is time consuming and costly. To reduce the chance of defects, online monitoring had been utilized by continuously sense some of welding parameters and predict welding quality. One of the parameters is welding current, which is rich of information but lack of study focus on extract them at signal analysis level. This paper presents the analysis of welding current using Short Time Energy (STE) signal processing to quantify the pattern of the current. GMAW set with carbon steel specimens are used in this experimental study with high-bandwidth and high sampling rate oscilloscope capturing the welding current. The results indicate welding current as signatures have high correlation with the welding process. Continue with STE analysis, the value below 5000 is declare as good welding, meanwhile the STE value more than 6000 is contained defect.
Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu
2012-10-01
We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.
Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo
2015-12-01
Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.
Analog computation of auto and cross-correlation functions
NASA Technical Reports Server (NTRS)
1974-01-01
For analysis of the data obtained from the cross beam systems it was deemed desirable to compute the auto- and cross-correlation functions by both digital and analog methods to provide a cross-check of the analysis methods and an indication as to which of the two methods would be most suitable for routine use in the analysis of such data. It is the purpose of this appendix to provide a concise description of the equipment and procedures used for the electronic analog analysis of the cross beam data. A block diagram showing the signal processing and computation set-up used for most of the analog data analysis is provided. The data obtained at the field test sites were recorded on magnetic tape using wide-band FM recording techniques. The data as recorded were band-pass filtered by electronic signal processing in the data acquisition systems.
Comparison of formant detection methods used in speech processing applications
NASA Astrophysics Data System (ADS)
Belean, Bogdan
2013-11-01
The paper describes time frequency representations of speech signal together with the formant significance in speech processing applications. Speech formants can be used in emotion recognition, sex discrimination or diagnosing different neurological diseases. Taking into account the various applications of formant detection in speech signal, two methods for detecting formants are presented. First, the poles resulted after a complex analysis of LPC coefficients are used for formants detection. The second approach uses the Kalman filter for formant prediction along the speech signal. Results are presented for both approaches on real life speech spectrograms. A comparison regarding the features of the proposed methods is also performed, in order to establish which method is more suitable in case of different speech processing applications.
EEG feature selection method based on decision tree.
Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun
2015-01-01
This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Chad
2006-01-01
This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Marty; Prazenica, Chad
2005-01-01
This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.
Exciting (and modulating) very-long-period seismic signals on White Island, New Zealand
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Jolly, Art
2014-05-01
Very-long-period seismic signals (VLP) on volcanoes can be used to fill the gap between classic seismology and deformation studies. In this contribution we reiterate the principal processing steps to retrieve from a velocity seismogram 3D ground displacement with tiny amplitudes far beyond the resolution of GPS. As a case study we use several seismic and infrasonic signals of volcanic events from White Island, New Zealand. We apply particle motion analysis and deformation modelling tools to the resulting displacement signals and exam the potential link between ground displacement and the modulation of harmonic tremor, in turn linked to a hydrothermal system. In this way we want to demonstrate the full potential of VLPs in monitoring and modelling of volcanic processes.
Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi
2015-01-01
The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the developed auto tumor localization system can be evaluated. The results show that the simulated respiratory signals under different frequencies of 0.5, 0.333, 0.25, 0.2 and 0.167 Hz with phase lead compensators were improved and stabilized. The compensation rate increased to the range of 7.04$∼ $18.82%, and the final compensation rate is about 97%. Therefore the auto tumor localization system combined with the ultrasound image analysis techniques is feasible.In this study, the developed ultrasound image analysis techniques combined into the auto tumor localization system has the following four advantages: (1) It is a non-invasive way (ultrasonic images) to monitor the entire compensating process of the active respiration instead of using a C-arm (invasive) to observe the organs motion. (2) During radiation therapy, the whole treatment process can be continuous, which can save the overall treatment time. (3) It is an independent system, which can be mounted onto any treatment couch. (4) Users can operate this system easily without the need of prior complicated training process.
Acoustic emission analysis for the detection of appropriate cutting operations in honing processes
NASA Astrophysics Data System (ADS)
Buj-Corral, Irene; Álvarez-Flórez, Jesús; Domínguez-Fernández, Alejandro
2018-01-01
In the present paper, acoustic emission was studied in honing experiments obtained with different abrasive densities, 15, 30, 45 and 60. In addition, 2D and 3D roughness, material removal rate and tool wear were determined. In order to treat the sound signal emitted during the machining process, two methods of analysis were compared: Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). When density 15 is used, the number of cutting grains is insufficient to provide correct cutting, while clogging appears with densities 45 and 60. The results were confirmed by means of treatment of the sound signal. In addition, a new parameter S was defined as the relationship between energy in low and high frequencies contained within the emitted sound. The selected density of 30 corresponds to S values between 0.1 and 1. Correct cutting operations in honing processes are dependent on the density of the abrasive employed. The density value to be used can be selected by means of measurement and analysis of acoustic emissions during the honing operation. Thus, honing processes can be monitored without needing to stop the process.
NASA Astrophysics Data System (ADS)
Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi
2017-03-01
The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert-Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2017-11-01
Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.
Analysis of cellular signal transduction from an information theoretic approach.
Uda, Shinsuke; Kuroda, Shinya
2016-03-01
Signal transduction processes the information of various cellular functions, including cell proliferation, differentiation, and death. The information for controlling cell fate is transmitted by concentrations of cellular signaling molecules. However, how much information is transmitted in signaling pathways has thus far not been investigated. Shannon's information theory paves the way to quantitatively analyze information transmission in signaling pathways. The theory has recently been applied to signal transduction, and mutual information of signal transduction has been determined to be a measure of information transmission. We review this work and provide an overview of how signal transduction transmits informational input and exerts biological output. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feller, Jens; Feller, Sebastian; Mauersberg, Bernhard; Mergenthaler, Wolfgang
2009-09-01
Many applications in plant management require close monitoring of equipment performance, in particular with the objective to prevent certain critical events. At each point in time, the information available to classify the criticality of the process, is represented through the historic signal database as well as the actual measurement. This paper presents an approach to detect and predict critical events, based on pattern recognition and discriminance analysis.
Acoustic Signal Characteristics Measured with the LAMBDA III During CHURCH STROKE III
1980-09-15
analysis. Dr. William M. Carey and Dr. Richard Doolittle participated in various stages of acquisition, processing and analysis of the information...reported herein. Drs. Carey , Doolittle and Mr. Gereben are the authors of this report. (U) This report: Acoustic Signal Characteristics Measured with... Tortugas Terrace and the East Yucatan Channel,the Catoche Tongue and the Eastern region of the Gulf of Mexico. (U) The exercise was conducted by the Long
McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R
2006-01-01
The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.
Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution
NASA Astrophysics Data System (ADS)
Wang, Jianming; Liu, Lihua; Yu, Hua
2015-12-01
The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David
2017-03-13
During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell-cell contact area affects Notch signaling and Notch-dependent patterning
Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A.; Goodyear, Richard J.; Richardson, Guy P.; Chen, Christopher S.; Sprinzak, David
2017-01-01
Summary During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. PMID:28292428
EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data
NASA Astrophysics Data System (ADS)
D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina
2016-02-01
In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.
Misaki, Masaya; Barzigar, Nafise; Zotev, Vadim; Phillips, Raquel; Cheng, Samuel; Bodurka, Jerzy
2015-12-30
While applications of real-time functional magnetic resonance imaging (rtfMRI) are growing rapidly, there are still limitations in real-time data processing compared to off-line analysis. We developed a proof-of-concept real-time fMRI processing (rtfMRIp) system utilizing a personal computer (PC) with a dedicated graphic processing unit (GPU) to demonstrate that it is now possible to perform intensive whole-brain fMRI data processing in real-time. The rtfMRIp performs slice-timing correction, motion correction, spatial smoothing, signal scaling, and general linear model (GLM) analysis with multiple noise regressors including physiological noise modeled with cardiac (RETROICOR) and respiration volume per time (RVT). The whole-brain data analysis with more than 100,000voxels and more than 250volumes is completed in less than 300ms, much faster than the time required to acquire the fMRI volume. Real-time processing implementation cannot be identical to off-line analysis when time-course information is used, such as in slice-timing correction, signal scaling, and GLM. We verified that reduced slice-timing correction for real-time analysis had comparable output with off-line analysis. The real-time GLM analysis, however, showed over-fitting when the number of sampled volumes was small. Our system implemented real-time RETROICOR and RVT physiological noise corrections for the first time and it is capable of processing these steps on all available data at a given time, without need for recursive algorithms. Comprehensive data processing in rtfMRI is possible with a PC, while the number of samples should be considered in real-time GLM. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced Data-Acquisition System
NASA Technical Reports Server (NTRS)
Mustain, Roy W.
1990-01-01
Time-consuming, costly digitization of analog signals on magnetic tape eliminated. Proposed data-acquisition system provides nearly immediate access to data in incoming signals by digitizing and recording them both on magnetic tape and on optical disk. Tape and/or disk later played back to reconstruct signals in analog or digital form for analysis. Of interest in industrial and scientific applications in which necessary to digitize, store, and/or process large quantities of experimental data.
Error Propagation in a System Model
NASA Technical Reports Server (NTRS)
Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)
2015-01-01
Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.
Microprocessor-based cardiotachometer
NASA Technical Reports Server (NTRS)
Crosier, W. G.; Donaldson, J. A.
1981-01-01
Instrument operates reliably even with stress-test electrocardiogram (ECG) signals subject to noise, baseline wandering, and amplitude change. It records heart rate from preamplified, single-lead ECG input signal and produces digital and analog heart-rate outputs which are fed elsewhere. Analog hardware processes ECG input signal, producing 10-ms pulse for each heartbeat. Microprocessor analyzes resulting pulse train, identifying irregular heartbeats and maintaining stable output during lead switching. Easily modified computer program provides analysis.
Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira
2015-09-17
In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.
Jing, Lan; Guo, Dandan; Hu, Wenjie; Niu, Xiaofan
2017-03-11
Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome. 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen. This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-04-18
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-01-01
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215
Digital Signal Processing Methods for Ultrasonic Echoes.
Sinding, Kyle; Drapaca, Corina; Tittmann, Bernhard
2016-04-28
Digital signal processing has become an important component of data analysis needed in industrial applications. In particular, for ultrasonic thickness measurements the signal to noise ratio plays a major role in the accurate calculation of the arrival time. For this application a band pass filter is not sufficient since the noise level cannot be significantly decreased such that a reliable thickness measurement can be performed. This paper demonstrates the abilities of two regularization methods - total variation and Tikhonov - to filter acoustic and ultrasonic signals. Both of these methods are compared to a frequency based filtering for digitally produced signals as well as signals produced by ultrasonic transducers. This paper demonstrates the ability of the total variation and Tikhonov filters to accurately recover signals from noisy acoustic signals faster than a band pass filter. Furthermore, the total variation filter has been shown to reduce the noise of a signal significantly for signals with clear ultrasonic echoes. Signal to noise ratios have been increased over 400% by using a simple parameter optimization. While frequency based filtering is efficient for specific applications, this paper shows that the reduction of noise in ultrasonic systems can be much more efficient with regularization methods.
Luminescence and conductivity studies on CVD diamond exposed to UV light
NASA Astrophysics Data System (ADS)
Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.
1999-04-01
The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.
Analysis and prediction of leucine-rich nuclear export signals.
la Cour, Tanja; Kiemer, Lars; Mølgaard, Anne; Gupta, Ramneek; Skriver, Karen; Brunak, Søren
2004-06-01
We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators of the subcellular location of proteins. This regulation has an impact on transcription and other nuclear processes, which are fundamental to the viability of the cell. NESs are studied in relation to cancer, the cell cycle, cell differentiation and other important aspects of molecular biology. Our conclusion from this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden Markov models in the prediction algorithm and verify the method on the most recently discovered NESs. The NES predictor (NetNES) is made available for general use at http://www.cbs.dtu.dk/.
Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.
Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei
2011-01-01
Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.
Analysis of cerebral vessels dynamics using experimental data with missed segments
NASA Astrophysics Data System (ADS)
Pavlova, O. N.; Abdurashitov, A. S.; Ulanova, M. V.; Shihalov, G. M.; Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.
2018-04-01
Physiological signals often contain various bad segments that occur due to artifacts, failures of the recording equipment or varying experimental conditions. The related experimental data need to be preprocessed to avoid such parts of recordings. In the case of few bad segments, they can simply be removed from the signal and its analysis is further performed. However, when there are many extracted segments, the internal structure of the analyzed physiological process may be destroyed, and it is unclear whether such signal can be used in diagnostic-related studies. In this paper we address this problem for the case of cerebral vessels dynamics. We perform analysis of simulated data in order to reveal general features of quantifying scaling features of complex signals with distinct correlation properties and show that the effects of data loss are significantly different for experimental data with long-range correlations and anti-correlations. We conclude that the cerebral vessels dynamics is significantly less sensitive to missed data fragments as compared with signals with anti-correlated statistics.
Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears
Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei
2011-01-01
Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Hydrogen loss during N-15 nuclear reaction analysis of high strength steel
NASA Astrophysics Data System (ADS)
Larochelle, J. S.; Désilets-Benoit, A.; Borduas, G.; Laliberté-Riverin, S.; Roorda, S.; Brochu, M.
2017-10-01
High strength steel samples were analysed by N-15 nuclear reaction analysis in order to detect hydrogen that may have been introduced by electroplating process. The NRA signal decreased during exposure of the ion beam and residual gas analysis showed that the gas was desorbed by the beam interaction. The variable hydrogen signal could be well described as the sum of a constant concentration and a fraction susceptible to second order desorption. A mechanically polished bevel allowed measurements to be extended to a depth of 0.2 mm.
Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging
Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao
2016-01-01
Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114
NASA Astrophysics Data System (ADS)
Bhattacharyya, J.; Pulli, J.; Gibson, R.; Upton, Z.
2005-05-01
We present an analysis of the acoustic signals from the December 26, 2004 Sumatra earthquakes, in conjunction with the seismic and tide gauge information from the event. The M9.0 mainshock and its aftershocks were recorded by a suite of seismic sensors around the globe, giving us information on its location and the source process. Recently installed sensor assets in the Indian Ocean have enabled us to study additional features of this significant event. Hydroacoustic signals were recorded by three hydrophone arrays, and the direction finding capability of these arrays allows us to examine the location, time and extent of the T-wave generation process. We detect a clear variation of the back-azimuth that is consistent with the spatial extent of the source rupture. Recordings from nearly co-located seismometers provide insights into the acoustic-to-seismic conversion process for T-waves at islands, along with the variation in signal characteristics with source size. Two separate infrasound arrays detect the atmospheric signals generated by the event, along with additional observations of the seismic surface wave and the T-phase. We will present a comparison of the signals from the mainshock, as a function of location and size, with those from aftershocks and similar events in the nearby region. Our acoustic observations compare favorably with model predictions of wave propagation in the region. For the hydroacoustic data, the azimuth, arrival time, and signal blockage characteristics, from three separate arrays, associate the onset of the signal with the mainshock and with a time extent consistent with the rupture propagation. Our analysis of the T-phase travel times suggests that the seismic-to-acoustic conversion occurs more than 100 km from the epicenter. The infrasound signal's arrival time and signal duration are consistent with both stratospheric and thermospheric propagation from a source region near the mainshock. We use the tide gauge data from stations around the Indian Ocean to identify the arrival time of the Tsunami. The acoustic and seismic signals associated with the earthquakes arrive at the remote stations significantly ahead of the Tsunami. We combine the information from the various sensors to investigate the ability of the acoustic stations to detect the Tsunami.
Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis.
Soedirdjo, S D H; Ullah, K; Merletti, R
2015-08-01
Electromyogram (EMG) recordings are often corrupted by power line interference (PLI) even though the skin is prepared and well-designed instruments are used. This study focuses on the analysis of some of the recent and classical existing digital signal processing approaches have been used to attenuate, if not eliminate, the power line interference from EMG signals. A comparison of the signal to interference ratio (SIR) of the output signals is presented, for four methods: classical notch filter, spectral interpolation, adaptive noise canceller with phase locked loop (ANC-PLL) and adaptive filter, applied to simulated multichannel monopolar EMG signals with different SIR. The effect of each method on the shape of the EMG signals is also analyzed. The results show that ANC-PLL method gives the best output SIR and lowest shape distortion compared to the other methods. Classical notch filtering is the simplest method but some information might be lost as it removes both the interference and the EMG signals. Thus, it is obvious that notch filter has the lowest performance and it introduces distortion into the resulting signals.
Héron, F; Mialet, G; Schuller, C; Breton, D; Perrin, J; Degeorges, M
1979-01-01
Signals of the electrical activity of the specific atrioventricular conduction pathways were recorded with an unipolar lead to obtain an exact time reference. The amplifier used had special characteristics: high gain settings (up to 300,000), very low noise levels, and wide filter range (2 Hz - 1,600 Hz). The low amplitude of the signals under study, of the order of a microvolt, and the wide filter range of the amplifier necessitated placing the patient in a Faraday cage. The signals recorded on magnetic tape were treated by a system of analysis for signal treatment. The method of averaging was used to extract the signal from background noise especially that arising from somatic muscle. The amplitude of the Hisian signal was much larger than that usually obtained with other methods. The intervals were determined with precision of the order of 1 millisecond. Frequential analysis of the signals gave another representation of the information contained in the time signals. This new representation seems to give better discrimination of the different zones of activation of the specific atrioventricular conduction pathways.
Psychophysical Models for Signal Detection with Time Varying Uncertainty. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gai, E.
1975-01-01
Psychophysical models for the behavior of the human operator in detection tasks which include change in detectability, correlation between observations and deferred decisions are developed. Classical Signal Detection Theory (SDT) is discussed and its emphasis on the sensory processes is contrasted to decision strategies. The analysis of decision strategies utilizes detection tasks with time varying signal strength. The classical theory is modified to include such tasks and several optimal decision strategies are explored. Two methods of classifying strategies are suggested. The first method is similar to the analysis of ROC curves, while the second is based on the relation between the criterion level (CL) and the detectability. Experiments to verify the analysis of tasks with changes of signal strength are designed. The results show that subjects are aware of changes in detectability and tend to use strategies that involve changes in the CL's.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Genetic insights into the mechanisms of Fgf signaling
Brewer, J. Richard; Mazot, Pierre; Soriano, Philippe
2016-01-01
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo. PMID:27036966
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
Cytomics - importance of multimodal analysis of cell function and proliferation in oncology.
Tárnok, A; Bocsi, J; Brockhoff, G
2006-12-01
Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.
NASA Astrophysics Data System (ADS)
Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng
2017-09-01
In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.
Hutka, Stefanie; Bidelman, Gavin M.; Moreno, Sylvain
2013-01-01
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain’s processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer. PMID:24454295
Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain
2013-12-30
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.
Brain-computer interface using wavelet transformation and naïve bayes classifier.
Bassani, Thiago; Nievola, Julio Cesar
2010-01-01
The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.
Analysis of Seasonal Signal in GPS Short-Baseline Time Series
NASA Astrophysics Data System (ADS)
Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen
2018-04-01
Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (< 2 km) time series, if they exist, are mainly related to site-specific effects, such as thermal expansion of the monument (TEM). However, only part of the seasonal signal can be explained by known factors due to the limited data span, the GPS processing strategy and/or the adoption of an imperfect TEM model. In this paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of < 1 m and identical monuments. The daily solutions show that there are apparent annual signals with annual amplitude of 1 mm (maximum amplitude of 1.86 ± 0.17 mm) on almost all of the components, which are consistent with the results from previous studies. Semi-annual signal with a maximum amplitude of 0.97 ± 0.25 mm is also present. The analysis of time-correlated noise indicates that instead of flicker (FL) or random walk (RW) noise, band-pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with apparent elevation differences. The scheme adopted in this paper is expected to explicate more seasonal signals in GPS coordinate time series, particularly in the vertical direction.
Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng
2018-06-01
Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Improvement on Exoplanet Detection Methods and Analysis via Gaussian Process Fitting Techniques
NASA Astrophysics Data System (ADS)
Van Ross, Bryce; Teske, Johanna
2018-01-01
Planetary signals in radial velocity (RV) data are often accompanied by signals coming solely from stellar photo- or chromospheric variation. Such variation can reduce the precision of planet detection and mass measurements, and cause misidentification of planetary signals. Recently, several authors have demonstrated the utility of Gaussian Process (GP) regression for disentangling planetary signals in RV observations (Aigrain et al. 2012; Angus et al. 2017; Czekala et al. 2017; Faria et al. 2016; Gregory 2015; Haywood et al. 2014; Rajpaul et al. 2015; Foreman-Mackey et al. 2017). GP models the covariance of multivariate data to make predictions about likely underlying trends in the data, which can be applied to regions where there are no existing observations. The potency of GP has been used to infer stellar rotation periods; to model and disentangle time series spectra; and to determine physical aspects, populations, and detection of exoplanets, among other astrophysical applications. Here, we implement similar analysis techniques to times series of the Ca-2 H and K activity indicator measured simultaneously with RVs in a small sample of stars from the large Keck/HIRES RV planet search program. Our goal is to characterize the pattern(s) of non-planetary variation to be able to know what is/ is not a planetary signal. We investigated ten different GP kernels and their respective hyperparameters to determine the optimal combination (e.g., the lowest Bayesian Information Criterion value) in each stellar data set. To assess the hyperparameters’ error, we sampled their posterior distributions using Markov chain Monte Carlo (MCMC) analysis on the optimized kernels. Our results demonstrate how GP analysis of stellar activity indicators alone can contribute to exoplanet detection in RV data, and highlight the challenges in applying GP analysis to relatively small, irregularly sampled time series.
Dictionary-based image reconstruction for superresolution in integrated circuit imaging.
Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim
2015-06-01
Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.
Lee, Dong-Hoon; Lee, Do-Wan; Henry, David; Park, Hae-Jin; Han, Bong-Soo; Woo, Dong-Cheol
2018-04-12
To evaluate the effects of signal intensity differences between the b0 image and diffusion tensor imaging (DTI) in the image registration process. To correct signal intensity differences between the b0 image and DTI data, a simple image intensity compensation (SIMIC) method, which is a b0 image re-calculation process from DTI data, was applied before the image registration. The re-calculated b0 image (b0 ext ) from each diffusion direction was registered to the b0 image acquired through the MR scanning (b0 nd ) with two types of cost functions and their transformation matrices were acquired. These transformation matrices were then used to register the DTI data. For quantifications, the dice similarity coefficient (DSC) values, diffusion scalar matrix, and quantified fibre numbers and lengths were calculated. The combined SIMIC method with two cost functions showed the highest DSC value (0.802 ± 0.007). Regarding diffusion scalar values and numbers and lengths of fibres from the corpus callosum, superior longitudinal fasciculus, and cortico-spinal tract, only using normalised cross correlation (NCC) showed a specific tendency toward lower values in the brain regions. Image-based distortion correction with SIMIC for DTI data would help in image analysis by accounting for signal intensity differences as one additional option for DTI analysis. • We evaluated the effects of signal intensity differences at DTI registration. • The non-diffusion-weighted image re-calculation process from DTI data was applied. • SIMIC can minimise the signal intensity differences at DTI registration.
Mining knowledge in noisy audio data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czyzewski, A.
1996-12-31
This paper demonstrates a KDD method applied to audio data analysis, particularly, it presents possibilities which result from replacing traditional methods of analysis and acoustic signal processing by KDD algorithms when restoring audio recordings affected by strong noise.
Analysis of swept-sine runs during modal identification
NASA Astrophysics Data System (ADS)
Gloth, G.; Sinapius, M.
2004-11-01
Experimental modal analysis of large aerospace structures in Europe combine nowadays the benefits of the very reliable but time-consuming phase resonance method and the application of phase separation techniques evaluating frequency response functions (FRF). FRFs of a test structure can be determined by a variety of means. Applied excitation signal waveforms include harmonic signals like stepped-sine excitation, periodic signals like multi-sine excitation, transient signals like impulse and swept-sine excitation, and stochastic signals like random. The current article focuses on slow swept-sine excitation which is a good trade-off between magnitude of excitation level needed for large aircraft and testing time. However, recent ground vibration tests (GVTs) brought up that reliable modal data from swept-sine test runs depend on a proper data processing. The article elucidates the strategy of modal analysis based on swept-sine excitation. The standards for the application of slowly swept sinusoids defined by the international organisation for standardisation in ISO 7626 part 2 are critically reviewed. The theoretical background of swept-sine testing is expounded with particular emphasis to the transition through structural resonances. The effect of different standard procedures of data processing like tracking filter, fast Fourier transform (FFT), and data reduction via averaging are investigated with respect to their influence on the FRFs and modal parameters. Particular emphasis is given to FRF distortions evoked by unsuitable data processing. All data processing methods are investigated on a numerical example. Their practical usefulness is demonstrated on test data taken from a recent GVT on a large aircraft. The revision of ISO 7626 part 2 is suggested regarding the application of slow swept-sine excitation. Recommendations about the proper FRF estimation from slow swept-sine excitation are given in order to enable the optimisation on these applications for future modal survey tests of large aerospace structures.
NASA Astrophysics Data System (ADS)
Gryff-Keller, A.; Kraska-Dziadecka, A.
2011-12-01
13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.
Neural signal registration and analysis of axons grown in microchannels
NASA Astrophysics Data System (ADS)
Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.
2016-08-01
Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
The influence of polarization on millimeter wave propagation through rain. [radio signals
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1973-01-01
The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.
Preliminary results of SAR soil moisture experiment, November 1975
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Chang, A. T. C.; Schmugge, T. J.; Salomonson, V. V.; Wang, J. R.
1979-01-01
The experiment was performed using the Environmental Research Institute of Michigan's (ERIM) dual-frequency and dual-polarization side-looking SAR system on board a C-46 aircraft. For each frequency, horizontally polarized pulses were transmitted and both horizontally and vertically polarized return signals were recorded on the signal film simultaneously. The test sites were located in St. Charles, Missouri; Centralia, Missouri; and Lafayette, Indiana. Each test site was a 4.83 km by 8.05 km (3 mile by 5 mile) rectangular strip of terrain. Concurrent with SAR overflight, ground soil samples of 0-to-2.5 cm and 0-to-15 cm layers were collected for soil moisture estimation. The surface features were also noted. Hard-copy image films and the digital data produced via optical processing of the signal films are analyzed in this report to study the relationship of radar backscatter to the moisture content and the surface roughness. Many difficulties associated with processing and analysis of the SAR imagery are noted. In particular, major uncertainty in the quantitative analysis appeared due to the difficulty of quality reproduction of digital data from the signal films.
Enhanced automatic artifact detection based on independent component analysis and Renyi's entropy.
Mammone, Nadia; Morabito, Francesco Carlo
2008-09-01
Artifacts are disturbances that may occur during signal acquisition and may affect their processing. The aim of this paper is to propose a technique for automatically detecting artifacts from the electroencephalographic (EEG) recordings. In particular, a technique based on both Independent Component Analysis (ICA) to extract artifactual signals and on Renyi's entropy to automatically detect them is presented. This technique is compared to the widely known approach based on ICA and the joint use of kurtosis and Shannon's entropy. The novel processing technique is shown to detect on average 92.6% of the artifactual signals against the average 68.7% of the previous technique on the studied available database. Moreover, Renyi's entropy is shown to be able to detect muscle and very low frequency activity as well as to discriminate them from other kinds of artifacts. In order to achieve an efficient rejection of the artifacts while minimizing the information loss, future efforts will be devoted to the improvement of blind artifact separation from EEG in order to ensure a very efficient isolation of the artifactual activity from any signals deriving from other brain tasks.
Sitras, V; Fenton, C; Acharya, G
2015-02-01
Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)
NASA Astrophysics Data System (ADS)
Raskovic, Dejan
Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.
Snore related signals processing in a private cloud computing system.
Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan
2014-09-01
Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.
NASA Astrophysics Data System (ADS)
Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.
2016-04-01
Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.
Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.
Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai
2017-05-02
Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
Inflight and Preflight Detection of Pitot Tube Anomalies
NASA Technical Reports Server (NTRS)
Mitchell, Darrell W.
2014-01-01
The health and integrity of aircraft sensors play a critical role in aviation safety. Inaccurate or false readings from these sensors can lead to improper decision making, resulting in serious and sometimes fatal consequences. This project demonstrated the feasibility of using advanced data analysis techniques to identify anomalies in Pitot tubes resulting from blockage such as icing, moisture, or foreign objects. The core technology used in this project is referred to as noise analysis because it relates sensors' response time to the dynamic component (noise) found in the signal of these same sensors. This analysis technique has used existing electrical signals of Pitot tube sensors that result from measured processes during inflight conditions and/or induced signals in preflight conditions to detect anomalies in the sensor readings. Analysis and Measurement Services Corporation (AMS Corp.) has routinely used this technology to determine the health of pressure transmitters in nuclear power plants. The application of this technology for the detection of aircraft anomalies is innovative. Instead of determining the health of process monitoring at a steady-state condition, this technology will be used to quickly inform the pilot when an air-speed indication becomes faulty under any flight condition as well as during preflight preparation.
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Zhen, Hanson H.; Oro, Anthony E.
2013-01-01
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Velímský, Jakub; Haagmans, Roger; Šachl, Libor
2018-02-01
This study deals with the analysis of Swarm vector magnetic field measurements in order to estimate the magnetic field of magnetospheric ring current. For a single Swarm satellite, the magnetic measurements are processed by along-track spectral analysis on a track-by-track basis. The main and lithospheric magnetic fields are modelled by the CHAOS-6 field model and subtracted from the along-track Swarm magnetic data. The mid-latitude residual signal is then spectrally analysed and extrapolated to the polar regions. The resulting model of the magnetosphere (model MME) is compared to the existing Swarm Level 2 magnetospheric field model (MMA_SHA_2C). The differences of up to 10 nT are found on the nightsides Swarm data from 2014 April 8 to May 10, which are due to different processing schemes used to construct the two magnetospheric magnetic field models. The forward-simulated magnetospheric magnetic field generated by the external part of model MME then demonstrates the consistency of the separation of the Swarm along-track signal into the external and internal parts by the two-step along-track spectral analysis.
NASA Astrophysics Data System (ADS)
Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang
2018-01-01
Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.
Deterring watermark collusion attacks using signal processing techniques
NASA Astrophysics Data System (ADS)
Lemma, Aweke N.; van der Veen, Michiel
2007-02-01
Collusion attack is a malicious watermark removal attack in which the hacker has access to multiple copies of the same content with different watermarks and tries to remove the watermark using averaging. In the literature, several solutions to collusion attacks have been reported. The main stream solutions aim at designing watermark codes that are inherently resistant to collusion attacks. The other approaches propose signal processing based solutions that aim at modifying the watermarked signals in such a way that averaging multiple copies of the content leads to a significant degradation of the content quality. In this paper, we present signal processing based technique that may be deployed for deterring collusion attacks. We formulate the problem in the context of electronic music distribution where the content is generally available in the compressed domain. Thus, we first extend the collusion resistance principles to bit stream signals and secondly present experimental based analysis to estimate a bound on the maximum number of modified versions of a content that satisfy good perceptibility requirement on one hand and destructive averaging property on the other hand.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-06-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-10-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.
Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier
2018-01-11
Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.
Ultrashort Phenomena in Biochemistry and Biological Signaling
NASA Astrophysics Data System (ADS)
Splinter, Robert
2014-11-01
In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.
For operation of the Computer Software Management and Information Center (COSMIC)
NASA Technical Reports Server (NTRS)
Carmon, J. L.
1983-01-01
Computer programs for large systems of normal equations, an interactive digital signal process, structural analysis of cylindrical thrust chambers, swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometrics, computation of three dimensional combustor performance, a thermal radiation analysis system, transient response analysis, and a software design analysis are summarized.
Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anant, K.S.
1997-06-01
In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings.
Ma, Biao; Zhang, Jin-Song
2017-01-01
Ethylene plays a key role in various submergence responses of rice plants, but the mechanism of ethylene action remains largely unclear in rice. Regarding the differences between rice and Arabidopsis in ethylene-regulated processes, rice plants may possess divergent mechanisms in ethylene signaling in addition to the conserved aspects. Forward genetic analysis is essential to fully understand the ethylene signaling mechanism in rice. Here, we describe a method for screening ethylene-response mutants and evaluating ethylene responsiveness in etiolated rice seedlings.
Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram
2012-01-01
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.
Analysis of the reflection of a micro drop fiber sensor
NASA Astrophysics Data System (ADS)
Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo
2005-01-01
Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.
Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping
2012-01-01
A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins. PMID:22363664
Applications of Hilbert Spectral Analysis for Speech and Sound Signals
NASA Technical Reports Server (NTRS)
Huang, Norden E.
2003-01-01
A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.
Fractal dimension and nonlinear dynamical processes
NASA Astrophysics Data System (ADS)
McCarty, Robert C.; Lindley, John P.
1993-11-01
Mandelbrot, Falconer and others have demonstrated the existence of dimensionally invariant geometrical properties of non-linear dynamical processes known as fractals. Barnsley defines fractal geometry as an extension of classical geometry. Such an extension, however, is not mathematically trivial Of specific interest to those engaged in signal processing is the potential use of fractal geometry to facilitate the analysis of non-linear signal processes often referred to as non-linear time series. Fractal geometry has been used in the modeling of non- linear time series represented by radar signals in the presence of ground clutter or interference generated by spatially distributed reflections around the target or a radar system. It was recognized by Mandelbrot that the fractal geometries represented by man-made objects had different dimensions than the geometries of the familiar objects that abound in nature such as leaves, clouds, ferns, trees, etc. The invariant dimensional property of non-linear processes suggests that in the case of acoustic signals (active or passive) generated within a dispersive medium such as the ocean environment, there exists much rich structure that will aid in the detection and classification of various objects, man-made or natural, within the medium.
NASA Technical Reports Server (NTRS)
Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.
1971-01-01
An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.
In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina
2018-01-01
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.
SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.
Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei
2017-03-03
Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.
In-line mixing states monitoring of suspensions using ultrasonic reflection technique.
Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen
2016-02-01
Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of embolic signals with directional dual tree rational dilation wavelet transform.
Serbes, Gorkem; Aydin, Nizamettin
2016-08-01
The dyadic discrete wavelet transform (dyadic-DWT), which is based on fixed integer sampling factor, has been used before for processing piecewise smooth biomedical signals. However, the dyadic-DWT has poor frequency resolution due to the low-oscillatory nature of its wavelet bases and therefore, it is less effective in processing embolic signals (ESs). To process ESs more effectively, a wavelet transform having better frequency resolution than the dyadic-DWT is needed. Therefore, in this study two ESs, containing micro-emboli and artifact waveforms, are analyzed with the Directional Dual Tree Rational-Dilation Wavelet Transform (DDT-RADWT). The DDT-RADWT, which can be directly applied to quadrature signals, is based on rational dilation factors and has adjustable frequency resolution. The analyses are done for both low and high Q-factors. It is proved that, when high Q-factor filters are employed in the DDT-RADWT, clearer representations of ESs can be attained in decomposed sub-bands and artifacts can be successfully separated.
Calibrated Noise Measurements with Induced Receiver Gain Fluctuations
NASA Technical Reports Server (NTRS)
Racette, Paul; Walker, David; Gu, Dazhen; Rajola, Marco; Spevacek, Ashly
2011-01-01
The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory in science and engineering. These limitations were encountered when modeling the performance of radiometer calibration architectures and algorithms in the presence of non stationary receiver fluctuations. Analyses of measured signals have traditionally been limited to a single measurement series. Whereas in a radiometer that samples a set of noise references, the data collection can be treated as an ensemble set of measurements of the receiver state. Noise Assisted Data Analysis is a growing field of study with significant potential for aiding the understanding and modeling of non stationary processes. Typically, NADA entails adding noise to a signal to produce an ensemble set on which statistical analysis is performed. Alternatively as in radiometric measurements, mixing a signal with calibrated noise provides, through the calibration process, the means to detect deviations from the stationary assumption and thereby a measurement tool to characterize the signal's non stationary properties. Data sets comprised of calibrated noise measurements have been limited to those collected with naturally occurring fluctuations in the radiometer receiver. To examine the application of NADA using calibrated noise, a Receiver Gain Modulation Circuit (RGMC) was designed and built to modulate the gain of a radiometer receiver using an external signal. In 2010, an RGMC was installed and operated at the National Institute of Standards and Techniques (NIST) using their Noise Figure Radiometer (NFRad) and national standard noise references. The data collected is the first known set of calibrated noise measurements from a receiver with an externally modulated gain. As an initial step, sinusoidal and step-function signals were used to modulate the receiver gain, to evaluate the circuit characteristics and to study the performance of a variety of calibration algorithms. The receiver noise temperature and time-bandwidth product of the NFRad are calculated from the data. Statistical analysis using temporal-dependent calibration algorithms reveals that the natural occurring fluctuations in the receiver are stationary over long intervals (100s of seconds); however the receiver exhibits local non stationarity over the interval over which one set of reference measurements are collected. A variety of calibration algorithms have been applied to the data to assess algorithms' performance with the gain fluctuation signals. This presentation will describe the RGMC, experiment design and a comparative analysis of calibration algorithms.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Wang, Po T; Gandasetiawan, Keulanna; McCrimmon, Colin M; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H
2016-08-01
A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.
Pathak, Shalu Kumari; Kumar, Amit; Bhuwana, G; Sah, Vaishali; Upmanyu, Vikramadiya; Tiwari, A K; Sahoo, A P; Sahoo, A R; Wani, Sajjad A; Panigrahi, Manjit; Sahoo, N R; Kumar, Ravi
2017-09-01
In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.
Wind Tunnel Simulations of the Mock Urban Setting Test - Experimental Procedures and Data Analysis
2004-07-01
depends on the subjective choice of points to include in the constant stress region. This is demonstrated by the marked difference in the slope for the two...designed explicitly for the analysis of time series and signal processing , particularly for atmospheric dispersion ex- periments. The scripts developed...below. Processing scripts are available for all these analyses in the /scripts directory. All files of figures and processed data resulting from these
Extraction and analysis of neuron firing signals from deep cortical video microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerekes, Ryan A; Blundon, Jay
We introduce a method for extracting and analyzing neuronal activity time signals from video of the cortex of a live animal. The signals correspond to the firing activity of individual cortical neurons. Activity signals are based on the changing fluorescence of calcium indicators in the cells over time. We propose a cell segmentation method that relies on a user-specified center point, from which the signal extraction method proceeds. A stabilization approach is used to reduce tissue motion in the video. The extracted signal is then processed to flatten the baseline and detect action potentials. We show results from applying themore » method to a cortical video of a live mouse.« less
Rostami, Javad; Chen, Jingming; Tse, Peter W
2017-02-07
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.
Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.
Stec, Bronisław; Susek, Waldemar
2018-05-06
Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.
Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng
2018-02-26
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
Augmenting the decomposition of EMG signals using supervised feature extraction techniques.
Parsaei, Hossein; Gangeh, Mehrdad J; Stashuk, Daniel W; Kamel, Mohamed S
2012-01-01
Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its constituent motor unit potential trains (MUPTs). In this work, the possibility of improving the decomposing results using two supervised feature extraction methods, i.e., Fisher discriminant analysis (FDA) and supervised principal component analysis (SPCA), is explored. Using the MUP labels provided by a decomposition-based quantitative EMG system as a training data for FDA and SPCA, the MUPs are transformed into a new feature space such that the MUPs of a single MU become as close as possible to each other while those created by different MUs become as far as possible. The MUPs are then reclassified using a certainty-based classification algorithm. Evaluation results using 10 simulated EMG signals comprised of 3-11 MUPTs demonstrate that FDA and SPCA on average improve the decomposition accuracy by 6%. The improvement for the most difficult-to-decompose signal is about 12%, which shows the proposed approach is most beneficial in the decomposition of more complex signals.
Working group organizational meeting
NASA Technical Reports Server (NTRS)
1982-01-01
Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.
An Overview Of Wideband Signal Analysis Techniques
NASA Astrophysics Data System (ADS)
Speiser, Jeffrey M.; Whitehouse, Harper J.
1989-11-01
This paper provides a unifying perspective for several narowband and wideband signal processing techniques. It considers narrowband ambiguity functions and Wigner-Ville distibutions, together with the wideband ambiguity function and several proposed approaches to a wideband version of the Wigner-Ville distribution (WVD). A unifying perspective is provided by the methodology of unitary representations and ray representations of transformation groups.
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-02-01
The 10-11 July 2015 partial collapses of the lava dome in the crater of Volcán de Colima, México, were accompanied by a sequence of two-stage multiple PDCs, separated by a 15-h interval, with a total bulk volume of 14.2 × 106 m3 of fragmentary material and runout distances reaching 9.1 and 10.3 km, respectively (Reyes-Dávila et al., 2016). Broad-band seismic signals, associated with the PDCs and recorded at seismic station EZ5 installed at a distance of 4 km from the crater, were used for analysis of the 20-h eruption process. This process included two stages of the multiple PDCs emplacements, two one-hour periods of preliminary events to each of the stages, and the inter-stage period. Analysis of seismic signals allowed us to identify the types of volcanic events composing this eruption episode and estimate their quantitative characteristics and spectral parameters of generated seismic signals. It was shown that the seismic signals produced by PDCs emplacements, recorded during the two stages, were characterized by different characteristics. The second stage PDCs had radiated greater seismic energy than the PDCs emplaced during the first stage. Spectral analysis of the seismic signals, produced by PDCs, indicates a clearly separation in frequency content at 1.95 Hz between the higher-frequency events of the first stage and the lower-frequency events of the second stage of the PDCs emplacements. The obtained difference in the spectral contents of the seismic signals, produced by the movement of two multiple PDCs, may be supposed as a consequence of the proposed relative difference in the volumes of the PDCs of two multiple sequences due to a difference in the level of radiated seismic energy and a change in bottom conditions of the ravines during their passing along the ravines. Results of seismic study were used in discussion of the nature of the two-stage eruptive process.
The analysis of decimation and interpolation in the linear canonical transform domain.
Xu, Shuiqing; Chai, Yi; Hu, Youqiang; Huang, Lei; Feng, Li
2016-01-01
Decimation and interpolation are the two basic building blocks in the multirate digital signal processing systems. As the linear canonical transform (LCT) has been shown to be a powerful tool for optics and signal processing, it is worthwhile and interesting to analyze the decimation and interpolation in the LCT domain. In this paper, the definition of equivalent filter in the LCT domain have been given at first. Then, by applying the definition, the direct implementation structure and polyphase networks for decimator and interpolator in the LCT domain have been proposed. Finally, the perfect reconstruction expressions for differential filters in the LCT domain have been presented as an application. The proposed theorems in this study are the bases for generalizations of the multirate signal processing in the LCT domain, which can advance the filter banks theorems in the LCT domain.
Estimation of frequency offset in mobile satellite modems
NASA Technical Reports Server (NTRS)
Cowley, W. G.; Rice, M.; Mclean, A. N.
1993-01-01
In mobilesat applications, frequency offset on the received signal must be estimated and removed prior to further modem processing. A straightforward method of estimating the carrier frequency offset is to raise the received MPSK signal to the M-th power, and then estimate the location of the peak spectral component. An analysis of the lower signal to noise threshold of this method is carried out for BPSK signals. Predicted thresholds are compared to simulation results. It is shown how the method can be extended to pi/M MPSK signals. A real-time implementation of frequency offset estimation for the Australian mobile satellite system is described.
Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine
2016-01-01
Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279
[Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].
Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun
2015-07-01
There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.
Apparatus for the concurrent ultrasonic inspection of partially completed welds
Johnson, John A.
2000-01-01
An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.
1994-05-16
analysis of anisotropic grating diffraction, perfor- mance analysis of Givens rotation integrated optical interdigitated-electrode cross- channel Bragg...11. T. R. Gardos and R. M. Mersereau, "FIR filtering on a lattice with periodically deleted samples," Proc. 1991 IEEE Int. Conf. on Acoustics...pp. vol. 1, pp. 301-311, July 1992. 23. T. R. Gardos , K. Nayebi, and R. M. Mersereau, "Time domain analysis of multi- dimensional multi-rate filter
Mathematical Sciences Division 1992 Programs
1992-10-01
statistical theory that underlies modern signal analysis . There is a strong emphasis on stochastic processes and time series , particularly those which...include optimal resource planning and real- time scheduling of stochastic shop-floor processes. Scheduling systems will be developed that can adapt to...make forecasts for the length-of-service time series . Protocol analysis of these sessions will be used to idenify relevant contextual features and to
Analysis and logical modeling of biological signaling transduction networks
NASA Astrophysics Data System (ADS)
Sun, Zhongyao
The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.
Very-long-period seismic signals - filling the gap between deformation and seismicity
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen; Smith, Paddy
2013-04-01
Good broadband seismic sensors are capable to record seismic transients with dominant wavelengths of several tens or even hundreds of seconds. This allows us to generate a multi-component record of seismic volcanic events that are located in between the conventional high to low-frequency seismic spectrum and deformation signals. With a much higher temporal resolution and accuracy than e.g. GPS records, these signals fill the gap between seismicity and deformation studies. In this contribution we will review the non-trivial processing steps necessary to retrieve ground deformation from the original velocity seismogram and explore which role the resulting displacement signals have in the analysis of volcanic events. We use examples from Soufriere Hills volcano in Montserrat, West Indies, to discuss the benefits and shortcomings of such methods regarding new insights into volcanic processes.
Reducing Artifacts in TMS-Evoked EEG
NASA Astrophysics Data System (ADS)
Fuertes, Juan José; Travieso, Carlos M.; Álvarez, A.; Ferrer, M. A.; Alonso, J. B.
Transcranial magnetic stimulation induces weak currents within the cranium to activate neuronal firing and its response is recorded using electroencephalography in order to study the brain directly. However, different artifacts contaminate the results. The goal of this study is to process these artifacts and reduce them digitally. Electromagnetic, blink and auditory artifacts are considered, and Signal-Space Projection, Independent Component Analysis and Wiener Filtering methods are used to reduce them. These last two produce a successful solution for electromagnetic artifacts. Regarding the other artifacts, processed with Signal-Space Projection, the method reduces the artifact but modifies the signal as well. Nonetheless, they are modified in an exactly known way and the vector used for the projection is conserved to be taken into account when analyzing the resulting signals. A system which combines the proposed methods would improve the quality of the information presented to physicians.
A comparative analysis of frequency modulation threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1970-01-01
FM threshold extension for system performance improvement, comparing impulse noise elimination, correlation detection and delta modulation signal processing techniques implemented at demodulator output
Escudero, Javier; Hornero, Roberto; Abásolo, Daniel
2009-02-01
The mutual information (MI) is a measure of both linear and nonlinear dependences. It can be applied to a time series and a time-delayed version of the same sequence to compute the auto-mutual information function (AMIF). Moreover, the AMIF rate of decrease (AMIFRD) with increasing time delay in a signal is correlated with its entropy and has been used to characterize biomedical data. In this paper, we aimed at gaining insight into the dependence of the AMIFRD on several signal processing concepts and at illustrating its application to biomedical time series analysis. Thus, we have analysed a set of synthetic sequences with the AMIFRD. The results show that the AMIF decreases more quickly as bandwidth increases and that the AMIFRD becomes more negative as there is more white noise contaminating the time series. Additionally, this metric detected changes in the nonlinear dynamics of a signal. Finally, in order to illustrate the analysis of real biomedical signals with the AMIFRD, this metric was applied to electroencephalogram (EEG) signals acquired with eyes open and closed and to ictal and non-ictal intracranial EEG recordings.
Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A
2017-07-01
Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.
Intelligent acoustic data fusion technique for information security analysis
NASA Astrophysics Data System (ADS)
Jiang, Ying; Tang, Yize; Lu, Wenda; Wang, Zhongfeng; Wang, Zepeng; Zhang, Luming
2017-08-01
Tone is an essential component of word formation in all tonal languages, and it plays an important role in the transmission of information in speech communication. Therefore, tones characteristics study can be applied into security analysis of acoustic signal by the means of language identification, etc. In speech processing, fundamental frequency (F0) is often viewed as representing tones by researchers of speech synthesis. However, regular F0 values may lead to low naturalness in synthesized speech. Moreover, F0 and tone are not equivalent linguistically; F0 is just a representation of a tone. Therefore, the Electroglottography (EGG) signal is collected for deeper tones characteristics study. In this paper, focusing on the Northern Kam language, which has nine tonal contours and five level tone types, we first collected EGG and speech signals from six natural male speakers of the Northern Kam language, and then achieved the clustering distributions of the tone curves. After summarizing the main characteristics of tones of Northern Kam, we analyzed the relationship between EGG and speech signal parameters, and laid the foundation for further security analysis of acoustic signal.
SNIa detection in the SNLS photometric analysis using Morphological Component Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Neveu, J.
2015-04-01
Detection of supernovae (SNe) and, more generally, of transient events in large surveys can provide numerous false detections. In the case of a deferred processing of survey images, this implies reconstructing complete light curves for all detections, requiring sizable processing time and resources. Optimizing the detection of transient events is thus an important issue for both present and future surveys. We present here the optimization done in the SuperNova Legacy Survey (SNLS) for the 5-year data deferred photometric analysis. In this analysis, detections are derived from stacks of subtracted images with one stack per lunation. The 3-year analysis provided 300,000more » detections dominated by signals of bright objects that were not perfectly subtracted. Allowing these artifacts to be detected leads not only to a waste of resources but also to possible signal coordinate contamination. We developed a subtracted image stack treatment to reduce the number of non SN-like events using morphological component analysis. This technique exploits the morphological diversity of objects to be detected to extract the signal of interest. At the level of our subtraction stacks, SN-like events are rather circular objects while most spurious detections exhibit different shapes. A two-step procedure was necessary to have a proper evaluation of the noise in the subtracted image stacks and thus a reliable signal extraction. We also set up a new detection strategy to obtain coordinates with good resolution for the extracted signal. SNIa Monte-Carlo (MC) generated images were used to study detection efficiency and coordinate resolution. When tested on SNLS 3-year data this procedure decreases the number of detections by a factor of two, while losing only 10% of SN-like events, almost all faint ones. MC results show that SNIa detection efficiency is equivalent to that of the original method for bright events, while the coordinate resolution is improved.« less
Olivera-Martinez, Isabel; Schurch, Nick; Li, Roman A; Song, Junfang; Halley, Pamela A; Das, Raman M; Burt, Dave W; Barton, Geoffrey J; Storey, Kate G
2014-08-01
Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation. © 2014. Published by The Company of Biologists Ltd.
Franco, Alexandre R; Ling, Josef; Caprihan, Arvind; Calhoun, Vince D; Jung, Rex E; Heileman, Gregory L; Mayer, Andrew R
2008-12-01
The human brain functions as an efficient system where signals arising from gray matter are transported via white matter tracts to other regions of the brain to facilitate human behavior. However, with a few exceptions, functional and structural neuroimaging data are typically optimized to maximize the quantification of signals arising from a single source. For example, functional magnetic resonance imaging (FMRI) is typically used as an index of gray matter functioning whereas diffusion tensor imaging (DTI) is typically used to determine white matter properties. While it is likely that these signals arising from different tissue sources contain complementary information, the signal processing algorithms necessary for the fusion of neuroimaging data across imaging modalities are still in a nascent stage. In the current paper we present a data-driven method for combining measures of functional connectivity arising from gray matter sources (FMRI resting state data) with different measures of white matter connectivity (DTI). Specifically, a joint independent component analysis (J-ICA) was used to combine these measures of functional connectivity following intensive signal processing and feature extraction within each of the individual modalities. Our results indicate that one of the most predominantly used measures of functional connectivity (activity in the default mode network) is highly dependent on the integrity of white matter connections between the two hemispheres (corpus callosum) and within the cingulate bundles. Importantly, the discovery of this complex relationship of connectivity was entirely facilitated by the signal processing and fusion techniques presented herein and could not have been revealed through separate analyses of both data types as is typically performed in the majority of neuroimaging experiments. We conclude by discussing future applications of this technique to other areas of neuroimaging and examining potential limitations of the methods.
Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes
NASA Astrophysics Data System (ADS)
Morozov, Yu. V.; Spektor, A. A.
2017-11-01
A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.
RFI Detection and Mitigation using Independent Component Analysis as a Pre-Processor
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Gholian, Armen; Bradley, Damon C.; Wong, Mark; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.
2016-01-01
Radio-frequency interference (RFI) has negatively impacted scientific measurements of passive remote sensing satellites. This has been observed in the L-band radiometers Soil Moisture and Ocean Salinity (SMOS), Aquarius and more recently, Soil Moisture Active Passive (SMAP). RFI has also been observed at higher frequencies such as K band. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements. This work explores the use of Independent Component Analysis (ICA) as a blind source separation (BSS) technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
Multivariate Analysis of Ladle Vibration
NASA Astrophysics Data System (ADS)
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent variables of the response and predictor variables are highly correlated. The predicted variable has shown linear relationship with the stirring energy and bath recirculation speed. This outcome can improve the predictability of the mixing status in ladle metallurgy and make the online control of the process easier. Industrial testing of this input will follow.
NASA Astrophysics Data System (ADS)
Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel
2006-10-01
The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present paper by means of some synthetic time-series examples of increasing complexity, and it is compared with wavelet analysis in order to provide a well-known reference of its capabilities. A comparison between SDC and companion techniques is also addressed and results are exemplified for the specific case of some relevant El Niño-Southern Oscillation teleconnections.
Hydroacoustic monitoring of a salt cavity: an analysis of precursory events of the collapse
NASA Astrophysics Data System (ADS)
Lebert, F.; Bernardie, S.; Mainsant, G.
2011-09-01
One of the main features of "post mining" research relates to available methods for monitoring mine-degradation processes that could directly threaten surface infrastructures. In this respect, GISOS, a French scientific interest group, is investigating techniques for monitoring the eventual collapse of underground cavities. One of the methods under investigation was monitoring the stability of a salt cavity through recording microseismic-precursor signals that may indicate the onset of rock failure. The data were recorded in a salt mine in Lorraine (France) when monitoring the controlled collapse of 2 000 000 m3 of rocks surrounding a cavity at 130 m depth. The monitoring in the 30 Hz to 3 kHz frequency range highlights the occurrence of events with high energy during periods of macroscopic movement, once the layers had ruptured; they appear to be the consequence of the post-rupture rock movements related to the intense deformation of the cavity roof. Moreover the analysis shows the presence of some interesting precursory signals before the cavity collapsed. They occurred a few hours before the failure phases, when the rocks were being weakened and damaged. They originated from the damaging and breaking process, when micro-cracks appear and then coalesce. From these results we expect that deeper signal analysis and statistical analysis on the complete event time distribution (several millions of files) will allow us to finalize a complete typology of each signal families and their relations with the evolution steps of the cavity over the five years monitoring.
Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels
NASA Astrophysics Data System (ADS)
Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew
2013-05-01
In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.
Rostami, Javad; Chen, Jingming; Tse, Peter W.
2017-01-01
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220
NASA Astrophysics Data System (ADS)
Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian
2018-05-01
In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
A labview-based GUI for the measurement of otoacoustic emissions.
Wu, Ye; McNamara, D M; Ziarani, A K
2006-01-01
This paper presents the outcome of a software development project aimed at creating a stand-alone user-friendly signal processing algorithm for the estimation of distortion product otoacoustic emission (OAE) signals. OAE testing is one of the most commonly used methods of first screening of newborns' hearing. Most of the currently available commercial devices rely upon averaging long strings of data and subsequent discrete Fourier analysis to estimate low level OAE signals from within the background noise in the presence of the strong stimuli. The main shortcoming of the presently employed technology is the need for long measurement time and its low noise immunity. The result of the software development project presented here is a graphical user interface (GUI) module that implements a recently introduced adaptive technique of OAE signal estimation. This software module is easy to use and is freely disseminated on the Internet for the use of the hearing research community. This GUI module allows loading of the a priori recorded OAE signals into the workspace, and provides the user with interactive instructions for the OAE signal estimation. Moreover, the user can generate simulated OAE signals to objectively evaluate the performance capability of the implemented signal processing technique.
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.
2014-01-01
An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.
Rapid neural discrimination of communicative gestures
Carlson, Thomas A.
2015-01-01
Humans are biased toward social interaction. Behaviorally, this bias is evident in the rapid effects that self-relevant communicative signals have on attention and perceptual systems. The processing of communicative cues recruits a wide network of brain regions, including mentalizing systems. Relatively less work, however, has examined the timing of the processing of self-relevant communicative cues. In the present study, we used multivariate pattern analysis (decoding) approach to the analysis of magnetoencephalography (MEG) to study the processing dynamics of social-communicative actions. Twenty-four participants viewed images of a woman performing actions that varied on a continuum of communicative factors including self-relevance (to the participant) and emotional valence, while their brain activity was recorded using MEG. Controlling for low-level visual factors, we found early discrimination of emotional valence (70 ms) and self-relevant communicative signals (100 ms). These data offer neural support for the robust and rapid effects of self-relevant communicative cues on behavior. PMID:24958087
Nontraditional Intersections/Interchanges: Informational Report
DOT National Transportation Integrated Search
2007-06-18
Comprehensive Coverage -Geometric design considerations. -Traffic analysis and comparison with similar conventional design. -Signal settings. -Signing and marking. -Material or cost comparison. -Selection Process in a spread sheet.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect
Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng
2014-01-01
This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635
Signal to Noise Studies on Thermographic Data with Fabricated Defects for Defense Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Rajic, Nik; Genest, Marc
2006-01-01
There is a growing international interest in thermal inspection systems for asset life assessment and management of defense platforms. The efficacy of flash thermography is generally enhanced by applying image processing algorithms to the observations of raw temperature. Improving the defect signal to noise ratio (SNR) is of primary interest to reduce false calls and allow for easier interpretation of a thermal inspection image. Several factors affecting defect SNR were studied such as data compression and reconstruction using principal component analysis and time window processing.
An approach to emotion recognition in single-channel EEG signals: a mother child interaction
NASA Astrophysics Data System (ADS)
Gómez, A.; Quintero, L.; López, N.; Castro, J.
2016-04-01
In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains. Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness.
Eliminating "Hotspots" in Digital Image Processing
NASA Technical Reports Server (NTRS)
Salomon, P. M.
1984-01-01
Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.
Kirilina, Evgeniya; Yu, Na; Jelzow, Alexander; Wabnitz, Heidrun; Jacobs, Arthur M; Tachtsidis, Ilias
2013-01-01
Functional Near-Infrared Spectroscopy (fNIRS) is a promising method to study functional organization of the prefrontal cortex. However, in order to realize the high potential of fNIRS, effective discrimination between physiological noise originating from forehead skin haemodynamic and cerebral signals is required. Main sources of physiological noise are global and local blood flow regulation processes on multiple time scales. The goal of the present study was to identify the main physiological noise contributions in fNIRS forehead signals and to develop a method for physiological de-noising of fNIRS data. To achieve this goal we combined concurrent time-domain fNIRS and peripheral physiology recordings with wavelet coherence analysis (WCA). Depth selectivity was achieved by analyzing moments of photon time-of-flight distributions provided by time-domain fNIRS. Simultaneously, mean arterial blood pressure (MAP), heart rate (HR), and skin blood flow (SBF) on the forehead were recorded. WCA was employed to quantify the impact of physiological processes on fNIRS signals separately for different time scales. We identified three main processes contributing to physiological noise in fNIRS signals on the forehead. The first process with the period of about 3 s is induced by respiration. The second process is highly correlated with time lagged MAP and HR fluctuations with a period of about 10 s often referred as Mayer waves. The third process is local regulation of the facial SBF time locked to the task-evoked fNIRS signals. All processes affect oxygenated haemoglobin concentration more strongly than that of deoxygenated haemoglobin. Based on these results we developed a set of physiological regressors, which were used for physiological de-noising of fNIRS signals. Our results demonstrate that proposed de-noising method can significantly improve the sensitivity of fNIRS to cerebral signals.
Gear fault diagnosis based on the structured sparsity time-frequency analysis
NASA Astrophysics Data System (ADS)
Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong
2018-03-01
Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.
EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G.
2015-10-01
In this paper we describe an automatic tool for the pre-processing of lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. The ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, the ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. The ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of the ELPP module, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of the ELPP module is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of the ELPP module. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. The ELPP module has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
Genomic signal analysis of pathogen variability
NASA Astrophysics Data System (ADS)
Cristea, Paul Dan
2006-02-01
The paper presents results in the study of pathogen variability by using genomic signals. The conversion of symbolic nucleotide sequences into digital signals offers the possibility to apply signal processing methods to the analysis of genomic data. The method is particularly well suited to characterize small size genomic sequences, such as those found in viruses and bacteria, being a promising tool in tracking the variability of pathogens, especially in the context of developing drug resistance. The paper is based on data downloaded from GenBank [32], and comprises results on the variability of the eight segments of the influenza type A, subtype H5N1, virus genome, and of the Hemagglutinin (HA) gene, for the H1, H2, H3, H4, H5 and H16 types. Data from human and avian virus isolates are used.
Method and apparatus for frequency spectrum analysis
NASA Technical Reports Server (NTRS)
Cole, Steven W. (Inventor)
1992-01-01
A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.
Acoustic analysis of trill sounds.
Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri
2012-04-01
In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.
Instrument-independent analysis of music by means of the continuous wavelet transform
NASA Astrophysics Data System (ADS)
Olmo, Gabriella; Dovis, Fabio; Benotto, Paolo; Calosso, Claudio; Passaro, Pierluigi
1999-10-01
This paper deals with the problem of automatic recognition of music. Segments of digitized music are processed by means of a Continuous Wavelet Transform, properly chosen so as to match the spectral characteristics of the signal. In order to achieve a good time-scale representation of the signal components a novel wavelet has been designed suited to the musical signal features. particular care has been devoted towards an efficient implementation, which operates in the frequency domain, and includes proper segmentation and aliasing reduction techniques to make the analysis of long signals feasible. The method achieves very good performance in terms of both time and frequency selectivity, and can yield the estimate and the localization in time of both the fundamental frequency and the main harmonics of each tone. The analysis is used as a preprocessing step for a recognition algorithm, which we show to be almost independent on the instrument reproducing the sounds. Simulations are provided to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Hassan, Said A.; Abdel-Gawad, Sherif A.
2018-02-01
Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.
Signal processing of aircraft flyover noise
NASA Technical Reports Server (NTRS)
Kelly, Jeffrey J.
1991-01-01
A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054
Mutual information against correlations in binary communication channels.
Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz
2015-05-19
Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.
Psycho-physiological training approach for amputee rehabilitation.
Dhal, Chandan; Wahi, Akshat
2015-01-01
Electromyography (EMG) signals are very noisy and difficult to acquire. Conventional techniques involve amplification and filtering through analog circuits, which makes the system very unstable. The surface EMG signals lie in the frequency range of 6Hz to 600Hz, and the dominant range is between the ranges from 20Hz to 150Hz. 1 Our project aimed to analyze an EMG signal effectively over its complete frequency range. To remove these defects, we designed what we think is an easy, effective, and reliable signal processing technique. We did spectrum analysis, so as to perform all the processing such as amplification, filtering, and thresholding on an Arduino Uno board, hence removing the need for analog amplifiers and filtering circuits, which have stability issues. The conversion of time domain to frequency domain of any signal gives a detailed data of the signal set. Our main aim is to use this useful data for an alternative methodology for rehabilitation called a psychophysiological approach to rehabilitation in prosthesis, which can reduce the cost of the myoelectric arm, as well as increase its efficiency. This method allows the user to gain control over their muscle sets in a less stressful environment. Further, we also have described how our approach is viable and can benefit the rehabilitation process. We used our DSP EMG signals to play an online game and showed how this approach can be used in rehabilitation.
Efficient and Robust Signal Approximations
2009-05-01
otherwise. Remark. Permutation matrices are both orthogonal and doubly- stochastic [62]. We will now show how to further simplify the Robust Coding...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: signal processing, image compression, independent component analysis , sparse
Bai, Yong; Sow, Daby; Vespa, Paul; Hu, Xiao
2016-01-01
Continuous high-volume and high-frequency brain signals such as intracranial pressure (ICP) and electroencephalographic (EEG) waveforms are commonly collected by bedside monitors in neurocritical care. While such signals often carry early signs of neurological deterioration, detecting these signs in real time with conventional data processing methods mainly designed for retrospective analysis has been extremely challenging. Such methods are not designed to handle the large volumes of waveform data produced by bedside monitors. In this pilot study, we address this challenge by building a prototype system using the IBM InfoSphere Streams platform, a scalable stream computing platform, to detect unstable ICP dynamics in real time. The system continuously receives electrocardiographic and ICP signals and analyzes ICP pulse morphology looking for deviations from a steady state. We also designed a Web interface to display in real time the result of this analysis in a Web browser. With this interface, physicians are able to ubiquitously check on the status of their patients and gain direct insight into and interpretation of the patient's state in real time. The prototype system has been successfully tested prospectively on live hospitalized patients.
Beamforming array techniques for acoustic emission monitoring of large concrete structures
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2010-06-01
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
Sub-Audible Speech Recognition Based upon Electromyographic Signals
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Agabon, Shane T. (Inventor); Lee, Diana D. (Inventor)
2012-01-01
Method and system for processing and identifying a sub-audible signal formed by a source of sub-audible sounds. Sequences of samples of sub-audible sound patterns ("SASPs") for known words/phrases in a selected database are received for overlapping time intervals, and Signal Processing Transforms ("SPTs") are formed for each sample, as part of a matrix of entry values. The matrix is decomposed into contiguous, non-overlapping two-dimensional cells of entries, and neural net analysis is applied to estimate reference sets of weight coefficients that provide sums with optimal matches to reference sets of values. The reference sets of weight coefficients are used to determine a correspondence between a new (unknown) word/phrase and a word/phrase in the database.
NASA Technical Reports Server (NTRS)
1975-01-01
Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.
Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design
Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei
2013-01-01
As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095
Ramanujan sums for signal processing of low-frequency noise.
Planat, Michel; Rosu, Haret; Perrine, Serge
2002-11-01
An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums c(q)(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
Ramanujan sums for signal processing of low-frequency noise
NASA Astrophysics Data System (ADS)
Planat, Michel; Rosu, Haret; Perrine, Serge
2002-11-01
An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums cq(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals.
A CWT-based methodology for piston slap experimental characterization
NASA Astrophysics Data System (ADS)
Buzzoni, M.; Mucchi, E.; Dalpiaz, G.
2017-03-01
Noise and vibration control in mechanical systems has become ever more significant for automotive industry where the comfort of the passenger compartment represents a challenging issue for car manufacturers. The reduction of piston slap noise is pivotal for a good design of IC engines. In this scenario, a methodology has been developed for the vibro-acoustic assessment of IC diesel engines by means of design changes in piston to cylinder bore clearance. Vibration signals have been analysed by means of advanced signal processing techniques taking advantage of cyclostationarity theory. The procedure departs from the analysis of the Continuous Wavelet Transform (CWT) in order to identify a representative frequency band of piston slap phenomenon. Such a frequency band has been exploited as the input data in the further signal processing analysis that involves the envelope analysis of the second order cyclostationary component of the signal. The second order harmonic component has been used as the benchmark parameter of piston slap noise. An experimental procedure of vibrational benchmarking is proposed and verified at different operational conditions in real IC engines actually equipped on cars. This study clearly underlines the crucial role of the transducer positioning when differences among real piston-to-cylinder clearances are considered. In particular, the proposed methodology is effective for the sensors placed on the outer cylinder wall in all the tested conditions.
Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo
2015-01-01
Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
A tone analyzer based on a piezoelectric polymer and organic thin film transistors.
Hsu, Yu-Jen; Kymissis, Ioannis
2012-12-01
A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.
Variable threshold method for ECG R-peak detection.
Kew, Hsein-Ping; Jeong, Do-Un
2011-10-01
In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.
GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke
Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST
2016-01-01
Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261
Monitoring of electric-cardio signals based on DSP
NASA Astrophysics Data System (ADS)
Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang
2008-10-01
Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.
The Researches on Damage Detection Method for Truss Structures
NASA Astrophysics Data System (ADS)
Wang, Meng Hong; Cao, Xiao Nan
2018-06-01
This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.
EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG.
Medina Villalon, S; Paz, R; Roehri, N; Lagarde, S; Pizzo, F; Colombet, B; Bartolomei, F; Carron, R; Bénar, C-G
2018-06-01
In pharmacoresistant epilepsy, exploration with depth electrodes can be needed to precisely define the epileptogenic zone. Accurate location of these electrodes is thus essential for the interpretation of Stereotaxic EEG (SEEG) signals. As SEEG analysis increasingly relies on signal processing, it is crucial to make a link between these results and patient's anatomy. Our aims were thus to develop a suite of software tools, called "EpiTools", able to i) precisely and automatically localize the position of each SEEG contact and ii) display the results of signal analysis in each patient's anatomy. The first tool, GARDEL (GUI for Automatic Registration and Depth Electrode Localization), is able to automatically localize SEEG contacts and to label each contact according to a pre-specified nomenclature (for instance that of FreeSurfer or MarsAtlas). The second tool, 3Dviewer, enables to visualize in the 3D anatomy of the patient the origin of signal processing results such as rate of biomarkers, connectivity graphs or Epileptogenicity Index. GARDEL was validated in 30 patients by clinicians and proved to be highly reliable to determine within the patient's individual anatomy the actual location of contacts. GARDEL is a fully automatic electrode localization tool needing limited user interaction (only for electrode naming or contact correction). The 3Dviewer is able to read signal processing results and to display them in link with patient's anatomy. EpiTools can help speeding up the interpretation of SEEG data and improving its precision. Copyright © 2018 Elsevier B.V. All rights reserved.
Damage localization by statistical evaluation of signal-processed mode shapes
NASA Astrophysics Data System (ADS)
Ulriksen, M. D.; Damkilde, L.
2015-07-01
Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.
Demuyser, Liesbeth; Van Genechten, Wouter; Mizuno, Hideaki; Colombo, Sonia; Van Dijck, Patrick
2018-05-29
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment. © 2018 John Wiley & Sons Ltd.
Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.
Badgaiyan, Rajendra D
2012-12-01
Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.
Advanced Signal Conditioners for Data-Acquisition Systems
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro
2004-01-01
Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the reliability of each component is assessed in terms of such considerations as risks of damage, mean times between failures, and the effects of certain failures on the performance of the signal conditioner as a whole system. Then, fewer or more spares are assigned for each affected component, pursuant to the results of this analysis, in order to obtain the required degree of reliability of the signal conditioner as a whole system. The digital module comprises one or more processors and field-programmable gate arrays, the number of each depending on the results of the aforementioned analysis. The digital module provides redundant control, monitoring, and processing of several analog signals. It is designed to minimize unnecessary consumption of electric energy, including, when possible, going into a low-power "sleep" mode that is implemented in firmware. The digital module communicates with external equipment via a personal-computer serial port. The digital module monitors the "health" of the rest of the signal conditioner by processing defined measurements and/or trends. It automatically makes adjustments to respond to channel failures, compensate for effects of temperature, and maintain calibration.
Khan, Adil Mehmood; Siddiqi, Muhammad Hameed; Lee, Seok-Won
2013-09-27
Smartphone-based activity recognition (SP-AR) recognizes users' activities using the embedded accelerometer sensor. Only a small number of previous works can be classified as online systems, i.e., the whole process (pre-processing, feature extraction, and classification) is performed on the device. Most of these online systems use either a high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting in short battery life or delayed system response, respectively. This paper introduces a real-time/online SP-AR system that solves this problem. Exploratory data analysis was performed on acceleration signals of 6 activities, collected from 30 subjects, to show that these signals are generated by an autoregressive (AR) process, and an accurate AR-model in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within class variance resulting from placing the phone at different positions was reduced using kernel discriminant analysis to achieve position-independent recognition. Neural networks were used as classifiers. Unlike previous works, true subject-independent evaluation was performed, where 10 new subjects evaluated the system at their homes for 1 week. The results show that our features outperformed three commonly used features by 40% in terms of accuracy for the given SR and DW.
2018-01-01
Objective To study the performance of multifocal-visual-evoked-potential (mfVEP) signals filtered using empirical mode decomposition (EMD) in discriminating, based on amplitude, between control and multiple sclerosis (MS) patient groups, and to reduce variability in interocular latency in control subjects. Methods MfVEP signals were obtained from controls, clinically definitive MS and MS-risk progression patients (radiologically isolated syndrome (RIS) and clinically isolated syndrome (CIS)). The conventional method of processing mfVEPs consists of using a 1–35 Hz bandpass frequency filter (XDFT). The EMD algorithm was used to decompose the XDFT signals into several intrinsic mode functions (IMFs). This signal processing was assessed by computing the amplitudes and latencies of the XDFT and IMF signals (XEMD). The amplitudes from the full visual field and from ring 5 (9.8–15° eccentricity) were studied. The discrimination index was calculated between controls and patients. Interocular latency values were computed from the XDFT and XEMD signals in a control database to study variability. Results Using the amplitude of the mfVEP signals filtered with EMD (XEMD) obtains higher discrimination index values than the conventional method when control, MS-risk progression (RIS and CIS) and MS subjects are studied. The lowest variability in interocular latency computations from the control patient database was obtained by comparing the XEMD signals with the XDFT signals. Even better results (amplitude discrimination and latency variability) were obtained in ring 5 (9.8–15° eccentricity of the visual field). Conclusions Filtering mfVEP signals using the EMD algorithm will result in better identification of subjects at risk of developing MS and better accuracy in latency studies. This could be applied to assess visual cortex activity in MS diagnosis and evolution studies. PMID:29677200
Shuttle/payload communications and data systems interface analysis
NASA Technical Reports Server (NTRS)
Huth, G. K.
1980-01-01
The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.
Cascaded analysis of signal and noise propagation through a heterogeneous breast model.
Mainprize, James G; Yaffe, Martin J
2010-10-01
The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.
Quality Evaluation of Agricultural Distillates Using an Electronic Nose
Dymerski, Tomasz; Gębicki, Jacek; Wardencki, Waldemar; Namieśnik, Jacek
2013-01-01
The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h), thermostat temperature during the barbotage process (15 °C) and time of sensor signal acquisition from the onset of the barbotage process (60 s). PMID:24287525
Ong, Edmund; Cahill, Catherine
2015-07-03
The intracellular trafficking of receptors is a collection of complex and highly controlled processes. Receptor trafficking modulates signaling and overall cell responsiveness to ligands and is, itself, influenced by intra- and extracellular conditions, including ligand-induced signaling. Optimized for use with monolayer-plated cultured cells, but extendable to free-floating tissue slices, this protocol uses immunolabelling and colocalizational analysis to track changes in intracellular receptor trafficking following both chronic/prolonged and acute interventions, including exogenous drug treatment. After drug treatment, cells are double-immunolabelled for the receptor and for markers for the intracellular compartments of interest. Sequential confocal microscopy is then used to capture two-channel photomicrographs of individual cells, which are subjected to computerized colocalizational analysis to yield quantitative colocalization scores. These scores are normalized to permit pooling of independent replicates prior to statistical analysis. Representative photomicrographs may also be processed to generate illustrative figures. Here, we describe a powerful and flexible technique for quantitatively assessing induced receptor trafficking.
Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery
NASA Astrophysics Data System (ADS)
Si, Qian
Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
NASA Astrophysics Data System (ADS)
Shimura, Akihiko; Yanagi, Kazuhiro; Yoshizawa, Masayuki
2018-01-01
In time-resolved pump-probe spectroscopy of carbon nanotubes, the fundamental understanding of the optical generation and detection processes of radial-breathing-mode (RBM) phonons has been inconsistent among the previous reports. In this study, the tunable-pumping/broadband-probing scheme was used to fully reveal the amplitude and phase of the phonon-modulated signals. We observed that signals detected off resonantly to excitonic transitions are delayed by π /2 radians with respect to resonantly detected signals, which demonstrates that RBM phonons are detected through dynamically modulating the linear response, not through adiabatically modulating the light absorption. Furthermore, we found that the initial phases are independent of the pump detuning across the first (E11) and the second (E22) excitonic resonances, evidencing that the RBM phonons are generated by the displacive excitation rather than stimulated Raman process.
Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin
2013-04-01
Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.
Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao
2016-02-01
This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.
Artificial intelligence applied to process signal analysis
NASA Technical Reports Server (NTRS)
Corsberg, Dan
1988-01-01
Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.
Constrained maximum consistency multi-path mitigation
NASA Astrophysics Data System (ADS)
Smith, George B.
2003-10-01
Blind deconvolution algorithms can be useful as pre-processors for signal classification algorithms in shallow water. These algorithms remove the distortion of the signal caused by multipath propagation when no knowledge of the environment is available. A framework in which filters that produce signal estimates from each data channel that are as consistent with each other as possible in a least-squares sense has been presented [Smith, J. Acoust. Soc. Am. 107 (2000)]. This framework provides a solution to the blind deconvolution problem. One implementation of this framework yields the cross-relation on which EVAM [Gurelli and Nikias, IEEE Trans. Signal Process. 43 (1995)] and Rietsch [Rietsch, Geophysics 62(6) (1997)] processing are based. In this presentation, partially blind implementations that have good noise stability properties are compared using Classification Operating Characteristics (CLOC) analysis. [Work supported by ONR under Program Element 62747N and NRL, Stennis Space Center, MS.
Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.
1995-10-01
In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.
ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm
NASA Astrophysics Data System (ADS)
Kora, Padmavathi; Sri Rama Krishna, K.
2016-12-01
Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.
Design and evaluation of a parametric model for cardiac sounds.
Ibarra-Hernández, Roilhi F; Alonso-Arévalo, Miguel A; Cruz-Gutiérrez, Alejandro; Licona-Chávez, Ana L; Villarreal-Reyes, Salvador
2017-10-01
Heart sound analysis plays an important role in the auscultative diagnosis process to detect the presence of cardiovascular diseases. In this paper we propose a novel parametric heart sound model that accurately represents normal and pathological cardiac audio signals, also known as phonocardiograms (PCG). The proposed model considers that the PCG signal is formed by the sum of two parts: one of them is deterministic and the other one is stochastic. The first part contains most of the acoustic energy. This part is modeled by the Matching Pursuit (MP) algorithm, which performs an analysis-synthesis procedure to represent the PCG signal as a linear combination of elementary waveforms. The second part, also called residual, is obtained after subtracting the deterministic signal from the original heart sound recording and can be accurately represented as an autoregressive process using the Linear Predictive Coding (LPC) technique. We evaluate the proposed heart sound model by performing subjective and objective tests using signals corresponding to different pathological cardiac sounds. The results of the objective evaluation show an average Percentage of Root-Mean-Square Difference of approximately 5% between the original heart sound and the reconstructed signal. For the subjective test we conducted a formal methodology for perceptual evaluation of audio quality with the assistance of medical experts. Statistical results of the subjective evaluation show that our model provides a highly accurate approximation of real heart sound signals. We are not aware of any previous heart sound model rigorously evaluated as our proposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Yang; Wan, Xiaohong; Zeng, Ke; Ni, Yinmei; Qiu, Lirong; Li, Xiaoli
2016-12-01
Objective. When prefrontal-transcranial magnetic stimulation (p-TMS) performed, it may evoke hybrid artifact mixed with muscle activity and blink activity in EEG recordings. Reducing this kind of hybrid artifact challenges the traditional preprocessing methods. We aim to explore method for the p-TMS evoked hybrid artifact removal. Approach. We propose a novel method used as independent component analysis (ICA) post processing to reduce the p-TMS evoked hybrid artifact. Ensemble empirical mode decomposition (EEMD) was used to decompose signal into multi-components, then the components were separated with artifact reduced by blind source separation (BSS) method. Three standard BSS methods, ICA, independent vector analysis, and canonical correlation analysis (CCA) were tested. Main results. Synthetic results showed that EEMD-CCA outperformed others as ICA post processing step in hybrid artifacts reduction. Its superiority was clearer when signal to noise ratio (SNR) was lower. In application to real experiment, SNR can be significantly increased and the p-TMS evoked potential could be recovered from hybrid artifact contaminated signal. Our proposed method can effectively reduce the p-TMS evoked hybrid artifacts. Significance. Our proposed method may facilitate future prefrontal TMS-EEG researches.
Topics in the Detection of Gravitational Waves from Compact Binary Inspirals
NASA Astrophysics Data System (ADS)
Kapadia, Shasvath Jagat
Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The memory, which is even smaller in amplitude than the primary (detected) gravitational waves, will almost certainly not be seen in the current detection event. Nevertheless, future space-based detectors will likely be sensitive enough to observe the memory.
Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal
2009-01-01
We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.
Noncoherent sampling technique for communications parameter estimations
NASA Technical Reports Server (NTRS)
Su, Y. T.; Choi, H. J.
1985-01-01
This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.
Nonlinear Real-Time Optical Signal Processing.
1981-06-30
bandwidth and space-bandwidth products. Real-time homonorphic and loga- rithmic filtering by halftone nonlinear processing has been achieved. A...Page ABSTRACT 1 1. RESEARCH OBJECTIVES AND PROGRESS 3 I-- 1.1 Introduction and Project overview 3 1.2 Halftone Processing 9 1.3 Direct Nonlinear...time homomorphic and logarithmic filtering by halftone nonlinear processing has been achieved. A detailed analysis of degradation due to the finite gamma