Sample records for signal processing scheme

  1. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  2. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    NASA Astrophysics Data System (ADS)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  3. Generation and coherent detection of QPSK signal using a novel method of digital signal processing

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui

    2018-02-01

    We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.

  4. Evaluation of hardware costs of implementing PSK signal detection circuit based on "system on chip"

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, A. V.; Dmitriev, D. D.; Veisov, E. A.; Gladyshev, A. B.

    2018-05-01

    The article deals with the choice of the architecture of digital signal processing units for implementing the PSK signal detection scheme. As an assessment of the effectiveness of architectures, the required number of shift registers and computational processes are used when implementing the "system on a chip" on the chip. A statistical estimation of the normalized code sequence offset in the signal synchronization scheme for various hardware block architectures is used.

  5. LDPC-PPM Coding Scheme for Optical Communication

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  6. Frequency domain laser velocimeter signal processor: A new signal processing scheme

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Clemmons, James I., Jr.

    1987-01-01

    A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a smart instrument that is able to configure itself, based on the characteristics of the input signals, for optimum measurement accuracy. The signal processor is composed of a high-speed 2-bit transient recorder for signal capture and a combination of adaptive digital filters with energy and/or zero crossing detection signal processing. The system is designed to accept signals with frequencies up to 100 MHz with standard deviations up to 20 percent of the average signal frequency. Results from comparative simulation studies indicate measurement accuracies 2.5 times better than with a high-speed burst counter, from signals with as few as 150 photons per burst.

  7. New coherent laser communication detection scheme based on channel-switching method.

    PubMed

    Liu, Fuchuan; Sun, Jianfeng; Ma, Xiaoping; Hou, Peipei; Cai, Guangyu; Sun, Zhiwei; Lu, Zhiyong; Liu, Liren

    2015-04-01

    A new coherent laser communication detection scheme based on the channel-switching method is proposed. The detection front end of this scheme comprises a 90° optical hybrid and two balanced photodetectors which outputs the in-phase (I) channel and quadrature-phase (Q) channel signal current, respectively. With this method, the ultrahigh speed analog/digital transform of the signal of the I or Q channel is not required. The phase error between the signal and local lasers is obtained by simple analog circuit. Using the phase error signal, the signals of the I/Q channel are switched alternately. The principle of this detection scheme is presented. Moreover, the comparison of the sensitivity of this scheme with that of homodyne detection with an optical phase-locked loop is discussed. An experimental setup was constructed to verify the proposed detection scheme. The offline processing procedure and results are presented. This scheme could be realized through simple structure and has potential applications in cost-effective high-speed laser communication.

  8. A microcomputer based frequency-domain processor for laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Adair, Desmond

    1988-01-01

    A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.

  9. Nuclear Explosion and Infrasound Event Resources of the SMDC Monitoring Research Program

    DTIC Science & Technology

    2008-09-01

    2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 928 Figure 7. Dozens of detected infrasound signals from...investigate alternative detection schemes at the two infrasound arrays based on frequency-wavenumber (fk) processing and the F-statistic. The results of... infrasound signal - detection processing schemes. REFERENCES Bahavar, M., B. Barker, J. Bennett, R. Bowman, H. Israelsson, B. Kohl, Y-L. Kung, J. Murphy

  10. The effect of hearing aid signal-processing schemes on acceptable noise levels: perception and prediction.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth

    2013-01-01

    The acceptable noise level (ANL) test determines the maximum noise level that an individual is willing to accept while listening to speech. The first objective of the present study was to systematically investigate the effect of wide dynamic range compression processing (WDRC), and its combined effect with digital noise reduction (DNR) and directional processing (DIR), on ANL. Because ANL represents the lowest signal-to-noise ratio (SNR) that a listener is willing to accept, the second objective was to examine whether the hearing aid output SNR could predict aided ANL across different combinations of hearing aid signal-processing schemes. Twenty-five adults with sensorineural hearing loss participated in the study. ANL was measured monaurally in two unaided and seven aided conditions, in which the status of the hearing aid processing schemes (enabled or disabled) and the location of noise (front or rear) were manipulated. The hearing aid output SNR was measured for each listener in each condition using a phase-inversion technique. The aided ANL was predicted by unaided ANL and hearing aid output SNR, under the assumption that the lowest acceptable SNR at the listener's eardrum is a constant across different ANL test conditions. Study results revealed that, on average, WDRC increased (worsened) ANL by 1.5 dB, while DNR and DIR decreased (improved) ANL by 1.1 and 2.8 dB, respectively. Because the effects of WDRC and DNR on ANL were opposite in direction but similar in magnitude, the ANL of linear/DNR-off was not significantly different from that of WDRC/DNR-on. The results further indicated that the pattern of ANL change across different aided conditions was consistent with the pattern of hearing aid output SNR change created by processing schemes. Compared with linear processing, WDRC creates a noisier sound image and makes listeners less willing to accept noise. However, this negative effect on noise acceptance can be offset by DNR, regardless of microphone mode. The hearing aid output SNR derived using the phase-inversion technique can predict aided ANL across different combinations of signal-processing schemes. These results suggest a close relationship between aided ANL, signal-processing scheme, and hearing aid output SNR.

  11. Noise-Riding Video Signal Threshold Generation Scheme for a Plurality of Video Signal Channels

    DTIC Science & Technology

    2007-02-12

    on the selected one signal channel to generate a new video signal threshold . The processing resource has an output to provide the new video signal threshold to the comparator circuit corresponding to the selected signal channel.

  12. Intelligent Power Swing Detection Scheme to Prevent False Relay Tripping Using S-Transform

    NASA Astrophysics Data System (ADS)

    Mohamad, Nor Z.; Abidin, Ahmad F.; Musirin, Ismail

    2014-06-01

    Distance relay design is equipped with out-of-step tripping scheme to ensure correct distance relay operation during power swing. The out-of-step condition is a consequence result from unstable power swing. It requires proper detection of power swing to initiate a tripping signal followed by separation of unstable part from the entire power system. The distinguishing process of unstable swing from stable swing poses a challenging task. This paper presents an intelligent approach to detect power swing based on S-Transform signal processing tool. The proposed scheme is based on the use of S-Transform feature of active power at the distance relay measurement point. It is demonstrated that the proposed scheme is able to detect and discriminate the unstable swing from stable swing occurring in the system. To ascertain validity of the proposed scheme, simulations were carried out with the IEEE 39 bus system and its performance has been compared with the wavelet transform-based power swing detection scheme.

  13. Multichannel temperature controller for hot air solar house

    NASA Technical Reports Server (NTRS)

    Currie, J. R.

    1979-01-01

    This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.

  14. Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-09-01

    Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.

  15. A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar

    PubMed Central

    Kim, Bongseok; Kim, Sangdong; Lee, Jonghun

    2018-01-01

    We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment. PMID:29758016

  16. Proposal and performance analysis on the PDM microwave photonic link for the mm-wave signal with hybrid QAM-MPPM-RZ modulation

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong

    2018-07-01

    A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.

  17. High-fidelity and low-latency mobile fronthaul based on segment-wise TDM and MIMO-interleaved arraying.

    PubMed

    Li, Longsheng; Bi, Meihua; Miao, Xin; Fu, Yan; Hu, Weisheng

    2018-01-22

    In this paper, we firstly demonstrate an advanced arraying scheme in the TDM-based analog mobile fronthaul system to enhance the signal fidelity, in which the segment of the antenna carrier signal (AxC) with an appropriate length is served as the granularity for TDM aggregation. Without introducing extra processing, the entire system can be realized by simple DSP. The theoretical analysis is presented to verify the feasibility of this scheme, and to evaluate its effectiveness, the experiment with ~7-GHz bandwidth and 20 8 × 8 MIMO group signals are conducted. Results show that the segment-wise TDM is completely compatible with the MIMO-interleaved arraying, which is employed in an existing TDM scheme to improve the bandwidth efficiency. Moreover, compared to the existing TDM schemes, our scheme can not only satisfy the latency requirement of 5G but also significantly reduce the multiplexed signal bandwidth, hence providing higher signal fidelity in the bandwidth-limited fronthaul system. The experimental result of EVM verifies that 256-QAM is supportable using the segment-wise TDM arraying with only 250-ns latency, while with the ordinary TDM arraying, only 64-QAM is bearable.

  18. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins

    USGS Publications Warehouse

    Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.

    2006-01-01

    The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.

  19. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals

    PubMed Central

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan

    2017-01-01

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350

  20. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.

    PubMed

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan

    2017-10-16

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.

  1. Range Sidelobe Suppression Using Complementary Sets in Distributed Multistatic Radar Networks

    PubMed Central

    Wang, Xuezhi; Song, Yongping; Huang, Xiaotao; Moran, Bill

    2017-01-01

    We propose an alternative waveform scheme built on mutually-orthogonal complementary sets for a distributed multistatic radar. Our analysis and simulation show a reduced frequency band requirement for signal separation between antennas with centralized signal processing using the same carrier frequency. While the scheme can tolerate fluctuations of carrier frequencies and phases, range sidelobes arise when carrier frequencies between antennas are significantly different. PMID:29295566

  2. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.

  3. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  4. Study for new hardmask process scheme

    NASA Astrophysics Data System (ADS)

    Lee, Daeyoup; Tatti, Phillip; Lee, Richard; Chang, Jack; Cho, Winston; Bae, Sanggil

    2017-03-01

    Hardmask processes are a key technique to enable low-k semiconductors, but they can have an impact on patterning control, influencing defectivity, alignment, and overlay. Specifically, amorphous carbon layer (ACL) hardmask schemes can negatively affect overlay by creating distorted alignment signals. A new scheme needs to be developed that can be inserted where amorphous carbon is used but provide better alignment performance. Typical spin-on carbon (SOC) materials used in other hardmask schemes have issues with DCD-FCD skew. In this paper we will evaluate new spin-on carbon material with a higher carbon content that could be a candidate to replace amorphous carbon.

  5. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    NASA Astrophysics Data System (ADS)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  6. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    PubMed Central

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  7. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    PubMed

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  8. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme

    NASA Astrophysics Data System (ADS)

    Qiang, Wei

    2011-12-01

    We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time ( t1) in the indirect dimension. For a beta amyloid (Aβ) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled.

  9. Sensitivity Simulation of Compressed Sensing Based Electronic Warfare Receiver Using Orthogonal Matching Pursuit Algorithm

    DTIC Science & Technology

    2016-02-01

    algorithm is used to process CS data. The insufficient nature of the sparcity of the signal adversely affects the signal detection probability for...with equal probability. The scheme was proposed [2] for image processing using single pixel camera, where the field of view was masked by a grid...modulation. The orthogonal matching pursuit (OMP) algorithm is used to process CS data. The insufficient nature of the sparcity of the signal

  10. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  11. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  12. Digital audio watermarking using moment-preserving thresholding

    NASA Astrophysics Data System (ADS)

    Choi, DooSeop; Jung, Hae Kyung; Choi, Hyuk; Kim, Taejeong

    2007-09-01

    The Moment-Preserving Thresholding technique for digital images has been used in digital image processing for decades, especially in image binarization and image compression. Its main strength lies in that the binary values that the MPT produces as a result, called representative values, are usually unaffected when the signal being thresholded goes through a signal processing operation. The two representative values in MPT together with the threshold value are obtained by solving the system of the preservation equations for the first, second, and third moment. Relying on this robustness of the representative values to various signal processing attacks considered in the watermarking context, this paper proposes a new watermarking scheme for audio signals. The watermark is embedded in the root-sum-square (RSS) of the two representative values of each signal block using the quantization technique. As a result, the RSS values are modified by scaling the signal according to the watermark bit sequence under the constraint of inaudibility relative to the human psycho-acoustic model. We also address and suggest solutions to the problem of synchronization and power scaling attacks. Experimental results show that the proposed scheme maintains high audio quality and robustness to various attacks including MP3 compression, re-sampling, jittering, and, DA/AD conversion.

  13. Preserving privacy of online digital physiological signals using blind and reversible steganography.

    PubMed

    Shiu, Hung-Jr; Lin, Bor-Sing; Huang, Chien-Hung; Chiang, Pei-Ying; Lei, Chin-Laung

    2017-11-01

    Physiological signals such as electrocardiograms (ECG) and electromyograms (EMG) are widely used to diagnose diseases. Presently, the Internet offers numerous cloud storage services which enable digital physiological signals to be uploaded for convenient access and use. Numerous online databases of medical signals have been built. The data in them must be processed in a manner that preserves patients' confidentiality. A reversible error-correcting-coding strategy will be adopted to transform digital physiological signals into a new bit-stream that uses a matrix in which is embedded the Hamming code to pass secret messages or private information. The shared keys are the matrix and the version of the Hamming code. An online open database, the MIT-BIH arrhythmia database, was used to test the proposed algorithms. The time-complexity, capacity and robustness are evaluated. Comparisons of several evaluations subject to related work are also proposed. This work proposes a reversible, low-payload steganographic scheme for preserving the privacy of physiological signals. An (n,  m)-hamming code is used to insert (n - m) secret bits into n bits of a cover signal. The number of embedded bits per modification is higher than in comparable methods, and the computational power is efficient and the scheme is secure. Unlike other Hamming-code based schemes, the proposed scheme is both reversible and blind. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.

    PubMed

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2015-12-14

    In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.

  15. Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes.

    PubMed

    Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng

    2018-06-14

    Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.

  16. Automatic Phase Calibration for RF Cavities using Beam-Loading Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.

    Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique couldmore » be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.« less

  17. An Architecture for Enabling Migration of Tactical Networks to Future Flexible Ad Hoc WBWF

    DTIC Science & Technology

    2010-09-01

    Requirements Several multiple access schemes TDMA OFDMA SC-OFDMA, FH- CDMA , DS - CDMA , hybrid access schemes, transitions between them Dynamic...parameters algorithms depend on the multiple access scheme If DS - CDMA : handling of macro-diversity (linked to cooperative routing) TDMA and/of OFDMA...Transport format Ciphering @MAC/RLC level : SCM Physical layer (PHY) : signal processing (mod, FEC, etc) CDMA : macro-diversity CDMA , OFDMA

  18. Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.

    PubMed

    Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook

    2016-04-20

    A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.

  19. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    NASA Astrophysics Data System (ADS)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-08-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  20. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    PubMed

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  1. NASA Pioneer: Venus reverse playback telemetry program TR 78-2

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Daut, D. G.; Vickers, A. L.; Matis, K. R.

    1978-01-01

    During the entry of the Pioneer Venus Atmospheric Probes into the Venus atmosphere, there were several events (RF blackout and data rate changes) which caused the ground receiving equipment to lose lock on the signal. This caused periods of data loss immediately following each one of these disturbing events which lasted until all the ground receiving units (receiver, subcarrier demodulator, symbol synchronizer, and sequential decoder) acquired lock once more. A scheme to recover these data by off-line data processing was implemented. This scheme consisted of receiving the S band signals from the probes with an open loop reciever (requiring no lock up on the signal) in parallel with the closed loop receivers of the real time receiving equipment, down converting the signals to baseband, and recording them on an analog recorder. The off-line processing consisted of playing the analog recording in the reverse direction (starting with the end of the tape) up, converting the signal to S-band, feeding the signal into the "real time" receiving system and recording on digital tape, the soft decisions from the symbol synchronizer.

  2. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J.

    2017-03-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold-Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis.

  3. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  4. Frequency domain laser velocimeter signal processor

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Murphy, R. Jay

    1991-01-01

    A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a signal processor capable of operating in the frequency domain maximizing the information obtainable from each signal burst. This allows a sophisticated approach to signal detection and processing, with a more accurate measurement of the chirp frequency resulting in an eight-fold increase in measurable signals over the present high-speed burst counter technology. Further, the required signal-to-noise ratio is reduced by a factor of 32, allowing measurements within boundary layers of wind tunnel models. Measurement accuracy is also increased up to a factor of five.

  5. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    PubMed

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  6. Digital Baseband Architecture For Transponder

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Yeh, Hen-Geul

    1995-01-01

    Proposed advanced transponder for long-distance radio communication system with turnaround ranging contains carrier-signal-tracking loop including baseband digital "front end." For reduced cost, transponder includes analog intermediate-frequency (IF) section and analog automatic gain control (AGC) loop at first of two IF mixers. However, second IF mixer redesigned to ease digitization of baseband functions. To conserve power and provide for simpler and smaller transponder hardware, baseband digital signal-processing circuits designed to implement undersampling scheme. Furthermore, sampling scheme and sampling frequency chosen so redesign involves minimum modification of command-detector unit (CDU).

  7. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  8. Eliminating Bias In Acousto-Optical Spectrum Analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1992-01-01

    Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.

  9. Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope

    PubMed Central

    Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook

    2016-01-01

    A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539

  10. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  11. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  12. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  13. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  14. Quantum Watermarking Scheme Based on INEQR

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Zhou, Yang; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou

    2018-04-01

    Quantum watermarking technology protects copyright by embedding invisible quantum signal in quantum multimedia data. In this paper, a watermarking scheme based on INEQR was presented. Firstly, the watermark image is extended to achieve the requirement of embedding carrier image. Secondly, the swap and XOR operation is used on the processed pixels. Since there is only one bit per pixel, XOR operation can achieve the effect of simple encryption. Thirdly, both the watermark image extraction and embedding operations are described, where the key image, swap operation and LSB algorithm are used. When the embedding is made, the binary image key is changed. It means that the watermark has been embedded. Of course, if the watermark image is extracted, the key's state need detected. When key's state is |1>, this extraction operation is carried out. Finally, for validation of the proposed scheme, both the Signal-to-noise ratio (PSNR) and the security of the scheme are analyzed.

  15. Digital television system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.

  16. Automatic identification of epileptic seizures from EEG signals using linear programming boosting.

    PubMed

    Hassan, Ahnaf Rashik; Subasi, Abdulhamit

    2016-11-01

    Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed. At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification. The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and expedite epilepsy diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme.« less

  18. Comparative Study of Coherent, Non-Coherent, and Semi-Coherent Integration Schemes for GNSS Receivers (Preprint)

    DTIC Science & Technology

    2007-04-01

    input signal with the conjugate of a delayed copy of itself, i.e., )exp(2* kjAzz knn ϕ=− , has a phase argument independent of n. As a result, the...Signal Processing (Elseivier), 2005. S.M. Kay, “A Fast and Accurate Single Frequency Estimator,” IEEE Trans. Acous. Speech Signal Proc., 37(12), 1987

  19. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  20. NOLM-based all-optical 40 Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang

    2005-11-01

    A novel all-optical format conversion scheme from NRZ to RZ based on sum-frequency generation (SFG) in a periodically poled LiNbO 3 (PPLN) waveguide is proposed, using a nonlinear optical loop mirror (NOLM). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift induced on the clockwise signal field during the SFG process. The SFG between pump, and co- and counter- propagating signals in the PPLN waveguide are numerically studied, showing that counter-propagating SFG can be ignored when quasi-phase matching (QPM) for SFG during co-propagating interaction. The nonlinear phase shift induced on the clockwise signal field is analyzed in detail, showing that it is more effective to yield large values for nonlinear phase shift when appropriately phase mismatched for the SFG process. Two tuning schemes are proposed depend on whether the sum-frequency wavelength is variable or fixed. It is found that the latter has a rather wide 3dB signal conversion bandwidth approximately 154nm. Finally, the influence of reversible process of SFG is discussed and the optimum arrangement of pump and signal peak powers is theoretically demonstrated. The result shows that proper power arrangement, pump width, and waveguide length are necessary for achieving a good conversion effect.

  1. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao

    2017-10-01

    This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.

  2. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    NASA Astrophysics Data System (ADS)

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  3. Real-Time and Memory Correlation via Acousto-Optic Processing,

    DTIC Science & Technology

    1978-06-01

    acousto - optic technology as an answer to these requirements appears very attractive. Three fundamental signal-processing schemes using the acousto ... optic interaction have been investigated: (i) real-time correlation and convolution, (ii) Fourier and discrete Fourier transformation, and (iii

  4. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.« less

  5. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    NASA Astrophysics Data System (ADS)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  6. Optical temperature compensation schemes of spectral modulation sensors for aircraft engine control

    NASA Astrophysics Data System (ADS)

    Berkcan, Ertugrul

    1993-02-01

    Optical temperature compensation schemes for the ratiometric interrogation of spectral modulation sensors for source temperature robustness are presented. We have obtained better than 50 - 100X decrease of the temperature coefficient of the sensitivity using these types of compensation. We have also developed a spectrographic interrogation scheme that provides increased source temperature robustness; this affords a significantly improved accuracy over FADEC temperature ranges as well as temperature coefficient of the sensitivity that is substantially and further reduced. This latter compensation scheme can be integrated in a small E/O package including the detection, analog and digital signal processing. We find that these interrogation schemes can be used within a detector spatially multiplexed architecture.

  7. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  8. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  9. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng

    2014-06-01

    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  10. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  11. Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.

    2003-01-01

    The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.

  12. Parallelised photoacoustic signal acquisition using a Fabry-Perot sensor and a camera-based interrogation scheme

    NASA Astrophysics Data System (ADS)

    Saeb Gilani, T.; Villringer, C.; Zhang, E.; Gundlach, H.; Buchmann, J.; Schrader, S.; Laufer, J.

    2018-02-01

    Tomographic photoacoustic (PA) images acquired using a Fabry-Perot (FP) based scanner offer high resolution and image fidelity but can result in long acquisition times due to the need for raster scanning. To reduce the acquisition times, a parallelised camera-based PA signal detection scheme is developed. The scheme is based on using a sCMOScamera and FPI sensors with high homogeneity of optical thickness. PA signals were acquired using the camera-based setup and the signal to noise ratio (SNR) was measured. A comparison of the SNR of PA signal detected using 1) a photodiode in a conventional raster scanning detection scheme and 2) a sCMOS camera in parallelised detection scheme is made. The results show that the parallelised interrogation scheme has the potential to provide high speed PA imaging.

  13. Smith predictor with sliding mode control for processes with large dead times

    NASA Astrophysics Data System (ADS)

    Mehta, Utkal; Kaya, İbrahim

    2017-11-01

    The paper discusses the Smith Predictor scheme with Sliding Mode Controller (SP-SMC) for processes with large dead times. This technique gives improved load-disturbance rejection with optimum input control signal variations. A power rate reaching law is incorporated in the sporadic part of sliding mode control such that the overall performance recovers meaningfully. The proposed scheme obtains parameter values by satisfying a new performance index which is based on biobjective constraint. In simulation study, the efficiency of the method is evaluated for robustness and transient performance over reported techniques.

  14. Analog Signal Pre-Processing For The Fermilab Main Injector BPM Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A. L.; Rapisarda, S. M.; Wendt, M.

    2006-11-20

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency-selective gain stages to acquire 53 MHz bunched proton and 2.5 MHz antiproton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages and supplies test signals. Theory of operation, system overview, and some designmore » details are presented, as well as first beam measurements of the prototype hardware.« less

  15. Signal detection via residence-time asymmetry in noisy bistable devices.

    PubMed

    Bulsara, A R; Seberino, C; Gammaitoni, L; Karlsson, M F; Lundqvist, B; Robinson, J W C

    2003-01-01

    We introduce a dynamical readout description for a wide class of nonlinear dynamic sensors operating in a noisy environment. The presence of weak unknown signals is assessed via the monitoring of the residence time in the metastable attractors of the system, in the presence of a known, usually time-periodic, bias signal. This operational scenario can mitigate the effects of sensor noise, providing a greatly simplified readout scheme, as well as significantly reduced processing procedures. Such devices can also show a wide variety of interesting dynamical features. This scheme for quantifying the response of a nonlinear dynamic device has been implemented in experiments involving a simple laboratory version of a fluxgate magnetometer. We present the results of the experiments and demonstrate that they match the theoretical predictions reasonably well.

  16. Wavelength dependent vertical integration of nanoplasmonic circuits utilizing coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Nielsen, M.; Elezzabi, A. Y.

    2013-03-01

    To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.

  17. Simulation of the Australian Mobilesat signalling scheme

    NASA Technical Reports Server (NTRS)

    Rahman, Mushfiqur

    1990-01-01

    The proposed Australian Mobilesat system will provide a range of circuit switched voice/data services using the B-series satellites. The reliability of the signalling scheme between the Network Management Station (NMS) and the mobile terminal (MT) is of critical importance to the performance of the overall system. Simulation results of the performance of the signalling scheme under various channel conditions and coding schemes are presented.

  18. Adaptive angular-velocity Vold-Kalman filter order tracking - Theoretical basis, numerical implementation and parameter investigation

    NASA Astrophysics Data System (ADS)

    Pan, M.-Ch.; Chu, W.-Ch.; Le, Duc-Do

    2016-12-01

    The paper presents an alternative Vold-Kalman filter order tracking (VKF_OT) method, i.e. adaptive angular-velocity VKF_OT technique, to extract and characterize order components in an adaptive manner for the condition monitoring and fault diagnosis of rotary machinery. The order/spectral waveforms to be tracked can be recursively solved by using Kalman filter based on the one-step state prediction. The paper comprises theoretical derivation of computation scheme, numerical implementation, and parameter investigation. Comparisons of the adaptive VKF_OT scheme with two other ones are performed through processing synthetic signals of designated order components. Processing parameters such as the weighting factor and the correlation matrix of process noise, and data conditions like the sampling frequency, which influence tracking behavior, are explored. The merits such as adaptive processing nature and computation efficiency brought by the proposed scheme are addressed although the computation was performed in off-line conditions. The proposed scheme can simultaneously extract multiple spectral components, and effectively decouple close and crossing orders associated with multi-axial reference rotating speeds.

  19. Wavelet methodology to improve single unit isolation in primary motor cortex cells.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2015-05-15

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. Copyright © 2015. Published by Elsevier B.V.

  20. Dynamic single sideband modulation for realizing parametric loudspeaker

    NASA Astrophysics Data System (ADS)

    Sakai, Shinichi; Kamakura, Tomoo

    2008-06-01

    A parametric loudspeaker, that presents remarkably narrow directivity compared with a conventional loudspeaker, is newly produced and examined. To work the loudspeaker optimally, we prototyped digitally a single sideband modulator based on the Weaver method and appropriate signal processing. The processing techniques are to change the carrier amplitude dynamically depending on the envelope of audio signals, and then to operate the square root or fourth root to the carrier amplitude for improving input-output acoustic linearity. The usefulness of the present modulation scheme has been verified experimentally.

  1. Analog signal pre-processing for the Fermilab Main Injector BPM upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, A.L.; Rapisarda, S.M.; Wendt, M.

    2006-05-01

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and somemore » design details are presented, as well as first beam measurements of the prototype hardware.« less

  2. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  3. Comparison of single-microphone noise reduction schemes: can hearing impaired listeners tell the difference?

    PubMed

    Huber, Rainer; Bisitz, Thomas; Gerkmann, Timo; Kiessling, Jürgen; Meister, Hartmut; Kollmeier, Birger

    2018-06-01

    The perceived qualities of nine different single-microphone noise reduction (SMNR) algorithms were to be evaluated and compared in subjective listening tests with normal hearing and hearing impaired (HI) listeners. Speech samples added with traffic noise or with party noise were processed by the SMNR algorithms. Subjects rated the amount of speech distortions, intrusiveness of background noise, listening effort and overall quality, using a simplified MUSHRA (ITU-R, 2003 ) assessment method. 18 normal hearing and 18 moderately HI subjects participated in the study. Significant differences between the rating behaviours of the two subject groups were observed: While normal hearing subjects clearly differentiated between different SMNR algorithms, HI subjects rated all processed signals very similarly. Moreover, HI subjects rated speech distortions of the unprocessed, noisier signals as being more severe than the distortions of the processed signals, in contrast to normal hearing subjects. It seems harder for HI listeners to distinguish between additive noise and speech distortions or/and they might have a different understanding of the term "speech distortion" than normal hearing listeners have. The findings confirm that the evaluation of SMNR schemes for hearing aids should always involve HI listeners.

  4. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  5. Secure Communication Based on a Hybrid of Chaos and Ica Encryptions

    NASA Astrophysics Data System (ADS)

    Chen, Wei Ching; Yuan, John

    Chaos and independent component analysis (ICA) encryptions are two novel schemes for secure communications. In this paper, a new scheme combining chaos and ICA techniques is proposed to enhance the security level during communication. In this scheme, a master chaotic system is embedded at the transmitter. The message signal is mixed with a chaotic signal and a Gaussian white noise into two mixed signals and then transmitted to the receiver through the public channels. A signal for synchronization is transmitted through another public channel to the receiver where a slave chaotic system is embedded to reproduce the chaotic signal. A modified ICA is used to recover the message signal at the receiver. Since only two of the three transmitted signals contain the information of message signal, a hacker would not be able to retrieve the message signal by using ICA even though all the transmitted signals are intercepted. Spectrum analyses are used to prove that the message signal can be securely hidden under this scheme.

  6. Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification.

    PubMed

    Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N

    2012-01-01

    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  7. Interference Mitigation Schemes for Wireless Body Area Sensor Networks: A Comparative Survey

    PubMed Central

    Le, Thien T.T.; Moh, Sangman

    2015-01-01

    A wireless body area sensor network (WBASN) consists of a coordinator and multiple sensors to monitor the biological signals and functions of the human body. This exciting area has motivated new research and standardization processes, especially in the area of WBASN performance and reliability. In scenarios of mobility or overlapped WBASNs, system performance will be significantly degraded because of unstable signal integrity. Hence, it is necessary to consider interference mitigation in the design. This survey presents a comparative review of interference mitigation schemes in WBASNs. Further, we show that current solutions are limited in reaching satisfactory performance, and thus, more advanced solutions should be developed in the future. PMID:26110407

  8. Correlation processing for correction of phase distortions in subaperture imaging.

    PubMed

    Tavh, B; Karaman, M

    1999-01-01

    Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.

  9. Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing.

    PubMed

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V

    2014-02-10

    In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

  10. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    PubMed

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based H ∞ control design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  12. An inter-lighting interference cancellation scheme for MISO-VLC systems

    NASA Astrophysics Data System (ADS)

    Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan

    2017-08-01

    In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.

  13. The effect of hearing aid technologies on listening in an automobile.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A; Stanziola, Rachel W

    2013-06-01

    Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile/road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the listener/driver, conventional directional processing that places the directivity beam toward the listener's front may not be helpful and, in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener's speech recognition performance and preference for communication in a traveling automobile. A single-blinded, repeated-measures design was used. Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 yr participated in the study. The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 mph on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound-treated booth to assess speech recognition performance and preference with each programmed condition. Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants' preferences for a given processing scheme were generally consistent with speech recognition results. The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. American Academy of Audiology.

  14. Channel modeling, signal processing and coding for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Zheng

    With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.

  15. Differences in signal peptide processing between GP3 glycoproteins of Arteriviridae.

    PubMed

    Zhang, Minze; Veit, Michael

    2018-04-01

    We reported previously that carbohydrate attachment to an overlapping glycosylation site adjacent to the signal peptide of GP3 from equine arteritis virus (EAV) prevents cleavage. Here we investigated whether this unusual processing scheme is a feature of GP3s of other Arteriviridae, which all contain a glycosylation site at a similar position. Expression of GP3 from type-1 and type-2 porcine reproductive and respiratory syndrome virus (PRRSV) and from lactate dehydrogenase-elevating virus (LDV) revealed that the first glycosylation site is used, but has no effect on signal peptide cleavage. Comparison of the SDS-PAGE mobility of deglycosylated GP3 from PRRSV and LDV with mutants having or not having a signal peptide showed that GP3´s signal peptide is cleaved. Swapping the signal peptides between GP3 of EAV and PRRSV revealed that the information for co-translational processing is not encoded in the signal peptide, but in the remaining part of GP3. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  17. All-optical simultaneous multichannel quadrature phase shift keying signal regeneration based on phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng

    2018-01-01

    A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.

  18. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  19. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  20. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  1. Modern Techniques in Acoustical Signal and Image Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve thismore » goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.« less

  2. lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain.

    PubMed

    Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi

    2014-01-01

    We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

  3. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.

    PubMed

    Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan

    2017-07-24

    Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

  4. Invariance algorithms for processing NDE signals

    NASA Astrophysics Data System (ADS)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  5. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  6. Efficient resource allocation scheme for visible-light communication system

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.

    2009-01-01

    A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.

  7. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    DTIC Science & Technology

    2015-09-17

    the literature, such as mode-locked lasers, optoelectronic oscillators , and laser optical heterodyne, our scheme is (1) up to 100 times better in... Optoelectronic oscillator : This scheme generates microwaves that are tunable only within a few gigahertz and that are stable with a linewidth down to 1 Hz... oscillation frequency, which can be easily adjusted by changing the power and frequency of the optical input. Tens to hundreds of GHz or even THz of

  8. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  9. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  10. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  11. A new approach for improving reliability of personal navigation devices under harsh GNSS signal conditions.

    PubMed

    Dhital, Anup; Bancroft, Jared B; Lachapelle, Gérard

    2013-11-07

    In natural and urban canyon environments, Global Navigation Satellite System (GNSS) signals suffer from various challenges such as signal multipath, limited or lack of signal availability and poor geometry. Inertial sensors are often employed to improve the solution continuity under poor GNSS signal quality and availability conditions. Various fault detection schemes have been proposed in the literature to detect and remove biased GNSS measurements to obtain a more reliable navigation solution. However, many of these methods are found to be sub-optimal and often lead to unavailability of reliability measures, mostly because of the improper characterization of the measurement errors. A robust filtering architecture is thus proposed which assumes a heavy-tailed distribution for the measurement errors. Moreover, the proposed filter is capable of adapting to the changing GNSS signal conditions such as when moving from open sky conditions to deep canyons. Results obtained by processing data collected in various GNSS challenged environments show that the proposed scheme provides a robust navigation solution without having to excessively reject usable measurements. The tests reported herein show improvements of nearly 15% and 80% for position accuracy and reliability, respectively, when applying the above approach.

  12. A New Approach for Improving Reliability of Personal Navigation Devices under Harsh GNSS Signal Conditions

    PubMed Central

    Dhital, Anup; Bancroft, Jared B.; Lachapelle, Gérard

    2013-01-01

    In natural and urban canyon environments, Global Navigation Satellite System (GNSS) signals suffer from various challenges such as signal multipath, limited or lack of signal availability and poor geometry. Inertial sensors are often employed to improve the solution continuity under poor GNSS signal quality and availability conditions. Various fault detection schemes have been proposed in the literature to detect and remove biased GNSS measurements to obtain a more reliable navigation solution. However, many of these methods are found to be sub-optimal and often lead to unavailability of reliability measures, mostly because of the improper characterization of the measurement errors. A robust filtering architecture is thus proposed which assumes a heavy-tailed distribution for the measurement errors. Moreover, the proposed filter is capable of adapting to the changing GNSS signal conditions such as when moving from open sky conditions to deep canyons. Results obtained by processing data collected in various GNSS challenged environments show that the proposed scheme provides a robust navigation solution without having to excessively reject usable measurements. The tests reported herein show improvements of nearly 15% and 80% for position accuracy and reliability, respectively, when applying the above approach. PMID:24212120

  13. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  14. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  15. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  16. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  17. 2D deblending using the multi-scale shaping scheme

    NASA Astrophysics Data System (ADS)

    Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan

    2018-01-01

    Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.

  18. A digitally assisted, signal folding neural recording amplifier.

    PubMed

    Chen, Yi; Basu, Arindam; Liu, Lei; Zou, Xiaodan; Rajkumar, Ramamoorthy; Dawe, Gavin Stewart; Je, Minkyu

    2014-08-01

    A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 μVrms and power dissipation of 2.52 μW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.

  19. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    PubMed Central

    Clark, Kevin B.

    2013-01-01

    Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987

  20. Characterization of a 300-GHz Transmission System for Digital Communications

    NASA Astrophysics Data System (ADS)

    Hudlička, Martin; Salhi, Mohammed; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2017-08-01

    The paper presents the characterization of a 300-GHz transmission system for modern digital communications. The quality of the modulated signal at the output of the system (error vector magnitude, EVM) is measured using a vector signal analyzer. A method using a digital real-time oscilloscope and consecutive mathematical processing in a computer is shown for analysis of signals with bandwidths exceeding that of state-of-the-art vector signal analyzers. The uncertainty of EVM measured using the real-time oscilloscope is open to analysis. Behaviour of the 300-GHz transmission system is studied with respect to various modulation schemes and different signal symbol rates.

  1. The effect of hearing aid technologies on listening in an automobile

    PubMed Central

    Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A.; Stanziola, Rachel W.

    2014-01-01

    Background Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile /road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the driver/listener, conventional directional processing that places the directivity beam toward the listener’s front may not be helpful, and in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). Purpose The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener’s speech recognition performance and preference for communication in a traveling automobile. Research design A single-blinded, repeated-measures design was used. Study Sample Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 years participated in the study. Data Collection and Analysis The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 miles/hour on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound treated booth to assess speech recognition performance and preference with each programmed condition. Results Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants’ preferences for a given processing scheme were generally consistent with speech recognition results. Conclusions The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. PMID:23886425

  2. Multistage Estimation Of Frequency And Phase

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1991-01-01

    Conceptual two-stage software scheme serves as prototype of multistage scheme for digital estimation of phase, frequency, and rate of change of frequency ("Doppler rate") of possibly phase-modulated received sinusoidal signal in communication system in which transmitter and/or receiver traveling rapidly, accelerating, and/or jerking severely. Each additional stage of multistage scheme provides increasingly refined estimate of frequency and phase of signal. Conceived for use in estimating parameters of signals from spacecraft and high dynamic GPS signal parameters, also applicable, to terrestrial stationary/mobile (e.g., cellular radio) and land-mobile/satellite communication systems.

  3. A comparative study of upwind and MacCormack schemes for CAA benchmark problems

    NASA Technical Reports Server (NTRS)

    Viswanathan, K.; Sankar, L. N.

    1995-01-01

    In this study, upwind schemes and MacCormack schemes are evaluated as to their suitability for aeroacoustic applications. The governing equations are cast in a curvilinear coordinate system and discretized using finite volume concepts. A flux splitting procedure is used for the upwind schemes, where the signals crossing the cell faces are grouped into two categories: signals that bring information from outside into the cell, and signals that leave the cell. These signals may be computed in several ways, with the desired spatial and temporal accuracy achieved by choosing appropriate interpolating polynomials. The classical MacCormack schemes employed here are fourth order accurate in time and space. Results for categories 1, 4, and 6 of the workshop's benchmark problems are presented. Comparisons are also made with the exact solutions, where available. The main conclusions of this study are finally presented.

  4. Audio signal encryption using chaotic Hénon map and lifting wavelet transforms

    NASA Astrophysics Data System (ADS)

    Roy, Animesh; Misra, A. P.

    2017-12-01

    We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test the security and the efficiency of the proposed scheme.

  5. Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Jiang, Liang; Stone, A. Douglas; Devoret, Michel

    2015-10-01

    Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.

  6. Biologically inspired binaural hearing aid algorithms: Design principles and effectiveness

    NASA Astrophysics Data System (ADS)

    Feng, Albert

    2002-05-01

    Despite rapid advances in the sophistication of hearing aid technology and microelectronics, listening in noise remains problematic for people with hearing impairment. To solve this problem two algorithms were designed for use in binaural hearing aid systems. The signal processing strategies are based on principles in auditory physiology and psychophysics: (a) the location/extraction (L/E) binaural computational scheme determines the directions of source locations and cancels noise by applying a simple subtraction method over every frequency band; and (b) the frequency-domain minimum-variance (FMV) scheme extracts a target sound from a known direction amidst multiple interfering sound sources. Both algorithms were evaluated using standard metrics such as signal-to-noise-ratio gain and articulation index. Results were compared with those from conventional adaptive beam-forming algorithms. In free-field tests with multiple interfering sound sources our algorithms performed better than conventional algorithms. Preliminary intelligibility and speech reception results in multitalker environments showed gains for every listener with normal or impaired hearing when the signals were processed in real time with the FMV binaural hearing aid algorithm. [Work supported by NIH-NIDCD Grant No. R21DC04840 and the Beckman Institute.

  7. An additional study and implementation of tone calibrated technique of modulation

    NASA Technical Reports Server (NTRS)

    Rafferty, W.; Bechtel, L. K.; Lay, N. E.

    1985-01-01

    The Tone Calibrated Technique (TCT) was shown to be theoretically free from an error floor, and is only limited, in practice, by implementation constraints. The concept of the TCT transmission scheme along with a baseband implementation of a suitable demodulator is introduced. Two techniques for the generation of the TCT signal are considered: a Manchester source encoding scheme (MTCT) and a subcarrier based technique (STCT). The results are summarized for the TCT link computer simulation. The hardware implementation of the MTCT system is addressed and the digital signal processing design considerations involved in satisfying the modulator/demodulator requirements are outlined. The program findings are discussed and future direction are suggested based on conclusions made regarding the suitability of the TCT system for the transmission channel presently under consideration.

  8. Implementation of orthogonal frequency division multiplexing (OFDM) and advanced signal processing for elastic optical networking in accordance with networking and transmission constraints

    NASA Astrophysics Data System (ADS)

    Johnson, Stanley

    An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I experimentally demonstrate optical re-timing of a 10.7 Gb/s data stream utilizing the property of bound soliton pairs (or "soliton molecules") to relax to an equilibrium temporal separation after propagation through a nonlinear dispersion alternating fiber span. Pulses offset up to 16 ps from bit center are successfully re-timed. The optical re-timing scheme studied here is a good example of signal processing in the optical domain and such a technique can overcome the bandwidth bottleneck present in DSP. An enhanced version of this re-timing scheme is analyzed using numerical simulations.

  9. Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.

    PubMed

    Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin

    2005-03-01

    This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.

  10. Watermarking scheme for authentication of compressed image

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Han; Li, Chang-Tsun; Wang, Shuo

    2003-11-01

    As images are commonly transmitted or stored in compressed form such as JPEG, to extend the applicability of our previous work, a new scheme for embedding watermark in compressed domain without resorting to cryptography is proposed. In this work, a target image is first DCT transformed and quantised. Then, all the coefficients are implicitly watermarked in order to minimize the risk of being attacked on the unwatermarked coefficients. The watermarking is done through registering/blending the zero-valued coefficients with a binary sequence to create the watermark and involving the unembedded coefficients during the process of embedding the selected coefficients. The second-order neighbors and the block itself are considered in the process of the watermark embedding in order to thwart different attacks such as cover-up, vector quantisation, and transplantation. The experiments demonstrate the capability of the proposed scheme in thwarting local tampering, geometric transformation such as cropping, and common signal operations such as lowpass filtering.

  11. On the use of distributed sensing in control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Ghosh, Dave

    1990-01-01

    Distributed processing technology is being developed to process signals from distributed sensors using distributed computations. Thiw work presents a scheme for calculating the operators required to emulate a conventional Kalman filter and regulator using such a computer. The scheme makes use of conventional Kalman theory as applied to the control of large flexible structures. The required computation of the distributed operators given the conventional Kalman filter and regulator is explained. A straightforward application of this scheme may lead to nonsmooth operators whose convergence is not apparent. This is illustrated by application to the Mini-Mast, a large flexible truss at the Langley Research Center used for research in structural dynamics and control. Techniques for developing smooth operators are presented. These involve spatial filtering as well as adjusting the design constants in the Kalman theory. Results are presented that illustrate the degree of smoothness achieved.

  12. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  13. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  14. Spectroscopic techniques to study the immune response in human saliva

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  15. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  16. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    PubMed Central

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632

  17. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  18. Investigation on improved Gabor order tracking technique

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Chiu, Chun-Ching

    2004-07-01

    The study proposes an improved Gabor order tracking (GOT) technique to cope with crossing orders that cannot be effectively separated using the original GOT scheme. The improvement aids both the reconstruction and interpretation of two crossing orders such as a transmission-element-regarding order component and a structural resonant component. In the paper, the influence of the dual function to Gabor expansion coefficients is investigated, which can affect the precision of the tracked order component. Additionally, using the GOT scheme in noise conditions is demonstrated as well. For applying the improved GOT in real tasks, separation and extraction of close-order components of vibration signals measured from a transmission-element test bench is illustrated using both the GOT and Vold-Kalman filtering (VKF) OT schemes. Finally, comprehensive comparisons between the improved GOT and VKF_OT schemes are made from processing results.

  19. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  20. Modeling and performance analysis of an improved movement-based location management scheme for packet-switched mobile communication systems.

    PubMed

    Chung, Yun Won; Kwon, Jae Kyun; Park, Suwon

    2014-01-01

    One of the key technologies to support mobility of mobile station (MS) in mobile communication systems is location management which consists of location update and paging. In this paper, an improved movement-based location management scheme with two movement thresholds is proposed, considering bursty data traffic characteristics of packet-switched (PS) services. The analytical modeling for location update and paging signaling loads of the proposed scheme is developed thoroughly and the performance of the proposed scheme is compared with that of the conventional scheme. We show that the proposed scheme outperforms the conventional scheme in terms of total signaling load with an appropriate selection of movement thresholds.

  1. Signal processing of anthropometric data

    NASA Astrophysics Data System (ADS)

    Zimmermann, W. J.

    1983-09-01

    The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.

  2. Signal processing of anthropometric data

    NASA Technical Reports Server (NTRS)

    Zimmermann, W. J.

    1983-01-01

    The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.

  3. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  4. Diagnosis diagrams for passing signals on an automatic block signaling railway section

    NASA Astrophysics Data System (ADS)

    Spunei, E.; Piroi, I.; Chioncel, C. P.; Piroi, F.

    2018-01-01

    This work presents a diagnosis method for railway traffic security installations. More specifically, the authors present a series of diagnosis charts for passing signals on a railway block equipped with an automatic block signaling installation. These charts are based on the exploitation electric schemes, and are subsequently used to develop a diagnosis software package. The thus developed software package contributes substantially to a reduction of failure detection and remedy for these types of installation faults. The use of the software package eliminates making wrong decisions in the fault detection process, decisions that may result in longer remedy times and, sometimes, to railway traffic events.

  5. Vehicular headways on signalized intersections: theory, models, and reality

    NASA Astrophysics Data System (ADS)

    Krbálek, Milan; Šleis, Jiří

    2015-01-01

    We discuss statistical properties of vehicular headways measured on signalized crossroads. On the basis of mathematical approaches, we formulate theoretical and empirically inspired criteria for the acceptability of theoretical headway distributions. Sequentially, the multifarious families of statistical distributions (commonly used to fit real-road headway statistics) are confronted with these criteria, and with original empirical time clearances gauged among neighboring vehicles leaving signal-controlled crossroads after a green signal appears. Using three different numerical schemes, we demonstrate that an arrangement of vehicles on an intersection is a consequence of the general stochastic nature of queueing systems, rather than a consequence of traffic rules, driver estimation processes, or decision-making procedures.

  6. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  7. Aerospace Applications Conference, Steamboat Springs, CO, Feb. 1-8, 1986, Digest

    NASA Astrophysics Data System (ADS)

    The present conference considers topics concerning the projected NASA Space Station's systems, digital signal and data processing applications, and space science and microwave applications. Attention is given to Space Station video and audio subsystems design, clock error, jitter, phase error and differential time-of-arrival in satellite communications, automation and robotics in space applications, target insertion into synthetic background scenes, and a novel scheme for the computation of the discrete Fourier transform on a systolic processor. Also discussed are a novel signal parameter measurement system employing digital signal processing, EEPROMS for spacecraft applications, a unique concurrent processor architecture for high speed simulation of dynamic systems, a dual polarization flat plate antenna, Fresnel diffraction, and ultralinear TWTs for high efficiency satellite communications.

  8. The Effectiveness of Clear Speech as a Masker

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Van Engen, Kristin; Dhar, Sumitrajit; Bradlow, Ann R.

    2010-01-01

    Purpose: It is established that speaking clearly is an effective means of enhancing intelligibility. Because any signal-processing scheme modeled after known acoustic-phonetic features of clear speech will likely affect both target and competing speech, it is important to understand how speech recognition is affected when a competing speech signal…

  9. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz.

  10. Phase-sensitive, through-amplification with a double-pumped JPC

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.

    The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.

  11. An Intrinsically Digital Amplification Scheme for Hearing Aids

    NASA Astrophysics Data System (ADS)

    Blamey, Peter J.; Macfarlane, David S.; Steele, Brenton R.

    2005-12-01

    Results for linear and wide-dynamic range compression were compared with a new 64-channel digital amplification strategy in three separate studies. The new strategy addresses the requirements of the hearing aid user with efficient computations on an open-platform digital signal processor (DSP). The new amplification strategy is not modeled on prior analog strategies like compression and linear amplification, but uses statistical analysis of the signal to optimize the output dynamic range in each frequency band independently. Using the open-platform DSP processor also provided the opportunity for blind trial comparisons of the different processing schemes in BTE and ITE devices of a high commercial standard. The speech perception scores and questionnaire results show that it is possible to provide improved audibility for sound in many narrow frequency bands while simultaneously improving comfort, speech intelligibility in noise, and sound quality.

  12. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  13. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  14. Data-derived symbol synchronization of MASK and QASK signals. [for multilevel digital communication systems

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1974-01-01

    Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.

  15. Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch

    NASA Astrophysics Data System (ADS)

    Mandal, Sumana; Mandal, Dhoumendra; Mandal, Mrinal Kanti; Garai, Sisir Kumar

    2017-06-01

    An optical data processing and communication system provides enormous potential bandwidth and a very high processing speed, and it can fulfill the demands of the present generation. For an optical computing system, several data processing units that work in the optical domain are essential. Memory elements are undoubtedly essential to storing any information. Optical flip-flops can store one bit of optical information. From these flip-flop registers, counters can be developed. Here, the authors proposed an optical master-slave (MS)-JK flip-flop with the help of two-input and three-input optical NAND gates. Optical NAND gates have been developed using semiconductor optical amplifiers (SOAs). The nonlinear polarization switching property of an SOA has been exploited here, and it acts as a polarization switch in the proposed scheme. A frequency encoding technique is adopted for representing data. A specific frequency of an optical signal represents a binary data bit. This technique of data representation is helpful because frequency is the fundamental property of a signal, and it remains unaltered during reflection, refraction, absorption, etc. throughout the data propagation. The simulated results enhance the admissibility of the scheme.

  16. Hybrid acousto-optic and digital equalization for microwave digital radio channels

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Vanderlugt, A.

    1990-11-01

    Digital radio transmission systems use complex modulation schemes that require powerful signal-processing techniques to correct channel distortions and to minimize BERs. This paper proposes combining the computation power of acoustooptic processing and the accuracy of digital processing to produce a hybrid channel equalizer that exceeds the performance of digital equalization alone. Analysis shows that a hybrid equalizer for 256-level quadrature amplitude modulation (QAM) performs better than a digital equalizer for 64-level QAM.

  17. Laser anemometry for hot flows

    NASA Astrophysics Data System (ADS)

    Kugler, P.; Langer, G.

    1987-07-01

    The fundamental principles, instrumentation, and practical operation of LDA and laser-transit-anemometry systems for measuring velocity profiles and the degree of turbulence in high-temperature flows are reviewed and illustrated with diagrams, drawings and graphs of typical data. Consideration is given to counter, tracker, spectrum-analyzer and correlation methods of LDA signal processing; multichannel analyzer and cross correlation methods for LTA data; LTA results for a small liquid fuel rocket motor; and experiments demonstrating the feasibility of an optoacoustic demodulation scheme for LDA signals from unsteady flows.

  18. A Novel Image Encryption Scheme Based on Intertwining Chaotic Maps and RC4 Stream Cipher

    NASA Astrophysics Data System (ADS)

    Kumari, Manju; Gupta, Shailender

    2018-03-01

    As the systems are enabling us to transmit large chunks of data, both in the form of texts and images, there is a need to explore algorithms which can provide a higher security without increasing the time complexity significantly. This paper proposes an image encryption scheme which uses intertwining chaotic maps and RC4 stream cipher to encrypt/decrypt the images. The scheme employs chaotic map for the confusion stage and for generation of key for the RC4 cipher. The RC4 cipher uses this key to generate random sequences which are used to implement an efficient diffusion process. The algorithm is implemented in MATLAB-2016b and various performance metrics are used to evaluate its efficacy. The proposed scheme provides highly scrambled encrypted images and can resist statistical, differential and brute-force search attacks. The peak signal-to-noise ratio values are quite similar to other schemes, the entropy values are close to ideal. In addition, the scheme is very much practical since having lowest time complexity then its counterparts.

  19. Integrated optical 3D digital imaging based on DSP scheme

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  20. A Minicomputer Based Scheme for Turbulence Measurements with Pulsed Doppler Ultrasound

    PubMed Central

    Craig, J. I.; Saxena, Vijay; Giddens, D. P.

    1979-01-01

    The present paper describes the design and performance of a digital-based Doppler signal processing system that is currently being used in hemodynamics research on arteriosclerosis. The major emphasis is on the development of the digital signal processing technique and its implementation in a small but powerful minicomputer. The work reported on here is part of a larger ongoing effort that the authors are undertaking to study the structure of turbulence in blood flow and its relation to arteriosclerosis. Some of the techniques and instruments developed are felt to have a broad applicability to fluid mechanics and especially to pipe flow fluid mechanics.

  1. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  2. LEAP: An Innovative Direction Dependent Ionospheric Calibration Scheme for Low Frequency Arrays

    NASA Astrophysics Data System (ADS)

    Rioja, María J.; Dodson, Richard; Franzen, Thomas M. O.

    2018-05-01

    The ambitious scientific goals of the SKA require a matching capability for calibration of atmospheric propagation errors, which contaminate the observed signals. We demonstrate a scheme for correcting the direction-dependent ionospheric and instrumental phase effects at the low frequencies and with the wide fields of view planned for SKA-Low. It leverages bandwidth smearing, to filter-out signals from off-axis directions, allowing the measurement of the direction-dependent antenna-based gains in the visibility domain; by doing this towards multiple directions it is possible to calibrate across wide fields of view. This strategy removes the need for a global sky model, therefore all directions are independent. We use MWA results at 88 and 154 MHz under various weather conditions to characterise the performance and applicability of the technique. We conclude that this method is suitable to measure and correct for temporal fluctuations and direction-dependent spatial ionospheric phase distortions on a wide range of scales: both larger and smaller than the array size. The latter are the most intractable and pose a major challenge for future instruments. Moreover this scheme is an embarrassingly parallel process, as multiple directions can be processed independently and simultaneously. This is an important consideration for the SKA, where the current planned architecture is one of compute-islands with limited interconnects. Current implementation of the algorithm and on-going developments are discussed.

  3. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  4. Experimental demonstration of a quantum router

    PubMed Central

    Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.

    2015-01-01

    The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928

  5. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  6. Phase analysis of coherent radial-breathing-mode phonons in carbon nanotubes: Implications for generation and detection processes

    NASA Astrophysics Data System (ADS)

    Shimura, Akihiko; Yanagi, Kazuhiro; Yoshizawa, Masayuki

    2018-01-01

    In time-resolved pump-probe spectroscopy of carbon nanotubes, the fundamental understanding of the optical generation and detection processes of radial-breathing-mode (RBM) phonons has been inconsistent among the previous reports. In this study, the tunable-pumping/broadband-probing scheme was used to fully reveal the amplitude and phase of the phonon-modulated signals. We observed that signals detected off resonantly to excitonic transitions are delayed by π /2 radians with respect to resonantly detected signals, which demonstrates that RBM phonons are detected through dynamically modulating the linear response, not through adiabatically modulating the light absorption. Furthermore, we found that the initial phases are independent of the pump detuning across the first (E11) and the second (E22) excitonic resonances, evidencing that the RBM phonons are generated by the displacive excitation rather than stimulated Raman process.

  7. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    NASA Astrophysics Data System (ADS)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  8. A novel scheme to aid coherent detection of GMSK signals in fast Rayleigh fading channels

    NASA Technical Reports Server (NTRS)

    Leung, Patrick S. K.; Feher, Kamilo

    1990-01-01

    A novel scheme to insert carrier pilot to Gaussian Minimum Shift Keying (GMSK) signal using Binary Block Code (BBC) and a highpass filter in baseband is proposed. This allows the signal to be coherently demodulated even in a fast Rayleigh fading environment. As an illustrative example, the scheme is applied to a 16 kb/s GMSK signal, and its performance over a fast Rayleigh fading channel is investigated using computer simulation. This modem's 'irreducible error rate' is found to be Pe = 5.5 x 10(exp -5) which is more than that of differential detection. The modem's performance in Rician fading channel is currently under investigation.

  9. Characterization and optimization of an optical and electronic architecture for photon counting

    NASA Astrophysics Data System (ADS)

    Correa, M. del M.; Pérez, F. R.

    2018-04-01

    This work shows a time-domain method for the discrimination and digitization of pulses coming from optical detectors, considering the presence of electronic noise and afterpulsing. The developed signal processing scheme is based on a time-to-digital converter (TDC) and a voltage discriminator. After setting appropriate parameters for taking spectra, acquisition data was corrected by wavelength, intensity response function, and noise suppression. The performance of this scheme is discussed by its characterization as well as the comparison of its spectra to those obtained by an Ocean Optics HR4000 commercial reference.

  10. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    NASA Astrophysics Data System (ADS)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  11. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  12. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  13. pySPACE—a signal processing and classification environment in Python

    PubMed Central

    Krell, Mario M.; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H.; Kirchner, Elsa A.; Kirchner, Frank

    2013-01-01

    In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries. PMID:24399965

  14. pySPACE-a signal processing and classification environment in Python.

    PubMed

    Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank

    2013-01-01

    In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.

  15. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  16. Learning target masks in infrared linescan imagery

    NASA Astrophysics Data System (ADS)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  17. Surface EMG signals based motion intent recognition using multi-layer ELM

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  18. Effects of correlated noise on the full-spectrum combining and complex-symbol combining arraying techniques

    NASA Technical Reports Server (NTRS)

    Vazirani, P.

    1995-01-01

    The process of combining telemetry signals received at multiple antennas, commonly referred to as arraying, can be used to improve communication link performance in the Deep Space Network (DSN). By coherently adding telemetry from multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio (SNR) over that achievable with any single antenna in the array. A number of different techniques for arraying have been proposed and their performances analyzed in past literature. These analyses have compared different arraying schemes under the assumption that the signals contain additive white Gaussian noise (AWGN) and that the noise observed at distinct antennas is independent. In situations where an unwanted background body is visible to multiple antennas in the array, however, the assumption of independent noises is no longer applicable. A planet with significant radiation emissions in the frequency band of interest can be one such source of correlated noise. For example, during much of Galileo's tour of Jupiter, the planet will contribute significantly to the total system noise at various ground stations. This article analyzes the effects of correlated noise on two arraying schemes currently being considered for DSN applications: full-spectrum combining (FSC) and complex-symbol combining (CSC). A framework is presented for characterizing the correlated noise based on physical parameters, and the impact of the noise correlation on the array performance is assessed for each scheme.

  19. A High Noise Immunity, 28 × 16-Channel Finger Touch Sensing IC Using OFDM and Frequency Translation Technique

    PubMed Central

    Kim, SangYun; Samadpoor Rikan, Behnam; Pu, YoungGun; Yoo, Sang-Sun; Lee, Minjae; Yang, Youngoo; Lee, Kang-Yoon

    2018-01-01

    In this paper, a high noise immunity, 28 × 16-channel finger touch sensing IC for an orthogonal frequency division multiplexing (OFDM) touch sensing scheme is presented. In order to increase the signal-to-noise ratio (SNR), the OFDM sensing scheme is proposed. The transmitter (TX) transmits the orthogonal signal to each channels of the panel. The receiver (RX) detects the magnitude of the orthogonal frequency to be transmitted from the TX. Due to the orthogonal characteristics, it is robust to narrowband interference and noise. Therefore, the SNR can be improved. In order to reduce the noise effect of low frequencies, a mixer and high-pass filter are proposed as well. After the noise is filtered, the touch SNR attained is 60 dB, from 20 dB before the noise is filtered. The advantage of the proposed OFDM sensing scheme is its ability to detect channels of the panel simultaneously with the use of multiple carriers. To satisfy the linearity of the signal in the OFDM system, a high-linearity mixer and a rail-to-rail amplifier in the TX driver are designed. The proposed design is implemented in 90 nm CMOS process. The SNR is approximately 60 dB. The area is 13.6 mm2, and the power consumption is 62.4 mW. PMID:29883435

  20. Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.

    PubMed

    Raj, Sandeep; Ray, Kailash Chandra; Shankar, Om

    2016-11-01

    The increase in the number of deaths due to cardiovascular diseases (CVDs) has gained significant attention from the study of electrocardiogram (ECG) signals. These ECG signals are studied by the experienced cardiologist for accurate and proper diagnosis, but it becomes difficult and time-consuming for long-term recordings. Various signal processing techniques are studied to analyze the ECG signal, but they bear limitations due to the non-stationary behavior of ECG signals. Hence, this study aims to improve the classification accuracy rate and provide an automated diagnostic solution for the detection of cardiac arrhythmias. The proposed methodology consists of four stages, i.e. filtering, R-peak detection, feature extraction and classification stages. In this study, Wavelet based approach is used to filter the raw ECG signal, whereas Pan-Tompkins algorithm is used for detecting the R-peak inside the ECG signal. In the feature extraction stage, discrete orthogonal Stockwell transform (DOST) approach is presented for an efficient time-frequency representation (i.e. morphological descriptors) of a time domain signal and retains the absolute phase information to distinguish the various non-stationary behavior ECG signals. Moreover, these morphological descriptors are further reduced in lower dimensional space by using principal component analysis and combined with the dynamic features (i.e based on RR-interval of the ECG signals) of the input signal. This combination of two different kinds of descriptors represents each feature set of an input signal that is utilized for classification into subsequent categories by employing PSO tuned support vector machines (SVM). The proposed methodology is validated on the baseline MIT-BIH arrhythmia database and evaluated under two assessment schemes, yielding an improved overall accuracy of 99.18% for sixteen classes in the category-based and 89.10% for five classes (mapped according to AAMI standard) in the patient-based assessment scheme respectively to the state-of-art diagnosis. The results reported are further compared to the existing methodologies in literature. The proposed feature representation of cardiac signals based on symmetrical features along with PSO based optimization technique for the SVM classifier reported an improved classification accuracy in both the assessment schemes evaluated on the benchmark MIT-BIH arrhythmia database and hence can be utilized for automated computer-aided diagnosis of cardiac arrhythmia beats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Application of Cross-Correlation Greens Function Along With FDTD for Fast Computation of Envelope Correlation Coefficient Over Wideband for MIMO Antennas

    NASA Astrophysics Data System (ADS)

    Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-02-01

    In this paper, the concept of cross-correlation Green's functions (CGF) is used in conjunction with the finite difference time domain (FDTD) technique for calculation of envelope correlation coefficient (ECC) of any arbitrary MIMO antenna system over wide frequency band. Both frequency-domain (FD) and time-domain (TD) post-processing techniques are proposed for possible application with this FDTD-CGF scheme. The FDTD-CGF time-domain (FDTD-CGF-TD) scheme utilizes time-domain signal processing methods and exhibits significant reduction in ECC computation time as compared to the FDTD-CGF frequency domain (FDTD-CGF-FD) scheme, for high frequency-resolution requirements. The proposed FDTD-CGF based schemes can be applied for accurate and fast prediction of wideband ECC response, instead of the conventional scattering parameter based techniques which have several limitations. Numerical examples of the proposed FDTD-CGF techniques are provided for two-element MIMO systems involving thin-wire half-wavelength dipoles in parallel side-by-side as well as orthogonal arrangements. The results obtained from the FDTD-CGF techniques are compared with results from commercial electromagnetic solver Ansys HFSS, to verify the validity of proposed approach.

  2. Breaking chaotic secure communication using a spectrogram

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Yang, Lin-Bao; Yang, Chun-Mei

    1998-10-01

    We present the results of breaking a kind of chaotic secure communication system called chaotic switching scheme, also known as chaotic shift keying, in which a binary message signal is scrambled by two chaotic attractors. The spectrogram which can reveal the energy evolving process in the spectral-temporal space is used to distinguish the two different chaotic attractors, which are qualitatively and statistically similar in phase space. Then mathematical morphological filters are used to decode the binary message signal without the knowledge of the binary message signal and the transmitter. The computer experimental results are provided to show how our method works when both the chaotic and hyper-chaotic transmitter are used.

  3. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  4. Shape memory alloy wire for self-sensing servo actuation

    NASA Astrophysics Data System (ADS)

    Josephine Selvarani Ruth, D.; Dhanalakshmi, K.

    2017-01-01

    This paper reports on the development of a straightforward approach to realise self-sensing shape memory alloy (SMA) wire actuated control. A differential electrical resistance measurement circuit (the sensorless signal conditioning (SSC) circuit) is designed; this sensing signal is directly used as the feedback for control. Antagonistic SMA wire actuators designed for servo actuation is realized in self-sensing actuation (SSA) mode for direct control with the differential electrical resistance feedback. The self-sensing scheme is established on a 1-DOF manipulator with the discrete time sliding mode controls which demonstrates good control performance, whatever be the disturbance and loading conditions. The uniqueness of this work is the design of the generic electronic SSC circuit for SMA actuated system, for measurement and control. With a concern to the implementation of self-sensing technique in SMA, this scheme retains the systematic control architecture by using the sensing signal (self-sensed, electrical resistance corresponding to the system position) for feedback, without requiring any processing as that of the methods adopted and reported previously for SSA techniques of SMA.

  5. Adaptive adjustment of reference constellation for demodulating 16QAM signal with intrinsic distortion due to imperfect modulation.

    PubMed

    Inoue, Takashi; Namiki, Shu

    2013-12-02

    We find that an adaptive equalizer and a phase-locked loop operating with decision-directed mode exhibit degraded performances when they are used in a digital coherent receiver to demodulate a 16QAM signal with intrinsically distorted constellation, and that the degradation is more significant for the dual-polarization case. We then propose a scheme to correctly demodulate such a distorted 16QAM signal, where the reference constellation and the threshold for the decision are adaptively adjusted such that they fit to the distorted ones. We experimentally confirm the improved performance of the proposed scheme over the conventional one for single-and dual-polarization 16QAM signals with distortion. We also investigate the applicable range of the proposed scheme for the degree of distortion of the signal.

  6. Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario.

    PubMed

    Neher, Tobias; Wagener, Kirsten C; Latzel, Matthias

    2017-09-01

    Hearing aid (HA) users can differ markedly in their benefit from directional processing (or beamforming) algorithms. The current study therefore investigated candidacy for different bilateral directional processing schemes. Groups of elderly listeners with symmetric (N = 20) or asymmetric (N = 19) hearing thresholds for frequencies below 2 kHz, a large spread in the binaural intelligibility level difference (BILD), and no difference in age, overall degree of hearing loss, or performance on a measure of selective attention took part. Aided speech reception was measured using virtual acoustics together with a simulation of a linked pair of completely occluding behind-the-ear HAs. Five processing schemes and three acoustic scenarios were used. The processing schemes differed in the tradeoff between signal-to-noise ratio (SNR) improvement and binaural cue preservation. The acoustic scenarios consisted of a frontal target talker presented against two speech maskers from ±60° azimuth or spatially diffuse cafeteria noise. For both groups, a significant interaction between BILD, processing scheme, and acoustic scenario was found. This interaction implied that, in situations with lateral speech maskers, HA users with BILDs larger than about 2 dB profited more from preserved low-frequency binaural cues than from greater SNR improvement, whereas for smaller BILDs the opposite was true. Audiometric asymmetry reduced the influence of binaural hearing. In spatially diffuse noise, the maximal SNR improvement was generally beneficial. N 0 S π detection performance at 500 Hz predicted the benefit from low-frequency binaural cues. Together, these findings provide a basis for adapting bilateral directional processing to individual and situational influences. Further research is needed to investigate their generalizability to more realistic HA conditions (e.g., with low-frequency vent-transmitted sound). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Investigation of coherent receiver designs in high-speed optical inter-satellite links using digital signal processing

    NASA Astrophysics Data System (ADS)

    Schaefer, S.; Gregory, M.; Rosenkranz, W.

    2017-09-01

    Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.

  8. Rapid Communication: Quasi-gedanken experiment challenging the no-signalling theorem

    NASA Astrophysics Data System (ADS)

    Kalamidas, Demetrios A.

    2018-01-01

    Kennedy ( Philos. Sci. 62, 4 (1995)) has argued that the various quantum mechanical no-signalling proofs formulated thus far share a common mathematical framework, are circular in nature, and do not preclude the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis, we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.

  9. An adaptive morphological gradient lifting wavelet for detecting bearing defects

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Pei-lin; Mi, Shuang-shan; Hu, Ren-xi; Liu, Dong-sheng

    2012-05-01

    This paper presents a novel wavelet decomposition scheme, named adaptive morphological gradient lifting wavelet (AMGLW), for detecting bearing defects. The adaptability of the AMGLW consists in that the scheme can select between two filters, mean the average filter and morphological gradient filter, to update the approximation signal based on the local gradient of the analyzed signal. Both a simulated signal and vibration signals acquired from bearing are employed to evaluate and compare the proposed AMGLW scheme with the traditional linear wavelet transform (LWT) and another adaptive lifting wavelet (ALW) developed in literature. Experimental results reveal that the AMGLW outperforms the LW and ALW obviously for detecting bearing defects. The impulsive components can be enhanced and the noise can be depressed simultaneously by the presented AMGLW scheme. Thus the fault characteristic frequencies of bearing can be clearly identified. Furthermore, the AMGLW gets an advantage over LW in computation efficiency. It is quite suitable for online condition monitoring of bearings and other rotating machineries.

  10. One-third selection scheme for addressing a ferroelectric matrix arrangement

    NASA Technical Reports Server (NTRS)

    Tannas, Jr., Lawrence E. (Inventor)

    1979-01-01

    An improved scheme for selectively addressing a matrix arrangement comprised of ferroelectrics having x and y orthogonally disposed intersecting lines. A one-third selection scheme is utilized that includes normalized selection signals having amplitudes: V.sub.x =0; V.sub.x =2/3; V.sub.y =1/3; and V.sub.y =1, which signals can be applied to the intersection of an x and y-line. The instant selection scheme minimizes both hysteresis creep and the cross-coupling voltage between x and y-lines to prevent undesirable hysteresis switching of the ferroelectric matrix arrangement.

  11. Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.

    PubMed

    Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios

    2012-03-01

    This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.

  12. Research on Knowledge-Based Optimization Method of Indoor Location Based on Low Energy Bluetooth

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, G.; Deng, Y.; Wang, T.; Kang, Z.

    2017-09-01

    With the rapid development of LBS (Location-based Service), the demand for commercialization of indoor location has been increasing, but its technology is not perfect. Currently, the accuracy of indoor location, the complexity of the algorithm, and the cost of positioning are hard to be simultaneously considered and it is still restricting the determination and application of mainstream positioning technology. Therefore, this paper proposes a method of knowledge-based optimization of indoor location based on low energy Bluetooth. The main steps include: 1) The establishment and application of a priori and posterior knowledge base. 2) Primary selection of signal source. 3) Elimination of positioning gross error. 4) Accumulation of positioning knowledge. The experimental results show that the proposed algorithm can eliminate the signal source of outliers and improve the accuracy of single point positioning in the simulation data. The proposed scheme is a dynamic knowledge accumulation rather than a single positioning process. The scheme adopts cheap equipment and provides a new idea for the theory and method of indoor positioning. Moreover, the performance of the high accuracy positioning results in the simulation data shows that the scheme has a certain application value in the commercial promotion.

  13. Hierarchical scheme for detecting the rotating MIMO transmission of the in-door RGB-LED visible light wireless communications using mobile-phone camera

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Hao; Chow, Chi-Wai

    2015-01-01

    Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) based visible light communication (VLC) systems. The MIMO VLC system that uses the mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from the n×n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding this signal is to detect the signal direction. If the LED transmitter (Tx) is rotated, the Rx may not realize the rotation and transmission error can occur. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n×n RGB LED array as the MIMO Tx. In our study, a novel two dimensional Hadamard coding scheme is proposed. Using the different LED color layers to indicate the rotation, a low complexity rotation detection method can be used for improving the quality of received signal. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

  14. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.

    PubMed

    Park, Seonhwa; Singh, Amardeep; Kim, Sinyoung; Yang, Haesik

    2014-02-04

    We compare herein biosensing performance of two electroreduction-based electrochemical-enzymatic (EN) redox-cycling schemes [the redox cycling combined with simultaneous enzymatic amplification (one-enzyme scheme) and the redox cycling combined with preceding enzymatic amplification (two-enzyme scheme)]. To minimize unwanted side reactions in the two-enzyme scheme, β-galactosidase (Gal) and tyrosinase (Tyr) are selected as an enzyme label and a redox enzyme, respectively, and Tyr is selected as a redox enzyme label in the one-enzyme scheme. The signal amplification in the one-enzyme scheme consists of (i) enzymatic oxidation of catechol into o-benzoquinone by Tyr and (ii) electroreduction-based EN redox cycling of o-benzoquinone. The signal amplification in the two-enzyme scheme consists of (i) enzymatic conversion of phenyl β-d-galactopyranoside into phenol by Gal, (ii) enzymatic oxidation of phenol into catechol by Tyr, and (iii) electroreduction-based EN redox cycling of o-benzoquinone including further enzymatic oxidation of catechol to o-benzoquinone by Tyr. Graphene oxide-modified indium-tin oxide (GO/ITO) electrodes, simply prepared by immersing ITO electrodes in a GO-dispersed aqueous solution, are used to obtain better electrocatalytic activities toward o-benzoquinone reduction than bare ITO electrodes. The detection limits for mouse IgG, measured with GO/ITO electrodes, are lower than when measured with bare ITO electrodes. Importantly, the detection of mouse IgG using the two-enzyme scheme allows lower detection limits than that using the one-enzyme scheme, because the former gives higher signal levels at low target concentrations although the former gives lower signal levels at high concentrations. The detection limit for cancer antigen (CA) 15-3, a biomarker of breast cancer, measured using the two-enzyme scheme and GO/ITO electrodes is ca. 0.1 U/mL, indicating that the immunosensor is highly sensitive.

  15. Signal Classification in Fading Channels Using Cyclic Spectral Analysis

    DTIC Science & Technology

    2009-07-01

    Classifier Design The proposed classifier is designed to classify AM, BFSK, OFDM, DS - CDMA , 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK, 16-PSK, 16-QAM, and 64-QAM...five independent neural networks, each trained to classify a signal as either AM, BFSK, DS - CDMA , or a linear modulation scheme with a real-valued...in an SOF image that resembles those of QAM and PSK signals. Additionally, the DS - CDMA scheme can be thought to look like a BPSK signal. However, due

  16. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  17. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei

    2017-04-01

    Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

  18. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  19. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  20. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images.

    PubMed

    Xu, X W; Doi, K; Kobayashi, T; MacMahon, H; Giger, M L

    1997-09-01

    Lung cancer is the leading cause of cancer deaths in men and women in the United States, with a 5-year survival rate of only about 13%. However, this survival rate can be improved to 47% if the disease is diagnosed and treated at an early stage. In this study, we developed an improved computer-aided diagnosis (CAD) scheme for the automated detection of lung nodules in digital chest images to assist radiologists, who could miss up to 30% of the actually positive cases in their daily practice. Two hundred PA chest radiographs, 100 normals and 100 abnormals, were used as the database for our study. The presence of nodules in the 100 abnormal cases was confirmed by two experienced radiologists on the basis of CT scans or radiographic follow-up. In our CAD scheme, nodule candidates were selected initially by multiple gray-level thresholding of the difference image (which corresponds to the subtraction of a signal-enhanced image and a signal-suppressed image) and then classified into six groups. A large number of false positives were eliminated by adaptive rule-based tests and an artificial neural network (ANN). The CAD scheme achieved, on average, a sensitivity of 70% with 1.7 false positives per chest image, a performance which was substantially better as compared with other studies. The CPU time for the processing of one chest image was about 20 seconds on an IBM RISC/6000 Powerstation 590. We believe that the CAD scheme with the current performance is ready for initial clinical evaluation.

  1. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  2. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  3. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less

  4. A soft computing scheme incorporating ANN and MOV energy in fault detection, classification and distance estimation of EHV transmission line with FSC.

    PubMed

    Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab

    2016-01-01

    In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.

  5. Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with M-phase-shift keying

    NASA Astrophysics Data System (ADS)

    Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner

    2016-11-01

    We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.

  6. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

    NASA Astrophysics Data System (ADS)

    Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry

    2009-03-01

    In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.

  7. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  8. Decoy-state quantum key distribution with biased basis choice.

    PubMed

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.

  9. Equivalent ZF precoding scheme for downlink indoor MU-MIMO VLC systems

    NASA Astrophysics Data System (ADS)

    Fan, YangYu; Zhao, Qiong; Kang, BoChao; Deng, LiJun

    2018-01-01

    In indoor visible light communication (VLC) systems, the channels of photo detectors (PDs) at one user are highly correlated, which determines the choice of spatial diversity model for individual users. In a spatial diversity model, the signals received by PDs belonging to one user carry the same information, and can be combined directly. Based on the above, we propose an equivalent zero-forcing (ZF) precoding scheme for multiple-user multiple-input single-output (MU-MIMO) VLC systems by transforming an indoor MU-MIMO VLC system into an indoor multiple-user multiple-input single-output (MU-MISO) VLC system through simply processing. The power constraints of light emitting diodes (LEDs) are also taken into account. Comprehensive computer simulations in three scenarios indicate that our scheme can not only reduce the computational complexity, but also guarantee the system performance. Furthermore, the proposed scheme does not require noise information in the calculating of the precoding weights, and has no restrictions on the numbers of APs and PDs.

  10. Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing

    2017-05-01

    Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.

  11. A soft-hard combination-based cooperative spectrum sensing scheme for cognitive radio networks.

    PubMed

    Do, Nhu Tri; An, Beongku

    2015-02-13

    In this paper we propose a soft-hard combination scheme, called SHC scheme, for cooperative spectrum sensing in cognitive radio networks. The SHC scheme deploys a cluster based network in which Likelihood Ratio Test (LRT)-based soft combination is applied at each cluster, and weighted decision fusion rule-based hard combination is utilized at the fusion center. The novelties of the SHC scheme are as follows: the structure of the SHC scheme reduces the complexity of cooperative detection which is an inherent limitation of soft combination schemes. By using the LRT, we can detect primary signals in a low signal-to-noise ratio regime (around an average of -15 dB). In addition, the computational complexity of the LRT is reduced since we derive the closed-form expression of the probability density function of LRT value. The SHC scheme also takes into account the different effects of large scale fading on different users in the wide area network. The simulation results show that the SHC scheme not only provides the better sensing performance compared to the conventional hard combination schemes, but also reduces sensing overhead in terms of reporting time compared to the conventional soft combination scheme using the LRT.

  12. Vapor sensing using polymer/carbon black composites in the percolative conduction regime.

    PubMed

    Sisk, Brian C; Lewis, Nathan S

    2006-08-29

    To investigate the behavior of chemiresistive vapor sensors operating below or around the percolation threshold, chemiresistors have been formed from composites of insulating organic polymers and low mass fractions of conductive carbon black (CB, 1-12% w/w). Such sensors produced extremely large relative differential resistance changes above certain threshold vapor concentrations. At high analyte partial pressures, these sensors exhibited better signal/noise characteristics and were typically less mutually correlated in their vapor response properties than composites formed using higher mass fractions of CB in the same set of polymer sorption layers. The responses of the low-mass-fraction CB sensors were, however, less repeatable, and their nonlinear response as a function of analyte concentration required more complicated calibration schemes to identify and quantify analyte vapors to compensate for drift of a sensor array and to compensate for variability in response between sensor arrays. Because of their much larger response signals, the low-mass-fraction CB sensors might be especially well suited for use with low-precision analog-to-digital signal readout electronics. These sensors serve well as a complement to composites formed from higher mass fractions of CB and have yielded insight into the tradeoffs of signal-to-noise improvements vs complexity of signal processing algorithms necessitated by the use of nonlinearly responding detectors in array-based sensing schemes.

  13. Exploring Sampling in the Detection of Multicategory EEG Signals

    PubMed Central

    Siuly, Siuly; Kabir, Enamul; Wang, Hua; Zhang, Yanchun

    2015-01-01

    The paper presents a structure based on samplings and machine leaning techniques for the detection of multicategory EEG signals where random sampling (RS) and optimal allocation sampling (OS) are explored. In the proposed framework, before using the RS and OS scheme, the entire EEG signals of each class are partitioned into several groups based on a particular time period. The RS and OS schemes are used in order to have representative observations from each group of each category of EEG data. Then all of the selected samples by the RS from the groups of each category are combined in a one set named RS set. In the similar way, for the OS scheme, an OS set is obtained. Then eleven statistical features are extracted from the RS and OS set, separately. Finally this study employs three well-known classifiers: k-nearest neighbor (k-NN), multinomial logistic regression with a ridge estimator (MLR), and support vector machine (SVM) to evaluate the performance for the RS and OS feature set. The experimental outcomes demonstrate that the RS scheme well represents the EEG signals and the k-NN with the RS is the optimum choice for detection of multicategory EEG signals. PMID:25977705

  14. Secure communication in fiber optic systems via transmission of broad-band optical noise.

    PubMed

    Buskila, O; Eyal, A; Shtaif, M

    2008-03-03

    We propose a new scheme for data encryption in the physical layer. Our scheme is based on the distribution of a broadband optical noise-like signal between Alice and Bob. The broadband signal is used for the establishment of a secret key that can be used for the secure transmission of information by using the one-time-pad method. We characterize the proposed scheme and study its applicability to the existing fiber-optics communications infrastructure.

  15. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  16. Random numbers from vacuum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  17. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  18. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.

    PubMed

    Bai, Jurong; Li, Yong; Yi, Yang; Cheng, Wei; Du, Huimin

    2017-10-02

    High peak-to-average power ratio (PAPR) leads to out-of-band power and in-band distortion in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. In order to effectively reduce the PAPR with faster convergence and lower complexity, this paper proposes a tone reservation based scheme, which is the combination of the signal-to-clipping noise ratio (SCR) procedure and the least squares approximation (LSA) procedure. In the proposed scheme, the transmitter of the DCO-OFDM indoor visible light communication (VLC) system is designed to transform the PAPR reduced signal into real-valued positive OFDM signal without doubling the transmission bandwidth. Moreover, the communication distance and the light emitting diode (LED) irradiance angle are taking into consideration in the evaluation of the system bit error rate (BER). The PAPR reduction efficiency of the proposed scheme is remarkable for DCO-OFDM indoor VLC systems.

  19. Secure Image Transmission over DFT-precoded OFDM-VLC systems based on Chebyshev Chaos scrambling

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Qiu, Weiwei

    2017-08-01

    This paper proposes a physical layer image secure transmission scheme for discrete Fourier transform (DFT) precoded OFDM-based visible light communication systems by using Chebyshev chaos maps. In the proposed scheme, 256 subcarriers and QPSK modulation are employed. The transmitted digital signal of the image is encrypted with a Chebyshev chaos sequence. The encrypted signal is then transformed by a DFT precoding matrix to reduce the PAPR of the OFDM signal. After that, the encrypted and DFT-precoded OFDM are transmitted over a VLC channel. The simulation results show that the proposed image security transmission scheme can not only protect the DFT-precoded OFDM-based VLC from eavesdroppers but also improve BER performance.

  20. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    NASA Astrophysics Data System (ADS)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  1. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. High-Level Prediction Signals in a Low-Level Area of the Macaque Face-Processing Hierarchy.

    PubMed

    Schwiedrzik, Caspar M; Freiwald, Winrich A

    2017-09-27

    Theories like predictive coding propose that lower-order brain areas compare their inputs to predictions derived from higher-order representations and signal their deviation as a prediction error. Here, we investigate whether the macaque face-processing system, a three-level hierarchy in the ventral stream, employs such a coding strategy. We show that after statistical learning of specific face sequences, the lower-level face area ML computes the deviation of actual from predicted stimuli. But these signals do not reflect the tuning characteristic of ML. Rather, they exhibit identity specificity and view invariance, the tuning properties of higher-level face areas AL and AM. Thus, learning appears to endow lower-level areas with the capability to test predictions at a higher level of abstraction than what is afforded by the feedforward sweep. These results provide evidence for computational architectures like predictive coding and suggest a new quality of functional organization of information-processing hierarchies beyond pure feedforward schemes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  4. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  5. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  6. New KF-PP-SVM classification method for EEG in brain-computer interfaces.

    PubMed

    Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian

    2014-01-01

    Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.

  7. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.

    PubMed

    Lindén, Henrik; Hagen, Espen; Lęski, Szymon; Norheim, Eivind S; Pettersen, Klas H; Einevoll, Gaute T

    2013-01-01

    Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (≳500 Hz), i.e., the multi-unit activity (MUA), contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP), contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals. Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models. Further, calculation of extracellular potentials using the line-source-method is efficiently implemented. We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials.

  8. Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation.

    DTIC Science & Technology

    1986-03-01

    the proposed approaches 16, 16, 40 . 451. The conclusion most often reached is that the best scheme to use in a particular design depends highly upon...76. 40 . Siegel, H. J., McMillen. R. J., and Mueller. P. T.. Jr. A survey of interconnection methods for reconligurable parallel processing systems...addressing meehaanm distributed in the network area rimonication% tit reach gigabit./second speeds je g.. PoCoS83 .’ i.V--i the lirO! lk i nitronment is

  9. Smart Microsystems with Photonic Element and Their Applications to Aerospace Platforms

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Lekki, J.; Sutter, J. K.; Sarkisov, S. S.; Curley, M. J.; Martin, C. E.

    2000-01-01

    The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth, and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, and processing of the signal occurs at the peripherals that include smart structures and devices. Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the Glenn Research Center (GRC).

  10. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers.

    PubMed

    Zhou, Xian; Chen, Xue

    2011-05-09

    The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America

  11. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  12. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  13. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  14. A simplified filterless photonic frequency octupling scheme based on cascaded modulators

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Zheng, Hanxiao; Chen, Wei; He, Hongye

    2017-04-01

    A simplified filterless frequency octupling scheme by connecting an intensity modulator (IM) with a dual-parallel Mach-Zehnder (DPMZM) in series is proposed in this paper. The LO signal is distributed into two parts, and one part is used to drive the IM and the other part is applied to drive the DPMZM's upper sub-modulator, both at the peak point. The lower sub-modulator is only driven by dc bias, and the parent modulator works at null point. By properly adjusting dc bias of the lower sub-modulator, only ±4th-order optical sidebands dominate at the output of the DPMZM. The approach is verified by experiments, and 32-GHz and 40-GHz millimetre waves (mm-waves) are generated using 4-GHz and 5-GHz LO signals, respectively. We acquire a 15-dB electrical spurious suppression ratio (ESSR) and a relatively good phase noise of the signal. Compared with other schemes, the scheme is simple in configuration because only an IM and a DPMZM are needed. What's more, the scheme is tunable in frequency as no filter is used.

  15. Evaluating the effects of the Pacific Decadal Oscillation on winter precipitation in The Cascades using a mixed-physics WRF ensemble

    NASA Astrophysics Data System (ADS)

    Buxton, Carly S.

    In most of Washington and Oregon, USA, mountain snowpack stores water which will be available through spring and early summer, when water demand in the region is at its highest. Therefore, understanding the numerous factors that influence winter precipitation variability is a key component in water resource planning. This project examines the effects of the Pacific Decadal Oscillation (PDO) on winter precipitation in the Pacific Northwest U.S. using the WRF-ARW regional climate model. A significant component of this work was evaluating the many options that WRF-ARW provides for representing sub-grid scale cloud microphysical processes. Because the "best" choice of microphysics parameterization can vary depending on the application, this project also seeks to determine which option leads to the most accurate simulation of winter precipitation (when compared to observations) in the complex terrain of the Pacific Northwest. A series of test runs were performed with eight different combinations of physics parameterizations, and the results of these test runs were used to narrow the number of physics options down to three for the final runs. Mean total precipitation and coefficient of variation of the final model runs were compared against observational data. As RCMs tend to do, WRF over-predicts mean total precipitation compared to observations, but the double-moment microphysics schemes, Thompson and Morrison, over-predict to a lesser extent than the single-moment scheme. Two WRF microphysics schemes, Thompson and Lin, were more likely to have a coefficient of variation within the range of observations. Overall, the Thompson scheme produced the most accurate simulation as compared to observations. To focus on the effects of the PDO, WRF simulations were performed for two ten-member ensembles, one for positive PDO Decembers, and one for negative PDO Decembers. WRF output of total precipitation was compared to both station and gridded observational data. During positive PDO conditions, there is a strong latitudinal signal at low elevations, while during negative PDO conditions, there is a strong latitudinal signal at high elevations. This shift in where the PDO signal is most visible is due to changes in mid-level westerly winds and upper-level circulation and temperature advection. Under positive PDO conditions, wind direction and moisture transport are the most important factors, and frequent warm, moist southwesterly winds cause a PDO signal at low elevations. Under negative PDO conditions, differences in westerly wind speed, and therefore orographic precipitation enhancement, lead to a latitudinal PDO signal at high elevations. This PDO signal is robust, appearing in both the WRF simulations and observational data, and the differences due to PDO phase exceed the differences due to choice of microphysics scheme, WRF internal variability, and observational data uncertainty.

  16. A fast combination calibration of foreground and background for pipelined ADCs

    NASA Astrophysics Data System (ADS)

    Kexu, Sun; Lenian, He

    2012-06-01

    This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters (ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters (MDACs). The considered calibration technique takes the advantages of both foreground and background calibration schemes. In this combination calibration algorithm, a novel parallel background calibration with signal-shifted correlation is proposed, and its calibration cycle is very short. The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC. The high convergence speed of this background calibration is achieved by three means. First, a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code. Second, before correlating the signal, it is shifted according to the input signal so that the correlation error converges quickly. Finally, the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants. Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2 × 221 conversions.

  17. Wavelet Representation of the Corneal Pulse for Detecting Ocular Dicrotism

    PubMed Central

    Melcer, Tomasz; Danielewska, Monika E.; Iskander, D. Robert

    2015-01-01

    Purpose To develop a reliable and powerful method for detecting the ocular dicrotism from non-invasively acquired signals of corneal pulse without the knowledge of the underlying cardiopulmonary information present in signals of ocular blood pulse and the electrical heart activity. Methods Retrospective data from a study on glaucomatous and age-related changes in corneal pulsation [PLOS ONE 9(7),(2014):e102814] involving 261 subjects was used. Continuous wavelet representation of the signal derivative of the corneal pulse was considered with a complex Gaussian derivative function chosen as mother wavelet. Gray-level Co-occurrence Matrix has been applied to the image (heat-maps) of CWT to yield a set of parameters that can be used to devise the ocular dicrotic pulse detection schemes based on the Conditional Inference Tree and the Random Forest models. The detection scheme was first tested on synthetic signals resembling those of a dicrotic and a non-dicrotic ocular pulse before being used on all 261 real recordings. Results A detection scheme based on a single feature of the Continuous Wavelet Transform of the corneal pulse signal resulted in a low detection rate. Conglomeration of a set of features based on measures of texture (homogeneity, correlation, energy, and contrast) resulted in a high detection rate reaching 93%. Conclusion It is possible to reliably detect a dicrotic ocular pulse from the signals of corneal pulsation without the need of acquiring additional signals related to heart activity, which was the previous state-of-the-art. The proposed scheme can be applied to other non-stationary biomedical signals related to ocular dynamics. PMID:25906236

  18. Signalling and obfuscation for congestion control

    NASA Astrophysics Data System (ADS)

    Mareček, Jakub; Shorten, Robert; Yu, Jia Yuan

    2015-10-01

    We aim to reduce the social cost of congestion in many smart city applications. In our model of congestion, agents interact over limited resources after receiving signals from a central agent that observes the state of congestion in real time. Under natural models of agent populations, we develop new signalling schemes and show that by introducing a non-trivial amount of uncertainty in the signals, we reduce the social cost of congestion, i.e., improve social welfare. The signalling schemes are efficient in terms of both communication and computation, and are consistent with past observations of the congestion. Moreover, the resulting population dynamics converge under reasonable assumptions.

  19. Mutual information against correlations in binary communication channels.

    PubMed

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  20. Time reversal of optically carried radiofrequency signals in the microsecond range.

    PubMed

    Linget, H; Morvan, L; Le Gouët, J-L; Louchet-Chauvet, A

    2013-03-01

    The time-reversal (TR) protocol we implement in an erbium-doped YSO crystal is based on photon echoes but avoids the storage of the signal to be processed. Unlike other approaches implying digitizing or highly dispersive optical fibers, the proposed scheme reaches the μs range and potentially offers high bandwidth, both required for RADAR applications. In this Letter, we demonstrate faithful reversal of arbitrary pulse sequences with 6 μs duration and 10 MHz bandwidth. To the best of our knowledge, this is the first demonstration of TR via linear filtering in a programmable material.

  1. Production of high-fidelity electropherograms results in improved and consistent DNA interpretation: Standardizing the forensic validation process.

    PubMed

    Peters, Kelsey C; Swaminathan, Harish; Sheehan, Jennifer; Duffy, Ken R; Lun, Desmond S; Grgicak, Catherine M

    2017-11-01

    Samples containing low-copy numbers of DNA are routinely encountered in casework. The signal acquired from these sample types can be difficult to interpret as they do not always contain all of the genotypic information from each contributor, where the loss of genetic information is associated with sampling and detection effects. The present work focuses on developing a validation scheme to aid in mitigating the effects of the latter. We establish a scheme designed to simultaneously improve signal resolution and detection rates without costly large-scale experimental validation studies by applying a combined simulation and experimental based approach. Specifically, we parameterize an in silico DNA pipeline with experimental data acquired from the laboratory and use this to evaluate multifarious scenarios in a cost-effective manner. Metrics such as signal 1copy -to-noise resolution, false positive and false negative signal detection rates are used to select tenable laboratory parameters that result in high-fidelity signal in the single-copy regime. We demonstrate that the metrics acquired from simulation are consistent with experimental data obtained from two capillary electrophoresis platforms and various injection parameters. Once good resolution is obtained, analytical thresholds can be determined using detection error tradeoff analysis, if necessary. Decreasing the limit of detection of the forensic process to one copy of DNA is a powerful mechanism by which to increase the information content on minor components of a mixture, which is particularly important for probabilistic system inference. If the forensic pipeline is engineered such that high-fidelity electropherogram signal is obtained, then the likelihood ratio (LR) of a true contributor increases and the probability that the LR of a randomly chosen person is greater than one decreases. This is, potentially, the first step towards standardization of the analytical pipeline across operational laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A new chaotic communication scheme based on adaptive synchronization.

    PubMed

    Xiang-Jun, Wu

    2006-12-01

    A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.

  3. Optical flip-flops in a polarization-encoded optical shadow-casting scheme.

    PubMed

    Rizvi, R A; Zubairy, M S

    1994-06-10

    We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.

  4. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  5. Improvement on Gabor order tracking and objective comparison with Vold Kalman filtering order tracking

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Liao, Shiu-Wei; Chiu, Chun-Chin

    2007-02-01

    The waveform-reconstruction schemes of order tracking (OT) such as the Gabor and the Vold-Kalman filtering (VKF) techniques can extract specific order and/or spectral components in addition to characterizing the processed signal in rpm-frequency domain. The study first improves the Gabor OT (GOT) technique to handle the order-crossing problem, and then objectively compares the features of the improved GOT scheme and the angular-displacement VKF OT technique. It is numerically observed the improved method performs less accurately than the VKF_OT scheme at the crossing occurrences, but without end effect in the reconstructed waveform. As OT is not exact science, it may well be that the decrease in computation time can justify the reduced accuracy. The characterisation and discrimination of riding noise with crossing orders emitted by an electrical scooter are conducted as an example of the application.

  6. Optically pumped quantum magnetometer with combined advantages of M X and M Z devices

    NASA Astrophysics Data System (ADS)

    Vershovskii, A. K.; Dmitriev, S. P.; Pazgalev, A. S.

    2013-10-01

    A scheme of the magnetometer that simultaneously employs M X and M R magnetic resonance signals with the latter signal related to the radial component of the rotating atomic magnetic moment is proposed and tested. With respect to the shape, dynamic characteristics, and metrological parameters, the M R signal is similar to the M X signal that is widely used in magnetometry but the former signal can be detected simultaneously with the M X signal using a common radio optical scheme. The proposed device represents a fast M X magnetometer with the phase in the feedback loop that is controlled by a slow precise M R magnetometer implemented using the same atoms. The device that can be based on a conventional M X sensor simultaneously exhibits a relatively short response time (τ ≤ 0.1 s) and the accuracy that is approximately equal to the resolution of the quantum M X discriminator at times of 10-100 s. The scheme is experimentally tested, and the statistic estimate of reproducibility is (1.2 ± 1.1) pT.

  7. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  8. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

    PubMed Central

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873

  9. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    PubMed

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  10. Optical single sideband millimeter-wave signal generation and transmission using 120° hybrid coupler

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Peng, Miao; Zhou, Hui; Chen, Ming; Jiang, Leyong; Tan, Li; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-03-01

    We propose a novel 60 GHz optical single sideband (OSSB) millimeter-wave (mm-wave) signal generation scheme using 120° hybrid coupler based on external integrated Mach-Zehnder modulator (MZM). The proposed scheme shows that the bit error ratio (BER) performance is improved by suppressing the +2nd-order sideband. Meanwhile, the transmission distance is extended as only the optical +1st-order sideband is modulated by using 5 Gbit/s baseband signal while the carrier is blank, owing to the elimination of walk-off effect suffered from fiber dispersion. The simulation results demonstrated that the eye diagrams of the generated 60 GHz OSSB signal keep open and clear after 100 km standard single-mode fiber (SSMF). In addition, the proposed scheme can achieve 2 dB receiver sensitivity improvements than the conventional 90° hybrid coupler when transmitted over 100 km SSMF at a BER of 10-9.

  11. Radioastronomic signal processing cores for the SKA radio telescope

    NASA Astrophysics Data System (ADS)

    Comorett, G.; Chiarucc, S.; Belli, C.

    Modern radio telescopes require the processing of wideband signals, with sample rates from tens of MHz to tens of GHz, and are composed from hundreds up to a million of individual antennas. Digital signal processing of these signals include digital receivers (the digital equivalent of the heterodyne receiver), beamformers, channelizers, spectrometers. FPGAs present the advantage of providing a relatively low power consumption, relative to GPUs or dedicated computers, a wide signal data path, and high interconnectivity. Efficient algorithms have been developed for these applications. Here we will review some of the signal processing cores developed for the SKA telescope. The LFAA beamformer/channelizer architecture is based on an oversampling channelizer, where the channelizer output sampling rate and channel spacing can be set independently. This is useful where an overlap between adjacent channels is required to provide an uniform spectral coverage. The architecture allows for an efficient and distributed channelization scheme, with a final resolution corresponding to a million of spectral channels, minimum leakage and high out-of-band rejection. An optimized filter design procedure is used to provide an equiripple response with a very large number of spectral channels. A wideband digital receiver has been designed in order to select the processed bandwidth of the SKA Mid receiver. The receiver extracts a 2.5 MHz bandwidth form a 14 GHz input bandwidth. The design allows for non-integer ratios between the input and output sampling rates, with a resource usage comparable to that of a conventional decimating digital receiver. Finally, some considerations on quantization of radioastronomic signals are presented. Due to the stochastic nature of the signal, quantization using few data bits is possible. Good accuracies and dynamic range are possible even with 2-3 bits, but the nonlinearity in the correlation process must be corrected in post-processing. With at least 6 bits it is possible to have a very linear response of the instrument, with nonlinear terms below 80 dB, providing the signal amplitude is kept within bounds.

  12. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  13. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    PubMed

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  14. Behavioral patterns of environmental performance evaluation programs.

    PubMed

    Li, Wanxin; Mauerhofer, Volker

    2016-11-01

    During the past decades numerous environmental performance evaluation programs have been developed and implemented on different geographic scales. This paper develops a taxonomy of environmental management behavioral patterns in order to provide a practical comparison tool for environmental performance evaluation programs. Ten such programs purposively selected are mapped against the identified four behavioral patterns in the form of diagnosis, negotiation, learning, and socialization and learning. Overall, we found that schemes which serve to diagnose environmental abnormalities are mainly externally imposed and have been developed as a result of technical debates concerning data sources, methodology and ranking criteria. Learning oriented scheme is featured by processes through which free exchange of ideas, mutual and adaptive learning can occur. Scheme developed by higher authority for influencing behaviors of lower levels of government has been adopted by the evaluated to signal their excellent environmental performance. The socializing and learning classified evaluation schemes have incorporated dialogue, participation, and capacity building in program design. In conclusion we consider the 'fitness for purpose' of the various schemes, the merits of our analytical model and the future possibilities of fostering capacity building in the realm of wicked environmental challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A new precoding scheme for spectral efficient optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah

    2018-07-01

    Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.

  16. Approaching Terahertz Range with 3-color Broadband Coherent Raman Micro Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo; Olson, Trevor; Amos, James

    The presentation reports the recent progress made on reliable signal recording and processing using 3-color broadband coherent Raman scattering (3C-BCRS). Signals are generated either from nanoparticle structures on surfaces or from bulk samples in transmission and in epi-detected mode. Spectra are recorded with a narrowband (at 532 nm) and a broadband radiation produced by a newly optimized optical parametric oscillator using the signal or idler beams. Vibrational and librational bands are measured over the 0.15-15 THz spectral range from solution and crystalline samples. Volumetric Brag-filter approach is introduced for recording 3C-BCRS spectra at the first time. The technical limitations and advantages of the narrowband filtering relative to the Notch-filter technic is clarified. The signal is proportional to the spectral autocorrelation of the broadband radiation therefore the present scheme gives a better signal-to-noise ratio relative to the traditional multiplex CRS methods. This makes the automation of non-model dependent signal processing more reliable to extract vibrational information which is very crucial in coherent Raman microscopy. Financial support from the Hal Marcus College of Science and Engineering is greatly appreciated.

  17. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    DTIC Science & Technology

    2012-12-01

    c) image, and unfolding arti- facts (d). (e), (f), (g). Susceptibility artifacts with geometric distortion before (e), (f) and after (g) correction...either using an electrostatic repul- sion scheme [45] or through various geometric polyhe- dral schemes [59]. 2.1.2.3. Signal-to-Noise (SNR) The...inhomogeneity (∆B), causes signal loss due to a shift of the maximal signal away from the theoretical echo time, leading to geometric distortion due to suscep

  18. OAM-labeled free-space optical flow routing.

    PubMed

    Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong

    2016-09-19

    Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network.

  19. Coordinated neuronal activity enhances corticocortical communication

    PubMed Central

    Zandvakili, Amin; Kohn, Adam

    2015-01-01

    Summary Relaying neural signals between cortical areas is central to cognition and sensory processing. The temporal coordination of activity in a source population has been suggested to determine corticocortical signaling efficacy, but others have argued that coordination is functionally irrelevant. We reasoned that if coordination significantly influenced signaling, spiking in downstream networks should be preceded by transiently elevated coordination in a source population. We developed a metric to quantify network coordination in brief epochs, and applied it to simultaneous recordings of neuronal populations in cortical areas V1 and V2 of the macaque monkey. Spiking in the input layers of V2 was preceded by brief epochs of elevated V1 coordination, but this was not the case in other layers of V2. Our results indicate that V1 coordination influences its signaling to direct downstream targets, but that coordinated V1 epochs do not propagate through multiple downstream networks as in some corticocortical signaling schemes. PMID:26291164

  20. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    PubMed

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  1. Synchronous acquisition of multi-channel signals by single-channel ADC based on square wave modulation

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling

    2017-08-01

    Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.

  2. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  3. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  4. Improved fuzzy PID controller design using predictive functional control structure.

    PubMed

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.

    PubMed

    Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel

    2015-01-26

    In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.

  6. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  7. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  8. A novel multireceiver communications system configuration based on optimal estimation theory

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1990-01-01

    A multireceiver configuration for the purpose of carrier arraying and/or signal arraying is presented. Such a problem arises for example, in the NASA Deep Space Network where the same data-modulated signal from a spacecraft is received by a number of geographically separated antennas and the data detection must be efficiently performed on the basis of the various received signals. The proposed configuration is arrived at by formulating the carrier and/or signal arraying problem as an optimal estimation problem. Two specific solutions are proposed. The first solution is to simultaneously and optimally estimate the various phase processes received at different receivers with coupled phase locked loops (PLLs) wherein the individual PLLs acquire and track their respective receivers' phase processes, but are aided by each other in an optimal manner. However, when the phase processes are relatively weakly correlated, and for the case of relatively high values of symbol energy-to-noise spectral density ratio, a novel configuration for combining the data modulated, loop-output signals is proposed. The scheme can be extended to the case of low symbol energy-to-noise case by performing the combining/detection process over a multisymbol period. Such a configuration results in the minimization of the effective radio loss at the combiner output, and thus a maximization of energy per bit to noise-power spectral density ration is achieved.

  9. Code-Time Diversity for Direct Sequence Spread Spectrum Systems

    PubMed Central

    Hassan, A. Y.

    2014-01-01

    Time diversity is achieved in direct sequence spread spectrum by receiving different faded delayed copies of the transmitted symbols from different uncorrelated channel paths when the transmission signal bandwidth is greater than the coherence bandwidth of the channel. In this paper, a new time diversity scheme is proposed for spread spectrum systems. It is called code-time diversity. In this new scheme, N spreading codes are used to transmit one data symbol over N successive symbols interval. The diversity order in the proposed scheme equals to the number of the used spreading codes N multiplied by the number of the uncorrelated paths of the channel L. The paper represents the transmitted signal model. Two demodulators structures will be proposed based on the received signal models from Rayleigh flat and frequency selective fading channels. Probability of error in the proposed diversity scheme is also calculated for the same two fading channels. Finally, simulation results are represented and compared with that of maximal ration combiner (MRC) and multiple-input and multiple-output (MIMO) systems. PMID:24982925

  10. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  11. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.

    2014-01-01

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847

  12. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide.

    PubMed

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A

    2014-11-24

    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.

  13. An ICA based MIMO-OFDM VLC scheme

    NASA Astrophysics Data System (ADS)

    Jiang, Fangqing; Deng, Honggui; Xiao, Wei; Tao, Shaohua; Zhu, Kaicheng

    2015-07-01

    In this paper, we propose a novel ICA based MIMO-OFDM VLC scheme, where ICA is applied to convert the MIMO-OFDM channel into several SISO-OFDM channels to reduce computational complexity in channel estimation, without any spectral overhead. Besides, the FM is first investigated to further modulate the OFDM symbols to eliminate the correlation of the signals, so as to improve the separation performance of the ICA algorithm. In the 4×4MIMO-OFDM VLC simulation experiment, LOS path and NLOS paths are both considered, each transmitting signal at 100 Mb/s. Simulation results show that the BER of the proposed scheme reaches the 10-5 level at SNR=20 dB, which is a large improvement compared to the traditional schemes.

  14. An adaptive actuator failure compensation scheme for two linked 2WD mobile robots

    NASA Astrophysics Data System (ADS)

    Ma, Yajie; Al-Dujaili, Ayad; Cocquempot, Vincent; El Badaoui El Najjar, Maan

    2017-01-01

    This paper develops a new adaptive compensation control scheme for two linked mobile robots with actuator failurs. A configuration with two linked two-wheel drive (2WD) mobile robots is proposed, and the modelling of its kinematics and dynamics are given. An adaptive failure compensation scheme is developed to compensate actuator failures, consisting of a kinematic controller and a multi-design integration based dynamic controller. The kinematic controller is a virtual one, and based on which, multiple adaptive dynamic control signals are designed which covers all possible failure cases. By combing these dynamic control signals, the dynamic controller is designed, which ensures system stability and asymptotic tracking properties. Simulation results verify the effectiveness of the proposed adaptive failure compensation scheme.

  15. Modified PTS-based PAPR Reduction for FBMC-OQAM Systems

    NASA Astrophysics Data System (ADS)

    Deng, Honggui; Ren, Shuang; Liu, Yan; Tang, Chengying

    2017-10-01

    The filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) has been raised great concern in the 5G communication research. However FBMC-OQAM has also the inherent drawback of high peak-to-average power ratio (PAPR) that should be addressed. Due to the overlapping structure of FBMC-OQAM signals, it is proven that directly employing conventional partial transmit sequence (PTS) scheme proposed for OFDM to FBMC-OQAM is ineffective. In this paper, we propose a modified PTS-based scheme by employing phase rotation factors to optimize only the phase of the sparse peak signals, called as sparse PTS (S-PTS) scheme. Theoretical analysis and simulation results show that the proposed S-PTS scheme provides a significant PAPR reduction performance with lower computational complexity.

  16. Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN.

    PubMed

    Ahlawat, Meenu; Bostani, Ameneh; Tehranchi, Amirhossein; Kashyap, Raman

    2013-11-18

    We experimentally demonstrate tunable dual channel broadcasting of a signal over the C-band for wavelength division multiplexed (WDM) optical networks. This is based on cascaded χ(2) nonlinear mixing processes in a specially engineered, 20-mm-long step-chirped periodically poled lithium niobate with a broad 28-nm second harmonic (SH) bandwidth in the 1.55-μm spectral range. A 10-GHz picosecond mode-locked laser was used as a signal along with a CW pump to generate two pulsed idlers, which are simultaneously tuned across the C-band by detuning of the pump wavelength within the broad SH bandwidth. Variable-input, variable-output scheme of tuned idlers is successfully achieved by tuning the signal wavelength. Pump or signal wavelength tuning of ~10 nm results in the idlers spreading across 30 nm in the C-band.

  17. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions

    PubMed Central

    Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.

    2016-01-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  18. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    PubMed

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  19. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho

    2018-01-28

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.

  20. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching

    PubMed Central

    2018-01-01

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100

  1. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    PubMed

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  2. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  3. Design of an anti-Rician-fading modem for mobile satellite communication systems

    NASA Technical Reports Server (NTRS)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  4. All-Optical Fibre Networks For Coal Mines

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1987-09-01

    A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.

  5. Viscoelastic property identification from waveform reconstruction

    NASA Astrophysics Data System (ADS)

    Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.

    2002-05-01

    An inverse method is proposed for the determination of the viscoelastic properties of material plates from the plane-wave transmitted acoustic field. Innovations lie in a two-step inversion scheme based on the well-known maximum-likelihood principle with an analytic signal formulation. In addition, establishing the analytical formulations of the plate transmission coefficient we implement an efficient and slightly noise-sensitive process suited to both very thin plates and strongly dispersive media.

  6. Detection and imaging of moving objects with SAR by a joint space-time-frequency processing

    NASA Astrophysics Data System (ADS)

    Barbarossa, Sergio; Farina, Alfonso

    This paper proposes a joint spacetime-frequency processing scheme for the detection and imaging of moving targets by Synthetic Aperture Radars (SAR). The method is based on the availability of an array antenna. The signals received by the array elements are combined, in a spacetime processor, to cancel the clutter. Then, they are analyzed in the time-frequency domain, by computing their Wigner-Ville Distribution (WVD), in order to estimate the instantaneous frequency, to be used for the successive phase compensation, necessary to produce a high resolution image.

  7. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  8. Capacity of a direct detection optical communication channel

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1980-01-01

    The capacity of a free space optical channel using a direct detection receiver is derived under both peak and average signal power constraints and without a signal bandwidth constraint. The addition of instantaneous noiseless feedback from the receiver to the transmitter does not increase the channel capacity. In the absence of received background noise, an optimally coded PPM system is shown to achieve capacity in the limit as signal bandwidth approaches infinity. In the case of large peak to average signal power ratios, an interleaved coding scheme with PPM modulation is shown to have a computational cutoff rate far greater than ordinary coding schemes.

  9. Method and system for providing precise multi-function modulation

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Inventor); Sumida, Joe T. (Inventor)

    1989-01-01

    A method and system is disclosed which provides precise multi-function digitally implementable modulation for a communication system. The invention provides a modulation signal for a communication system in response to an input signal from a data source. A digitized time response is generated from samples of a time domain representation of a spectrum profile of a selected modulation scheme. The invention generates and stores coefficients for each input symbol in accordance with the selected modulation scheme. The output signal is provided by a plurality of samples, each sample being generated by summing the products of a predetermined number of the coefficients and a predetermined number of the samples of the digitized time response. In a specific illustrative implementation, the samples of the output signals are converted to analog signals, filtered and used to modulate a carrier in a conventional manner. The invention is versatile in that it allows for the storage of the digitized time responses and corresponding coefficient lookup table of a number of modulation schemes, any of which may then be selected for use in accordance with the teachings of the invention.

  10. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of thiolated small...counterfeiting purposes. The nanosheets, like many SERS platforms, are ideally suited for encoding schemes based on the SERS signal from a variety of...environments ( like the surface of human hair). 2. Nanoflares In 2007, we first introduced the concept of nanoflares. Nanoflares are a new class of

  11. Efficient multichannel acoustic echo cancellation using constrained tap selection schemes in the subband domain

    NASA Astrophysics Data System (ADS)

    Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias

    2017-12-01

    Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.

  12. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.

    PubMed

    Chang, Ge; Lin, Lin; Yan, Hao

    2018-03-01

    Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.

  13. A channel differential EZW coding scheme for EEG data compression.

    PubMed

    Dehkordi, Vahid R; Daou, Hoda; Labeau, Fabrice

    2011-11-01

    In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.

  14. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  15. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    PubMed

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  16. Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems.

    PubMed

    Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I

    2016-12-12

    Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.

  17. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Sungjong, Cho; Wei, Wei

    2011-06-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect.

  18. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.

    PubMed

    Kozak, M; Karaman, M

    2001-07-01

    Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.

  19. Phase sensitive amplification in integrated waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schroeder, Jochen B.; Zhang, Youngbin; Husko, Chad A.; LeFrancois, Simon; Eggleton, Benjamin J.

    2017-02-01

    Phase sensitive amplification (PSA) is an attractive technology for integrated all-optical signal processing, due to it's potential for noiseless amplification, phase regeneration and generation of squeezed light. In this talk I will review our results on implementing four-wave-mixing based PSA inside integrated photonic devices. In particular I will discuss PSA in chalcogenide ridge waveguides and silicon slow-light photonic crystals. We achieve PSA in both pump- and signal-degenerate schemes with maximum extinction ratios of 11 (silicon) and 18 (chalcogenide) dB. I will further discuss the influence of two-photon absorption and free carrier effects on the performance of silicon-based PSAs.

  20. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  1. Microwave Power Combiners for Signals of Arbitrary Amplitude

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce; Hoppe, Daniel

    2009-01-01

    Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.

  2. Regional alveolar partial pressure of oxygen measurement with parallel accelerated hyperpolarized gas MRI.

    PubMed

    Kadlecek, Stephen; Hamedani, Hooman; Xu, Yinan; Emami, Kiarash; Xin, Yi; Ishii, Masaru; Rizi, Rahim

    2013-10-01

    Alveolar oxygen tension (Pao2) is sensitive to the interplay between local ventilation, perfusion, and alveolar-capillary membrane permeability, and thus reflects physiologic heterogeneity of healthy and diseased lung function. Several hyperpolarized helium ((3)He) magnetic resonance imaging (MRI)-based Pao2 mapping techniques have been reported, and considerable effort has gone toward reducing Pao2 measurement error. We present a new Pao2 imaging scheme, using parallel accelerated MRI, which significantly reduces measurement error. The proposed Pao2 mapping scheme was computer-simulated and was tested on both phantoms and five human subjects. Where possible, correspondence between actual local oxygen concentration and derived values was assessed for both bias (deviation from the true mean) and imaging artifact (deviation from the true spatial distribution). Phantom experiments demonstrated a significantly reduced coefficient of variation using the accelerated scheme. Simulation results support this observation and predict that correspondence between the true spatial distribution and the derived map is always superior using the accelerated scheme, although the improvement becomes less significant as the signal-to-noise ratio increases. Paired measurements in the human subjects, comparing accelerated and fully sampled schemes, show a reduced Pao2 distribution width for 41 of 46 slices. In contrast to proton MRI, acceleration of hyperpolarized imaging has no signal-to-noise penalty; its use in Pao2 measurement is therefore always beneficial. Comparison of multiple schemes shows that the benefit arises from a longer time-base during which oxygen-induced depolarization modifies the signal strength. Demonstration of the accelerated technique in human studies shows the feasibility of the method and suggests that measurement error is reduced here as well, particularly at low signal-to-noise levels. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  3. ECCM Scheme against Interrupted Sampling Repeater Jammer Based on Parameter-Adjusted Waveform Design

    PubMed Central

    Wei, Zhenhua; Peng, Bo; Shen, Rui

    2018-01-01

    Interrupted sampling repeater jamming (ISRJ) is an effective way of deceiving coherent radar sensors, especially for linear frequency modulated (LFM) radar. In this paper, for a simplified scenario with a single jammer, we propose a dynamic electronic counter-counter measure (ECCM) scheme based on jammer parameter estimation and transmitted signal design. Firstly, the LFM waveform is transmitted to estimate the main jamming parameters by investigating the discontinuousness of the ISRJ’s time-frequency (TF) characteristics. Then, a parameter-adjusted intra-pulse frequency coded signal, whose ISRJ signal after matched filtering only forms a single false target, is designed adaptively according to the estimated parameters, i.e., sampling interval, sampling duration and repeater times. Ultimately, for typical jamming scenes with different jamming signal ratio (JSR) and duty cycle, we propose two particular ISRJ suppression approaches. Simulation results validate the effective performance of the proposed scheme for countering the ISRJ, and the trade-off relationship between the two approaches is demonstrated. PMID:29642508

  4. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.

  5. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  6. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  7. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  8. A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging

    PubMed Central

    Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.

    2014-01-01

    Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990

  9. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  10. Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium

    2017-12-01

    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.

  11. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  12. A Double Chaotic Layer Encryption Algorithm for Clinical Signals in Telemedicine.

    PubMed

    Murillo-Escobar, M A; Cardoza-Avendaño, L; López-Gutiérrez, R M; Cruz-Hernández, C

    2017-04-01

    Recently, telemedicine offers medical services remotely via telecommunications systems and physiological monitoring devices. This scheme provides healthcare delivery services between physicians and patients conveniently, since some patients can not attend the hospital due to any reason. However, transmission of information over an insecure channel such as internet or private data storing generates a security problem. Therefore, authentication, confidentiality, and privacy are important challenges in telemedicine, where only authorized users should have access to medical or clinical records. On the other hand, chaotic systems have been implemented efficiently in cryptographic systems to provide confidential and privacy. In this work, we propose a novel symmetric encryption algorithm based on logistic map with double chaotic layer encryption (DCLE) in diffusion process and just one round of confusion-diffusion for the confidentiality and privacy of clinical information such as electrocardiograms (ECG), electroencephalograms (EEG), and blood pressure (BP) for applications in telemedicine. The clinical signals are acquired from PhysioBank data base for encryption proposes and analysis. In contrast with recent schemes in literature, we present a secure cryptographic algorithm based on chaos validated with the most complete security analysis until this time. In addition, the cryptograms are validated with the most complete pseudorandomness tests based on National Institute of Standards and Technology (NIST) 800-22 suite. All results are at MATLAB simulations and all them show the effectiveness, security, robustness, and the potential use of the proposed scheme in telemedicine.

  13. The Gravity Probe B `Niobium bird' experiment: Verifying the data reduction scheme for estimating the relativistic precession of Earth-orbiting gyroscopes

    NASA Technical Reports Server (NTRS)

    Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry

    1993-01-01

    Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.

  14. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    PubMed

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

    NASA Astrophysics Data System (ADS)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu

    2016-09-01

    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  16. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    NASA Astrophysics Data System (ADS)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  17. Higher order spectra and their use in digital communication signal estimation

    NASA Astrophysics Data System (ADS)

    Yayci, Cihat

    1995-03-01

    This thesis compared the detection ability of the spectrogram, the 1-1/2D instantaneous power spectrum (l-1/2D(sub ips)), the bispectrum, and outer product (dyadic) representation for digitally modulated signals corrupted by additive white Gaussian noise. Four detection schemes were tried on noise free BPSK, QPSK, FSK, and OOK signals using different transform lengths. After determining the optimum transform length, each test signal is corrupted by additive white Gaussian noise. Different SNR levels were used to determine the lowest SNR level at which the message or the modulation type could be extracted. The optimal transform length was found to be the symbol duration when processing BPSK, OOK, and FSK via the spectrogram, the 1-1/2D(sub ips) or the bispectrum method. The best transform size for QPSK was half of the symbol length. For the outer product (dyadic) spectral representation, the best transform size was four times larger than the symbol length. For all processing techniques, with the exception of the other product representation, the minimum detectable SNR is about 15 dB for BPSK, FSK, and OOK signals and about 20 dB for QPSK signals. For the outer product spectral method, these values tend to be about 10 dB lower.

  18. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-11-13

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  19. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J. V.

    Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate.more » In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.« less

  1. Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry

    NASA Astrophysics Data System (ADS)

    Minnegaliev, M. M.; Gerasimov, K. I.; Urmancheev, R. V.; Moiseev, S. A.; Chanelière, T.; Louchet-Chauvet, A.

    2018-02-01

    We demonstrated quantum memory scheme on revival of silenced echo in orthogonal geometry in Tm3+: Y3Al5O12 crystal. The retrieval efficiency of ˜14% was demonstrated with the 36 µs storage time. In this scheme for the first time we also implemented a suppression of the revived echo signal by applying an external electric field and the echo signal has been recovered on demand if we then applied a second electric pulse with opposite polarity. This technique opens the possibilities for realizing addressing in multi-qubit quantum memory in Tm3+: Y3Al5O12 crystal.

  2. Multi-frame acquisition scheme for efficient energy-dispersive X-ray magnetic circular dichroism in pulsed high magnetic fields at the Fe K-edge

    PubMed Central

    Strohm, Cornelius; Perrin, Florian; Dominguez, Marie-Christine; Headspith, Jon; van der Linden, Peter; Mathon, Olivier

    2011-01-01

    Using a fast silicon strip detector, a multi-frame acquisition scheme was implemented to perform energy-dispersive X-ray magnetic circular dichroism at the iron K-edge in pulsed high magnetic fields. The acquisition scheme makes use of the entire field pulse. The quality of the signal obtained from samples of ferrimagnetic erbium iron garnet allows for quantitative evaluation of the signal amplitude. Below the compensation point, two successive field-induced phase transitions and the reversal of the net magnetization of the iron sublattices in the intermediate phase were observed. PMID:21335909

  3. Controlling the high frequency response of H2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    NASA Astrophysics Data System (ADS)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann

    2016-01-01

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  4. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show howmore » adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.« less

  5. Development of a morphological convolution operator for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Liu, Weiwei; Wang, Yan

    2018-05-01

    This paper presents a novel signal processing scheme, namely morphological convolution operator (MCO) lifted morphological undecimated wavelet (MUDW), for rolling element bearing fault detection. In this scheme, a MCO is first designed to fully utilize the advantage of the closing & opening gradient operator and the closing-opening & opening-closing gradient operator for feature extraction as well as the merit of excellent denoising characteristics of the convolution operator. The MCO is then introduced into MUDW for the purpose of improving the fault detection ability of the reported MUDWs. Experimental vibration signals collected from a train wheelset test rig and the bearing data center of Case Western Reserve University are employed to evaluate the effectiveness of the proposed MCO lifted MUDW on fault detection of rolling element bearings. The results show that the proposed approach has a superior performance in extracting fault features of defective rolling element bearings. In addition, comparisons are performed between two reported MUDWs and the proposed MCO lifted MUDW. The MCO lifted MUDW outperforms both of them in detection of outer race faults and inner race faults of rolling element bearings.

  6. Secure Cluster Head Sensor Elections Using Signal Strength Estimation and Ordered Transmissions

    PubMed Central

    Wang, Gicheol; Cho, Gihwan

    2009-01-01

    In clustered sensor networks, electing CHs (Cluster Heads) in a secure manner is very important because they collect data from sensors and send the aggregated data to the sink. If a compromised node is elected as a CH, it can illegally acquire data from all the members and even send forged data to the sink. Nevertheless, most of the existing CH election schemes have not treated the problem of the secure CH election. Recently, random value based protocols have been proposed to resolve the secure CH election problem. However, these schemes cannot prevent an attacker from suppressing its contribution for the change of CH election result and from selectively forwarding its contribution for the disagreement of CH election result. In this paper, we propose a modified random value scheme to prevent these disturbances. Our scheme dynamically adjusts the forwarding order of contributions and discards a received contribution when its signal strength is lower than the specified level to prevent these malicious actions. The simulation results have shown that our scheme effectively prevents attackers from changing and splitting an agreement of CH election result. Also, they have shown that our scheme is relatively energy-efficient than other schemes. PMID:22408550

  7. Optimized Signaling Method for High-Speed Transmission Channels with Higher Order Transfer Function

    NASA Astrophysics Data System (ADS)

    Ševčík, Břetislav; Brančík, Lubomír; Kubíček, Michal

    2017-08-01

    In this paper, the selected results from testing of optimized CMOS friendly signaling method for high-speed communications over cables and printed circuit boards (PCBs) are presented and discussed. The proposed signaling scheme uses modified concept of pulse width modulated (PWM) signal which enables to better equalize significant channel losses during data high-speed transmission. Thus, the very effective signaling method to overcome losses in transmission channels with higher order transfer function, typical for long cables and multilayer PCBs, is clearly analyzed in the time and frequency domain. Experimental results of the measurements include the performance comparison of conventional PWM scheme and clearly show the great potential of the modified signaling method for use in low power CMOS friendly equalization circuits, commonly considered in modern communication standards as PCI-Express, SATA or in Multi-gigabit SerDes interconnects.

  8. Comparative efficiency of a scheme of cyclic alternating-period subtraction

    NASA Astrophysics Data System (ADS)

    Golikov, V. S.; Artemenko, I. G.; Malinin, A. P.

    1986-06-01

    The estimation of the detection quality of a signal on a background of correlated noise according to the Neumann-Pearson criterion is examined. It is shown that, in a number of cases, the cyclic alternating-period subtraction scheme has a higher noise immunity than the conventional alternating-period subtraction scheme.

  9. Receiver-Coupling Schemes Based On Optimal-Estimation Theory

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1992-01-01

    Two schemes for reception of weak radio signals conveying digital data via phase modulation provide for mutual coupling of multiple receivers, and coherent combination of outputs of receivers. In both schemes, optimal mutual-coupling weights computed according to Kalman-filter theory, but differ in manner of transmission and combination of outputs of receivers.

  10. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua

    2018-01-01

    We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.

  11. A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals

    NASA Astrophysics Data System (ADS)

    Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho

    Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.

  12. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    PubMed

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  13. Toward performing angular rotating measure of Heisenberg scaling by using the four-photon Holland-Burnett state

    NASA Astrophysics Data System (ADS)

    Zhang, Jiandong; Zhang, Zijing; Cen, Longzhu; Li, Shuo; Wang, Feng; Zhao, Yuan

    2018-03-01

    Quantum process tomography, as an advanced means of metrology, has a capacious range of applications for estimating numerous meaningful parameters. The parameter estimate precision of using coherent state and single photon state as probe are limited by the shot noise limit. Here we demonstrate a quantum enhanced rotating angle measure scheme based on the four-photon Holland-Burnett state can achieve the Heisenberg scaling by the coincidence counting technology. At the same time, the output signal of our scheme has an 8-fold super-resolution compared to the Malus law. In addition, the accuracy achieved by four photons is consistent with using 12 photons of single photon probe. That has incomparable preponderance in a situation in which only weak light can be exploited, like the measure of frangible biological specimens and photosensitive crystals. Moreover, the four-photon Holland-Burnett state can be generated by a polarization-entangled light source. These ensure that our scheme has a champaign application prospect.

  14. Investigation on improved Gabor order tracking technique and its applications

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Chiu, Chun-Ching

    2006-08-01

    The study proposes an improved Gabor order tracking (GOT) technique to cope with crossing-order/spectral components that cannot be effectively separated by using the original GOT scheme. The improvement aids both the reconstruction and interpretation of two crossing orders/spectra such as a transmission-element-regarding order and a structural resonance. The dual function of the Gabor elementary function can affect the precision of tracked orders. In the paper, its influence on the computed Gabor expansion coefficients is investigated. For applying the improved scheme in practical works, the separation and extraction of close-order components of vibration signals measured from a transmission-element test bench is illustrated by using both the GOT and Vold-Kalman filtering OT methods. Additionally, comparisons between these two schemes are summarized from processing results. The other experimental work demonstrates the ranking of noise components from a riding electric scooter. Singled-out dominant noise sources can be referred for subsequent design-remodeling tasks.

  15. STEM Education in Jordan Applicable to Developing Future Geophysicists: An Example Combining Electrical Engineering and Medical Research

    NASA Astrophysics Data System (ADS)

    Fraiwan, A.; Khadra, L.; Shahab, W.; Olgaard, D. L.

    2010-12-01

    Students in developing countries interested in STEM disciplines (science, technology, engineering & math) often choose majors that will improve their job opportunities in their home country when they graduate, e.g. engineering or medicine. Geoscience might be chosen as a sub-discipline of civil engineering, but rarely as a primary major unless there are local economic natural resources. The Institute of International Education administers the ExxonMobil Middle East and North Africa region scholars program designed to develop skilled students with a focus on geoscience and to build relationships with academic leaders by offering select faculty the opportunity to participation in the AGU fall meeting. At the Jordan University of Science and Technology (JUST), research in electrical engineering applied to medicine has potential links to geosciences. In geophysics, neural wavelet analysis (NWA) is commonly used to process complex seismic signals, e.g. for interpreting lithology or identifying hydrocarbons. In this study, NWA was used to characterize cardiac arrhythmias. A classification scheme was developed in which a neural network is used to identify three types of arrhythmia by distinct frequency bands. The performance of this scheme was tested using patient records from two electrocardiography (ECG) databases. These records contain normal ECG signals, as well as abnormal signals from atrial fibrillation (AF), ventricular tachycardia (VT) and ventricular fibrillation (VF) arrhythmias. The continuous wavelet transform is applied over frequencies of 0-50 Hz for times of 0-2s. For a normal ECG, the results show that the strongest signal is in a frequency range of 4-10 Hz. For AF, a low frequency ECG signal in the range of 0-5 Hz extends over the whole time domain. For VT, the low frequency spectrum is in the range of 2-10 Hz, appearing as three distinct bands. For VF, a continuous band in the range of 2-10 Hz extends over the whole time domain. The classification of the three arrhythmias used a Back-propagation neural network whose input is the energy level calculated from the wavelet transform. The network was trained using 13 different patterns (3 for AF, 5 for VT and 5 for VF) and blind tested on 25 records. The classification scheme correctly identified all 9 VF records, 5 of 6 VT records, and 9 of 10 AF records. Manual interpretation of time-frequency seismic data is computationally intensive because large volumes of data are generated during the time-frequency analysis process. The proposed NWA method has the potential to partially automate the interpretation of seismic data. Also, a relatively straight-forward adaptation of the proposed NWA-based classification scheme may help identify hydrocarbon-laden reservoirs, which have been observed to contain enhanced low-frequency content in the time-frequency domain (Castagna, Sun, & Siegfried, 2003).

  16. Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Mizuno, Jun; Wakui, Kentaro; Furusawa, Akira; Sasaki, Masahide

    2005-01-01

    We have experimentally realized the scheme initially proposed as quantum dense coding with continuous variables [

    Ban, J. Opt. B: Quantum Semiclassical Opt. 1, L9 (1999)
    ;
    Braunstein and Kimble, Phys. Rev. A 61, 042302 (2000)
    ]. In our experiment, a pair of EPR (Einstein-Podolsky-Rosen) beams is generated from two independent squeezed vacua. After adding a two-quadrature signal to one of the EPR beams, two squeezed beams that contain the signal were recovered. Although our squeezing level is not sufficient to demonstrate the channel capacity gain over the Holevo limit of a single-mode channel without entanglement, our channel is superior to conventional channels such as coherent and squeezing channels. In addition, the optical addition and subtraction processes demonstrated are elementary operations of universal quantum information processing on continuous variables.

  17. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  18. Combination of GRACE monthly gravity field solutions from different processing strategies

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2018-02-01

    We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.

  19. Large-Eddy Atmosphere-Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne

    2013-08-01

    A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.

  20. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems

    PubMed Central

    Luo, Zhongqiang; Zhu, Lidong

    2015-01-01

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low. PMID:26287209

  1. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.

    PubMed

    Luo, Zhongqiang; Zhu, Lidong

    2015-08-14

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low.

  2. Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches.

    PubMed

    Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto

    2008-11-10

    An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.

  3. On the Study of a Quadrature DCSK Modulation Scheme for Cognitive Radio

    NASA Astrophysics Data System (ADS)

    Quyen, Nguyen Xuan

    The past decade has witnessed a boom of wireless communications which necessitate an increasing improvement of data rate, error-rate performance, bandwidth efficiency, and information security. In this work, we propose a quadrature (IQ) differential chaos-shift keying (DCSK) modulation scheme for the application in cognitive radio (CR), named CR-IQ-DCSK, which offers the above improvement. Chaotic signal is generated in frequency domain and then converted into time domain via an inverse Fourier transform. The real and imaginary components of the frequency-based chaotic signal are simultaneously used in in-phase and quadrature branches of an IQ modulator, where each branch conveys two bits by means of a DCSK-based modulation. Schemes and operating principle of the modulator and demodulator are proposed and described. Analytical BER performance for the proposed schemes over a typical multipath Rayleigh fading channel is derived and verified by numerical simulations. Results show that the proposed scheme outperforms DCSK, CDSK and performs better with the increment of the number of channel paths.

  4. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  5. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  6. A joint tracking method for NSCC based on WLS algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2017-12-01

    Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.

  7. Gradient-based multiresolution image fusion.

    PubMed

    Petrović, Valdimir S; Xydeas, Costas S

    2004-02-01

    A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.

  8. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.

    2017-01-01

    The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.

  9. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    PubMed

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  10. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    PubMed Central

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  11. Automatic epileptic seizure detection in EEGs using MF-DFA, SVM based on cloud computing.

    PubMed

    Zhang, Zhongnan; Wen, Tingxi; Huang, Wei; Wang, Meihong; Li, Chunfeng

    2017-01-01

    Epilepsy is a chronic disease with transient brain dysfunction that results from the sudden abnormal discharge of neurons in the brain. Since electroencephalogram (EEG) is a harmless and noninvasive detection method, it plays an important role in the detection of neurological diseases. However, the process of analyzing EEG to detect neurological diseases is often difficult because the brain electrical signals are random, non-stationary and nonlinear. In order to overcome such difficulty, this study aims to develop a new computer-aided scheme for automatic epileptic seizure detection in EEGs based on multi-fractal detrended fluctuation analysis (MF-DFA) and support vector machine (SVM). New scheme first extracts features from EEG by MF-DFA during the first stage. Then, the scheme applies a genetic algorithm (GA) to calculate parameters used in SVM and classify the training data according to the selected features using SVM. Finally, the trained SVM classifier is exploited to detect neurological diseases. The algorithm utilizes MLlib from library of SPARK and runs on cloud platform. Applying to a public dataset for experiment, the study results show that the new feature extraction method and scheme can detect signals with less features and the accuracy of the classification reached up to 99%. MF-DFA is a promising approach to extract features for analyzing EEG, because of its simple algorithm procedure and less parameters. The features obtained by MF-DFA can represent samples as well as traditional wavelet transform and Lyapunov exponents. GA can always find useful parameters for SVM with enough execution time. The results illustrate that the classification model can achieve comparable accuracy, which means that it is effective in epileptic seizure detection.

  12. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.

    PubMed

    Servin, M; Malacara, D; Rodriguez-Vera, R

    1994-05-01

    A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.

  13. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.

  14. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  15. Local readout enhancement for detuned signal-recycling interferometers

    NASA Astrophysics Data System (ADS)

    Rehbein, Henning; Müller-Ebhardt, Helge; Somiya, Kentaro; Li, Chao; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2007-09-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector’s sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.

  16. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  17. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.

    PubMed

    Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D

    2006-01-01

    This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.

  18. Multidimensional optical spectroscopy of a single molecule in a current-carrying state

    NASA Astrophysics Data System (ADS)

    Rahav, S.; Mukamel, S.

    2010-12-01

    The nonlinear optical signals from an open system consisting of a molecule connected to metallic leads, in response to a sequence of impulsive pulses, are calculated using a superoperator formalism. Two detection schemes are considered: coherent stimulated emission and incoherent fluorescence. The two provide similar but not identical information. The necessary superoperator correlation functions are evaluated either by converting them to ordinary (Hilbert space) operators which are then expanded in many-body states, or by using Wick's theorem for superoperators to factorize them into nonequilibrium two point Green's functions. As an example we discuss a stimulated Raman process that shows resonances involving two different charge states of the molecule in the same signal.

  19. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    NASA Astrophysics Data System (ADS)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  20. Stochastic Resonance in Signal Detection and Human Perception

    DTIC Science & Technology

    2006-07-05

    learning scheme performing a stochastic gradient ascent on the SNR to determine the optimal noise level based on the samples from the process. Rather than...produce some SR effect in threshold neurons and a new statistically robust learning law was proposed to find the optimal noise level. [McDonnell...Ultimately, we know that it is the brain that responds to a visual stimulus causing neurons to fire. Conceivably if we understood the effect of the noise PDF

  1. A co-designed equalization, modulation, and coding scheme

    NASA Technical Reports Server (NTRS)

    Peile, Robert E.

    1992-01-01

    The commercial impact and technical success of Trellis Coded Modulation seems to illustrate that, if Shannon's capacity is going to be neared, the modulation and coding of an analogue signal ought to be viewed as an integrated process. More recent work has focused on going beyond the gains obtained for Average White Gaussian Noise and has tried to combine the coding/modulation with adaptive equalization. The motive is to gain similar advances on less perfect or idealized channels.

  2. A Novel Texture-Quantization-Based Reversible Multiple Watermarking Scheme Applied to Health Information System.

    PubMed

    Turuk, Mousami; Dhande, Ashwin

    2018-04-01

    The recent innovations in information and communication technologies have appreciably changed the panorama of health information system (HIS). These advances provide new means to process, handle, and share medical images and also augment the medical image security issues in terms of confidentiality, reliability, and integrity. Digital watermarking has emerged as new era that offers acceptable solutions to the security issues in HIS. Texture is a significant feature to detect the embedding sites in an image, which further leads to substantial improvement in the robustness. However, considering the perspective of digital watermarking, this feature has received meager attention in the reported literature. This paper exploits the texture property of an image and presents a novel hybrid texture-quantization-based approach for reversible multiple watermarking. The watermarked image quality has been accessed by peak signal to noise ratio (PSNR), structural similarity measure (SSIM), and universal image quality index (UIQI), and the obtained results are superior to the state-of-the-art methods. The algorithm has been evaluated on a variety of medical imaging modalities (CT, MRA, MRI, US) and robustness has been verified, considering various image processing attacks including JPEG compression. The proposed scheme offers additional security using repetitive embedding of BCH encoded watermarks and ADM encrypted ECG signal. Experimental results achieved a maximum of 22,616 bits hiding capacity with PSNR of 53.64 dB.

  3. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  4. Design of short-range terahertz wave passive detecting system

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting

    2016-09-01

    Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.

  5. OptoRadio: a method of wireless communication using orthogonal M-ary PSK (OMPSK) modulation

    NASA Astrophysics Data System (ADS)

    Gaire, Sunil Kumar; Faruque, Saleh; Ahamed, Md. Maruf

    2016-09-01

    Laser based radio communication system, i.e. OptoRadio, using Orthogonal M-ary PSK Modulation scheme is presented in this paper. In this scheme, when a block of data needs to be transmitted, the corresponding block of biorthogonal code is transmitted by means of multi-phase shift keying. At the receiver, two photo diodes are cross coupled. The effect is that the net output power due to ambient light is close to zero. The laser signal is then transmitted only into one of the receivers. With all other signals being cancelled out, the laser signal is an overwhelmingly dominant signal. The detailed design, bit error correction capabilities, and bandwidth efficiency are presented to illustrate the concept.

  6. All-optical clock recovery, photonic balancing, and saturated asymmetric filtering for fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Parsons, Earl Ryan

    In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator. I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB. I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB. Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The marks, which represented data, experienced a spectral shift due to SPM while the spaces, which consisted of noise, did not. A bandpass filter placed after the SOA then selected the signal and filtered out what was originally in-band noise. The receiver sensitivity was improved by 3 dB.

  7. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy

    1996-01-01

    Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.

  8. Quantum nondemolition measurements - Comment on recent developments. [detectability of extremely weak signals

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The limitations of the detectability of extremely weak signals (gravitational radiation for instance) imposed by Heisenberg's uncertainty principle on the sequential determination of those signals have been explored recently. A variety of schemes have been proposed to circumvent these limitations. Although all of the earlier attempts have been proven fruitless a recent proposal seems to be quite promising. The scheme, consisting of two harmonic oscillators interacting with each other in a peculiar way, allows for an exact analytical solution which is derived here. If it can be assumed that the expectation value of one of the canonical variables of the total system suffices to monitor the weak signal it can be shown that, in the absence of thermal noise, arbitrarily weak signals can in principle be measured without interference from the uncertainty principle.

  9. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  10. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays.

    PubMed

    Shi, Junpeng; Hu, Guoping; Sun, Fenggang; Zong, Binfeng; Wang, Xin

    2017-08-24

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions.

  11. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays

    PubMed Central

    Hu, Guoping; Zong, Binfeng; Wang, Xin

    2017-01-01

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions. PMID:28837115

  12. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  13. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish

    2017-04-01

    Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.

  14. Compensating for Attenuation Differences in Ultrasonic Inspections of Titanium-Alloy Billets

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Thompson, R. B.; Keller, Michael; Hassan, Waled

    2004-02-01

    Cylindrical billets of Titanium alloy are ultrasonically inspected prior to use in fabricating rotating jet-engine components. Although each billet has a cylindrical geometry, its ultrasonic properties are not cylindrically symmetric due to asymmetries in the process used to produce the billet from the original cast ingot. In the inspection process, a calibration standard of the same diameter containing flat-bottomed hole (FBH) reflectors is used to set the initial inspection gain (i.e., the signal amplification level). If the ultrasonic attenuation of the billet to be inspected differs significantly from that of the calibration standard, the inspection gain must be adjusted to maintain the desired defect detection sensitivity. In this paper we investigate several schemes for attenuation compensation. The gain adjustments fall into two broad categories: "global" adjustments (in dB/inch units), which are applied uniformly throughout the billet under inspection; and "local adjustments", which vary with axial and circumferential position. The schemes make use of the patterns of reflected back-wall amplitude and backscattered grain noise seen in the calibration standard and test billet. The various compensation schemes are tested using specimens of 6″-diameter Ti-6A1-4V billet into which many FBH targets were drilled. Results are summarized and tentative recommendations for improving billet inspection practices are offered.

  15. Laboratory for Engineering Man/Machine Systems (LEMS): System identification, model reduction and deconvolution filtering using Fourier based modulating signals and high order statistics

    NASA Technical Reports Server (NTRS)

    Pan, Jianqiang

    1992-01-01

    Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.

  16. Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring

    PubMed Central

    Sun, Jiedi; Yu, Yang; Wen, Jiangtao

    2017-01-01

    Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring. PMID:28635623

  17. Scalable Multiprocessor for High-Speed Computing in Space

    NASA Technical Reports Server (NTRS)

    Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard

    2004-01-01

    A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.

  18. Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Waves

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Lee, Jung-Sik; Bae, Sung-Min

    2011-06-01

    This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

  19. The effect of interference on delta modulation encoded video signals

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1979-01-01

    The results of a study on the use of the delta modulator as a digital encoder of television signals are presented. The computer simulation was studied of different delta modulators in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results are analyzed and then implemented in hardware to study the ability to encode real time motion pictures from an NTSC format television camera. The effects were investigated of channel errors on the delta modulated video signal and several error correction algorithms were tested via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. The final area of investigation concerned itself with finding delta modulators which could achieve significant bandwidth reduction without regard to complexity or speed. The first such scheme to be investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved two dimensional delta modulator algorithms.

  20. Parametric optimization of optical signal detectors employing the direct photodetection scheme

    NASA Astrophysics Data System (ADS)

    Kirakosiants, V. E.; Loginov, V. A.

    1984-08-01

    The problem of optimization of the optical signal detection scheme parameters is addressed using the concept of a receiver with direct photodetection. An expression is derived which accurately approximates the field of view (FOV) values obtained by a direct computer minimization of the probability of missing a signal; optimum values of the receiver FOV were found for different atmospheric conditions characterized by the number of coherence spots and the intensity fluctuations of a plane wave. It is further pointed out that the criterion presented can be possibly used for parametric optimization of detectors operating in accordance with the Neumann-Pearson criterion.

  1. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    PubMed

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  2. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    PubMed

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  3. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

    PubMed Central

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-01-01

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440

  4. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    PubMed Central

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894

  5. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  7. A comparative signaling cost analysis of Macro Mobility scheme in NEMO (MM-NEMO) with mobility management protocol

    NASA Astrophysics Data System (ADS)

    Islam, Shayla; Abdalla, Aisha H.; Habaebi, Mohamed H.; Latif, Suhaimi A.; Hassan, Wan H.; Hasan, Mohammad K.; Ramli, H. A. M.; Khalifa, Othman O.

    2013-12-01

    NEMO BSP is an upgraded addition to Mobile IPv6 (MIPv6). As MIPv6 and its enhancements (i.e. HMIPv6) possess some limitations like higher handoff latency, packet loss, NEMO BSP also faces all these shortcomings by inheritance. Network Mobility (NEMO) is involved to handle the movement of Mobile Router (MR) and it's Mobile Network Nodes (MNNs) during handoff. Hence it is essential to upgrade the performance of mobility management protocol to obtain continuous session connectivity with lower delay and packet loss in NEMO environment. The completion of handoff process in NEMO BSP usually takes longer period since MR needs to register its single primary care of address (CoA) with home network that may cause performance degradation of the applications running on Mobile Network Nodes. Moreover, when a change in point of attachment of the mobile network is accompanied by a sudden burst of signaling messages, "Signaling Storm" occurs which eventually results in temporary congestion, packet delays or even packet loss. This effect is particularly significant for wireless environment where a wireless link is not as steady as a wired link since bandwidth is relatively limited in wireless link. Hence, providing continuous Internet connection without any interruption through applying multihoming technique and route optimization mechanism in NEMO are becoming the center of attention to the current researchers. In this paper, we propose a handoff cost model to compare the signaling cost of MM-NEMO with NEMO Basic Support Protocol (NEMO BSP) and HMIPv6.The numerical results shows that the signaling cost for the MM-NEMO scheme is about 69.6 % less than the NEMO-BSP and HMIPv6.

  8. 802.11ac WLAN MIMO radio-over-fiber distributed antenna system for in-building networks based on multicore fiber

    NASA Astrophysics Data System (ADS)

    Morant, Maria; Llorente, Roberto

    2017-01-01

    In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).

  9. The visual display of regulatory information and networks.

    PubMed

    Pirson, I; Fortemaison, N; Jacobs, C; Dremier, S; Dumont, J E; Maenhaut, C

    2000-10-01

    Cell regulation and signal transduction are becoming increasingly complex, with reports of new cross-signalling, feedback, and feedforward regulations between pathways and between the multiple isozymes discovered at each step of these pathways. However, this information, which requires pages of text for its description, can be summarized in very simple schemes, although there is no consensus on the drawing of such schemes. This article presents a simple set of rules that allows a lot of information to be inserted in easily understandable displays.

  10. Digital Noise Reduction: An Overview

    PubMed Central

    Bentler, Ruth; Chiou, Li-Kuei

    2006-01-01

    Digital noise reduction schemes are being used in most hearing aids currently marketed. Unlike the earlier analog schemes, these manufacturer-specific algorithms are developed to acoustically analyze the incoming signal and alter the gain/output characteristics according to their predetermined rules. Although most are modulation-based schemes (ie, differentiating speech from noise based on temporal characteristics), spectral subtraction techniques are being applied as well. The purpose of this article is to overview these schemes in terms of their differences and similarities. PMID:16959731

  11. Hologram representation of design data in an expert system knowledge base

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.; Klon, Peter F.

    1988-01-01

    A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.

  12. Application and Evaluation of Independent Component Analysis Methods to Generalized Seizure Disorder Activities Exhibited in the Brain.

    PubMed

    George, S Thomas; Balakrishnan, R; Johnson, J Stanly; Jayakumar, J

    2017-07-01

    EEG records the spontaneous electrical activity of the brain using multiple electrodes placed on the scalp, and it provides a wealth of information related to the functions of brain. Nevertheless, the signals from the electrodes cannot be directly applied to a diagnostic tool like brain mapping as they undergo a "mixing" process because of the volume conduction effect in the scalp. A pervasive problem in neuroscience is determining which regions of the brain are active, given voltage measurements at the scalp. Because of which, there has been a surge of interest among the biosignal processing community to investigate the process of mixing and unmixing to identify the underlying active sources. According to the assumptions of independent component analysis (ICA) algorithms, the resultant mixture obtained from the scalp can be closely approximated by a linear combination of the "actual" EEG signals emanating from the underlying sources of electrical activity in the brain. As a consequence, using these well-known ICA techniques in preprocessing of the EEG signals prior to clinical applications could result in development of diagnostic tool like quantitative EEG which in turn can assist the neurologists to gain noninvasive access to patient-specific cortical activity, which helps in treating neuropathologies like seizure disorders. The popular and proven ICA schemes mentioned in various literature and applications were selected (which includes Infomax, JADE, and SOBI) and applied on generalized seizure disorder samples using EEGLAB toolbox in MATLAB environment to see their usefulness in source separations; and they were validated by the expert neurologist for clinical relevance in terms of pathologies on brain functionalities. The performance of Infomax method was found to be superior when compared with other ICA schemes applied on EEG and it has been established based on the validations carried by expert neurologist for generalized seizure and its clinical correlation. The results are encouraging for furthering the studies in the direction of developing useful brain mapping tools using ICA methods.

  13. Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin

    2017-09-01

    In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.

  14. Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.

    2015-12-01

    Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.

  15. Flexible, reconfigurable, power efficient transmitter and method

    NASA Technical Reports Server (NTRS)

    Bishop, James W. (Inventor); Zaki, Nazrul H. Mohd (Inventor); Newman, David Childress (Inventor); Bundick, Steven N. (Inventor)

    2011-01-01

    A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal.

  16. Energy-efficient human body communication receiver chipset using wideband signaling scheme.

    PubMed

    Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun

    2007-01-01

    This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.

  17. A Novel Fast and Secure Approach for Voice Encryption Based on DNA Computing

    NASA Astrophysics Data System (ADS)

    Kakaei Kate, Hamidreza; Razmara, Jafar; Isazadeh, Ayaz

    2018-06-01

    Today, in the world of information communication, voice information has a particular importance. One way to preserve voice data from attacks is voice encryption. The encryption algorithms use various techniques such as hashing, chaotic, mixing, and many others. In this paper, an algorithm is proposed for voice encryption based on three different schemes to increase flexibility and strength of the algorithm. The proposed algorithm uses an innovative encoding scheme, the DNA encryption technique and a permutation function to provide a secure and fast solution for voice encryption. The algorithm is evaluated based on various measures including signal to noise ratio, peak signal to noise ratio, correlation coefficient, signal similarity and signal frequency content. The results demonstrate applicability of the proposed method in secure and fast encryption of voice files

  18. Passive demodulation of miniature fiber-optic-based interferometric sensors using a time-multiplexing technique.

    PubMed

    Santos, J L; Jackson, D A

    1991-08-01

    A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.

  19. Random sequences generation through optical measurements by phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    François, M.; Grosges, T.; Barchiesi, D.; Erra, R.; Cornet, A.

    2012-04-01

    The development of new techniques for producing random sequences with a high level of security is a challenging topic of research in modern cryptographics. The proposed method is based on the measurement by phase-shifting interferometry of the speckle signals of the interaction between light and structures. We show how the combination of amplitude and phase distributions (maps) under a numerical process can produce random sequences. The produced sequences satisfy all the statistical requirements of randomness and can be used in cryptographic schemes.

  20. Combinatorial FSK modulation for power-efficient high-rate communications

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Budinger, James M.; Vanderaar, Mark J.

    1991-01-01

    Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed.

  1. Navigation Using Orthogonal Frequency Division Multiplexed Signals of Opportunity

    DTIC Science & Technology

    2007-09-01

    transmits a 32,767 bit pseudo -random “short” code that repeats 37.5 times per second. Since the pseudo -random bit pattern and modulation scheme are... correlation process takes two “ sample windows,” both of which are ν = 16 samples wide and are spaced N = 64 samples apart, and compares them. When the...technique in (3.4) is a necessary step in order to get a more accurate estimate of the sample shift from the symbol boundary correlator in (3.1). Figure

  2. Enhanced performance for differential detection in coherent Brillouin optical time-domain analysis sensors

    NASA Astrophysics Data System (ADS)

    Shao, Liyang; Zhang, Yunpeng; Li, Zonglei; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2016-11-01

    Logarithmic detectors (LogDs) have been used in coherent Brillouin optical time-domain analysis (BOTDA) sensors to reduce the effect of phase fluctuation, demodulation complexities, and measurement time. However, because of the inherent properties of LogDs, a DC component at the level of hundreds of millivolts that prohibits high-gain signal amplification (SA) could be generated, resulting in unacceptable data acquisition (DAQ) inaccuracies and decoding errors in the process of prototype integration. By generating a reference light at a level similar to the probe light, differential detection can be applied to remove the DC component automatically using a differential amplifier before the DAQ process. Therefore, high-gain SA can be employed to reduce quantization errors. The signal-to-noise ratio of the weak Brillouin gain signal is improved from ˜11.5 to ˜21.8 dB. A BOTDA prototype is implemented based on the proposed scheme. The experimental results show that the measurement accuracy of the Brillouin frequency shift (BFS) is improved from ±1.9 to ±0.8 MHz at the end of a 40-km sensing fiber.

  3. A WDM-PON with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 Gbit/s wavelength reused bidirectional reflective SOA

    NASA Astrophysics Data System (ADS)

    El-Nahal, Fady I.

    2017-01-01

    We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio ( ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate ( BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.

  4. Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Shang, Shuo; Zheng, Hanxiao; He, Hongye

    2017-12-01

    In this paper, a filterless photonic frequency-octupling scheme is presented. It is implemented by cascading a Sagnac loop with an intensity modulator (IM) in it and a dual-parallel Mach-Zehnder modulator (DPMZM) in series. The Sagnac loop is used to get the ±2nd-order sidebands of LO signal. The following DPMZM is utilized to obtain the ±4th-order sidebands. By photo-detecting the ±4th-order sidebands, mm-wave signal with the eightfold frequency of LO signal can be obtained. The scheme is verified by experiments, and a 32-GHz mm-wave signal is produced with the assistance of a 4-GHz LO signal. A 20-dB optical sideband suppression ratio (OSSR) and a 17-dB electrical spurious suppression ratio (ESSR) are realized, and no extra deterioration of phase noise is observed. Besides, the verification of the frequency tunability is implemented in the experiment.

  5. Alsep data processing: How we processed Apollo Lunar Seismic Data

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1979-01-01

    The Apollo lunar seismic station network gathered data continuously at a rate of 3 x 10 to the 8th power bits per day for nearly eight years until the termination in September, 1977. The data were processed and analyzed using a PDP-15 minicomputer. On the average, 1500 long-period seismic events were detected yearly. Automatic event detection and identification schemes proved unsuccessful because of occasional high noise levels and, above all, the risk of overlooking unusual natural events. The processing procedures finally settled on consist of first plotting all the data on a compressed time scale, visually picking events from the plots, transferring event data to separate sets of tapes and performing detailed analyses using the latter. Many problems remain especially for automatically processing extraterrestrial seismic signals.

  6. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    PubMed

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  7. Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection

    PubMed Central

    Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang

    2013-01-01

    Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350

  8. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  9. Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Lu, Ping; Liu, Li; Liu, Deming; Zhang, Jiangshan

    2017-02-01

    A phase demodulation method for short-cavity extrinsic Fabry-Perot interferometer (EFPI) based on two orthogonal wavelengths via a tunable optical filter is proposed in this paper. A broadband light is launched into the EFPI sensor and two monochromatic beams with 3dB bandwidth of 0.2nm are selected out from the reflected light of the EFPI sensor. A phase bias is induced between the two interferential signals due to the wavelength difference of the two beams. The wavelength difference will have an affect on the sensitivity of demodulated signal, which has been theoretically and experimentally demonstrated. The maximum sensitivity can be obtained when the phase bias is 0.5π corresponding to the wavelength difference of 1/4 FSR of the EFPI spectrum. The acoustic wave induced phase variation can be interrogated through an optimized differential cross multiplication (DCM) method. A normalization process is induced into the traditional DCM method to eliminate the influence of ambient temperature and pressure fluctuation induced spectrum shift on output signal. This means that, once the wavelength difference is fixed, the wavelength variation of each individual beam will have little influence on the amplitude of demodulated signal. The EFPI sensing head is formed by a 3μm-thick aluminum diaphragm, which has a SNR of more than 53dB. Through the proposed demodulation scheme, a large dynamic range and good linearity is acquired and Q-point drift problem of traditional EFPI sensor can be solved. The demodulation scheme can be applied to other kinds of short-cavity EFPI based acoustic sensors.

  10. A simple and efficient algorithm operating with linear time for MCEEG data compression.

    PubMed

    Titus, Geevarghese; Sudhakar, M S

    2017-09-01

    Popularisation of electroencephalograph (EEG) signals in diversified fields have increased the need for devices capable of operating at lower power and storage requirements. This has led to a great deal of research in data compression, that can address (a) low latency in the coding of the signal, (b) reduced hardware and software dependencies, (c) quantify the system anomalies, and (d) effectively reconstruct the compressed signal. This paper proposes a computationally simple and novel coding scheme named spatial pseudo codec (SPC), to achieve lossy to near lossless compression of multichannel EEG (MCEEG). In the proposed system, MCEEG signals are initially normalized, followed by two parallel processes: one operating on integer part and the other, on fractional part of the normalized data. The redundancies in integer part are exploited using spatial domain encoder, and the fractional part is coded as pseudo integers. The proposed method has been tested on a wide range of databases having variable sampling rates and resolutions. Results indicate that the algorithm has a good recovery performance with an average percentage root mean square deviation (PRD) of 2.72 for an average compression ratio (CR) of 3.16. Furthermore, the algorithm has a complexity of only O(n) with an average encoding and decoding time per sample of 0.3 ms and 0.04 ms respectively. The performance of the algorithm is comparable with recent methods like fast discrete cosine transform (fDCT) and tensor decomposition methods. The results validated the feasibility of the proposed compression scheme for practical MCEEG recording, archiving and brain computer interfacing systems.

  11. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  12. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.

  13. All-digital multicarrier demodulators for on-board processing satellites in mobile communication systems

    NASA Astrophysics Data System (ADS)

    Yim, Wan Hung

    Economical operation of future satellite systems for mobile communications can only be fulfilled by using dedicated on-board processing satellites, which would allow both cheap earth terminals and lower space segment costs. With on-board modems and codecs, the up-link and down-link can be optimized separately. An attractive scheme is to use frequency-division multiple access/single chanel per carrier (FDMA/SCPC) on the up-link and time division multiplexing (TDM) on the down-link. This scheme allows mobile terminals to transmit a narrow band, low power signal, resulting in smaller dishes and high power amplifiers (HPA's) with lower output power. On the up-link, there are hundreds to thousands of FDM channels to be demodulated on-board. The most promising approach is the use of all-digital multicarrier demodulators (MCD's), where analog and digital hardware are efficiently shared among channels, and digital signal processing (DSP) is used at an early stage to take advantage of very large scale integration (VLSI) implementation. A MCD consists of a channellizer for separation of frequency division multiplexing (FDM) channels, followed by individual modulators for each channel. Major research areas in MCD's are in multirate DSP, and the optimal estimation for synchronization, which form the basis of the thesis. Complex signal theories are central to the development of structured approaches for the sampling and processing of bandpass signals, which are the foundations in both channellizer and demodulator design. In multirate DSP, polyphase theories replace many ad-hoc, tedious and error-prone design procedures. For example, a polyphase-matrix deep space network frequency and timing system (DFT) channellizer includes all efficient filter bank techniques as special cases. Also, a polyphase-lattice filter is derived, not only for sampling rate conversion, but also capable of sampling phase variation, which is required for symbol timing adjustment in all-digital demodulators. In modulation schemes, a systematic survey is reported, based on two expressions that includes all formats in linear and constant envelope modulation. In synchronization techniques, classifications according to the criterion of statistical optimization, the data dependecy, and the method of parameter extraction, reflect the inherent complexity and performance of numerous existing algorithms. The designs of two new algorithms are presented: a differential decision frequency error detector that is simple and fast; a dual-comb-filter frequency/timing error detector that is targeted at VLSI implementation. The real-time implementation of a complete 4 x 16 kb/s MCD for the T-SAT project is described in detail, which proved many of the structured design concepts developed in this thesis. The requirements of software tools for various levels of simulation in multirate DSP and communications are analyzed. This led to the implementation of a data-flow oriented simulation system, which was used in all research work in the thesis.

  14. Creating the Infrastructure for Rapid Application Development and Processing Response to the HIRDLS Radiance Anomaly

    NASA Astrophysics Data System (ADS)

    Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.

    2005-12-01

    The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.

  15. SVD compression for magnetic resonance fingerprinting in the time domain.

    PubMed

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  16. VLC-beacon detection with an under-sampled ambient light sensor

    NASA Astrophysics Data System (ADS)

    Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat

    2017-08-01

    LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.

  17. Noiseless amplification of weak coherent fields exploiting energy fluctuations of the field

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka

    2012-12-01

    Quantum optics dictates that amplification of a pure state by any linear deterministic amplifier always introduces noise in the signal and results in a mixed output state. However, it has recently been shown that noiseless amplification becomes possible if the requirement of a deterministic operation is relaxed. Here we propose and analyze a noiseless amplification scheme where the energy required to amplify the signal originates from the stochastic fluctuations in the field itself. In contrast to previous amplification setups, our setup shows that a signal can be amplified even if no energy is added to the signal from external sources. We investigate the relation between the amplification and its success rate as well as the statistics of the output states after successful and failed amplification processes. Furthermore, we also optimize the setup to find the maximum success rates in terms of the reflectivities of the beam splitters used in the setup and discuss the relation of our setup with the previous setups.

  18. Categorisation of full waveform data provided by laser scanning devices

    NASA Astrophysics Data System (ADS)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  19. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong

    2010-09-01

    Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.

  20. SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain

    PubMed Central

    McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.

    2016-01-01

    Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380

  1. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    PubMed

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  2. Realisation and robustness evaluation of a blind spatial domain watermarking technique

    NASA Astrophysics Data System (ADS)

    Parah, Shabir A.; Sheikh, Javaid A.; Assad, Umer I.; Bhat, Ghulam M.

    2017-04-01

    A blind digital image watermarking scheme based on spatial domain is presented and investigated in this paper. The watermark has been embedded in intermediate significant bit planes besides the least significant bit plane at the address locations determined by pseudorandom address vector (PAV). The watermark embedding using PAV makes it difficult for an adversary to locate the watermark and hence adds to security of the system. The scheme has been evaluated to ascertain the spatial locations that are robust to various image processing and geometric attacks JPEG compression, additive white Gaussian noise, salt and pepper noise, filtering and rotation. The experimental results obtained, reveal an interesting fact, that, for all the above mentioned attacks, other than rotation, higher the bit plane in which watermark is embedded more robust the system. Further, the perceptual quality of the watermarked images obtained in the proposed system has been compared with some state-of-art watermarking techniques. The proposed technique outperforms the techniques under comparison, even if compared with the worst case peak signal-to-noise ratio obtained in our scheme.

  3. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  4. Simultaneous transmission of wired and wireless signals based on double sideband carrier suppression

    NASA Astrophysics Data System (ADS)

    Bitew, Mekuanint Agegnehu; Shiu, Run-Kai; Peng, Peng-Chun; Wang, Cheng-Hao; Chen, Yan-Ming

    2017-11-01

    In this paper, we proposed and experimentally demonstrated simultaneous transmission of wired and wireless signals based on double sideband optical carrier suppression. By properly adjusting the bias point of the dual-output mach-zehnder modulator (MZM), a central carrier in one output port and a pair of first-order sidebands in another output port are generated. The pair of first-order sidebands are fed into a second MZM to generate second-order order sidebands. A wired signal is embedded on the central carrier while a wireless signal is embedded on the second-order sidebands. Unlike other schemes, we did not use optical filter to separate the carrier from the optical sidebands. The measured bit error rate (BER) and eye-diagrams after a 25 km single-mode-fiber (SMF) transmission proved that the proposed scheme is successful for both wired and wireless signals transmission. Moreover, the power penalty at the BER of 10-9 is 0.3 and 0.7 dB for wired and wireless signals, respectively.

  5. High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing.

    PubMed

    Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J

    2011-12-19

    We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Schires, K.; Grillot, F.

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  7. Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises

    NASA Technical Reports Server (NTRS)

    Gusev, A. V.; Kulagin, V. V.

    1996-01-01

    The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.

  8. A two-photon laser induced fluorescence diagnostic with improved sensitivity, localization, and measurement rate

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-10-01

    A two-photon absorption laser induced fluorescence diagnostic has been developed for measuring neutrals in fusion plasmas. Implementation of this diagnostic on the HIT-SI3 spheromak has demonstrated the sensitivity of the diagnostic and shown that measurements taken over several plasma pulses are possible. These measurements yielded an unexpected loss of signal when complex collection optics were utilized. Simulations show that this loss of signal can be explained by chromatic aberrations caused by the disparate Kr and D emission. This loss of signal has been addressed with the development of a new calibration scheme involving xenon gas. The Xe calibration scheme emission occurs at 656.00 nm while the deuterium emission is 656.09 nm. This nearly identical emission allows for advanced optical techniques such as confocal collection/injection and spatial filtering to be employed without loss of signal. Spatial filtering has been demonstrated to decrease noise while improving measurement localization, while confocal collection/injection allows for probing and measuring to occur through one viewport. The Xe scheme also allows for a Doppler-free hydrogen measurement. Doppler-free measurements eliminate the need to scan the laser spectrally thus greatly increasing the rate of measurement.

  9. Analog nonlinear MIMO receiver for optical mode division multiplexing transmission.

    PubMed

    Spalvieri, Arnaldo; Boffi, Pierpaolo; Pecorino, Simone; Barletta, Luca; Magarini, Maurizio; Gatto, Alberto; Martelli, Paolo; Martinelli, Mario

    2013-10-21

    The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.

  10. SDR implementation of the receiver of adaptive communication system

    NASA Astrophysics Data System (ADS)

    Skarzynski, Jacek; Darmetko, Marcin; Kozlowski, Sebastian; Kurek, Krzysztof

    2016-04-01

    The paper presents software implementation of a receiver forming a part of an adaptive communication system. The system is intended for communication with a satellite placed in a low Earth orbit (LEO). The ability of adaptation is believed to increase the total amount of data transmitted from the satellite to the ground station. Depending on the signal-to-noise ratio (SNR) of the received signal, adaptive transmission is realized using different transmission modes, i.e., different modulation schemes (BPSK, QPSK, 8-PSK, and 16-APSK) and different convolutional code rates (1/2, 2/3, 3/4, 5/6, and 7/8). The receiver consists of a software-defined radio (SDR) module (National Instruments USRP-2920) and a multithread reception software running on Windows operating system. In order to increase the speed of signal processing, the software takes advantage of single instruction multiple data instructions supported by x86 processor architecture.

  11. On-board closed-loop congestion control for satellite based packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Ivancic, William D.; Kim, Heechul

    1993-01-01

    NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.

  12. An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks

    PubMed Central

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches. PMID:25574490

  13. An adaptive handover prediction scheme for seamless mobility based wireless networks.

    PubMed

    Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.

  14. Direct adaptive control of a PUMA 560 industrial robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  15. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  16. A novel laser-induced fluorescence scheme for Ar-I in a plasma.

    PubMed

    Short, Zachary D; Siddiqui, M Umair; Henriquez, Miguel F; McKee, John S; Scime, Earl E

    2016-01-01

    Here we describe a novel infrared laser-induced fluorescence scheme for the 1s2 state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s4-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s2 scheme as compared to the 1s4 scheme. In addition we present an updated iodine cell spectrum around the 1s4 LIF scheme pump wavelength.

  17. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  18. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  19. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  20. Multitaper spectral analysis of atmospheric radar signals

    NASA Astrophysics Data System (ADS)

    Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.

    2004-11-01

    Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  1. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals

    PubMed Central

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-01-01

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox. PMID:27827831

  2. Feature Mining and Health Assessment for Gearboxes Using Run-Up/Coast-Down Signals.

    PubMed

    Zhao, Ming; Lin, Jing; Miao, Yonghao; Xu, Xiaoqiang

    2016-11-02

    Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich information about the health status of machinery. However, a major challenge in R/C signals analysis lies in how to exploit more diagnostic information, and how this information could be properly integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology, we first investigate the data preprocessing and feature selection issues for R/C signals. Based on that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter associated with gear defect. In order for an effective feature mining and integration under R/C, a generalized phase demodulation technique is further established to reveal the evolution of modulation feature with operating speed and rotation angle. The experimental results indicate that the proposed methodology could not only detect the presence of gear damage, but also offer a novel insight into the dynamic behavior of gearbox.

  3. Scheme for Terminal Guidance Utilizing Acousto-Optic Correlator.

    DTIC Science & Technology

    longitudinally extending acousto - optic device as index of refraction variation pattern signals. Real time signals corresponding to the scene actually being viewed...by the vehicle are propagated across the stored signals, and the results of an acousto - optic correlation are utilized to determine X and Y error

  4. Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai

    2018-03-01

    Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.

  5. System identification of propagating wave segments in excitable media and its application to advanced control

    NASA Astrophysics Data System (ADS)

    Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki

    2018-04-01

    The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.

  6. Digital and analog communication systems

    NASA Technical Reports Server (NTRS)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  7. A two layer chaotic encryption scheme of secure image transmission for DCT precoded OFDM-VLC transmission

    NASA Astrophysics Data System (ADS)

    Wang, Zhongpeng; Chen, Fangni; Qiu, Weiwei; Chen, Shoufa; Ren, Dongxiao

    2018-03-01

    In this paper, a two-layer image encryption scheme for a discrete cosine transform (DCT) precoded orthogonal frequency division multiplexing (OFDM) visible light communication (VLC) system is proposed. Firstly, in the proposed scheme the transmitted image is first encrypted by a chaos scrambling sequence,which is generated from the hybrid 4-D hyper- and Arnold map in the upper-layer. After that, the encrypted image is converted into digital QAM modulation signal, which is re-encrypted by chaos scrambling sequence based on Arnold map in physical layer to further enhance the security of the transmitted image. Moreover, DCT precoding is employed to improve BER performance of the proposed system and reduce the PAPR of OFDM signal. The BER and PAPR performances of the proposed system are evaluated by simulation experiments. The experiment results show that the proposed two-layer chaos scrambling schemes achieve image secure transmission for image-based OFDM VLC. Furthermore, DCT precoding can reduce the PAPR and improve the BER performance of OFDM-based VLC.

  8. Unequal power allocation for JPEG transmission over MIMO systems.

    PubMed

    Sabir, Muhammad Farooq; Bovik, Alan Conrad; Heath, Robert W

    2010-02-01

    With the introduction of multiple transmit and receive antennas in next generation wireless systems, real-time image and video communication are expected to become quite common, since very high data rates will become available along with improved data reliability. New joint transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics are expected to be developed. Based on this idea, we present an unequal power allocation scheme for transmission of JPEG compressed images over multiple-input multiple-output systems employing spatial multiplexing. The JPEG-compressed image is divided into different quality layers, and different layers are transmitted simultaneously from different transmit antennas using unequal transmit power, with a constraint on the total transmit power during any symbol period. Results show that our unequal power allocation scheme provides significant image quality improvement as compared to different equal power allocations schemes, with the peak-signal-to-noise-ratio gain as high as 14 dB at low signal-to-noise-ratios.

  9. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  10. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  11. Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.

    PubMed

    Amini, H; Farzaneh, B; Azimifar, F; Sarhan, A A D

    2016-09-01

    This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique.

    PubMed

    Song, Hajun; Hwang, Sejin; Song, Jong-In

    2017-05-15

    This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.

  13. Tone calibration technique: A digital signaling scheme for mobile applications

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1986-01-01

    Residual carrier modulation is conventionally used in a communication link to assist the receiver with signal demodulation and detection. Although suppressed carrier modulation has a slight power advantage over the residual carrier approach in systems enjoying a high level of stability, it lacks sufficient robustness to be used in channels severely contaminated by noise, interference and propagation effects. In mobile links, in particular, the vehicle motion and multipath waveform propagation affect the received carrier in an adverse fashion. A residual carrier scheme that uses a pilot carrier to calibrate a mobile channel against multipath fading anomalies is described. The benefits of this scheme, known as tone calibration technique, are described. A brief study of the system performance in the presence of implementation anomalies is also given.

  14. A parallelization scheme of the periodic signals tracking algorithm for isochronous mass spectrometry on GPUs

    NASA Astrophysics Data System (ADS)

    Chen, R. J.; Wang, M.; Yan, X. L.; Yang, Q.; Lam, Y. H.; Yang, L.; Zhang, Y. H.

    2017-12-01

    The periodic signals tracking algorithm has been used to determine the revolution times of ions stored in storage rings in isochronous mass spectrometry (IMS) experiments. It has been a challenge to perform real-time data analysis by using the periodic signals tracking algorithm in the IMS experiments. In this paper, a parallelization scheme of the periodic signals tracking algorithm is introduced and a new program is developed. The computing time of data analysis can be reduced by a factor of ∼71 and of ∼346 by using our new program on Tesla C1060 GPU and Tesla K20c GPU, compared to using old program on Xeon E5540 CPU. We succeed in performing real-time data analysis for the IMS experiments by using the new program on Tesla K20c GPU.

  15. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.

    PubMed

    Li, Bin; Sun, Mengwei; Wang, Siyi; Guo, Weisi; Zhao, Chenglin

    2016-01-01

    Nanoscale molecular communication is a viable way of exchanging information between nanomachines. In this investigation, a low-complexity and noncoherent signal detection technique is proposed to mitigate the inter-symbol-interference (ISI) and additive noise. In contrast to existing coherent detection methods of high complexity, the proposed noncoherent signal detector is more practical when the channel conditions are hard to acquire accurately or hidden from the receiver. The proposed scheme employs the molecular concentration difference to detect the ISI corrupted signals and we demonstrate that it can suppress the ISI effectively. The difference in molecular concentration is a stable characteristic, irrespective of the diffusion channel conditions. In terms of complexity, by excluding matrix operations or likelihood calculations, the new detection scheme is particularly suitable for nanoscale molecular communication systems with a small energy budget or limited computation resource.

  16. Multimode cavity-assisted quantum storage via continuous phase-matching control

    NASA Astrophysics Data System (ADS)

    Kalachev, Alexey; Kocharovskaya, Olga

    2013-09-01

    A scheme for spatial multimode quantum memory is developed such that spatial-temporal structure of a weak signal pulse can be stored and recalled via cavity-assisted off-resonant Raman interaction with a strong angular-modulated control field in an extended Λ-type atomic ensemble. It is shown that effective multimode storage is possible when the Raman coherence spatial grating involves wave vectors with different longitudinal components relative to the paraxial signal field. The possibilities of implementing the scheme in the solid-state materials are discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.; Yin, J.; Li, C.

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less

  18. A Dynamic Compressive Gammachirp Auditory Filterbank

    PubMed Central

    Irino, Toshio; Patterson, Roy D.

    2008-01-01

    It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044

  19. Optically-synchronized encoder and multiplexer scheme for interleaved photonics analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Villa, Carlos; Kumavor, Patrick; Donkor, Eric

    2008-04-01

    Photonics Analog-to-Digital Converters (ADCs) utilize a train of optical pulses to sample an electrical input waveform applied to an electrooptic modulator or a reverse biased photodiode. In the former, the resulting train of amplitude-modulated optical pulses is detected (converter to electrical) and quantized using a conversional electronics ADC- as at present there are no practical, cost-effective optical quantizers available with performance that rival electronic quantizers. In the latter, the electrical samples are directly quantized by the electronics ADC. In both cases however, the sampling rate is limited by the speed with which the electronics ADC can quantize the electrical samples. One way to increase the sampling rate by a factor N is by using the time-interleaved technique which consists of a parallel array of N electrical ADC converters, which have the same sampling rate but different sampling phase. Each operating at a quantization rate of fs/N where fs is the aggregated sampling rate. In a system with no real-time operation, the N channels digital outputs are stored in memory, and then aggregated (multiplexed) to obtain the digital representation of the analog input waveform. Alternatively, for real-time operation systems the reduction of storing time in the multiplexing process is desired to improve the time response of the ADC. The complete elimination of memories come expenses of concurrent timing and synchronization in the aggregation of the digital signal that became critical for a good digital representation of the analog signal waveform. In this paper we propose and demonstrate a novel optically synchronized encoder and multiplexer scheme for interleaved photonics ADCs that utilize the N optical signals used to sample different phases of an analog input signal to synchronize the multiplexing of the resulting N digital output channels in a single digital output port. As a proof of concept, four 320 Megasamples/sec 12-bit of resolution digital signals were multiplexed to form an aggregated 1.28 Gigasamples/sec single digital output signal.

  20. 31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...

  1. 31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...

  2. 31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...

  3. 31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...

  4. 31 CFR 592.301 - Controlled through the Kimberley Process Certification Scheme.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Process Certification Scheme. 592.301 Section 592.301 Money and Finance: Treasury Regulations Relating to... Certification Scheme. (a) Except as otherwise provided in paragraph (b) of this section, the term controlled through the Kimberley Process Certification Scheme refers to the following requirements that apply, as...

  5. Advanced technology for a satellite multichannel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Abramovitz, Irwin J.; Flechsig, Drew E.; Matteis, Richard M., Jr.

    1994-01-01

    Satellite on-board processing is needed to efficiently service multiple users while at the same time minimizing earth station complexity. The processing satellite receives a wideband uplink at 30 GHz and down-converts it to a suitable intermediate frequency. A multichannel demultiplexer then separates the composite signal into discrete channels. Each channel is then demodulated by bulk demodulators, with the baseband signals routed to the downlink processor for retransmission to the receiving earth stations. This type of processing circumvents many of the difficulties associated with traditional bent-pipe repeater satellites. Uplink signal distortion and interference are not retransmitted on the downlink. Downlink power can be allocated in accordance with user needs, independent of uplink transmissions. This allows the uplink users to employ different data rates as well as different modulation and coding schemes. In addition, all downlink users have a common frequency standard and symbol clock on the satellite, which is useful for network synchronization in time division multiple access schemes. The purpose of this program is to demonstrate the concept of an optically implemented multichannel demultiplexer (MCD). A proof-of-concept (POC) model has been developed which has the ability to receive a 40 MHz wide composite signal consisting of up to 1000 40 kHz QPSK modulated channels and perform the demultiplexing process. In addition a set of special test equipment (STE) has been configured to evaluate the performance of the POC model. The optical MCD is realized as an acousto-optic spectrum analyzer utilizing the capability of Bragg cells to perform the required channelization. These Bragg cells receive an optical input from a laser source and an RF input (the signal). The Bragg interaction causes optical output diffractions at angles proportional to the RF input frequency. These discrete diffractions are optically detected and output to individual demodulators for baseband conversion. Optimization of the MCD design was conducted in order to achieve a compromise between two opposing sources of signal degradation: adjacent channel interference and intersymbol interference. The system was also optimized to allow simple, inexpensive ground stations communications with the MCD. These design goals led to the realization of a POC MCD which demonstrates the demultiplexing function with minimal signal degradation. Performance evaluation results using the STE equipment indicate that the dynamic range of the demultiplexer in the presence of adjacent and multiple channel loading is 40 - 50 dB. Measured bit error rate (BER) probabilities varied from the predicted theoretical results by one dB or less. The performance of the proof-of-concept model indicate that the development of a space qualified optically implemented MCD are feasible. The advantages to such an implementation include reduced size, weight and power and increased reliability when compared with electronic approaches. All of these factors are critical to on-board satellite processors. Further optimization can be conducted which trade ground station complexity and MCD performance to achieve desired system results.

  6. Involvement of Tyrosine Phosphatases in Insulin Signaling and Apoptosis in Breast Cancer

    DTIC Science & Technology

    2002-06-01

    translocation of PTP1B , a tyrosine phosphatase proposed to regulate signaling by insulin, IGF-1 and other cytokines. Cytoplasmic translocation of PTP1B results...signaling. In this scheme, calcium-mediated apoptosis and growth inhibition may be directed through mobilization of PTP1B .

  7. Optimum Detection Of Slow-Frequency-Hopping Signals

    NASA Technical Reports Server (NTRS)

    Levitt, Barry K.; Cheng, Unjeng

    1994-01-01

    Two papers present theoretical analyses of various schemes for coherent and noncoherent detection of M-ary-frequency-shift-keyed (MFSK) signals with slow frequency hopping. Special attention focused on continuous-phase-modulation (CPM) subset of SFH/MFSK signals, for which frequency modulation such carrier phase remains continuous (albeit unknown) during each hop.

  8. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  9. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  10. Retained energy-based coding for EEG signals.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-09-01

    The recent use of long-term records in electroencephalography is becoming more frequent due to its diagnostic potential and the growth of novel signal processing methods that deal with these types of recordings. In these cases, the considerable volume of data to be managed makes compression necessary to reduce the bit rate for transmission and storage applications. In this paper, a new compression algorithm specifically designed to encode electroencephalographic (EEG) signals is proposed. Cosine modulated filter banks are used to decompose the EEG signal into a set of subbands well adapted to the frequency bands characteristic of the EEG. Given that no regular pattern may be easily extracted from the signal in time domain, a thresholding-based method is applied for quantizing samples. The method of retained energy is designed for efficiently computing the threshold in the decomposition domain which, at the same time, allows the quality of the reconstructed EEG to be controlled. The experiments are conducted over a large set of signals taken from two public databases available at Physionet and the results show that the compression scheme yields better compression than other reported methods. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Timing performance of phase-locked loops in optical pulse position modulation communication systems

    NASA Astrophysics Data System (ADS)

    Lafaw, D. A.

    In an optical digital communication system, an accurate clock signal must be available at the receiver to provide proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. A timing error causes energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. This report simulates a timing subsystem for a satellite-to-satellite optical PPM communication link. The receiver employs direct photodetection, preprocessing of the optical signal, and a phase-locked loop for timing synchronization. The photodetector output is modeled as a filtered, doubly stochastic Poisson shot noise process. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical relations.

  12. Design and Hardware Implementation of a New Chaotic Secure Communication Technique

    PubMed Central

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385

  13. Design and Hardware Implementation of a New Chaotic Secure Communication Technique.

    PubMed

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.

  14. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  15. Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals

    NASA Technical Reports Server (NTRS)

    Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute

    2004-01-01

    Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.

  16. A novel laser-induced fluorescence scheme for Ar-I in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Zachary D., E-mail: zdshort@mix.wvu.edu; Siddiqui, M. Umair; Henriquez, Miguel F.

    Here we describe a novel infrared laser-induced fluorescence scheme for the 1s{sub 2} state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s{sub 4}-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s{sub 2} scheme asmore » compared to the 1s{sub 4} scheme. In addition we present an updated iodine cell spectrum around the 1s{sub 4} LIF scheme pump wavelength.« less

  17. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  18. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  19. Signaling Device for the Pre-Emergency State of the Elements of the Rotating Assembly of Steam Compressor of Desalination Plant

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Chernyavskiy, A. Zh; Danilin, S. A.; Blagin, E. V.

    2018-01-01

    This article deals with non-contact exploitation control method based on the treatment of the radio wave signal reflected from controlled gear teeth and its advantages in comparison with traditional methods of gear teeth control. Justification of necessity to use such control method during multiplier gears condition determination during its exploitation is given. Also this article deals with influence of different types of gear wear on typical information parameters of analyzed signals. Disadvantages of the method which are the impossibility of determination of certain types of wear are also taken into account. Certain stages of the development of mathematical model for interaction of first converter with controlled surface. Suggested mathematical model uses only the laws of geometric optics without taking wave processes into account but considering first converter direction diagram influence during its interaction with controlled surface. Structural scheme of developed experimental system for gears teeth condition control for steam compressor. Operation of the experimental system of gear control is given on the base of structural scheme. Core of the developed device is microcontroller STM32 which treat the information received from the sensors as well as connection with computer. Certain elements of the experimental control system as well as its components are described separately. Photos of experimental unit for control for control method development in laboratory conditions are presented. Design of the first converter is given in short.

  20. Experiment on Synchronous Timing Signal Detection from ISDB-T Terrestrial Digital TV Signal with Application to Autonomous Distributed ITS-IVC Network

    NASA Astrophysics Data System (ADS)

    Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi

    A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.

  1. Interlaced spin grating for optical wave filtering

    NASA Astrophysics Data System (ADS)

    Linget, H.; Chanelière, T.; Le Gouët, J.-L.; Berger, P.; Morvan, L.; Louchet-Chauvet, A.

    2015-02-01

    Interlaced spin grating is a scheme for the preparation of spectrospatial periodic absorption gratings in an inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an interlaced spin grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3 % in the small-angle and 11.6 % in the large-angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.

  2. Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking

    NASA Astrophysics Data System (ADS)

    Hu, Hwai-Tsu; Chou, Hsien-Hsin; Yu, Chu; Hsu, Ling-Yuan

    2014-12-01

    This paper presents a novel approach for blind audio watermarking. The proposed scheme utilizes the flexibility of discrete wavelet packet transformation (DWPT) to approximate the critical bands and adaptively determines suitable embedding strengths for carrying out quantization index modulation (QIM). The singular value decomposition (SVD) is employed to analyze the matrix formed by the DWPT coefficients and embed watermark bits by manipulating singular values subject to perceptual criteria. To achieve even better performance, two auxiliary enhancement measures are attached to the developed scheme. Performance evaluation and comparison are demonstrated with the presence of common digital signal processing attacks. Experimental results confirm that the combination of the DWPT, SVD, and adaptive QIM achieves imperceptible data hiding with satisfying robustness and payload capacity. Moreover, the inclusion of self-synchronization capability allows the developed watermarking system to withstand time-shifting and cropping attacks.

  3. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  4. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  5. A Review of the Current Available Studies of the Interference Susceptibility of Various Modulation Schemes

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    This report reviews the current available work on interference susceptibility for various modulation schemes. Only known and published work in this area is descussed. This report classifies the interference signal into three different categories, namely, narrow-band (in-band), wide-band and pluse interference.

  6. Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system

    NASA Astrophysics Data System (ADS)

    Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping

    2018-01-01

    In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.

  7. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  8. The PREP pipeline: standardized preprocessing for large-scale EEG analysis.

    PubMed

    Bigdely-Shamlo, Nima; Mullen, Tim; Kothe, Christian; Su, Kyung-Min; Robbins, Kay A

    2015-01-01

    The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.

  9. Improving OCD time to solution using Signal Response Metrology

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny

    2016-03-01

    In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.

  10. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Technical Reports Server (NTRS)

    White, Preston, III

    1988-01-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  11. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  12. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  13. Detecting dynamical changes in time series by using the Jensen Shannon divergence

    NASA Astrophysics Data System (ADS)

    Mateos, D. M.; Riveaud, L. E.; Lamberti, P. W.

    2017-08-01

    Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.

  14. Photonic generation of phase-stable and wideband chirped microwave signals based on phase-locked dual optical frequency combs.

    PubMed

    Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng

    2016-08-15

    A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained.

  15. Novel transform for image description and compression with implementation by neural architectures

    NASA Astrophysics Data System (ADS)

    Ben-Arie, Jezekiel; Rao, Raghunath K.

    1991-10-01

    A general method for signal representation using nonorthogonal basis functions that are composed of Gaussians are described. The Gaussians can be combined into groups with predetermined configuration that can approximate any desired basis function. The same configuration at different scales forms a set of self-similar wavelets. The general scheme is demonstrated by representing a natural signal employing an arbitrary basis function. The basic methodology is demonstrated by two novel schemes for efficient representation of 1-D and 2- D signals using Gaussian basis functions (BFs). Special methods are required here since the Gaussian functions are nonorthogonal. The first method employs a paradigm of maximum energy reduction interlaced with the A* heuristic search. The second method uses an adaptive lattice system to find the minimum-squared error of the BFs onto the signal, and a lateral-vertical suppression network to select the most efficient representation in terms of data compression.

  16. A new Scheme for ATLAS Trigger Simulation using Legacy Code

    NASA Astrophysics Data System (ADS)

    Galster, Gorm; Stelzer, Joerg; Wiedenmann, Werner

    2014-06-01

    Analyses at the LHC which search for rare physics processes or determine with high precision Standard Model parameters require accurate simulations of the detector response and the event selection processes. The accurate determination of the trigger response is crucial for the determination of overall selection efficiencies and signal sensitivities. For the generation and the reconstruction of simulated event data, the most recent software releases are usually used to ensure the best agreement between simulated data and real data. For the simulation of the trigger selection process, however, ideally the same software release that was deployed when the real data were taken should be used. This potentially requires running software dating many years back. Having a strategy for running old software in a modern environment thus becomes essential when data simulated for past years start to present a sizable fraction of the total. We examined the requirements and possibilities for such a simulation scheme within the ATLAS software framework and successfully implemented a proof-of-concept simulation chain. One of the greatest challenges was the choice of a data format which promises long term compatibility with old and new software releases. Over the time periods envisaged, data format incompatibilities are also likely to emerge in databases and other external support services. Software availability may become an issue, when e.g. the support for the underlying operating system might stop. In this paper we present the encountered problems and developed solutions, and discuss proposals for future development. Some ideas reach beyond the retrospective trigger simulation scheme in ATLAS as they also touch more generally aspects of data preservation.

  17. Phase locking of a seven-channel continuous wave fibre laser system by a stochastic parallel gradient algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, M V; Garanin, S G; Dolgopolov, Yu V

    2014-11-30

    A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)

  18. Accurate determination of Brillouin frequency based on cross recurrence plot analysis in Brillouin distributed fiber sensor

    NASA Astrophysics Data System (ADS)

    Haneef, Shahna M.; Srijith, K.; Venkitesh, D.; Srinivasan, B.

    2017-04-01

    We propose and demonstrate the use of cross recurrence plot analysis (CRPA) to accurately determine the Brillouin shift due to strain and temperature in a Brillouin distributed fiber sensor. This signal processing technique, which is implemented in Brillouin sensors for the first time relies on apriori data i.e, the lineshape of the Brillouin gain spectrum and its similarity with the spectral features measured at different locations along the fiber. Analytical and experimental investigation of the proposed scheme is presented in this paper.

  19. The Simultaneous Additive and Relative SysRem Algorithm

    NASA Astrophysics Data System (ADS)

    Ofir, A.

    2011-02-01

    We present the SARS algorithm, which is a generalization of the popular SysRem detrending technique. This generalization allows including multiple external parameters in a simultaneous solution with the unknown effects. Using SARS allowed us to show that the magnitude-dependant systematic effect discovered by Mazeh et al. (2009) in the CoRoT data is probably caused by an additive -rather than relative- noise source. A post-processing scheme based on SARS performs well and indeed allows for the detection of new transit-like signals that were not previously detected.

  20. Detection of Road Surface States from Tire Noise Using Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Kongrattanaprasert, Wuttiwat; Nomura, Hideyuki; Kamakura, Tomoo; Ueda, Koji

    This report proposes a new processing method for automatically detecting the states of road surfaces from tire noises of passing vehicles. In addition to multiple indicators of the signal features in the frequency domain, we propose a few feature indicators in the time domain to successfully classify the road states into four categories: snowy, slushy, wet, and dry states. The method is based on artificial neural networks. The proposed classification is carried out in multiple neural networks using learning vector quantization. The outcomes of the networks are then integrated by the voting decision-making scheme. Experimental results obtained from recorded signals for ten days in the snowy season demonstrated that an accuracy of approximately 90% can be attained for predicting road surface states using only tire noise data.

Top